1	Characterization of Whole Grain Pasta: Integrating Physical, Chemical, Molecular, and Instrumental Sensory
2	Approaches
3	Alessandra Marti, Stefano Cattaneo, Simona Benedetti, Susanna Buratti, Parisa Abbasi Parizad, Fabio Masotti,
4	Stefania Iametti [*] and Maria Ambrogina Pagani
5	Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, via G.
6	Celoria 2, 20133 Milan, Italy
7	* Corresponding author: Stefania Iametti; DeFENS, Via G. Celoria 2, 20133 Milan, Italy; Phone +3902-5031-
8	6819; stefania.iametti@unimi.it
9	Word count of text:4998
10	Short version of title: Features of whole-grain pasta
11	Choice of journal/section where article should appear: Food Chemistry

13 ABSTRACT: The consumption of whole-grain food - including pasta - has been increasing steadily. In the case of 14 whole-grain pasta, given the many different producers, it seems important to have some objective parameters 15 to define its overall quality. In this study, commercial whole-grain pasta samples representative of the Italian 16 market have been characterized from both molecular and electronic-senses (electronic nose and electronic 17 tongue) standpoint in order to provide a survey of the properties of different commercial samples. Only one pasta product showed very low levels of heat damage markers (furosine and pyrraline), suggesting that this 18 19 sample underwent to low temperature dry treatment. In all samples, the furosine content was directly 20 correlated to protein structural indices, since protein structure compactness increased with increasing levels of 21 heat damage markers. Electronic senses were able to discriminate among pasta samples according to the 22 intensity of heat treatment during the drying step. Pasta sample with low furosine content was discriminated 23 by umami taste and by sensors responding to aliphatic and inorganic compounds. Data obtained with this 24 multidisciplinary approach are meant to provide hints for identifying useful indices for pasta quality. 25 Keywords: whole-grain pasta; heat damage; electronic nose; electronic tongue; solubilized proteins 26 Practical Application: As observed for semolina pasta, objective parameters based on heat-damage were best 27 suited to define the overall quality of wholegrain pasta, almost independently of compositional differences 28 among commercial samples. Drying treatments of different intensity also had an impact on instrumental 29 sensory traits, that may provide a reliable alternative to analytical determination of chemical markers of heat 30 damage in all cases where there is a need for avoiding time-consuming procedures.

31

32 Introduction

Given the well-known health benefits of whole grain consumption (Poutanen 2012), consumers are
increasingly demanding whole-grain versions of many cereal-based products. Because of its simple formula and
worldwide popularity, pasta has been a common product targeted by product developers for offering wholegrain formats. Indeed, a single serving of whole grain pasta – with its 7 g of fiber per 100 g of pasta (Casiraghi
and others 2013) - could help in satisfying the recommended daily intake for this component (Fogliano and
Vitaglione 2005).

Beside the nutritional benefits, there are a spate of sensory (Heiniö and others 2016) and technological (Foschia and others 2013; Rakhesh and others 2015) issues that may become problematic when dealing with whole wheat pasta. Whole-grain pasta appears dark in color, with a bitter taste and with the possibility of occurrence of off-flavors and off-odors during storage. Whole-grain pasta producers are therefore called to meet the demand for a product with high nutritional interest, while paying due attention to the acceptability of the product.

45 In this regard, particular attention should be paid to the choice of the raw material and the 46 technological process. High levels of both damaged starch and amylase activity, typical of whole-meal flour, are 47 responsible for the formation of reducing sugars and for intense Maillard reaction (MR) (De Noni and Pagani 48 2010). The drying step certainly represents the most critical phase in the pasta-making process, because of its 49 impact on the texture, the color, the flavor, and the nutritional properties of the product. Therefore, the 50 definition of the overall quality of pasta cannot neglect the intensity of the MR assessment that is carried out 51 by the determination of appropriate molecular markers. Furosine (ε-N-furoylmethyl-I-lysine, FUR) is the most 52 widely used index of heat damage in pasta and in cereal-based products (Resmini and Pellegrino 1994). Heat 53 damage in dried pasta also involves protein glycation and formation of advanced glycation end products (AGEs, 54 e.g. ε-pyrrole-lysine (pyrraline; ε-2-formyl-5-hydroxymethyl-pyrrolaldehyde; ε-PL) (Resmini and others 1993) which may affect protein digestibility (Seiquer and others 2006; Stuknyte and others 2014) and be potentially 55 involved in the onset of some non-communicable diseases (Uribarri and others 2010). 56

In the case of pasta, a relationship has been reported also between the intensity of the heat treatment and the association of proteins through covalent and non-covalent interactions (Bonomi and others 2012). This has been studied also in whole grain pasta (Bock and others 2015), but the system used in those studies was based on common wheat, and therefore different from the semolina-based products that are mandatory in Italy. It seems reasonable that the different availability of water and the different macromolecular organization in whole-grain systems may result – also in this case - in altered patterns for protein-related structural changes and for formation of protein-carbohydrate adducts.

64 Aside from their molecular traits, whole-grain products are worthless unless they have 65 satisfactory sensory traits. Producers have their own panels, but their scores are not always accessible, and are far from being univocal. Therefore, there is a great interest in using electronic senses 66 (electronic nose and electronic tongue) for objective analysis of sensory traits. Electronic nose and electronic 67 68 tongue (e-nose and e-tongue) allow to evaluate the contribution of different chemical species in determining 69 aroma and tastes in food products (Sliwinska and others 2014). Thus, the application of electronic senses (e-70 senses) to pasta could represent an attractive – and objective - alternative to sensory tests for quality control 71 and process monitoring.

This study aimed at exploring the fundamental aspects of structure, flavor, taste, and cooking behavior of whole wheat pasta, and at relating these characteristics to the processing conditions as estimated by heat damage indices. Both chemical and structural indices were taken into account.

75 Materials and Methods

76 Materials

Packages of whole grain pasta manufactured in Italy by different companies were purchased in two Italian
supermarkets. A total of 20 spaghetti samples (1.7 mm diameter) were used, from two different production
batches of 10 different brands. The samples were labeled with separate codes for identification of the
producer and batch, respectively (i.e., a1, a2, b1, b2, etc). Chemical composition of pasta samples was those

81 reported by the manufacturer (see Table 1). No information was available as for the specific materials and

82 processes used by individual producers. the When appropriate, pasta samples were ground with a laboratory

83 mill (IKA Universalmühle M20; Janke & Kunkel GmbH & CoKG, IKA Laborteknic, Staufen, Germany), fitted with a

- 84 water cooling jacket in order to avoid overheating during grinding.
- 85 Cooking behavior
- 86 Cooking loss was evaluated according to the AACC official method 66-50.01 (AACC, 2001). An aliquot of pasta
- 87 (10 g) was cooked in boiling water (100 mL) until the optimum cooking time suggested by the
- 88 producer, as reported on the package with no salt added. After cooking, pasta was drained, cooking water

89 was recovered and its level brought back to the starting volume. An aliquot of water (40 mL) was then dried to

90 constant weight at 105 °C. The residue was weighed and the dry matter reported as percentage of the starting

- 91 dry material. Results were expressed as grams of solid loss/100 g of dry pasta. Pasta weight increase due to
- 92 cooking was evaluated by weighing pasta before and after cooking. Each measurement was determined in
- 93 duplicate.

94 Evaluation of heat damage

95 The formation of chemical artefacts potentially capable of affecting protein digestibility was assessed by

96 determining the following molecules arising from MR. The level of FUR and ε-PL was determined according to

- 97 Resmini and others (1990) and Resmini and Pellegrino (1994) respectively. In the case of ϵ -PL, the
- 98 measurement was carried out only on one batch of pasta, taking into account FUR data performed on all the
- 99 samples. The analyses were performed in triplicate.
- 100 *Properties of the protein network*
- 101 The solubility of proteins in pasta samples was determined in triplicate by using buffers of different
- 102 composition, as described by lametti and others (2006). Typically, 1 g of finely ground sample was suspended in
- 103 20 mL of 50 mM sodium phosphate buffer pH 7.0 containing 0.1 M NaCl. After stirring at room temperature for

104 60 min and removal of insoluble materials by centrifugation (2500 x g for 30 min), the protein content in the 105 supernatant was assessed by a dye-binding colorimetric method (Bradford, 1976). Where indicated, the buffer 106 used for protein extraction also contained 8 M urea or 8 M urea and 10 mM dithiothreitol (DTT) as reported by 107 Bonomi and others (2012). A given amount (10 mg) of the milled uncooked pasta was treated with 0.2 ml of 108 SDS-PAGE denaturing buffer (0.125 M Tris-HCl, pH 6.8, 50 % glycerol, 1.7 % SDS; 0.01 % Bromophenol Blue) 109 containing 1% 2-mercaptoethanol when indicated, and heated at 100 °C for 10 min. For comparison, SDS-PAGE 110 analysis was also carried out on the proteins extracted by treating 10 mg of ground pasta samples directly with 111 0.2 ml of denaturing buffer containing 2-mercaptoethanol for 0 min at 100°C. SDS-PAGE was carried out on a fixed porosity gel (12% monomer), using a MiniProtein apparatus (BioRad, Richmond, VA, USA) and gels were 112 113 Coomassie Blue-stained. Molecular Weight markers (14; 20.1; 30; 45; 67;96 kDa) were from BioRad 114 (Richmond, VA, USA).

115 E-senses

116 The volatile profile of the various pasta samples was assessed by a portable e- nose (PEN2, Win Muster 117 Airsense Analytics Inc., Schwerin, Germany). The device consisted of a sampling apparatus, a detecting unit 118 with a sensor array, and an appropriate pattern-recognition software (Win Muster v.1.6) for data recording and 119 elaboration. For e-nose measurements, the sample headspace was exposed to the sensors that provided a 120 signal pattern related to the volatile compounds in the headspace (Benedetti and others 2008; Marengo and 121 others 2017). The sensor array was made up of 10 metal oxide semiconductor-type sensors: W1C (aromatic), 122 W5S (broad range), W3C (aromatics), W6S (hydrogen), W5C (aromatics–aliphatics), W1S (broad methane), 123 W1W (sulfur-containing compounds), W2S (broad alcohol), W2W (sulfur-containing and chlorinated 124 compounds), and W3S (methane-aliphatics). 125 E-nose measurements were performed on both cooked and uncooked pasta samples. For the determination of

the aromatic profile, samples were placed in a 40 mL airtight glass vial fitted with a pierceable silicon/Teflon[®]

disk in the cap. The uncooked pasta sample (3 g) was used as such, whereas the cooked pasta sample (5 g of

lyophilized material) was wetted with 2 ml of distilled water. After an hour equilibration at room temperature, headspace measurements were performed according to the following conditions: flow rate 300 ml/min, injection time 60 s, flush time 180 s (during which the surface of the sensors was cleaned with air filtered through active carbon). All samples were analyzed in triplicate and the average of sensor responses were used for the subsequent statistical analysis.

E-tongue measurements were carried out by a Taste-Sensing System SA 402B (Intelligent Sensor Technology 133 134 Co. Ltd, Japan). For this study a total of 4 detecting sensors and 2 reference electrodes were used, separated in 135 two arrays according to the membrane charge: hybrid (CT0; AAE) and positive (C00; AE1). Measurements are 136 based on the capability of tasty compounds to modify sensors potential through electrostatic or hydrophobic 137 interactions (Buratti and others 2011). Ten grams of cooked and lyophilized pasta were resuspended in 150 mL 138 of distilled water. Solutions were vortexed for 5 min and centrifuged at 5000 rpm for 10 min at 20° C. After 139 centrifugation, the supernatants were filtered, and placed in 40 mL vessels for e-tongue analysis. Before each 140 measurement, the detecting sensors and the reference electrodes were dipped into a reference solution (30 141 mM potassium chloride, 0.3 mM tartaric acid) and the electric potential was measured for each sensor (Vr). 142 The sensors were then dipped for 30 s into the sample and the potential (Vs) was measured. For each sensor 143 the "relative value" (Rv) was calculated as the difference between the potential of the sample and that of the 144 reference solution (Vs-Vr). Sensors were then rinsed with fresh reference solution for 6 s, and dipped again into 145 the reference solution. The new potential of the reference solution was defined as Vr'. For each sensor, the 146 difference between the potential of the reference solution before and after sample measurement (Vr'-Vr) is 147 the CPAv (Change of Membrane Potential caused by Absorption value) and corresponds to the e-tongue 148 "aftertastes" (Kobayashi and others 2010; Buratti and others 2013). Before a new measurement cycle started, 149 sensors were rinsed for 90 s with washing solutions and then for 180 s with the reference solution. Each 150 sample was analysed in triplicate and sensor outputs were converted to taste information. The "taste values" 151 were calculated by multiplying sensor outputs for appropriate coefficients based on the Weber–Fechner law,

which gives the intensity of sensation considering the sensor property for tastes (Kobayashi and others 2010;
Buratti and others 2013).

154 Statistical analysis

155 Data were elaborated by Principal Component Analysis (PCA) using the MINITAB 14 software package (Minitab

156 Inc., State College, PA, USA, version 12.0). PCA was applied as an exploratory tool to uncover aroma and taste

157 characteristics. Analysis of variance (ANOVA) was performed with Statgraphics XV version 15.1.02 (StatPoint Inc.,

158 Warrenton, VA, USA). Samples were used as factor. When the factor effect was significant ($p \le 0.05$), differences

among the respective means were determined using Fisher's Least Significant Difference (LSD) test.

160 **Results and Discussion**

161 *Cooking behavior*

162 The cooking behavior of commercial whole wheat pasta – evaluated as cooking loss and water absorption - is

summarized in Table 2. The amount of material leached into cooking water is frequently used to define the

164 cooking quality of semolina pasta (Marti and others 2016). Indeed, good pasta cooking quality is assured by the

165 formation of a continuous and strengthened network of coagulated gluten proteins, which entraps the starch

166 macromolecules, limiting their swelling and solubilization into the cooking water (Resmini and Pagani 1983).

167 Cooking loss values ranged from 3.38 and 4.73 g/100g pasta for j1 and h2, respectively, but no statiscally

168 significant difference was evident when considering this parameter. Although these samples presented the

169 highest and the lowest protein content, no significant correlation (p>0.05) was detected between protein

170 content and cooking loss when all the samples were taken into account.

As regards water absorption, values ranged from 107.8 to 155.2 g/100g pasta for g2 and e1,

172 respectively. Despite the contribution of fiber in increasing the amount of water absorbed during cooking, no

173 significant (p>0.05) correlation between fiber content and water absorption was detected. Results on cooking

behavior suggest the key role of processing conditions (i.e. drying cycle) in affecting the cooking behavior of

whole grain pasta, as already shown in pasta from refined semolina (D'Egidio and others 1990; Marti andothers 2013).

177 *Heat Damage*

178 The extent of (MR) in commercial samples of whole wheat pasta, monitored by their FUR and ε-PL content, is 179 summarized in Table 2. The mean FUR content of the 10 brands is equal to 595 mg/100 g protein, ranging from 180 229 to 836 mg/100 g. The wide range of data herewith recorded suggests high variability in raw material 181 characteristics (i.e. α -amylase activity and reducing sugars content) and/or processing conditions (i.e. drying 182 diagram) among manufacturers. The lowest values of FUR, in the range of 229-262 mg/100 g protein, were 183 found for j1, and j2, respectively. This result suggests the use of medium temperature drying cycle, that results 184 in limited heat damage. Samples j1 and j2 also exhibited the lowest cooking losses (Table 2), likely because of 185 the high quality of the raw materials (Marti and others 2013).

186 FUR levels in whole grain pasta below 300 mg/100 g protein are indicative of a mild heat damage 187 (Casiraghi and others 2013). As expected, the whole grain pasta is characterized by higher average FUR values 188 compared to semolina pasta (De Noni and Pagani 2010; Bonomi and others 2012), likely due to the intense 189 amylase activity and the high content in reducing sugars and proteins of whole-meal semolina, that make these 190 products highly susceptible to MR (Resmini and others 1996). In general, no significant variability was observed among pasta batches from the same producer, if not for the "d" brand. This result might be ascribed to the 191 192 differences in the expiration date between these two batches (5 months in the case of samples d1 and d2, vs 2 193 months in all other samples), and by the reported effect of storage time on the FUR content (Cattaneo and 194 others 2008).

195 In agreement with the FUR data, the lowest value of ε -PL was found for "j" brand samples (0.8 196 mg/100g proteins), whereas the highest values (>15 mg/100g proteins) were measured in the products of 197 brands "a" and "d". To the best of our knowledge, no ε -PL data have been reported for whole-grain pasta. In 198 the present work, we found a mean value of 8.5 mg/100 g protein, although this parameter spanned a quite

199 broad range in the various samples (from 0.8 to 15.8 mg/100g protein). Studies on pasta made from refined

200 semolina found low levels of ε-PL (0.58 mg/100g protein) in products dried using a low-temperature cycle,

201 whereas high level of ϵ -PL (3.39 mg/100g protein) were recorded after high temperature drying cycles

202 (Stuknytė and others 2014). It is worth noting that "j" pasta samples exhibited much lower either FUR and ε-PL
203 levels than "m" pasta, despite their similar high protein content (14%), suggesting that protein content could
204 not be the only attribute chosen by producers or consumers to define product quality.

Indeed, in addition to semolina quality, processing conditions (i.e. drying cycle) play a key role in
 affecting heat damage and thus pasta nutritional quality. From a nutritional standpoint it is noteworthy that
 most of the samples from whole semolina here considered showed a level of ε-PL higher than values found in
 high temperature-dried semolina pasta (3.39 g/100 g of protein), for which a decrease in protein *in vitro* digestibility of the cooked product was measured (Stuknyte and others 2014).

Finally, the data in Table 2 indicate the absence of a possible connection between either FUR or PYR levels and cooking losses. This confirms that the application of high temperature drying cycles decreased the significance of semolina quality (i.e., protein content and gluten strength indices) in determining the pasta cooking behavior (D'Egidio and others 1990, Cubadda and others 2007, Marti and others 2013).

214 Overall protein organization

Structural features of proteins in the various pasta sample were investigated by detecting the amount of
protein solubilized by buffers of different dissociating ability towards covalent (disulfide) and non-covalent
inter-protein bonds. This approach has been shown to provide useful hints for understanding the nature and
extent of protein-protein interactions in cereal-based foods including gluten- containing (Bock and others 2015;
Bonomi and others 2012) and gluten-free (Cabrera-Chávez and others 2012; Marengo and others 2015) pasta,
also in the presence of nutritionally relevant ingredients of non-grain origin (eggs/whey) (Marti and others
2014).

As shown in Table 3, protein solubility in plain saline buffer was low for all samples, confirming aggregation of otherwise soluble proteins in semolina (albumins and globulins) as a consequence of pasta processing. Addition of urea to the saline extraction buffer resulted in a significant increase in solubilized protein in all samples, suggesting that hydrophobic interactions were very relevant to the structure of whatever protein network is present in these pasta samples (Table 3). When both urea and DTT were present in the extraction medium, the amount of soluble proteins further increased markedly in all samples, suggesting that inter-protein disulfides also play a fundamental role in stabilizing the structure of protein network.

229 By taking into account both the protein solubility data in Table 3 and the indices of thermal damage in 230 Table 2, it becomes evident that the sample with the lowest FUR content (i.e., j1 and j2) also had the highest 231 amount of solubilized protein regardless of the composition of the solubilizing medium. It is worth noting that 232 even a modest increase of thermal damage results in a markedly impaired protein solubility, as exemplified by 233 samples g1 and g2. These findings confirm previous reports on commercial pasta from refined semolina 234 (Bonomi and others 2012). The relationship between conditional proteins solubility and heat damage indices 235 offers hints for a possible relationship between the nature of prevalent interactions among proteins and the 236 type and intensity of processing used for pasta production also when other components are present, as is the 237 case in whole-grain pasta.

238 The nature of the proteins solubilized from the various samples by buffers of different composition was 239 investigated by SDS-PAGE. The resulting electrophoretic profiles were similar in all samples (Figure 1), 240 suggesting that the differences in protein organization observed in the solubility studies may be due to the 241 technological processing rather than to differences in the starting materials. In this frame, it is of interest to 242 note that the intensity of SDS-PAGE traces for proteins in the sample with the lowest level of FUR (Figure 1) 243 confirms the presence of high amount of solubilized proteins also upon treatment with detergents and disulfide reducing agents. In the same "j" samples, at difference with other pasta samples, there is also no 244 245 evidence for formation of the large aggregates not capable of entering the separating electrophoretic gel 246 (Figure 1).

247 E-senses

248 E-senses evaluation of the pasta samples was performed by e-nose before and after cooking, for assessment of 249 the volatiles profile. E-nose data collected on uncooked pasta were elaborated by PCA in combination with 250 heat damage (FUR) and protein solubility (in urea) data in correlation matrix where the first two principal 251 components accounted for 84.8% of the total variance (Figure 2). From the score plot (Fig. 2A) it can be noticed 252 that the pasta samples with the lowest furosine and the highest soluble protein levels (i.e., from the "j" brand, 253 Tables 2 and 3) are discriminated from all the other pasta samples, and are located on the right side of the first 254 principal component (PC1). As noted above, samples with an intermediate furosine content (g1 and g2) but 255 with low protein solubility are not discriminated in Fig. 2A. By considering the loading plot (Fig. 2B) the "j" 256 samples are characterized by the highest odor intensity perceived by WW and WS sensors (of broad-range 257 sensitivity and specific for sulfur-containing compounds). In addition, the same "j" samples were characterized 258 by the lowest odor intensity perceived by WC sensors (specific for aromatic compounds). All the other samples, 259 which are located on the left side of the plot, showed high odor intensity perceived by WC sensors. 260 E-tongue measurements were performed on cooked and lyophilized pasta, after reconstitution in 261 water as done for e-nose measurements on the same cooked pasta samples. E-tongue device is a liquid 262 analytical approach that mimics the taste-sensing mechanism of gustatory system; in this work sensors specific 263 for bitterness, umami and astringency evaluation were applied. The estimated taste values were elaborated 264 together with e-nose data collected on the same pasta samples by PCA and the first two principal components 265 (PC1 and PC2) accounted for 65% of the total variance. Considering the score plot (Fig. 3A) and the loading plot 266 (Fig. 3B), it is possible to observe a clear discrimination of samples on the first two principal components. In 267 particular, the "j1" and "j2" pasta samples, located on the bottom right side of the plot (Fig. 3A), were 268 characterized by WW and WS e-nose sensors and by the umami taste detected by e-tongue (Fig. 3B). Samples 269 "a", "b" and "d", located on the left of the plot (Fig. 3A), were discriminated by the aftertaste-A and by WC sensors; whereas samples "e", "f", and "g" were characterized mostly by astringency and by bitterness. 270

271 Conclusion

272 The results provided from this study indicate that the drying process is of paramount relevance to the 273 structural and nutritional quality of whole-grain pasta. As reported for pasta made from refined semolina, 274 wholegrain pasta dried at low temperature had low FUR and ε -PL content. Both these heat damage indices and 275 indices of protein aggregation and structural compactness suggest that the involved events (i.e., protein 276 glycation and structural rearrangement of gluten proteins) are relatively independent – in pasta – from the 277 amount of available fiber and from water distribution among phases. Protein content in the original material 278 had essentially no impact "per se" on the quality indices mentioned above, and no evidence was found for a 279 selective involvement of specific protein classes or subclasses in these events. The e-senses results 280 demonstrate that the low-temperature dried pasta can be easily discriminated from the high-temperature 281 dried samples. In particular, samples dried at low temperature were characterized by e-tongue sensor specific 282 for umami taste and by e-nose sensors of broad range sensitivity and specific for sulfur-containing compounds. 283 The high temperature treated samples were perceived more bitter and were characterized by e-nose sensors 284 specific for aromatic compounds. In conclusion, this combination of multidisciplinary approaches appears to 285 provide some hints for identifying objective indices for the assessment of whole-grain pasta quality.

286

287 Acknowledgements

The Authors gratefully acknowledge Mr. Gaetano Cardone (DeFENS, University of Milan, Italy) for technical
assistance and F.Ili De Cecco (Fara San Martino, Italy) for partial support.

290 Author Contributions

A. Marti evaluated pasta quality and drafted the manuscript. P. Abbasi-Parizad carried out protein-related
 studies, that were designed and supervised by S. lametti, who also wrote the related parts of the manuscript. S.
 Benedetti carried out e-senses studies, that were designed and supervised by S. Buratti, who also interpreted

the results. F. Masotti and S. Cattaneo carried out and interpreted the heat-damage-related studies. S. Iametti
was responsible for the coordination of the experimental plan execution. M.A. Pagani conceived the study.

296 References

297 Benedetti S, Buratti S, Spinardi A, Mannino S, Mignani I. 2008. Electronic nose as a non-destructive tool 298 to characterise peach cultivars and to monitor their ripening stage during shelf-life. Postharvest Biol Technol 299 47:181-188.

300 Bock JE, West R, Iametti S, Bonomi F, Marengo M, Seetharaman K. 2015. Gluten structural evolution 301 during pasta processing of refined and whole grain hard wheat pasta: The influence of mixing, drying, and 302 cooking. Cereal Chem 92:460-465.

Bonomi F, D'Egidio MG, Iametti S, Marengo M, Marti A, Pagani MA, Ragg EM. 2012. Structure–quality
 relationship in commercial pasta: A molecular glimpse. Food Chem 135: 348-355.

305 Buratti S, Ballabio D, Giovanelli G, Zuluanga Dominguez C. M., Moles A, Benedetti S, Sinelli N. 2011.

306 Monitoring of alcoholic fermentation using near infrared and mid infrared spectroscopies combined with

307 electronic nose and electronic tongue. Anal Chim Acta 697:67-74.

308 Buratti S, Casiraghi A, Minghetti P, Giovanelli G. 2013. The joint use of electronic nose and electronic

309 tongue for the evaluation of the sensorial properties of green and black tea infusions as related to their

310 chemical composition. Food Nutr Sci 4:605–615.

311 Cabrera-Chávez F, Calderón de la Barca AM, Islas-Rubio AR, Marti A, Marengo M, Pagani MA, Bonomi F,

312 lametti S. 2012. Molecular rearrangements in extrusion processes for the production of amaranth-enriched,

313 gluten-free rice pasta. LWT - Food Sci Technol 47:421-426.

314 Casiraghi MC, Pagani MA, Erba D, Marti A, Cecchini C, D'Egidio MG. 2013. Quality and nutritional

315 properties of pasta products enriched with immature wheat grain. Int J Food Sci Nutr 64:544-550.

316	Cattaneo S, Masotti F, Pellegrino L. 2008. Effects of overprocessing on heat damage of UHT milk. Eu
317	Food Res Technol 226:1099–1106.

- 318 Cubadda RE, Carcea M, Marconi M, Trivisonno MC. 2007. Influence of gluten proteins and drying 319 temperature on the coking quality of durum wheat pasta. Cereal Chem 84:48–55. 320 D'Egidio MG, Mariani BM, Nardi S, Novaro P, Cubadda R. 1990. Chemical and technological variables 321 and their relationships: A predictive equation for pasta cooking quality. Cereal Chem 67:275–281. 322 Fogliano V, Vitaglione P. 2005. Functional foods: planning and development. Mol Nutr Food Res 323 49:256-262. Foschia M, Peressini D, Sensidoni A, Brennan CS. 2013. The effects of dietary fibre addition on the 324 325 quality of common cereal products. J Cereal Sci 58:216-227.
- 326 Heiniö RL, Noort MWJ, Katina K, Alam SA, Sozer N, de Kock HL, Hersleth M, Poutanen K. 2016. Sensory
- 327 characteristics of wholegrain and bran-rich cereal foods–A review. Trends Food Sci Technol 47:25-38.
- 328 Iametti S, Bonomi F, Pagani MA, Zardi M, Cecchini C, D'Egidio MG. 2006. Properties of the protein and
 329 carbohydrate fractions in immature wheat kernels. J Agric Food Chem 54:10239-10244.
- Kobayashi Y, Habara M, Ikezazki H, Chen R, Naito Y, Toko K. 2010. Advanced taste sensors based on
 artificial lipids with global selectivity to basic taste qualities and high correlation to sensory scores. Sensors
 10:3411-3443.
- Marengo M, Bonomi F, Marti A, Pagani MA, Elkhalifa AEO, Iametti S. 2015. Molecular features of
 fermented and sprouted sorghum flours relate to their suitability as components of enriched gluten-free pasta.
 LWT Food Sci Technol 63:511-518.

336	Marengo M, Baffour LC, Buratti S, Benedetti S, Saalia FK, Carpen A, Manful J, Johnson PNT, Barbiroli A,
337	Bonomi F, Pagani MA, Marti A, Iametti S. 2017. Defining the overall quality of cowpea-enriched rice-based
338	breakfast cereals. Cereal Chem 94:151-157.
339	Marti A, Seetharaman K, Pagani MA. 2013. Rheological approaches suitable for investigating starch and
340	protein properties related to cooking quality of durum wheat pasta. J Food Qual 36:133-138.
341	Marti A, Barbiroli A, Marengo M, Fongaro L, Iametti S, Pagani MA. 2014. Structuring and texturing
342	gluten-free pasta: egg albumen or whey proteins? Eur Food Res Technol 238:217-224.
343	Marti A, D'Egidio MG, Pagani MA. 2016. Pasta: Quality testing methods. In: Wrigley C, Corke H,
344	Seetharaman K, Faubion J, editors. Encyclopedia of Food Grains, 2nd Edition, volume 4, Oxford: Academic
345	Press. p. 161-165.
346	Poutanen K. 2012. Past and future of cereal grains as food for health. Trends Food Sci Technol 25:58-
347	62.
348	Rakhesh N, Fellows CM, Sissons M. 2015. Evaluation of the technological and sensory properties of
349	durum wheat spaghetti enriched with different dietary fibres. J Sci Food Agr 95:2-11.
350	Resmini P, Pagani MA. 1983. Ultrastructure studies of pasta: A review. Food Microstruct 2:1-12.
351	Resmini P, Pellegrino L, Battelli G. 1990. Accurate quantification of furosine in milk and dairy products
352	by a direct HPLC method. Ital J Food Sci 3:173-183.
353	Resmini P, Pagani MA, Pellegrino L, De Noni I. 1993. Formation of 2-acetyl-3-D-glucopyranosylfuran
354	(glucosylisomaltol) from nonenzymatic browning in pasta drying. Ital J Food Sci 5:341-353.
355	Resmini P, Pellegrino L. 1994. Occurence of protein-bound lysylpirrolaldehyde in dried pasta. Cereal
356	Chem 71:254-262.

Resmini P, Pagani MA, Pellegrino L. 1996. Effect of semolina quality and processing conditions on non enzymatic browning in dried pasta. Food Aust 48:362-367.

359 Seiquer I, Díaz-Alguacil J, Delgado-Andrade C, López-Frías M, Hoyos AM, Galdó G, Navarro MP. 2006.

360 Diets rich in Maillard reaction products affect protein digestibility in adolescent males aged 11–14 y. Am J Clin

361 Nutr 83:1082-1088.

Sliwinska M, Wisniewska P, Dymerski T, Namiesnik J, Wardencki W. 2014. Food analysis using artificial
 senses. J Agric Food Chem 62: 1423-1448.

364 Stuknyte M, Cattaneo S, Pagani MA, Marti A, Micard V, Hogenboom J, De Noni I. 2014. Spaghetti from

365 durum wheat: Effect of drying conditions on heat damage, ultrastructure and in vitro digestibility. Food Chem

366 149:40-46.

367 Uribarri J, Woodruff S, Goodman S, Cai W, Chen X, Pyzik R, Yong A, Striker GE, Vlassara H. 2010.

368 Advanced glycation end products in foods and a practical guide to their reduction in the diet. J Am Diet Assoc

369 110:911-916.

370 Table 1. Chemical parameters for the various pasta samples, as indicated in the label

		Proteins	Carbohydrates	Fiber	Lipids
Brand	Ingredients	(g/100g)	(g/100g)	(g/100g)	(g/100g)
а	Wholegrain organic durum wheat semolina	12.0	67.5	7.0	1.5
b	Wholegrain durum wheat semolina	12.0	65.5	6.0	2.2
С	Wholegrain organic durum wheat semolina	12.2	66.9	6.8	1.7
d	Wholegrain durum wheat semolina, 2% germ	13.0	66.0	7.0	2.5
е	Wholegrain organic durum wheat semolina	13.0	66.0	8.0	2.0
f	Wholegrain durum wheat semolina	13.0	66.7	6.5	2.5
g	Wholegrain organic durum wheat semolina	11.5	64.0	7.0	2.0
h	Wholegrain organic durum wheat semolina	11.0	66.0	7.8	1.9
j	Wholegrain durum wheat semolina	14.0	63.0	7.5	2.5
m	Wholegrain durum wheat semolina	14.0	62.5	7.5	2.5

374 Table 2. Cooking behavior and heat damage of whole grain pasta.

Cooking behaviour		Heat d	amage	
Sample	Cooking loss	Water absorption	Furosine	Pyrraline
	(g/100g pasta)	(g/100g)	(mg/100 g proteins)	(mg/100 g proteins)
a1	3.75 ± 0.1 ª	138.2 ± 8.3 ª	714 ± 9 ^b	15.5 ± 0.6ª
a2	4.23 ± 0.4 ª	124.1 ± 7.4 °	742 ± 24 ^b	
b1	3.86 ± 0.4 ª	129.2 ± 7.8 ª	737 ± 7 ^b	6.5 ± 0.3 ^c
b2	3.70 ± 0.3 ª	125.2 ± 7.5 °	738 ± 11 ^b	
c1	4.10 ± 0.1^{a}	133.0 ± 8.0 ª	691 ± 11 ^b	4.8 ± 0.3 ^d
c2	3.57 ± 0.1 ª	131.9 ± 7.9 °	712±4 ^b	
d1	4.25 ± 0.5 °	125.1 ± 7.5 °	836 ± 22ª	15.8 ± 0.4 ª
d2	3.87 ± 0.7 ^a	128.5 ± 7.7 °	618 ± 6 ^c	
e1	4.37 ± 0.1 ª	155.2 ± 9.3 ª	742 ± 22 ^b	7.0 ± 0.3 °
e2	4.31 ± 0.4 ^a	151.0 ± 9.1 °	699 ± 14 ^b	
f1	4.25 ± 0.4 ª	145.8 ± 8.7 ª	683 ± 6 ^b	4.6 ± 0.2^{d}
f2	4.32 ± 0.3 ^a	151.2 ± 9.1 °	622 ± 19 ^c	
g1	3.81 ± 0.2 ª	112.2 ± 6.7 ^b	386 ± 16 ^e	2.4 ± 0.2^{e}
g2	3.88 ± 0.1 ª	107.8 ± 6.5 ^b	350 ± 6 ^e	
h1	4.16 ± 0.8 ª	144.3 ± 8.7 ª	582 ± 11 ^d	7.3 ± 0.3 ^c
h2	4.73 ± 0.2 ^a	135.9 ± 8.2 ª	574 ± 3 ^d	
j1	3.38 ± 0.4^{b}	135.7 ± 8.1 °	229 ± 8 ^f	0.8 ± 0.1^{f}
j2	3.63 ± 0.5 ª	141.0 ± 8.5 ª	262 ± 3 ^f	

m1	3.75 ± 0.1 ^a	139.3 ± 8.4 ª	620 ± 12 ^c	8.6 ± 0.4^{b}
m2	4.01 ± 0.6^{a}	124.3 ± 7.5 °	677 ± 14 ^c	

376Values are means \pm SD. Values with the same superscript letter in a given column are not significantly different377($P \le 0.05$).378

380 Table 3. Protein solubilized from different pasta samples in various media.

	50 mM phosphate buffer	+ 6 M urea	+ 6 M urea and 10 mM DTT
Sample	mg/g sample	mg/g sample	mg/g sample
al	1.78 ± 0.08 ^d	8.61 ± 0.54 ^d	28.35 ± 1.32 ^b
a2	1.97 ± 0.07 ^d	8.34 ± 0.53 ^d	32.04 ± 1.42 ^b
b1	3.34 ± 0.13 ^c	15.39 ± 0.95 °	33.31 ± 1.13 ^b
b2	3.54 ± 0.18 °	16.17 ± 0.98 °	32.42 ± 1.15 ^b
c1	6.79 ± 0.31 ^b	27.52 ± 1.50 ^a	39.39 ± 1.42 ª
c2	6.08 ± 0.24 ^b	27.77 ± 1.04 °	37.45 ± 1.51 °
d1	2.43 ± 0.13 ^d	12.92 ± 0.97 °	25.12 ± 1.16 °
d2	3.01 ± 0.21 °	13.47 ± 0.98 °	23.08 ± 1.87 °
e1	4.25 ± 0.26 ^c	17.27 ± 1.41 °	34.09 ± 1.98 ^b
e2	5.26 ± 0.28 °	21.35 ± 1.82 ^b	38.94 ± 1.86 °
f1	5.79 ± 0.32 ^b	20.67 ± 1.12 ^b	40.48 ± 2.10 ª
f2	5.11 ± 0.33 ^b	20.57 ± 0.99 ^b	37.24 ± 1.89 °
g1	3.52 ± 0.16 ^c	20.57 ± 1.05 ^b	32.41 ± 1.79 ^b
g2	4.64 ± 0.18 °	19.01 ± 1.11 ^b	31.14 ± 1.68 ^b
h1	3.01 ± 0.13 ^c	19.99 ± 1.23 ^b	35.60 ± 1.78 °
h2	3.85 ± 0.12 °	15.59 ± 1.14 °	39.60 ± 1.86 °
j1	7.56 ± 0.35 ^a	30.25 ± 1.71 °	43.98 ± 1.85 ^a
j2	6.75 ± 0.29 °	33.93 ± 1.87 °	42.27 ± 1.96 °
m1	4.85 ± 0.18 ^c	20.97 ± 1.23 ^b	33.60 ± 1.24

	m2	4.54 ± 0.21 ^c	20.92 ± 1.25 ^b	36.66 ± 1.34 °
382	Values are means ± SD. Va	lues with the same superscri	pt letter in a given column ar	e not significantly different
383	(<i>P</i> ≤ 0.05).			
384				
385				

387	
388	
200	100
389	
391	DI DZ CI CZ DI DZ EI MW EZ II IZ BI BZ NI MW AI AZ NZ JI JZ IZ MI MZ
202	
392	
393	
394	
395	Figure 1 - SDS-PAGE of proteins in various whole grains pasta. Proper amounts of milled pasta were treated
396	with denaturing buffer containing 1.7 % (w/w) SDS and 1% (w/w) 2-ME and denatured by boiling at 100°C.
397	MW: molecular weight markers (range 14000-96000 Da).
398	
399	

Figure 2 - E-nose PCA score plot (Figure. 2A) and loading plot (Figure 2B) obtained by PCA elaboration of data
collected on uncooked pasta in combination with heat damage (FUR) and protein solubility in urea. The data
were elaborated in a correlation matrix where the first two principal components accounted for 84.8% of the
total variance.

Figure 3 - E-tongue PCA score plot (Figure. 2A) and loading plot (Figure 2B) obtained by PCA elaboration of data
collected on cooked pasta in combination with the e-nose data, accounting for 65% of the total variance.