
World Journal of 
Gastroenterology
World J Gastroenterol  2017 October 7; 23(37): 6747-6922

ISSN 1007-9327 (print)
ISSN 2219-2840 (online)

Published by Baishideng Publishing Group Inc

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIR Universita degli studi di Milano

https://core.ac.uk/display/187974932?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


S

EDITORIAL
6747	 Microbial	dysbiosis	in	spouses	of	ulcerative	colitis	patients:	Any	clues	to	disease	pathogenesis?

Sorrentino D

REVIEW
6750	 Road	to	stemness	in	hepatocellular	carcinoma

Flores-Téllez TNJ, Villa-Treviño S, Piña-Vázquez C

6777	 Intrahepatic	vascular	changes	in	non-alcoholic	fatty	liver	disease:	Potential	role	of	insulin-resistance	and	

endothelial	dysfunction

Pasarín M, Abraldes JG, Liguori E, Kok B, La Mura V

6788	 Epidemiological	and	clinical	perspectives	on	irritable	bowel	syndrome	in	India,	Bangladesh	and	Malaysia:	

A	review

Rahman MM, Mahadeva S, Ghoshal UC

ORIGINAL ARTICLE

Basic Study

6802	 Estrogen	receptor	expression	in	chronic	hepatitis	C	and	hepatocellular	carcinoma	pathogenesis

Iyer JK, Kalra M, Kaul A, Payton ME, Kaul R

6817	 Glycosylation-related	gene	expression	in	HT29-MTX-E12	cells	upon	infection	by	Helicobacter	pylori

Cairns MT, Gupta A, Naughton JA, Kane M, Clyne M, Joshi L

6833	 STAT3	deficiency	prevents	hepatocarcinogenesis	and	promotes	biliary	proliferation	in	thioacetamide-induced	

liver	injury

Abe M, Yoshida T, Akiba J, Ikezono Y, Wada F, Masuda A, Sakaue T, Tanaka T, Iwamoto H, Nakamura T, Sata M, Koga H, 

Yoshimura A, Torimura T

6845	 Performance	verification	and	comparison	of	TianLong	automatic	hypersensitive	hepatitis	B	virus	DNA	

quantification	system	with	Roche	CAP/CTM	system

Li M, Chen L, Liu LM, Li YL, Li BA, Li B, Mao YL, Xia LF, Wang T, Liu YN, Li Z, Guo TS

Case Control Study

6854	 Association	of	insertion-deletions	polymorphisms	with	colorectal	cancer	risk	and	clinical	features

Marques D, Ferreira-Costa LR, Ferreira-Costa LL, Correa RS, Borges AMP, Ito FR, Ramos CCO, Bortolin RH, Luchessi 

AD, Ribeiro-dos-Santos A, Santos S, Silbiger VN

Contents Weekly  Volume 23  Number 37  October 7, 2017

� October 7, 2017|Volume 23|�ssue 37|WJG|www.wjgnet.com



Contents
World Journal of Gastroenterology

Volume 23  Number 37  October 7, 2017

Retrospective Cohort Study

6868	 Hospital	readmissions	in	decompensated	cirrhotics:	Factors	pointing	toward	a	prevention	strategy

Seraj SM, Campbell EJ, Argyropoulos SK, Wegermann K, Chung RT, Richter JM

6877	 Measurement	of	biological	age	may	help	to	assess	the	risk	of	colorectal	adenoma	in	screening	colonoscopy

Kim SJ, Kim BJ, Kang H

Retrospective Study

6884	 Prognostic	factors	of	response	to	endoscopic	treatment	in	painful	chronic	pancreatitis

Tantau A, Mandrutiu A, Leucuta DC, Ciobanu L, Tantau M

6894	 In	vivo	histological	diagnosis	for	gastric	cancer	using	endocytoscopy

Tsurudome I, Miyahara R, Funasaka K, Furukawa K, Matsushita M, Yamamura T, Ishikawa T, Ohno E, Nakamura M, 

Kawashima H, Watanabe O, Nakaguro M, Satou A, Hirooka Y, Goto H

CASE REPORT

6902	 Achalasia	after	bariatric	Roux-en-Y	gastric	bypass	surgery	reversal

Abu Ghanimeh M, Qasrawi A, Abughanimeh O, Albadarin S, Clarkston W

6907	 Persistent	severe	hypomagnesemia	caused	by	proton	pump	inhibitor	resolved	after	laparoscopic	

fundoplication

Semb S, Helgstrand F, Hjørne F, Bytzer P

6911	 Rupture	of	small	cystic	pancreatic	neuroendocrine	tumor	with	many	microtumors

Sagami R, Nishikiori H, Ikuyama S, Murakami K

LETTERS TO THE EDITOR

6920	 Resistance	of	Helicobacter	pylori 	to	furazolidone	and	levofloxacin:	A	viewpoint

Zamani M, Rahbar A, Shokri-Shirvani J

�� October 7, 2017|Volume 23|�ssue 37|WJG|www.wjgnet.com



NAME	OF	JOURNAL	
World Journal of  Gastroenterology

ISSN
ISSN 1007-9327 (print)
ISSN 2219-2840 (online)

LAUNCH	DATE
October 1, 1995

FREQUENCY
Weekly

EDITORS-IN-CHIEF
Damian Garcia-Olmo, MD, PhD, Doctor, Profes-
sor, Surgeon, Department of  Surgery, Universidad 
Autonoma de Madrid; Department of  General Sur-
gery, Fundacion Jimenez Diaz University Hospital, 
Madrid 28040, Spain

Stephen C Strom, PhD, Professor, Department of  
Laboratory Medicine, Division of  Pathology, Karo-
linska Institutet, Stockholm 141-86, Sweden

Andrzej S Tarnawski, MD, PhD, DSc (Med), 
Professor of  Medicine, Chief Gastroenterology, VA 
Long Beach Health Care System, University of  Cali-
fornia, Irvine, CA, 5901 E. Seventh Str., Long Beach, 

CA 90822, United States

EDITORIAL	BOARD	MEMBERS
All editorial board members resources online at http://
www.wjgnet.com/1007-9327/editorialboard.htm

EDITORIAL	OFFICE
Jin-Lei Wang, Director
Yuan Qi, Vice Director
Ze-Mao Gong, Vice Director
World Journal of  Gastroenterology
Baishideng Publishing Group Inc
7901 Stoneridge Drive, Suite 501, 
Pleasanton, CA 94588, USA
Telephone: +1-925-2238242
Fax: +1-925-2238243
E-mail: editorialoffice@wjgnet.com
Help Desk: http://www.f6publishing.com/helpdesk
http://www.wjgnet.com

PUBLISHER
Baishideng Publishing Group Inc
7901 Stoneridge Drive, Suite 501, 
Pleasanton, CA 94588, USA
Telephone: +1-925-2238242
Fax: +1-925-2238243
E-mail: bpgoffice@wjgnet.com
Help Desk: http://www.f6publishing.com/helpdesk

Contents

EDITORS FOR 
THIS ISSUE

Responsible Assistant Editor: Xiang Li                     Responsible Science Editor: Li-Juan Wei
Responsible Electronic Editor: Yan Huang       Proofing Editorial Office Director: Jin-Lei Wang
Proofing Editor-in-Chief: Lian-Sheng Ma

http://www.wjgnet.com

PUBLICATION	DATE
October 7, 2017

COPYRIGHT
© 2017 Baishideng Publishing Group Inc. Articles pub-
lished by this Open-Access journal are distributed under 
the terms of  the Creative Commons Attribution Non-
commercial License, which permits use, distribution, 
and reproduction in any medium, provided the original 
work is properly cited, the use is non commercial and is 
otherwise in compliance with the license.

SPECIAL	STATEMENT
All articles published in journals owned by the Baishideng 
Publishing Group (BPG) represent the views and opin-
ions of  their authors, and not the views, opinions or 
policies of  the BPG, except where otherwise explicitly 
indicated.

INSTRUCTIONS	TO	AUTHORS
Full instructions are available online at http://www.
wjgnet.com/bpg/gerinfo/204

ONLINE	SUBMISSION
http://www.f6publishing.com

World Journal of Gastroenterology
Volume 23  Number 37  October 7, 2017

Editorial	board	member	of	World	Journal	of	Gastroenterology ,	Toru	Mizuguchi,	
MD,	 PhD,	 Associate	 Professor,	 Surgeon,	Deaprtment	 of	 Surgery,	 Surgical	
Oncology	and	Science,	Sapporo	Medical	University	Hospital,	Sapporo	060-8543,	
Hokkaido,	Japan

World Journal of  Gastroenterology (World J Gastroenterol, WJG, print ISSN 1007-9327, online 
ISSN 2219-2840, DOI: 10.3748) is a peer-reviewed open access journal. WJG was estab-
lished on October 1, 1995. It is published weekly on the 7th, 14th, 21st, and 28th each month. 
The WJG Editorial Board consists of  1375 experts in gastroenterology and hepatology 
from 68 countries.
    The primary task of  WJG is to rapidly publish high-quality original articles, reviews, 
and commentaries in the fields of  gastroenterology, hepatology, gastrointestinal endos-
copy, gastrointestinal surgery, hepatobiliary surgery, gastrointestinal oncology, gastroin-
testinal radiation oncology, gastrointestinal imaging, gastrointestinal interventional ther-
apy, gastrointestinal infectious diseases, gastrointestinal pharmacology, gastrointestinal 
pathophysiology, gastrointestinal pathology, evidence-based medicine in gastroenterol-
ogy, pancreatology, gastrointestinal laboratory medicine, gastrointestinal molecular biol-
ogy, gastrointestinal immunology, gastrointestinal microbiology, gastrointestinal genetics, 
gastrointestinal translational medicine, gastrointestinal diagnostics, and gastrointestinal 
therapeutics. WJG is dedicated to become an influential and prestigious journal in gas-
troenterology and hepatology, to promote the development of  above disciplines, and to 
improve the diagnostic and therapeutic skill and expertise of  clinicians.

World Journal of  Gastroenterology (WJG) is now indexed in Current Contents®/Clinical Medicine, 
Science Citation Index Expanded (also known as SciSearch®), Journal Citation Reports®, Index 
Medicus, MEDLINE, PubMed, PubMed Central and Directory of  Open Access Journals. The 
2017 edition of  Journal Citation Reports® cites the 2016 impact factor for WJG as 3.365 (5-year 
impact factor: 3.176), ranking WJG as 29th among 79 journals in gastroenterology and hepatol-
ogy (quartile in category Q2). 

I-IX  Editorial	Board

ABOUT COVER

INDEXING/ABSTRACTING

AIMS AND SCOPE

FLYLEAF

��� October 7, 2017|Volume 23|�ssue 37|WJG|www.wjgnet.com



Intrahepatic vascular changes in non-alcoholic fatty liver 
disease: potential role of insulin-resistance and endothelial 
dysfunction

Marcos Pasarín, Juan G Abraldes, Eleonora Liguori, Beverley Kok, Vincenzo La Mura

Marcos Pasarín, Hepatic Hemodynamic Laboratory, Liver Unit, 
Hospital Clinic, IDIBAPS (Institut d’Investigacions Biomèdiques 
August Pi i Sunyer), University of Barcelona, 08036 Barcelona, 
Spain

Juan G Abraldes, Beverley Kok, Cirrhosis Care Clinic, Division 
of Gastroenterology (Liver Unit), CEGIIR, University of Alberta, 
AB T6G 2R3 Edmonton, Canada

Eleonora Liguori,Vincenzo La Mura, Internal Medicine, IRCCS 
San Donato, Department of Biomedical Sciences for Health, 
University of Milan, 20097 San Donato Milanese, Italy

ORCID number: Marcos Pasarín (0000-0002-4122-1235); 
Juan G Abraldes (0000-0002-4392-660X); Eleonora Liguori 
(0000-0002-0244-927X); Beverley Kok (0000-0002-1727-5030); 
Vincenzo La Mura (0000-0003-4685-7184).

Author contributions: Pasarín M and La Mura V contributed 
to systematic review of literature, design and writing of the 
manuscript; Abraldes JG contributed to revision of the major 
intellectual contents; Kok B contributed to edition of the 
language (as mother tongue), revision of the major intellectual 
contents; Liguori E contributed to edition of the paper, figures 
and systematic review of literature; and La Mura V contributed to 
supervision of the manuscript edition.

Conflict-of-interest statement: No potential conflicts of 
interest.  

Open-Access: This article is an open-access article which was 
selected by an in-house editor and fully peer-reviewed by external 
reviewers. It is distributed in accordance with the Creative 
Commons Attribution Non Commercial (CC BY-NC 4.0) license, 
which permits others to distribute, remix, adapt, build upon this 
work non-commercially, and license their derivative works on 
different terms, provided the original work is properly cited and 
the use is non-commercial. See: http://creativecommons.org/
licenses/by-nc/4.0/

Manuscript source: Invited manuscript

Correspondence to: Vincenzo La Mura, MD, PhD, Assistant 

Professor, Internal Medicine, IRCCS San Donato, Department 
of Biomedical Sciences for Health, University of Milan, p.zza 
Edmondo Malan, 1, 20097 San Donato Milanese, 
Italy. vincenzo.lamura@unimi.it 
Telephone: +39-02-52774317

Received: May 14, 2017  
Peer-review started: May 19, 2017
First decision: June 22, 2017
Revised: August 31, 2017 
Accepted: September 20, 2017  
Article in press: September 19, 2017
Published online: October 7, 2017

Abstract
Metabolic syndrome is a cluster of several clinical con-
ditions characterized by insulin-resistance and high 
cardiovascular risk. Non-alcoholic fatty liver disease is 
the liver expression of the metabolic syndrome, and 
insulin resistance can be a frequent comorbidity in 
several chronic liver diseases, in particular hepatitis C 
virus infection and/or cirrhosis. Several studies have 
demonstrated that insulin action is not only relevant 
for glucose control, but also for vascular homeostasis. 
Insulin regulates nitric oxide production, which 
mediates to a large degree the vasodilating, anti-
inflammatory and antithrombotic properties of a healthy 
endothelium, guaranteeing organ perfusion. The effects 
of insulin on the liver microvasculature and the effects 
of IR on sinusoidal endothelial cells have been studied 
in animal models of non-alcoholic fatty liver disease. 
The hypotheses derived from these studies and the 
potential translation of these results into humans are 
critically discussed in this review.

Key words: Non-alcoholic fatty liver disease; Endothelial 
dysfunction; Insulin resistance; Metabolic syndrome
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Core tip: Insulin-resistance participates in the devel-
opment of endothelial dysfunction and interferes 
with vascular homeostasis in patients with metabolic 
syndrome. This has been demonstrated in large 
conductance vessels, promoting atherosclerosis, but 
also occurs at a microcirculation level, suggesting 
an important role for Insulin in controlling vascular 
resistance and, finally, organ perfusion. We offer an 
overview of those pre-clinical and clinical studies 
exploring the liver microcirculation, and discuss the 
importance of early vascular changes induced by 
insulin-resistance in non-alcoholic fatty liver disease and 
in the most common chronic hepatitis in which Insulin-
Resistance is a comorbidity. 

Pasarín M, Abraldes JG, Liguori E, Kok B, La Mura V. 
Intrahepatic vascular changes in non-alcoholic fatty liver disease: 
Potential role of insulin-resistance and endothelial dysfunction. 
World J Gastroenterol 2017; 23(37): 6777-6787  Available from: 
URL: http://www.wjgnet.com/1007-9327/full/v23/i37/6777.htm  
DOI: http://dx.doi.org/10.3748/wjg.v23.i37.6777

INTRODUCTION
Metabolic syndrome (MS) is a cluster of cardiovascular 
risk factors including glucose intolerance, hyper
tension, dyslipidemia, and visceral obesity, and has 
a prevalence of up to 25% in adults over 40 years 
old[1]. Nonalcoholic fatty liver disease (NAFLD) 
is the liver expression of MS, and constitutes a 
chronic disease associated with high cardiovascular 
risk, with potential for progression to cirrhosis and 
hepatocellular carcinoma[2]. In other chronic liver 
conditions such as hepatitis C virusrelated chronic 
hepatitis[35] and cirrhosis[6], MS can be an important 
comorbidity that potentially worsens liver histology[7] 
and increases the risk of decompensation[8]. Insulin
resistance (IR) is a common early finding in patients 
with MS and is the main pathogenic substrate for 
the development of NAFLD. IR is associated with 
endothelial dysfunction (ED)[9,10], a major pathogenic 
factor in arterial hypertension, coronary artery disease 
and atherosclerosis[11].

Several studies in animal models and humans have 
demonstrated that insulin action couples vascular 
and glucose homeostasis[12]. Indeed, in physiologic 
conditions, Insulin can influence the production of 
nitric oxide (NO) that mediates to a large part the 
vasodilating, antiinflammatory and antithrombotic 
properties of a healthy endothelium. In patients with 
MS, the degree of IR parallels the severity of ED with 
important repercussion on structural and functional 

changes of the macro and microcirculation that 
may lead to impaired organ perfusion[11]. In the last 
few years, intrahepatic ED has been demonstrated in 
several models of liver disease including cirrhosis[13], 
ischemiareperfusion[14], endotoxemia[15] and fatty 
liver[16,17]. As a consequence, vascular changes induced 
by IR, acting through the development of ED, are of 
potential therapeutic interest in the context of the most 
prevalent liver diseases. The present review offers an 
overview of the molecular mechanisms linking IR with 
ED in the control of vascular homeostasis, and reports 
the main biological and clinical findings on this topic in 
the context of the most common liver diseases.

INSULIN AND ENDOTHELIUM: FROM 
PHYSIOLOGY TO PATHOPHYSIOLOGY
biological activity of NO is highly regulated in healthy 
conditions
NO is the main biochemical mediator of endothelium
dependent vasodilation in blood vessels. In physiologic 
conditions, it is constitutively synthesized by endothelial 
nitric oxide synthase (eNOS), whose activation results 
in a cascade of molecular events leading to smooth 
muscle relaxation[12]. The vasodilatory actions of NO 
play a key role in the renal control of extracellular fluid 
and is essential for the regulation of blood flow and 
blood pressure[18].

The endothelial NO production by eNOS is tightly 
regulated at the transcriptional and posttranscriptional 
level[19]. The expression of eNOS mRNA is largely 
restricted to the vascular endothelium[20]. Methylation 
is biologically associated with a marked impairment 
of promoter activity in mammalian cells and appears 
to play an important role in endothelial cellspecific 
expression of the human eNOS gene[21]. The eNOS 
promoter is heavily methylated in nonendothelial 
cells in comparison with endothelial cells. Kruppellike 
factor 2 (KLF2) is a transcription factor that modulates 
the expression of multiple endothelial genes, including 
eNOS and thrombomodulin[22,23]. KLF2 is endothelial
specific and its expression, which is modulated by 
different flow patterns, confers endothelial protection 
against inflammation, thrombosis and excessive 
vasoconstriction[24,25]. GraciaSancho et al[26] have 
demonstrated that KLF2 can be activated by SIRT1 
and that KLF2 overexpression activates vasoprotective 
genes in the vascular endothelium[27]. The same 
group demonstrated that simvastatin upregulates 
KLF2 expression in whole livers from cirrhotic rats[14] 
and in sinusoidal endothelial cells in culture[28]. This 
demonstrates that KLF2mediated transcriptional 
regulation at the liver sinusoidal endothelial cells 
reproduces what occurs at peripheral endothelial cells. 

The activity of eNOS is also thoroughly regulated 
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at the posttranslational level. These include protein
protein interactions, cofactors availability and 
protein phosphorylation[13]. The impact of these 
posttranslational modifications in liver endothelial 
eNOS has been thoroughly studied in animal models 
of liver disease[13]. Finally, the bioavailability of NO 
can be affected by the oxidative stress generated 
by several clinical conditions, and antioxidants have 
demonstrated the importance of redox environment to 
maintain microcirculation in conditions of compromised 
liver perfusion[29]. 

eNOS and iNOS: from physiology to pathophysiology 
In addition to the constitutive form of eNOS, at 
least two other isoforms have been described: the 
inducible NOS (iNOS), and the neuronal NOS (nNOS). 
The potential pathogenic roles of eNOS and iNOS 
dysregulation have been assessed in several models 
of liver disease. Both isoforms produce NO, but their 
intracellular localization, activation, and concentration 
of NO produced are not the same, resulting in different 
biologic actions. 

Physiological hepatic production of NO is derived 
from eNOS in response to stimuli such as shear stress 
and the presence of vasoconstrictors[30,31]. The classical 
activation of eNOS implies an increase of intracellular 
calcium (Ca2+) and binding of Ca2+/calmodulin to the 
enzyme. In addition, a Ca2+independent pathway 
regulating eNOS has been recently described. This 
pathway can be stimulated by several factors, 
among them shear stress and insulin[32,33]. Both 
shear stress and insulin increase endothelial NO 
production via activation of PI3kinase and protein 
kinase B (PKB/Akt), which activate eNOS by Ser1179
phosphorylation[34]. In addition, insulin upregulates the 
transcription of eNOS in endothelial cells[35].

In the liver, eNOSderived NO targets hepatic 
stellate cells (HSC), promoting the synthesis of 
cyclic GMP (cGMP)[36]. The most important target 
of cGMP is protein kinase cGMPdependent (PKG), 
which phosphorylates numerous proteins involved 
in the regulation of Ca2+ homeostasis, among them 
inositol 1,4,5 triphosphatereceptor. This leads to a 
decrease in the concentration of intracellular Ca2+ in 
HSC and produces relaxation with enduing decreased 
intrahepatic vascular resistance[37]. Thus, a physiological 
production of NO in the healthy liver offsets vaso
constrictor stimuli[38]. Since increased intrahepatic 
vascular tone is a major factor leading to portal 
hypertension in cirrhosis, different pharmacological 
strategies have been explored to increase liver NO 
availability[3942]. 

iNOS was initially identified for its vital role in 
the immune system. When activated, it produces 
continuously large amounts of NO since, in contrast 
to eNOS, the substrate and cofactors are not limiting. 

iNOS is upregulated in metabolic tissues under different 
conditions of stress[43]. Although it is important for 
the immune system, iNOS activity can be harmful for 
other cell types, including pancreatic β cells[44] and 
vascular cells[45]. Recent studies have shown that iNOS
derived NO may play a role in the pathophysiology 
of obesityinduced metabolic dysfunction[43]. Among 
other mechanisms, it has been shown that iNOS is 
a critical modulator of PPARγ activation (a target of 
insulin sensitizing drugs)[46] and can decrease insulin 
sensitivity through Snytrosilation of the insulin 
receptor[47]. Indeed, the inhibition of iNOS reduces 
hyperglycemia, hyperinsulinemia and improves liver 
insulin sensitivity[48]. Moreover, several studies with 
animal models have demonstrated that the induction 
of iNOS can cause ED through increased nitrooxidative 
stress[4951] and downregulation of eNOS[52]. Finally, the 
inhibition of iNOS in animal models that overexpress 
this enzyme restores a normal endothelial function[5355]. 

Under physiologic conditions, the only NOS expr
essed in the endothelium of the vessels is eNOS. 
During inflammation, blood vessels express iNOS and 
eNOS[56]. Overexpression of iNOS thus contributes to 
vascular dysfunction.

Insulin-resistance and eNOS activity
The binding of insulin to its receptors at the level of 
peripheral endothelial cells[57] activates the phosph
orylation of the insulinreceptor substrate which 
initiates a phosphorylation of a series of downstream 
substrates, among them the PI3K/Akt pathway[58,59], 
that finally activate eNOS[60,61]. The result of this set 
of reactions ultimately produces an increase in eNOS 
activity and increased production of nitric oxide (NO), 
leading to vasodilation (Figure 1).

In the presence of IR, the PI3K/Akt pathway 
(involved in metabolic functions) is impaired, while 
other pathways of insulin signalling remain unaffected, 
including the Ras/MAPK pathway (involved in the 
control of cell proliferation), resulting in an imbalance 
between insulin functions performed by the PI3K 
pathways and MAPK[62,63]. This imbalance leads to 
decreased activation of eNOS and thus lowered 
production of NO, resulting in ED.

INTRAHEPATIC VASCULAR CHANGES IN 
NAFLD
Microvascular abnormalities in models of fatty liver: 
Structural and functional increase of resistance
The isolated liver perfusion technique has been 
instrumental in the assessment of liver microvascular 
changes in fatty liver[16] (Figure 2). In several studies, 
substantial changes in vascular function and liver 
blood flow have been demonstrated in fatty liver 
disease, as reviewed elsewhere[64]. Studies in rabbits 
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represents the hallmark of any evolving chronic 
liver disease. Studies with animal models of fibrosis 
have demonstrated that fibrogenesis parallels neo
angiogenesis, confirming the importance of endothelial 
cells in this phenomenon[70]. In particular, the par
acrine crosstalk of sinusoidal endothelial cells with 
hepatocytes, hepatic stellate cells and Kupffer cells is 
determinant in initiating and maintaining the fibrogenic 
reaction[71]. However, among all these cytotypes, there 
remains debate as to which cell initiates the process 
and when exactly these cells start changing their 
function towards a pathologic phenotype. In addition, 
the role of IR on this crosstalk and its impact on the 
pathogenesis and evolution of NAFLD has not been 
adequately addressed by in vitro and in vivo studies. 
Recently, Miyao et al[72], by using mice models of 
NAFLD/nonalcoholic steatohepatitis, confirmed that 
sinusoidal endothelial injury appeared in the steatotic 
phase, preceding the activation of Kupffer cells, 
hepatic stellate cells and, in turn, inflammation and 
fibrosis[72]. This suggests that sinusoidal endothelial 
cells may have a gatekeeper role in the progression 
from simple steatosis to steatohepatitis, but this 
would require confirmatory explorations. Interestingly, 
these functional changes in the endothelium parallel 
a replacement of regular sinusoidal anatomy into 
appearing disorganized and characterized by abnormal 
vascular interconnections[73]. Furthermore, the recent 
observation that fibrosis may be sustained by an 
abnormal activation of coagulation[7476] suggests 
the theoretical scenario in which the loss of the 
anticoagulant properties of endothelium can play 
a mechanistic role in fibrogenesis even in NAFLD. 
Indeed, Kopec et al[77] demonstrated that steatosis 
due to 3 mo of high fat diet is associated with a pro
coagulant imbalance that has a causeeffect relation 
with the severity of liver damage. The real impact of all 
these microvascular abnormalities in the progression to 

with dietinduced steatosis of different severity 
confirmed that reduction in sinusoidal perfusion 
correlated with the severity of fat accumulation in 
parenchymal cells[65] and the severity of steatosis had 
a greater impact on microcirculation. These studies 
demonstrated that steatosis caused an increase in 
the mechanical component of intrahepatic vascular 
resistance to portal blood flow, independent of 
functional changes potentially induced by IR, a feature 
that could be observed also in patients with genetic 
susceptibility to NAFLD[66,67]. The potential impact of 
these hemodynamic changes on liver perfusion was 
subsequently explored in rats exposed to a high
cholesterol diet that developed steatosis. Compared 
to controls, steatotic rats had significantly reduced 
hepatic microcirculation and tissue oxygenation[68]. 
Interestingly, in this study, exposure to LArginine, 
the biochemical precursor of NO, improved tissue 
oxygenation, whereas LNAME, a NOS inhibitor, 
further deteriorated hepatic microcirculation and 
hepatocyte oxygenation. These results allow for two 
major considerations. First, reduced oxygenation is 
an important issue if we consider the susceptibility 
of fatty livers to ischemic injury[69]. Second, all these 
results, from a biochemical point of view, suggest that 
NO, the marker of a healthy endothelium, is involved 
in the modulation of hepatic microcirculatory perfusion 
and oxygenation in rats with steatotic livers. Along 
these lines, we had previously demonstrated that 
intrahepatic ED in isolated and perfused livers from 
rats with several features of NAFLD and MS predated 
the development of fibrosis and inflammation[17], 
suggesting that liver ED contributes to increased 
intrahepatic resistance very early in the pathogenesis 
of NAFLD. 

Sinusoidal endothelial dysfunction and fibrogenesis
Fibrogenesis is a complex biochemical process which 
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steatohepatitis and cirrhosis is an intriguing question, 
and their role in the pathogenesis of NAFLD remains in 
need of further investigation. 

Pathogenic link between intrahepatic microvascular 
abnormalities and IR 
Many mechanisms observed in patients with IR, 
among them, lipotoxicity[78], oxidative stress[79,80], 
changes in local reninangiotensin system[81], increased 
sensitivity to adrenergic stimuli of vascular smooth 
muscle cells[82], glucotoxicity (via oxidative stress, 
increased flow, activation of diacylglycerol, among 
others[83,84]) and inflammation[85,86], could explain the 
development of ED.

In a rat model of simple steatosis, we demonstrated 
the presence of insulin resistance in the liver sinusoidal 
endothelium that was mediated, at least in part, by 
the upregulation of iNOS[16]. As occurs in the peripheral 
circulation, in the normal liver, insulin results in liver 
vasodilation. In rats with fatty liver, insulindependent 
vasodilation in the liver vasculature was significantly 
impaired as compared to livers from control rats. This 
was partially restored in rats treated with the iNOS 
specific inhibitor 1400 W. Moreover, the insulin sensitizer 
metformin also restored hepatic vascular sensitivity 
to insulin while diminishing hepatic iNOS expression. 
Recently, the interaction between sinusoidal ED and 
iNOS has been explored in a rat model of endotoxemia 
(characterized by an overexpression of iNOS). These 

data further demonstrated that iNOS upregulation 
can induce, per se, sinusoidal ED[87]. All these findings 
support that in the hepatic vasculature, IR can be 
detected early in the course of the disease and may 
contribute to disease progression. A recent work by 
GonzalezParedes et al[88]. confirmed the occurrence 
of intrahepatic ED in rats with several features of MS 
and disclosed an important role of oxidative stress and 
cyclooxygenase end products in determining these 
functional abnormalities of the vasculature after 6 
weeks of exposure to a high fat diet[88].

FROM BENCH TO BEDSIDE: POTENTIAL 
CLINICAL CONSEQUENCES
The effects of IR on hepatic vasculature could be of 
relevance in the pathogenesis and progression of 
NAFLD. The development of ED induced by IR may 
promote a profibrogenic, proinflammatory and a 
prothrombotic environment, and impair regeneration 
after liver injury; aspects all related with the transition 
from steatosis to steatohepatitis and cirrhosis[72]. 
Unfortunately, in humans, the vascular abnormalities 
described in the liver of animal models with IR have 
been poorly investigated. Several authors have shown 
a correlation between IR and the severity of NAFLD[89], 
and have tested pharmacologic and nonpharmacologic 
strategies to improve IR in patients with NAFLD[90]. 
However, the association of these results with intra

Isolated Liver perfusion
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Outflow pressure
transducer

Pressure 

and flow 
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Figure 2  Livers are isolated and perfused at a constant velocity. Any change of pressure will be directly proportional to the resistance offered by sinusoids to 
the flow of a buffer solution according to Ohm’s low applied to fluid-dynamic (ΔP = flow X resistance). This allows measuring the intrahepatic resistance offered by 
sinusoids.
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hepatic vascular abnormalities, although theoretically 
possible, has not been demonstrated so far. 

The study of intrahepatic ED in clinical practice 
is demanding and probably represents the Achilles’ 
heel to translating experimental observations of 
vascular abnormalities from animal models to 
humans. Catheterization of the suprahepatic vein and 
measurement of the hepatic venous pressure gradient 
(HVPG) and hepatic blood flow with indicator-dilution 
techniques is the most reliable tool to measure hepatic 
resistance to portal blood flow[91]. These measurements 
can be more informative if performed dynamically, 
after stimulating the hepatic circulation by increased 
splanchnic blood flow, for example with a test meal. 
The rationale for this is that if ED occurs in the liver, 
the liver circulation is less efficient in accommodating 
an increase in blood flow, with a consequent abrupt 
increase in portal pressure[92]. Unfortunately, the use 
of invasive methods in patients with early disease 
is challenging. Notwithstanding, Francque et al[93] 
published a series of 50 patients with biopsyproven 
NAFLD who underwent liver hemodynamic studies. 
They found that up to 28% of patients had a HVPG 
over 5 mmHg (the threshold indicating sinusoidal 

portal hypertension), even though only one patient 
had histological documentation of cirrhosis. In 
that series, HVPG significantly correlated with the 
degree of steatosis, suggesting that the ballooning of 
hepatocytes causes narrowing of sinusoidal spaces 
and consequently increases intrahepatic resistance to 
portal blood flow, in keeping with the experimental 
observations in animal models of steatosis. The 
investigation of intrahepatic hemodynamic changes 
induced by IR has been addressed by studies including 
patients with cirrhosis and comorbidities related to 
MS. Cirrhosis is frequently associated with IR[6,94]. 
Berzigotti et al[8] have demonstrated that obesity is 
an independent risk factor for higher portal pressure 
and disease progression in patients with cirrhosis 
(independent of the etiology) and might suggest 
that clinical features of IR could worsen the degree 
of intrahepatic ED. Interestingly, the same authors 
demonstrated that a program of weight loss through 
diet and physical exercise reduced portal pressure in 
overweight/obese patients with cirrhosis with positive 
results[95].

Beyond HVPG measurement, some authors have 
separately explored less invasive methodologies or 
biomarkers of inflammation, coagulation, platelet 
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Figure 3  The vascular-hypothesis of liver damage in non-alcoholic fatty liver disease considers sinusoidal endothelial dysfunction due to insulin-
resistance a key factor for the initiation and perpetuation of liver damage from simple steatosis to steatohepatitis. Any strategy of treatment ameliorating 
insulin-resistance may be efficacious in ameliorating sinusoidal endothelial dysfunction. Drugs marked with a are those with a proven efficacy on liver microcirculation 
(Ref. [16,42,95,103,104]). (Histological images are courtesy of Dr. Marco Maggioni, IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, Milan, Italy). NAFLD: Non-
alcoholic fatty liver disease; NASH: Non-alcoholic steatohepatitis. 
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activation that may be linked to ED in NAFLD. In 
human studies, imaging techniques such as Doppler 
flowmetry[96], positron emission tomography[97] 
and magnetic resonance[98] have demonstrated the 
potential for investigating intravascular changes and 
hepatic perfusion within the steatotic liver. It has 
been much harder to identify biomarkers specific 
for intrahepatic ED. Selectins (such as PSelectin, 
ESelectin), von Willebrand Factor, Isoprostans, 
asymmetric dimethylarginine, endothelins and a 
series of molecules involved in the inflammatory and 
hemostatic activity of the endothelium have been 
used by cardiologists to describe and monitor ED[99]. 
However, unless these biomarkers are measured 
at the level of the hepatic veins or, alternatively, be 
discriminable by their organorigin, the impairment of 
all these tests can only be interpreted as consequence 
of IR/MS but is not specifically liverrelated. This 
underlines once again that NAFLD is the liver 
expression of a systemic disease. As matter of fact, 
several authors have demonstrated that the severity 
of NAFLD correlates with some key features of the 
systemic cardiovascular risk described in patients 
with MS/IR, among them, peripheral ED measured 
by vasodilatory response of the brachial artery to 
ischemia[10], mild chronic inflammation and low 
fibrinolytic activity[100,101]. Presently, it would be hard 
to recommend a pharmacologic strategy specifically 
targeting intrahepatic ED. However, any strategy of 
treatment recommended for NAFLD[102] which can 
modulate MS/IR has the potential to benefit sinusoidal 
endothelial cells in this clinical setting (Figure 3). 
Furthermore, the ongoing research on new drugs 
targeted against apoptosis, inflammation, fibrogenesis 
could offer in the next future an alternative/adjuvant 
therapy to contrast the downstream effects of the 
vascular changes induced by IR. 

CONCLUSION
Several studies with animal models have demonstrated 
that IR is associated with narrow sinusoids and 
sinusoidal endothelial dysfunction, which cause both a 
mechanical and functional increase of hepatic vascular 
resistance to portal blood flow, even in the absence 
of cirrhosis. Due to the high prevalence of metabolic 
syndrome in patients with chronic liver diseases, the 
influence of these vascular changes on the natural 
history of NAFLD and of cirrhosis of other etiologies is 
highly plausible and should be explored by specifically 
designed human studies. This could certainly result 
in new strategies for the treatment of patients with 
chronic liver disease. 
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