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ABSTRACT 

 

Recent evidences highlighted that glioblastomas (GBM) secreted microvesicles 

(EVs), particularly exosomes (Exo) and large oncosomes (LO), play a major role in 

the cross-talk between tumor cell and non-neoplastic parenchyma. Recent work 

from our group has identified the vacuolar pump H+-ATPase (V-ATPase) as an 

important effector of GBM growth and glioma stem cells (GSC) maintenance. 

Additionally, in ExoCarta database V-ATPase subunits have been described in Exo 

from different cancer cell types. Taken together, these data identify V-ATPase as 

an important driver of gliomagenesis, and a novel, actionable therapeutic target for 

disease intervention. However, the role of V-ATPase in reprogramming the GBM 

microenvironment has not been previously investigated. The aim of this project was 

investigate production, biological effect and content of extracellular vesicles 

according to proton pump activity in glioma stem cells. 

Our data show that GSC are able to produce different types of EVs, which are 

internalized by recipient cells of different histology, such as non-neoplastic brain 

tumor margins, primary GBM monolayers (both differentiated and undifferentiated), 

and commercial glioma cultures. Exo and LO from GSC induces in recipient cells 

distinct effects. In particular, Exo significantly increased cell growth and cell 

motility, and these effects were stronger with Exo produced by NS with higher V-

ATPase expression (V1G1
HIGH

 NS). On the other hand, LO were able to strongly 

induce the sphere formation ability of primary GBM cultures. This effect lasted up 

90 days after co-culture. In both situations, the block of V-ATPase activity by 

Bafilomycin A1 in NS-producing EVs completely reverted the effects.  

Interestingly, exosomes are able to vehiculate on their surface the V-ATPase G1 

subunit, and its protein level increased in recipient cells after co-culture with EVs.  

At the molecular level, profiling of Exo-derived miRNAs distinguishes V1G1
HIGH

 NS 

from V1G1
LOW

 cultures. In silico analysis and annotation of miRNA target genes 

showed an enrichment of cancer, cell cycle and MAPK/Erk pathways. Regarding 

signaling pathway modulation by Exo in recipient cells, exosomes from V1G1
HIGH

 

NS activated the MAPK/Erk pathway. 
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Altogether, these data point toward the central role of different EV types in GBM 

communication and suggest a role of the V-ATPase proton pump in regulating 

exosomes contents. 
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SOMMARIO  

SOMMARIO 

 

Evidenze recenti hanno dimostrato come nel glioblastoma le microvescicole (EVs), 

in particolare esosomi (Exo) e large oncosomes (LO), giochino un ruolo 

fondamentale nella comunicazione fra cellule tumorali e parenchima non-

neoplastico. Un lavoro, pubblicato recentemente dal nostro gruppo di ricerca, ha 

identificato la pompa vacuolare H+-ATPase (V-ATPase) come un importante 

regolatore della crescita del glioblastoma e del mantenimento della nicchia di 

cellule staminali del glioma (GSC). Inoltre, nel database ExoCarta è riportato che 

diverse subunità della V-ATPase vengono veicolate negli esosomi derivanti da 

diversi tipi tumorali. Nell’insieme, questi dati identificano la V-ATPase come un 

importante regolatore dello sviluppo del GBM e come un nuovo possibile target 

terapeutico. Ad oggi però, il ruolo della V-ATPase nella regolazione del 

microambiente del GBM non è ancora stato studiato. Lo scopo di questo lavoro è 

stato quello di investigare la produzione, l’effetto biologico ed il contenuto delle 

microvescicole prodotte dalle GSC in accordo con l’espressione della pompa 

vacuolare.  

In questo lavoro di tesi abbiamo dimostrato che le neurosfere (NS – cellule tumorali 

arricchite in GSC) sono in grado di produrre diversi tipi di microvescicole, le quali 

vengono internalizzate da cellule riceventi di diversa istologia, in particolare, 

margini tumorali celebrali non neoplastici, cellule primarie di glioblastoma 

(entrambe differenziate ed indifferenziate) e linee cellulari commerciali di glioma. 

Exo e LO sono in grado di produrre nelle cellule riceventi diversi effetti biologici. In 

particolare, gli Exo sono in grado di aumentare la crescita cellulare e la motilità, in 

entrambi casi l’effetto è maggiori in seguito a co-coltura con esosomi isolati da NS 

con alti livelli di V-ATPase (V1G1
HIGH

 NS). D’altra parte, gli LO sono in grado di 

aumentare la capacità di cellule primarie di GBM di formare neurosfere; inducendo 

un effetto che si protrae fino a 90 giorni in coltura. In entrambi i casi, il blocco 

dell’attività della V-ATPase nelle NS che producono le EVs, con la Bafilomicina A1, 

è in grado di revertire completamente gli effetti.  



 

IV 
 

SOMMARIO  

È inoltre di interesse come gli esosomi prodotti dalle NS siano in grado di veicolare 

la subunità V1G1 sulla loro superficie, e di indurne l’espressione nelle cellule 

riceventi in seguito a co-coltura. A livello molecolare, il profilo dei miRNA isolati 

dagli esosomi è in grado di distinguere V1G1
HIGH

 NS da V1G1
LOW

. Inoltre, studi in 

silico dei target dei miRNA differenzialmente espressi nei due gruppi di esosomi, 

mostrano un arricchimento in geni coinvolti in pathway tumorali, ciclo cellulare e 

MAPK/Erk pathway. In merito ai pathway modulati dagli esosomi nelle cellule 

riceventi, gli esosomi isolati da V1G1
HIGH

 NS sono in grado di attivare il pathway 

delle MAPK/Erk. 

Nell’insieme questi dati supportano l’ipotesi che differenti tipi di microvescicole 

abbiano un ruolo centrale nel GBM nella comunicazione inter-cellulare e 

suggeriscono il ruolo della pompa protonica V-ATPase nel regolare il contenuto 

degli esosomi. 
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1.INTRODUCTION  

1.INTRODUCTION 

 

1.1 Human glioma 

Adult diffuse gliomas are the most common tumor of the central nervous 

system (CNS), characterized by infiltrating growth, therapeutic resistance 

and aggressive nature. Untill 2007, the classification of brain tumor has 

been based on histological parameters, and they are subdivided into 

grades II-IV as oligodendroglioma, oligo-astrocytoma, astrocytoma and 

glioblastoma [1]. In 2016 WHO redefined the diffuse gliomas based also on 

the molecular parameters, in particular the recent glioma classification is 

based on the status of mutations of isocitrate dehydrogenase genes 1 and 

2 (IDH1/2), 1p/19q co-deletion, ATRX alterations, and TERT promoter 

mutation status [2]. Moreover, glioma classification was restructured in 

order to consider all diffuse gliomas (astrocytomas and 

oligodendrogliomas) under the common header of “diffuse astrocytic and 

oligodendroglial tumors” [3], [4] (Fig.1).  

Glioblastomas (GBM) have a high tendency for diffusely infiltrate the 

surrounding normal tissue, inducing malignant progression, that make them 

fatal. In 2016, in CNS World Health Organization (WHO), GBM were 

subdivided into glioblastomas IDH-wildtype (almost 90% of cases, 

corresponds, most frequently, to primary or de novo GBM) and IDH-mutant 

(about 10%, corresponds to secondary GBM). Despite large-scale genomic 

analyses of these tumors allowed the identification of mutations that drive 

tumor development and the collection of huge amount of data on brain 

tumors, the overall survival of GBM cases is still not that different than it 

was several years ago [5].  
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Fig.1_Classification of the diffuse gliomas based on histological and genetic 
features [4]. Captured by “The 2016 WHO classification of tumors of the CNV: a 
summary”. 

 

1.1.1. Brain tumor therapy 

1.1.1.1 Glioma diagnosis 

Patients with a malignant glioma may present a variety of symptoms 

including headache, confusion and loss of memory, neurological deficits 

and personality changes. The diagnosis of malignant gliomas is usually 

made by magnetic resonance imaging (MRI), computer tomography (CT) or 

positron emission tomography (PET). The images typically show an 

enhancing mass surrounded by edema. GBMs frequently have central 

areas of necrosis and more extensive peritumoral edema than those 

associated with anaplastic gliomas [6], [7]. 

1.1.1.2. Glioma prognosis 

Life expectancy for glioma patients has not improved considerably and is 

only about 2-3 years for anaplastic astrocytoma and 15 months for GBM 

[6]. There are several reasons why it has been so difficult to find new 
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effective therapies against glioma. First, drug delivery is limited by the 

blood-brain-barrier impediment and the distorted glioma vessels [8]. 

Second, the invasive nature of gliomas makes the complete surgical 

resection of the tumor impossible. Third, tumor cells also have a strong 

intrinsic attitude for malignant progression and some cells, supposedly the 

cancer stem cells, are resistant to therapy. Lastly, over-expression of 

proteins involved in DNA repair machinery could dampen the effects of 

radio- and chemotherapy [9]. 

1.1.1.3 Treatment 

The standard treatment for gliomas is the surgical resection, radiotherapy 

and chemotherapy using alkylating agents. The size and localization of the 

tumor is important for the possibility to perform optimal surgery. Due to their 

invasive growth, gliomas indeed are impossible to completely resect. 

Surgical elimination of the tumor reduces the symptoms caused by mass 

effect and seems to give a modest survival advantage to the patient. For 

patients with GBM, the median survival from time of diagnosis is about 

three months without treatment. After treatment with surgery and 

postoperative temozolomide and radiotherapy, the survival increases to 

14.6 months [6]. O-6-methylguanine-DNA methyltransferase (MGMT) is an 

important repair enzyme that contributes to resistance to temozolomide. 

Methylation of MGMT promoter silences the gene, decreasing DNA repair 

activity and increasing the susceptibility of the tumor cells to temozolomide. 

Treatment with temozolomide in GBM patients with MGMT promoter 

methylation prolonged the survival to 2 years [10].  

1.1.2 Glioma stem cells 

Growing evidence indicates that rare population of cancer cells, called 

glioma stem cells (GSC), play a central role in driving invasive brain tumor 

growth and relapse [11]. Interestingly, GSCs are not spread evenly in 

tumor, but are enriched in tumor areas characterized by necrotic foci 
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surrounded by severely hypoxic pseudo-palisading cells. The presence of 

tumor necrosis and hypoxia are believed to be responsible for the 

acidification of the cellular microenvironment and to favor invasion of the 

surrounding brain parenchyma by glioma cells [12], [13]. In addition, 

hypoxia and acidification of tumor microenvironment have been shown to 

elicit oncogenic signaling pathways fuel tumor cell migration, sustain the 

cancer-initiating cell niche [14], [15], [16].  

Neuron cancer stem cells are expandable when placed in culture and 

stimulated with the appropriate growth factors, such as epidermal growth 

factor (EGF) and fibroblast growth factor 2 (FGF2) [17]. This neurospheres 

approach represents a serum-free, selective culture system in which most 

differentiated cells rapidly die, whereas neural stem cells respond to 

mitogens, divide and form neurospheres that can be dissociated and re-

plated to generate secondary spheres (Fig.2). This methods allows 

expansion and identification of neural stem cells, and has become the 

method of choice to study potential expanded neural stem-cell populations 

in vitro. [18] 
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Fig.2_Cancer stem cells isolation from glioblastomas. Captured from “Brain 
tumour stem cells”, Vescovi et al., Nature reviews, 2006. [17] 

 

1.2 V-ATPase proton pump 

V‑ATPase is a ubiquitous multisubunit (up to 14) proton pump organized 

into two main domains (Fig.3). The V1 sector, a peripheral complex of 650 

kDa, located on the cytoplasmic side of the membrane, that carries out ATP 

hydrolysis. Instead, the V0 domain, a membrane-embedded complex (260 

kDa), is responsible for the translocation of protons. V1 sector is composed 

of eight different subunits (A, B1-B2, C1-C2, D, E1-E2, F, G1-G2-G3, H), 

whereas V0 contains six different subunits (a1-a2-a3-a4, d1-d2, e, c, and 

c′′) [19], [20], [21].  
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Fig.3_V-ATPase proton pump. Captured from “Vacuolar ATPases: rotary proton 
pumps in physiology and pathophysiology”, Forgac, Nature reviews, 2007. [19] 

 

V-ATPase may locate in different intracellular organelles (plasma 

membrane, lysosomes, endosomes, golgi and ER) and has various 

function both in physiological and pathological conditions. In particular is 

involved in the energization of transport processes across membranes and 

in the regulation of the intracellular or intraorganellar pH. Moreover 

contributes in endocytosis, invasion of tumor cells, angiogenesis and 

autophagy [22]. For example, in endosomes the V-ATPase pump, 

generating an acidic pH, allows the uncoupling of internalized ligand–

receptor complexes and facilitates recycling of unoccupied receptors back 

to the cell surface. Moreover, proton pump has a central role in lysosomes, 

where the low pH is required by degradative enzymes to degrade 

internalized macromolecules. In secretory vesicles, V-ATPase established 

a proton potential gradients that drive the uptake of small molecules (Fig.4). 

Finally, the plasma membrane V‑ATPase has important role in 

physiological process, such as renal acidificatiom, but is also implicated in 
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various human diseases, like cancer, where membrane V-ATPase has a 

central role in the survival and invasiveness of tumor cells [19], [23]. Finally, 

the V-ATPase has a central also in regulating intracellular pathways, in 

particular Wnt and Notch signaling [22], [24].  

 

 

Figure 4_Role of intracellular V‑ATPases in normal and disease processes. Captured 

from “The vacuolar (H+)-ATPases – nature‟s most versatile proton pumps”, 
Tsuyoshi Nishi and Michael Forgac, Nature reviews, 2002 [25]. 

 

1.2.1 Specific inhibitors of the V‑ATPases 

The acidic extracellular mileu is one of the main traits of solid tumor and V-

ATPase has a central role in this process. In theory, the inhibition of V-

ATPase activity in cancer cells may suppress this acidification, that 

provides the necessary condition for tissue damage, inflammation and 
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degradation of ECM (extracellular matrix), and increase the survival rate of 

cancer patients [23].  

The first V-ATPase inhibitors identified and structurally described, in the 

early 1980s, were Bafilomycin and Concanamycin (Fig. 5) [26], [27]. 

Bafilomycin A1 is a macrolide antibiotic derived from Streptomyces griseus, 

whereas Concanamycin was isolated from the culture medium of 

Streptomyces diastatochromogenes [28].  

Was Bowman in 1988 that discovered Bafilomycin A1 as first highly specific 

V-ATPase inhibitors [29]; founding that it targets the V-ATPase V0 sector, 

inhibiting rotation and passage of protons into the lysosomal lumen, thereby 

reducing vesicle acidification. Subsequently, it was described that also 

Concanamycin is able to bind V0 sector and block V-ATPase activity at 

nano-concentrations [26]. 

 

 

Fig.5_Bafilomycin A1 (A) and Concanamycin A (B) structure. Captured from 
“Inhibitors of V-ATPases: old and new players”, Huss et al., The Journal of 
Experimental Biology reviews, 2009 [27]. 
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1.3 Extracellular vescicles 

Extracellular vesicles (EVs) are naturally released membrane vesicles that 

can be classified into three main groups: exosomes (Exo), microvesicles 

(MVs) and apoptotic bodies (AB) [30], [31]. EVs are classified based on 

size, biological function and origin: Exo (40-200nm) are released from 

multivesicular bodies (MVB), MVs are produced directly from budding of 

plasma membrane (200-1000nm) and ABs are released by apoptotic cells 

(800-5000nm). Recently, was discovered an addition class of EVs, 

specifically produced by cancer cells, called large oncosomes (LO, 1000-

10000nm) [32],[33] (Figure 6).  

EVs can exert pleiotropic biological functions, and can influence the 

microenvironment via the horizontal transfer of bioactive molecules, 

signatures and genetic information to cells in their vicinity as well as distant 

sites. EVs have been implicated in several physiological and pathological 

processes, such as inflammation, immune disorders, neurological diseases, 

and cancer. Cancer EVs can act numerous functions, including regulating 

antitumor immunity, angiogenesis, drug resistance, metastasis and 

intercellular communication [34], [35].  

In recent years, research on EVs has increased exponentially, yet few 

studies compared the content and biological effect of Exo and MVs 

produced by same types of cell. In fact, given that Exo and MVs have a 

different intracellular origins, they may have different function roles. 
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Fig. 6_Extracellular vesicles, interaction between cancer cells and tumor 
microenvironment. Captured from “Focus on Extracellular Vesicles: New 
Frontiers of Cell-to-Cell Communication in Cancer”, Ciardiello et al., 2016, Int J Mol 
Sci. [35] 

 

1.3.1 Large Oncosomes  

Large oncosomes are a new class of EVs, described for the first time in 

2008, as large vesicles produced by brain tumor cells able to vehiculate the 

oncogenic form of EGFR (variant III) [32]. Therefore, in 2009, Di Vizio 

described the production by metastatic prostate cancer cells of gigantic 

EVs (1-10um), produced directly from plasma membrane [33]. That giant 

vesicles were then called LO, because their atypically dimension and 

abundance of oncogenic cargo.  

LO are originated directly from plasma membrane of highly migratory, 

aggressive tumor cells with an amoeboid phenotype. In particular, their 

production is associated to an overexpression of oncoproteins, such as 

MyrAkt1, HB-EGF, and caveolin-1 (Cav-1), or to an activation of the EGFR 

[33], [36]. 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4783909/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4783909/
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Only tumor cells release LO at a quantifiable rate, and the number of large 

oncosomes is directly correlated with aggressiveness of tumor cells. LO 

vehiculate different types of bioactive molecules, including signaling factors 

involved in cell metabolism, mRNA processing and cell growth and motility. 

They also contain miRNAs and metalloproteinases [36], [37].  

Given their recent discovery, few is known about LO and objective criteria 

of identification are necessary to obtain standardized procedures. 

Moreover, at that moment, we don‟t know much about a possible overlap in 

terms of molecular cargo and function between LO and MVs. Additional 

investigation is required not only to better define both large oncosome 

content and function in tumor progression but also to identify markers to 

determine if they represent a unique EV population.  

1.3.2 Exosomes 

Exosomes are nano-sized (40-200nm) vesicles that originated from the late 

endosomal trafficking machinery. Morphologically they appear as spherical 

structure, with a bilayer lipid membrane and sediment at 100.000g. 

Exosomes may vehiculate different types of lipid and protein on their 

membrane, and their composition depend on cell of origin. The most 

frequent protein present on exo-membrane are tetraspanin family members 

(CD9, CD63, CD81), ESCRT family member (Alix, Tsg101), enzymes 

involved in cell metabolism (Enolase1, Aldolase A,..), heat shock protein 

(Hsp70 and Hsp90) and small actin-binding protein (Cofilin1) [35], [38], A, 

B,C.  

Exosome formation starts at the surface where clathrin aggregates allow 

plasma membrane (PM) budding and the formation of clathrin-coated 

vesicles (CCVs) that following detachment and clathrin recycling become 

Early Endosomes (EEs). EE membrane undergoes structural 

rearrangements that ultimately lead to the inward invagination of the bilayer 

and the formation of ILVs in Late Endosome (LE) pouch that is hence 
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called MVB. MVB can become secretory, by fusion with the PM and release 

of its content in extracellular environment, or be fated to ultimate 

degradation by lysosome mediated processing (fig.7) [39], [40].  

 

 

Fig.7_Exosomes biogenesis. Captured from “Extracellular vesicles: Exosomes, 
microvesicles, and friends”, Raposo and Stoorvogel, JCB review, 2013 [39]. 

 

1.3.3 Extracellular vesicles in cancer 

Today we know that cancer cells communicate also through EVs at a 

paracrine level, thanks the transferring of cargo molecules, proteins, lipids 

and RNAs, within the host. Cancer cells are able to produce different types 

of EVs that may influence different types of recipient cells, like endothelium 

cells, fibroblast, immune cells and other cancer cells [35], [41].  

A variety of different study on EVs in cancer progression have been made 

in recent years and it was demonstrated that EVs vehiculate mutant and 

transforming protein and nucleic acid. For example EVs are able to 

transport mutant EGFR/EGFRvIII, MET, K-ras, H-ras and other 

oncoproteins. Moreover, are also able to transport tumor suppressor genes, 
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as PTEN, p53, DKK4 and miRNA, but also oncogenic transcripts and 

genomic DNAs [42], [43].  

Tumor EVs regulate and participate in the dissemination of cancer cells, 

and recent evidence show how both  tumor- and stroma-derived EVs are 

involved in the different steps of the metastatic cascade. For example it 

was demonstrated that EVs can alter the cellular physiology of both 

surrounding and distant non-tumor cells to allow dissemination and growth 

of cancer cells (by triggering vascular permeability or by conditioning pre-

metastatic sites in distant organs) [38]. 

All together these studies demonstrate that EVs are involved in several 

aspect of tumor development and progression and their better study and 

characterization are required in order to use them both for diagnostic and 

therapeutic purpose. 

1.3.4 miRNA in exosomes 

The idea that miRNA secreted in EVs can be functionally delivered to target 

cells, resulting in direct modulation of their mRNA targets, has become one 

of the most actively explored hypotheses in the EV field, especially in 

cancer. In body fluids, miRNAs have been identified both within EVs and in 

complex with the argonaute RISC catalytic factor AGO2. Recent studies 

demonstrate that miRNA internalization in MVB is a fine-tuned process, 

depending on the miRNA sequence motif, cell type and physiological state 

[35], [44]. 

Different studies demonstrate that cancer exosomes vehiculate an higher 

number of miRNA compared to physiological condition, but recent evidence 

show that a decrease in tumor suppressor miRNA in exosomes might be a 

mechanism of pro-metastatic initiation [45]. Distinct patterns of miRNA 

expression have been observed in many cancers, including GBMs, and the 

functional significance of some of these miRNA alterations is beginning to 

emerge. Only recently, researchers have focused on the possible role of 
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miRNA in the microenvironmental communication of glioblastoma, primarily 

through the release and uptake of EVs. The analysis of EV/microRNA 

networks suggests that they can affect the tumor microenvironment in 

different ways: (i) direct reprogramming of cells in the tumor 

microenvironment (ii) indirect reprogramming of cells in the tumor 

microenvironment, or (iii) modification of the extracellular microenvironment 

[46], [34], [47].  
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2. AIM OF THE WORK 

 

The aim of this work was investigate the implication of V-ATPase proton 

pump in human glioma and in contributing to the maintenance of the glioma 

stem cell niche. In this context, we aimed to understand the role of V-

ATPase in the modulation of glioma stem cells EVs signaling. 
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3. MATERIAL AND METHODS 

 

3.1 Generation of primary, patients derived, GBM cultures 

Primary cells were isolated directly from patient‟s sample after surgery 

resection (enrolled at Fondazione IRCCS Ca‟ Granda Ospedale Maggiore 

Policlinico (Milan, Italy)). Samples obtained from tumor core (GBM cells, n= 

51) and/or healthy tumor margins (MG tumor cells, n=20) were 

disaggregated enzymatically and mechanically using tumor dissociation kit 

(Miltenyi kit - 130-095-929). After that, cells were washed two times with 

HBSS (14175-053 Gibco) and seeded in Neurocult medium supplemented 

with growth factors (NC #05751, bFGF #78003, EGF #78006.1 – Voden) 

(undifferentiated condition) or RPMI (61870-010 Gibco) supplemented with 

10% (vol/vol) FBS (10270-106 Gibco) (differentiated condition). MG tumor 

cells were maintained until one month in culture.  

GBM tumor cells maintained in undifferentiated condition, whether are rich 

in stem cells, are naturally able to form neurospheres (NS) after 2-6 weeks 

in culture.  

 

3.2 RNA extraction and qRT-PCR 

Total RNA was purified from cell cultures using Master Pure RNA 

purification kit (Epicentre Biotechnologies, Illumina; Madison, WI, USA). 

Gene expression was then quantified by qPCR (using TaqMan assays) 

together with a reference gene (B2M and/or 18S RNA) or using TaqMan® 

Array Human Molecular Mechanisms Of Cancer 96-well plate (Life 

Technologies, MA, USA) (Table1).  
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Tab. 1_mRNA investigated in exosomes 

 

miRNA from cells and RNA and miRNA from extracellular vesicles were 

extracted using miRVANA kit following manufacturer procedures. mRNA 

was pre-amplified using custom PreAmp primers and its expression is 

investigated using custom Applied Biosystems TaqMan Card. miRNAs 

were retrotranscribed using Megaplex RT primers (Human pools A and B 

v3.0) and Taqman MicroRNA Reverse Transcription kit, then pre-amplified 

using Megaplex PreAmp primer Human pools A and B. miRNA profiling 

was investigated using TaqMan™ Array Human MicroRNA A+B Cards Set 

v3.0 that allow to investigate the expression of 754 human miRNAs. All 

reagents, kits and instrumentation used were purchase from Life 

Technologies (Waltham, MA USA).  

For co-culture study, mRNA was extracted after 24 hours and 3 days and 

miRNAs after 12 and 24 hours (GBM and MG tumor cells respectively) from 

exosomes addition to MG and GBM tumor cells. Whereas mRNA was 

extracted after 6 and 90 days from LO addition to recipient cells. 

 

3.3 Antibody and reagents 

Lysotracker, Cell Trace, FM lipophilic styryl dyes, sytoRNA and exosome 

spin columns were purchased from Life Technologies (L12492, C34557, 

F34653, S32703, 4484449 respectively). Annexin V was obtained from BD 

(556419), Bafilomycin A1 (sc-201550) and Concanamycin A (sc-202111) 

from Santa Cruz. qEV columns were purchased from Izon and stored in 

Investigated Vehiculated

V-ATPase subunits 17 14

Cell cycle 5 5

MAPK/Erk pathway 7 7

Akt pathway 4 1

Other 3 2

Cancer 

pathways

Pathways
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PBS at 4°C. Optiprep was purchased from Sigma-Aldrich. The following 

antibodies were used for immunofluorescence, western blot and flow 

cytometry: ATP6V1G1 (Proteintech, 16143-1-AP), ATP6V0C (Novusbio, 

NBP1-31492), ATP6V0A2 (SIGMA, SAB2100187), ATP6V1C1 (Sigma-

Aldrich, HPA023943), Vinculin (SIGMA, V9131), p44/42 MAPK (Cell 

Signaling, #4695), Phospho-p44/42 MAPK (Cell Signaling, #8544), 

phospho-mTOR (Cell Signaling, #2475), mTOR (Cell Signaling, #2983), 

pan-Akt (Cell Signaling, #4691), phospho-Akt (Cell Signaling, #4060), 

Tsg101 (Proteintech, 14497-1-AP), Ago2 (Proteintech, 10686-1-AP), 

Clathrin (abcam, ab23440), CD63 (Santa Cruz, sc-15363), CD9 (WB: 

Thermo Fisher, 10626D – FACS: Miltenyi, 130-103-988), CD81 (Miltenyi, 

130-107-982), Calnexin (abcam, ab31290), Nestin (R&D, MAB 1259), Tuji 

(SIGMA, T3952), GFAP (SIGMA, G9269), CD11b (Proteintech, 20991-1-

AP), O4 (SIGMA, O7139), Olig2 (SIGMA, AV32753), CD31 (abcam, 

ab28364), Vimentin (Miltenyi, 130-106-369), Ki67 (abcam, ab15580).  

 

3.4 Evaluation of V-ATPase impairment effect 

To evaluate cell growth rate, NS were followed for 10 days (snapped every 

24 hours) using a time-lapse microscope (Eclipse Ti-E, Nikon Instruments, 

Florence, Italy), the diameter of NS was evaluated using ImageJ software 

(manual quantification) and for each experiment was calculated the mean 

diameter of 10 different NS. To evaluate spheres-forming ability after V-

ATPase inhibition, NS were resuspended at single cell, treated with 

Bafilomycin A1 at time zero and followed for 72 hours. The number of 

spheres were manually counted for each time points. Both experiments 

were repeated three times.  

To evaluate cell invasion, NS were embedded in type I collagen (SIGMA, 

c4243) and allowed to move for 48 hours, in presence or absence of 
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Bafilomycin A1. Also in this case, cultures were followed using the time-

lapse microscope. Images for each sample were snapped every 2 hours 

and then assembled into a movie in QuickTime format. The radius of 

invasion was evaluated using Volocity software (Volocity 6.3, Perkin 

Elmer), for each spheres were calculated the mean of 10 different invading 

cells. 

For cell death (Annexin V) and lysosomal acidification (Lysotracker) NS 

and/or Diff cells were seeded, and after 24 hours treated with Bafilomycin 

A1 or Concanamycin A or vehicle. Two days after treatment, the two 

assays were performed adding the respective probe to the cultures. 

Fluorescence was captured using time laps microscope and the 

quantification was calculated after setting the threshold on unlabeled 

samples, and the mean intensity of the fluorochrome was calculated using 

ImageJ software. 

 

3.5 Immunofluorescence analysis 

For immunofluorescence experiments, monolayer cultures were grown on 

cover-glasses whereas NS were cyto-spinned on charged slides for 3 

minutes at 900rpm (Thermo Scientific, Waltham, MA, USA). Cells were first 

fixed in PFA 4% for 15 (monolayer cultures) or 30 minutes (NS), quenched 

for green auto-fluorescence using glycine 20mM for 20 minutes and then 

permalized with Triton 0.5% for 30 minutes at room temperature. Cells 

were saturated with BSA 10% for 1 hour at room temperature. Primary 

antibodies, diluited 1:100 in PBS-BSA 10%, were incubated overnight at 

4°C and fluorescence conjugated secondary antibody (1:1000) 1 hour at 

room temperature, finally cells were stained with Hoechst for 5 minutes at 

room temperature and mounted (table 2). Confocal images were generated 

with a Leica TCS SP5 Confocal microscope with a magnification of 40X, z-
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stack images were captured every 0,46µm (Leica Microsystems). 

Fluorescence quantification was calculated on full cell stacks after setting 

the threshold on unlabeled samples, and the mean intensity of the 

fluorochrome was calculated using ImageJ software. The number of 

positive nuclei was calculated using Volocity software (find object plugins) 

and normalized on total number of nuclei.  

 

 

Table 2_Immunofluorescence antibodies. 

 

3.6 Cancer 10-pathway Reporter Arrays 

The Cancer 10-pathway Reporter Luciferase Kit (CCA-001L, Tube Format, 

Qiagen) is a commercial reporter array that allows measurement of ten 

cancer-related signaling pathways. Each tube contain a mixture of an 

inducible transcription factor responsive firefly luciferase reporter and 

constitutively expressing Renilla construct (40:1). Tecan Infinite F200 was 

used for signal detection. Investigated cancer pathway were: Wnt 

(TCF/LEF), Notch (RBP-Jκ), p53/DNA Damage (p53), TGFβ (SMAD2/3/4), 

Cell cycle/pRb-E2F (E2F/DP1), NFκB (NFκB), Myc/Max (Myc/Max), 

Hypoxia (HIF1A), MAPK/ERK (Elk-1/SRF) and MAPK/JNK (AP-1). NS were 

transfected with Lipofectamine 3000 (L3000015, Invitrogen) following 
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manufacture datasheet. Firefly luciferase and Renilla were measured after 

48h from transfection (in each experimente were valuated the mean of 

experimental duplicate), experiment was performed two times on 6 different 

NS (3 V1G1LOW and 3 V1G1HIGH).  

 

3.7 Extracellular vesicles production from NS 

3.7.1 Electron microscopy 

For electron microscopy analysis NS, with or without Bafilomycin A1 

treatment, were fixed in 2.5% glutaraldehyde in 100 mM phosphate buffer 

at pH 7.0 for 1 hour at room temperature (to preserve the structure of the 

cells with the minimum of alteration from the living state). Then cells were 

processed and included in resin embedding according to [48] by Electron 

Microscopy Unit at San Paolo Hospital (thanks to Paola Braidotti).  

Images were captured using electron microscope of Alembic San Raffaele 

Unit (thanks to Maria Carla Panzeri). In order to investigate the presence of 

multivesicolar bodies, intracellular images were captured at 1840X 

magnification, whereas to study the presence and production of 

extracellular vesicles (exosomes, ectosomes and large oncosomes) 

extracellular mileu images were captured at 5000X magnification.  

3.7.2 Confocal images 

To investigate EVs production in live NS, cells were incubated for 30 

minutes at 37°C with FM 1-43 FX at 40uM and wash two times in PBS. NS 

were seeded on glass bottom well (MatTek) and followed with live confocal 

microscope for 20 minutes in gas/humidification chamber (images of full NS 

were captured every 5 minutes). Large oncosomes are clearly visible as 

evagination of plasma membrane (dimension between 1 and 5um).  

To investigate V1G1 presence on large oncosomes membrane, NS were 

seeded on poly-L-lysine (SIGMA, P8920) coated slices (slices were coated 
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for 20 minutes at 37°C) for 1 hours at 37°C. Then NS were labeled with FM 

4-64 FX for 30 minutes at 37°C, washed with PBS and fixed 10 minutes 

with PFA 2%. Primary (1:100) and secondary (1:1000, alexa-fluor 488) 

antibody were incubated 1 hours and 30 minutes respectively, both at room 

temperature. Z-stack images were captured using confocal microscope 

(63X magnification) and single stack images were captured with optical 

zoom of 5X. 

 

3.8 Isolation of extracellular vesicles and characterization 

3.8.1 Isolation 

Extracellular vesicles were isolated from supernatant of neurospheres 

(n=12) at basal condition after 48 hours from change medium and after 24 

hours from 5nM Bafilomycin A1 treatment. Cells were pelleted at 250rcf for 

5 minutes and supernatant were collected and concentrated using Amicon 

Ultra centrifugal filter tubes (Millipore) (stored at -80°C). Then collected 

supernatant were centrifuged at 1000rcf for 10 minutes at 4°C to remove 

debris and/or apoptotic bodies (pellet). From supernatant large oncosomes 

(LO) were isolated through centrifugation at 10.000 rcf for 30 minutes at 

4°C and maintained at -80°C (pellet was re-suspended in 0,2µm filtered). 

Exosomes were isolated from supermatant by qEV size exclusion column 

(SEC – iZON) as described in Lobb et al. [49]. Briefly, 500ul of 

concentrated supernatant (depleted of debris and LO) was overlaid on qEV 

column followed by elution with PBS, 500ul phases were collected in 

eppendorf, exosomes are present in phases 6-7-8. [50], [51]  

3.8.2 Electron microscopy and immuno-gold staining 

Quality and purity of exosomes and LO were evaluated through electron 

microscopy, following the protocol present in Lobb et al. [49].  
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In order to evaluate the presence of V1G1 subunits on exosomes and LO 

surface, an immune-gold staining was carried out using ATP6V1G1 

antibody (Proteintech, Manchester, United Kindom).  

Both analysis were performed with the support of Alembic San Raffaele 

Unit (thanks to Maria Carla Panzeri). Images were captured at 12500 and 

20000X magnification. 

3.8.3 Nanoparticle tracking analysis (NTA) 

The concentration and size distribution of particles were analyzed with 

Nanosight NS300 (Malvern, Instruments Ltd Worcestershire, UK) with the 

support of Valentina Bollati laboratory (Dipartimento di Scienze Cliniche e 

di Comunità, Università degli Studi di Milano). 

3.8.4 EVs internalization 

For internalization study, vesicles were stained with PHK26 (SIGMA, 

MINI26). In particular, medium collected from NS culture in different 

conditions, after debris elimination, was ultra-centrifugated at 100.000 rcf at 

4°C (rotor SW 41Ti) for 2 hours. PHK26 was added to pellet for 5 minutes 

at room temperature; staining was blocked adding 10% BSA (SIGMA) in 

PBS. LO were pelleted at 10.000rcf for 30 minutes and washed 3 times. In 

order to eliminate not bind PHK26 from exosomes preparation, they were 

isolated using an optiprep density gradient [49]; briefly, a discontinuos 

iodixanol gradient was prepared by diluting optiprep (60%w/v) with 0.25M 

sucrose, 1mM EDTA and 10mM Tris-HCL (pH 7.4) to generate 40%, 20%, 

10% and 5% w/v. With care, gradient was generated by sequentially 

layering 3ml of 40, 20, 10 and 5% on exosomes pellet, in ultraclear 

Beckman Culture centrifuge tubes. Gradient was centrifugated for 18 hours 

at 100.000 rcf with a SW 41Ti rotor. 1ml fraction was collected from the top, 

fraction 6 and 7 (contained exosomes) were diluted to 20ml in PBS and 

centrifuged at 100.000rcf for 2 hours at 4°C with a Type 50.2 Ti rotor. The 
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resulting pellets were resuspended in PBS (10ul for 1ml of medium) and 

conserved at -80°C. 

Recipient cells (GBM or MG tumor cells) were seeded on 96 glass bottom 

multiwell plates at 80% of confluence (MatTek Ashland, MA) and stained 

with cell trace (5µm, cytoplasm staining) and cells mask (1:1000, cytoplasm 

and plasma membrane staining) for 30 minutes at 37°C in PBS, in both 

case cells were washed two times with PBS and fresh medium was added. 

After 24 hours the equivalent of 250ul of supernatant of EVs was added to 

cells. LO internalization was evaluated after 6 and 24 hours of co-culture in 

live cells using live confocal microscopy (37°C in humidification chamber) 

with a 63X objective. Leica software tools line profile – intensity – sort ROI 

(Leica Microsystems LAS AF 2.6.0.7266) was used to discriminate LO 

internalized in recipient cells from LO bind to plasma membrane. In 

particular for each image was investigated the intensity of different line 

profiles (ROI in figure 8) in 3 z-stack (two ends and center of recipient cells) 

and based on picks‟ profile is possible study LO internalization (Figure 8).  

Whereas, exosomes internalization was followed using flow citometry after 

2, 6 and 24 hours.  
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Figure 8_Rapresentative images of LO internalization study using Leica 
software. ROI1 and ROI3 represent LO internalized in recipient cells, in fact red 
(PHK26) pick appear always with and within the blue and green picks (cell trace 
and cell mask). Instead ROI2 shows LO bind to plasma membrane of recipient 
cells and not yet internalized, in fact both in stack-1 and in stack-3 red pick appear 
without green and blue picks. 

 

3.9 Western blot analysis 

Total cells and isolated EVs were lysed in buffer composed by Tris-HCl 

(50mM), NaCl (137mM), 1% Triton X-100, 0,1% SDS, phosphatase 

inhibitor and protease inhibitor (pH 7.6-8); for EVs isolation 3% SDS was 
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added previously of use. After lysis EVs and cells were sonicated 5 times 

(30‟‟ ON/ 30‟‟ OFF), pelleted at 15.000rcf to eliminate debris and quantified 

using microBCA (Thermo Fisher Scientific, Waltham, MA USA).  

Protein (40µg) were boiled for 5 minutes at 95° (not reducing condition for 

CD63 staining), resolved by SDS-PAGE, transferred to nitrocellulose 

membrane, blocked in 5% not-fat powdered milk in PBS-T (1% Tween-20) 

and probed with antibodies (table 3).  

In MG tumor cells co-cultured for 3 days with exosomes PathScan 

Intracellular Signaling Membrane Array Kit (Cell Signaling) was used to 

simultaneous detection of phosphorylation or cleavage of 18 signaling 

molecules involved in cancer pathway.  

 

 

Table 3_Western blot antibodies. 

 

3.10 Flow cytometry 

For characterization study, cells were fixed in PFA 2% for 10 minutes, 

permeabilized in Triton 0.1% for 10 minutes and stained with primary 

(1:100 - 1 hour) and secondary antibody (1:1000 - 30 minutes) at room 
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temperature. Non marked cells were used as negative control, whereas 

cells incubated with normal immunoglobulin of the same isotype of primary 

antibody were used as isotype control. 

For exosomes staining and characterization, after staining they were bind 

to CD63-coated beads (Thermo Fisher, 10606D) in order to avoid 

dimension limit. In particular exosomes were stained with CD9 and CD81 or 

with V1G1 primary antibody for 1 hour at room temperature (1:1000), and 

(only for V1G1 antibody) 30 minutes with secondary antibody (1:1000) and 

20 minutes at 37°C with Cell Trace (5µm) and SytoRNA (10µm). According 

to manufacture protocol, exosome spin columns were used in order to 

remove not incorporated dye from exosomes preparation. Then exosomes 

were bound to beads in wheel overnight at 4°C. Exosomes isolated from 

NC free medium was used as negative control. [52] 

FACS Canto I and FlowJo V.10.1 software were used for analyses. 

 

3.11 EVs biological effect 

In order to investigate EVs biological effect, cell growth, cell cycle, 

proliferation, cell motility and spheres formation were evaluated. In 

particular recipient cells (MG and GBM tumor cells) were seeded on 48 

(spheres formation), 24 (cell growth and cell motility) or 6 multiwell (cell 

cycle) after patient‟s sample disaggregation. After a variable period of 6-10 

days (when cells seeded are at a 60% of confluence) the equivalent of 

500µl (40 well), 1ml (24 well) or 3ml (6 well) of supernatant of EVs was 

added. For cell growth, cells were stained with cell trace (5µm for 20 

minutes at 37°C) and cell divisions were valuated as reduction intensity 

(caused by redistribution of probe in daughter cells) using flow cytometry; 

GBM tumor cells were followed for 24 hours, instead MG cells until 17 

days. Cell cycle was investigated as DNA content by propidium iodide 
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staining, in particular cells were fixed with cold absolute EtOH after 24 

hours (GBM cells) or 3 days (MG cells) in ice overnight, then cells were 

washed two times with PBS-1% FBS and stained with 500µl of PI/RNase 

Staining Buffer (550825 BD, PI is detected in the orange range of the 

spectrum using a 562-588 nm band pass filter). FACS Canto I and FlowJo 

V.10.1 software were used for analyses. 

Proliferation was evaluated as nuclear staining for Ki67 (table 2) after 24 

hours (GBM cells) and 3 days (MG cells) of co-culture. Confocal images 

were generated with a Leica TCS SP5 Confocal microscope (40X 

magnification). 

To evaluate cell motility, GBM tumor cells were seeded and conditioned for 

24 hours with exosomes, then a gap was created with a 200µl tip and cells 

were followed for 65 hours, every 4 hours, using Nikon time laps 

microscope. In particular cells were maintained in gas/humidification 

controlled chamber at 37°C and images were captured in bright field with 

10X objective. Migration was manually measured as distance between the 

edges of the wounds (in 6 different points for wounds) and then normalized 

on gap dimension at time zero, using ImageJ software.  

For spheres formation study, the equivalent of 1ml of supernatant of EVs 

was added to GBM tumor cells maintained in undifferentiated condition and 

spheres formed were counted at 3 and 6 days. After 6 days from starting of 

co-culture, formed spheres were picked and seed in a different plate 

(whereas, RNA from GBM cells adherent was extracted). Medium was 

changed once a week and spheres were followed until 90 days from 

starting of co-culture. 
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3.12 Statistical analyses 

Statistical analysis was performed using GraphPad Prism software (La 

Jolla, CA, USA) and environment R (R Development Core Team, 2005). All 

GraphPad Prism graph show mean with standard deviation (SD). Additional 

software packages (ComplexHeatmap, samr) were taken from the 

Bioconductor project. SAM analysis were performed to identify miRNAs 

classes associated, (q.value <0.05, FC> 1 abs). 

All biological experiment was performed at least three times (all single 

experiment has an technical duplicate). In particular NS experiments (gene 

and protein expression at basal level and after differentiation or treatment, 

lysotracker, cell death, cell growth, cell invasion and spheres formation) 

were performed on NS derived from 10 different GBM patient sample (5 

V1G1HIGH and 5 V1G1LOW) in triplicate. Exosomes and LO were isolated 

from 12 NS (half V1G1HIGH and V1G1LOW) and data are a mean of 

experiment performed with EVs derived from all different patients. For GBM 

tumor cells as recipient cells, biological triplicate for each patients‟ sample 

were performed, instead for MG tumor cells (that doesn‟t survive for long 

period of time in culture) single biological replicate was performed, but it is 

increased number of patients‟ sample. In particular in this thesis were used 

GBM tumor cells derived from 10 different patients and MG tumor cells 

derived from 20 patients‟ sample. All experiment were repeated at least 4 

times per condition. 

To compare mean for two groups t-test was performed (Mann Whitney t-

test), instead to compare three or more groups was used One-way Anova 

test (with Bonferroni post-test) and to determine how a response is affected 

by two factors was used Two-way Anova test (with Bonferroni post-test). 

MicroRNA's targets identification were developed combined the results of 

MultimiR R package. The multiMiR database contains human data from 
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three validated miRNA–target databases (miRecordsD, miRTarBaseE and 

TarBaseF
). Requiring the agreement of at least two of them to include a 

putative target in our analysis. 
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4. RESULTS 

 

4.1 V-ATPase subunits expression in primary GBM cells 

V-ATPase subunits expression was investigated in neurospheres (NS) and 

differentiated cells (Diff) (Figure 9) derived from 33 GBM patients (table 4). 

In particular, nine out of thirteen subunits of V1 sector (ATP6V1A, V1B, 

V1C1, V1C2, V1D, V1F, V1G1, V1G2, V1G3) and eight out of nine subunits 

of the V0 sector (ATP6V0A1, V0A2, V0A4, V0B, V0C, V0D, V0E, V0E1) 

were examined. ATP6V1F and ATP6V1G1 are the most expressed 

subunits both in NS and in Diff, whereas ATP6V1C2 and ATP6V0A4 are 

the least expressed ones (Fig. 10A). ATP6V1G1 resulted to be the most 

expressed subunit in NS, correlated to worse GBM patients‟ prognosis (Di 

Cristofori et al., Oncotarget 2015) and its levels decreased after NS 

differentiation. Therefore next analyses were focused on that subunit. 

Interestingly, upon differentiation of NS into differentiated lineages (Fig. 9) 

ATP6V1G1 subunit was significantly down regulated both at gene (Fig. 

10B) and protein (Fig. 10C-D) expression levels. After differentiation other 

V-ATPase subunits were down-regulated at gene levels, in particular 

ATP6V0A1, ATP6V1H and ATP6V0E (Fig. 10A), whereas ATP6V0D and 

ATP6V1G2 transcripts were up regulated in differentiated cells (Fig. 10B).  
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Table 4_Patient database  
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Figure 9_ Differentiation of GBM neurospheres in differentiated cells. 
Representative image of NS differentiation during time (captured with widefield 
microscope, 5X magnification - A). Protein expression in NS and Diff cells 
evaluated by immunofluorescence (captured with confocal microscope, 63X 
magnification, nuclear staining with Hoechst - B).  
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Fig.10_V-ATPase expression in primary GBM cells. V-ATPase subunits gene 
expression was investigated through TaqMan probe in quantitative real time PCR 
in NS and Diff cells derived from 33 GBM patients sample (A). Gene expression 
modulation after differentiation was investigated for 4 V-ATPase subunits (B). 
Protein expression in NS, Diff cells and patients samples was evaluated by western 
blot (D) and immunofluorescence (captured with confocal microscope, 63X 
magnification, nuclear staining with Hoechst - C). Vinculin, loading is used as 
control. 
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4.2 V-ATPase expression correlates with stemness features in 

GBM neurospheres 

Since ATP6V1G1 expression decreased after differentiation, we decided to 

study the association between its expression and stemness features in NS. 

First, it was investigated gene expression of CD133, NESTIN, KLF4, 

NANOG, SOX2, OLIG2, POU3F2 and SALL2 in 21 NS samples. 

Unsupervised analysis revealed a correlation between ATP6V1G1 

expression and stem genes (Fig. 11A). Moreover, primary cultures from 

tumors characterized by higher ATP6V1G1 levels formed spheres at higher 

rate than tumors with lower V1G1 expression (Fig. 11B). Accordingly we 

classified NS into V1G1HIGH (purple; n=10) and V1G1LOW (orange; n=11) 

and we analyzed their clonogenic and growth potentials. 

V1G1HIGH NS grew more than V1G1LOW NS (Fig 11C-E) and formed a 

significantly higher number of spheres after desegregation (Fig 11D). 
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Fig.11_V-ATPase expression and clonogenicity. Heatmap shows the 
unsupervised analysis (average Euclidean metric) of stemness-related genes 
expression in NS (A). ATP6V1G1 gene expression in patients sample that are able 
or not to form NS (B). Growth index of NS, evaluated as diameter and number of 
NS, relative to T0 of NS (C-E, Two-way Anova, Bonferroni post-test as statistic). 
Number of spheres formed after desegregation, according to ATP6V1G1 
expression (D, Mann Whitney t-test as statistic). 
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4.3 V-ATPase impairment through Bafilomycin A1 treatment 

In order to investigate the role of V-ATPase proton pump in stem cells 

niche maintenance in human GBM, we treated NS with Bafilomycin A1 

(BafA1), a drug able to block V-ATPase activity through binding to the V0 

sector. To test the drug activity, we first evaluated the modulation of 

lysosomal acidification. Figure 12A shows that, at basal level, there are 

significant differences in lysotracker intensity between V1G1HIGH and 

V1G1LOW NS. Moreover, BafA1 treatment reduced lysosomal acidification 

both at 5nM and at 20nM dosages in NS (Fig. 12A), but induced cell death 

only at the dosage of 20nM (Fig. 12B). Conversely, in differentiated cells 

the proton pump impairment didn‟t induce cell death (Fig. 12D), despite 

lysosomal acidification was decreased (Fig. 12C). 

Interestingly, BafA1 treatment at a non-lethal dosage (5nM) strongly 

reduced cell invasion of V1G1HIGH NS in a collagen matrix (Fig. 13A-B).  

Finally, BafA1 treatment completely block the ability to reform spheres after 

disaggregation also at not lethal dosage (Fig 13C). This effect is related to 

a modulation of different stem genes, in particular NS BafA1 treatment at 

5nM induce a significant reduction of POU3F2, SOX2 and NESTIN mRNA 

levels (Fig. 13D). 

All these data support the hypothesis that the V-ATPase activity has a 

central role in GBM stem cells niche maintenance. 
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Fig.12_BafA1 treatment of GBM tumor cells. Lysosomal acidification was 
investigated using lysotracker probe (Life Technologies) in basal condition and 
after BafA1 treatment in NS (A) and differentiated cells (C) (Statistic: A One-way 
Anove, Bonferroni post-test; C Mann Whitney t-test, p=0.0078). The induction of 
cell death was analyzed through AnnexinV probe (BD) in NS (B; Statistic: Mann 
Whitney t-test, p=0.0010) and differentiated cells (D). All experiment was 
performed after 48hours of treatment, using Nikon time lapse microscopy. The 
ImageJ software was used for data analysis. For statistical analyses was 
performed non parametric t-test. 
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Fig.13_BafA1 treatment of GBM NS. Radius of invasion was studied in NS 
HighV1G1 and LowV1G1 after BafA1 treatment (A-B; Statistic: One-way Anove, 
Kruskall-Wallis test). Clonogenicity impairment after treatment was investigated as 
spheres formation (C; Statistic: Mann-Whitney t-test –p=0.0286) and stem genes 
modulation (D, Mann-Whitney t-test). All experiment was performed after 48hours 
of treatment, evaluated using Nikon time laps microscopy and quantified with 
ImageJ software.  
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Fig.14_V-ATPase and MAPK pathway modulation. MAPK/Erk pathway 
activation at basal level was evaluated by synthesis of Elk-1/SRF transcription 
factor in HighV1G1 (n=3) and LowV1G1 (n=3) NS (A). mTOR gene expression was 
evaluated by quantitative Real Time PCR in HighV1G1 (n=6) and LowV1G1 (n=6) 
NS (B; Mann-Whitney t-test). Protein phosphorylation was investigated by western 
blot analysis and densitometry quantification was performed using ImageJ 
software, phosphorylated proteins were normalized on total proteins (basal level – 
C, after treatment – D). Vinculin is the loading control.  
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Then, the activation of cancer pathways in NS was screened using the 

Cignal Finder™ 10-Pathway Reporter Arrays. At basal levels, V1G1HIGH NS 

showed higher activation of MAPK/Erk pathway (Fig. 14A) and, through 

quantitative real time PCR, mTOR gene expression (Fig. 14B). The 

differential activation of MAPK/Erk and mTOR/Akt pathway was confirmed 

at protein level by western blot analysis (Fig. 14C).  

BafA1 treatment of V1G1HIGH, but not V1G1LOW, strongly reduces Erk1/2 

phosphorylation, confirming its association with V-ATPase activity in NS 

(Fig. 14D).  

 

4.4 GBM neurospheres produce different types of extracellular 

vesicles 

Given the central roles of V-ATPase proton pump in regulating endosomal 

trafficking [30, 53, 54] and in glioma stem cells maintenance (Figs. 11-13), 

we investigated whether NS produce extracellular vesicles (EVs) and 

whether V-ATPase has a role on EV signaling in NS.  

Electron microscopy (EM) analysis of NS showed different types of 

microvescicles were present in the extracellular space (Fig. 15). EM images 

demonstrate that NS produce both exosomes (Exo) (marked by nano-

dimension, in green, and by the presence of multivescicolar bodies, in 

orange) and ectosomes (including large oncosomes (LO)) (micro-

dimension, in purple, and originated directly by plasma membrane).  
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Fig.15_EVs production from primary GBM NS. EM images of NS producing Exo 
(green) and ectosomes (including large oncosomes); purple). Multivescicolar 
bodies are marked in orange when are inside the cells and in blue when they are 
fusing with the plasma membrane.  

 

Exosomes and large oncosomes were then isolated from NS supernatant 

and characterized by EM, western blotting, Nanosight and FACS as 

raccomanded (Journal of Extracellular Vesicles in 2014 [55]). EM images 

show pure preparation of exosomes of the correct size (50-200nm) (Fig. 

16A), and western blot analysis demonstrates the presence of exosome 

markers (CD9-CD63-Tsg101-Clathrin) and the absence of plasma cell 

marker (Calnexin) (Fig. 16B). Finally, exosomes bound to CD63-coated 

beads show the presence of CD9 and CD81 surface markers (Fig. 16C). In 

addition, exosomes had an integral membrane (as evidenced by cell trace 

staining; Fig. 16D) and contained ssRNA (as evidenced by sytoRNA 

staining; Fig. 16D).  
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Fig.16_Exosomes characterization. EM image of exosomes (A), scale bar 
200nm. Western blot analysis of cell lysate (CL) and exosomes (Exo) (B). FACS 
analysis of exosomes bind to CD63 beads (surface markers (C) and RNA (D)). 

 

LO represent an additional class of tumor-derived EVs, so called because 

of an atypically large size and presence of abundant oncogenic cargos [35]. 

Thanks to their size (up to 10um), it is possible to follow their production 

and internalization using confocal microscopy. To this end, NS were 

incubated with FM 1-43 FX, wich, using ad hoc protocol, stains only plasma 

membrane vesicles. Through live confocal microscopy, NS producing LO 
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were followed every 5 minutes up to 20 minutes (Fig. 17A). Figure 17B 

showed LO generation from plasma membrane of NS. Through EM (17C) 

and IF (staining with PHK26) (17D) it was evaluated the quality of LO 

preparation (in both case is well visible the double-layers membrane and 

the absence of smaller vesicles). Then, the ssRNA content of LO was 

investigated through flow cytometry (SytoRNA dye; Fig. 17F). Western blot 

was performed to verify the presence of CD63 vesicles marker and the 

absence of exosomes (CD9) or cellular (calnexin) markers (Fig. 17E). 

 



 

45 
 

4. RESULTS  

 

Fig.17_Large Oncosomes characterization. NS were stained with FM 1-43 FX 
and followed for 20 minutes using confocal microscopy (63X objective) (A). LO 
production was evaluated using confocal microscopy (63X objective and 3X zoom) 
(B). Electron microscopy image of LO (scale bar= 200nm) (C). Confocal image of 
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LO stained with PHK26 (scale bar= 10um) (D). FACS analysis of LO stained with 
cell trace (membrane integrity) and sytoRNA (ssRNA) (E). Protein content of cell 
lysate and LO (F). 

 

4.5 EVs internalization in recipient cells 

To gain functional cues into biological effects of exosomes and LO, we co-

cultured different types of recipient cells with exo or LO purified from NS as 

described. Recipient cells were derived directly from patients sample. In 

particular, we prepared non-neoplastic cultures from tumor margins (MG) 

and tumor cultures from GBMs. All cell types were maintained both in 

differentiated (+FBS) or undifferentiated (-FBS) conditions. These cultures 

were characterized by immunofluorescence and cytofluorimetric analyses 

and the presence of heterogeneous cell populations (neurons, astrocytes, 

microglia and oligodendrocytes) could be determined in all cultures (Fig. 

18A-B). Importantly, in both neoplastic and MG primary cultures no 

contaminant cells such as fibroblasts (Vimentin+) were present (Fig. 18A).  
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Fig.18_Primary cells characterization. Central nervous system cellular markers 
investigated through FACS on 3 different patients sample per condition (A). 
Representative image of immunofluorescence staining (B). 

 

Extracellular vesicles derived from V1G1LOW NS and V1G1HIGH NS were 

stained with PHK26 probe (empty medium, NC, was used as control). LO 

were co-cultured with recipient cells for 6 and 24 hours. To test whether LO 

are internalized in recipient cells and not only bound to plasma membrane, 
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cells were stained with cell trace (staining of all cellular bodies) and cell 

mask (staining of cytoplasm and membrane) (Fig. 19B). Representative 

confocal image (Fig. 19A) captured after 24h of co-culture shows how 

LOHIGH (LO derived from V1G1HIGH NS) have an higher ability to be 

internalized in recipient cells (Figs. 19A-C). The experiment was performed 

on different recipient cells in order to statistically count the percentage of 

PHK+ cells at different time point (Fig. 19C). 

 

 

Fig. 19_LO internalization in recipient cells. Confocal image (objective 63X) of 
differentiated cells co-cutured with LO for 24hours (A). Representative image of 
Leica analysis to discriminate internalized LO (B). Quantification of cells that have 
internalized LO after co-culture, each dot represent an experiment (C). 
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A critical point in the study of exosomes internalization is their small 

dimension (under confocal microscope resolution). For this reason it was 

used flow cytometry. Exosomes were labeled with PHK26 and the 

equivalent of 3ml was added to differentiated cells for 2-6-24 hours. Results 

show that ExoLOW (exosomes derived from V1G1LOW NS) and ExoHIGH 

(exosomes derived from V1G1HIGH NS) are both internalized from 6 hours of 

co-culture, but at longer time, ExoHIGH were internalized in a major number 

of cells (Fig. 20). 

 

 

Fig.20_Exosomes internalization. Exosomes internalization in recipient cells 
investigated using flow cytometry (each dot represent an experiment- statistic: 
paired t-test).  

 

Nanoparticle tracking analysis (NTA) on exosomes and LO derived from 

V1G1HIGH and V1G1LOW NS showed that there was no difference in term of 

concentration per ml (around 500*105 in case of exosomes; Figs. 21A-B 

and around 1500*105 in case of LO; Fig. 21C). Therefore we could 

conclude that inequality in term of internalization of LO was not a 

consequence of different extracellular vesicles concentration. 
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Fig.21_ Nanoparticle tracking analysis (NTA). Nanoparticle tracking analysis 
was performed using Nanosight NS300, vesicles distribution in size (Exo-A) and 
concentration per ml of vesicle in different condition (Exo-B & LO-C). 

 

4.6 Exosomes induce cell growth and invasion of recipient cells 

In order to evaluate the biological effect of extracellular vesicles produced 

by GBM NS on differentiated tumor cells (GBM +FBS) or non-tumorigenic 

margins (MG), was firstly analyzed the modulation of cell growth. To this 

end recipient cells were stained with Cell Trace dye and the number of 

division after co-culture was assessed through flow cytometry. The 

equivalent of 1ml of supernatant of EVs was added to recipient cells (EVs 

isolated from medium not conditioned was used as control). After 24hours 

of co-culture with exosomes, cell growth of GBM cells was strongly 

increased (Fig. 22A). More interestingly, ExoHIGH, but not ExoLOW, strongly 

increased number of cell division (Figs. 22B-C) and cell proliferation 
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(investigated by Ki67 staining; Fig. 22D) after 24hours of co-culture with 

GBM cells.  

 

 

Fig.22_Co-cultere of NS-Exosomes with primary GBM cells. Cell growth was 
investigated using Cell Trace dye (life technologies) after 24h of co-culture (data 
are the average of 6 independent experiments) (A-B). Cell cycle modulation was 
evaluated by flow cytometry (C), t-test statistical analysis performed between S-
phase at different condition (average of 6 independent experiment). Nuclear ki67 
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staining at basal condition and after co-culture (D – confocal image, 40X objective). 
Was performed 1way-Anova and Bonferroni post-test (each dot represent an 
independent experiment).   

 

To evaluate whether exosomes had a similar effect also on non-neoplastic 

brain cultures, these experiments were performed also using tumor margins 

as recipient cells. In figures 23A-B is shown how exosomes not only 

increase cell division of MG cells, but also provide those cells with survival 

signals, since MG cells co-cultured with exosomes remain alive up to 17 

days after exosomes supplementation whereas control MG cultures 

showed a mean survival time of 10 days (p<0.01; Fig. 23C). 

Then, we evaluated cells motility of recipient cells after exosomes 

supplementation. After the gap was created, cells were followed for 

65hours using a time-lapse microscope. Exosomes strongly increased the 

motility of recipient cells, particularly exosomes from V1G1HIGH NS, and 

wounds from exo-supplemented cultures were closed within 40hs whereas 

controls took more than 65hs (Fig. 24).  
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Fig.23_Exosomes co-culture with primary GBM margin cells. Number of 
divided cells after co-culture of MG cells maintained in differentiated (B) and 
undifferentiated (A) condition with exosomes (average of 4 independent 
experiment - 2way-anova, Bonferroni post-test). Widefiled image (objective 10X) of 
undifferentiated MG cells after 9days from start of co-culture with exosomes (C). 
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Fig.24_Cells motility. Measure of the gap (distance between the margin) at 
different time point (A) (average of three independent experiment – 2way Anova, 
Bonferroni post-test. Ctrl vs Exo

LOW
 not significant). Representative image (capture 

with widefield microscopy, objective 10X) of the measurement of the gap at 
different condition (B). 
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Considering that exosomes effect strongly correlates with V1G1 expression 

in NS producing exosomes, it was evaluated whether the inhibition of V-

ATPase activity in NS, using BafA1 at the non-lethal dosage, could affect 

exosomes outcome on GBM and MG recipient cells. Supernatant of 

V1G1HIGH NS was collected after 24 hours in control (ctrl) and 

BafilomycinA1 treated (BafA1) conditions. BafA1 treatment completely 

reverted the exosomes effects in term of cell growth (Fig. 25A-B), cell 

proliferation (Fig. 25C) and cell motility (Fig. 25D). These data further 

confirms the central role of V-ATPase proton pump in regulating exosomes 

biological effect. 

To ascertain that the biological effect of exosomes isolated after BafA1 

treatment was not given by a different production of EVs by NS, we 

evaluated exosomes production, (Fig. 26A) concentration (Fig. 26 B-C) and 

internalization (Fig. 26D). Confirming published data [56], BafA1 treatment 

did not impair the ability of NS to produce different types of extracellular 

vesicles (Fig. 26A), but, conversely, BafA1 treatment increased the 

concentration of exosomes in the media (around 2000*105 per ml). This 

result was also confirmed by NTA (Fig.26C).  

Finally we could determine that after BafA1 treatment exosomes are 

internalized by recipient cells with a percentage of positive cells 

comparable to control after 24 hours of co-culture (Fig. 26D).  

These data suggests that V-ATPase block by BafA1 alters exosomes 

content. Therefore we focused our attention on exosomes composition it 

term of RNA and protein contents. 
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Fig.25_BafA1 treatment of NS producing cells reverts biological effect in 
recipient cells. Cell growth and cell cycle modulation investigated after 24h of co-
culture in GBM tumor cells (n=5) (A-B; Mann-Whitney t-test of divided cells). Ki67 
nuclear staining study both on GBM differentiated cells (n=3) than on MG tumor 
cells (n=4) (C). Cells motility investigated in GBM tumor cells (n=3) (D, 2way Anova 
Bonferroni posttest, asterisks referred to Exo

CTRL
 vs Exo

BafA1
). 
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Fig.26_Characterization of exosomes after BafA1 treatment. EM image of NS 
after BafA1 treatment (5nM for 24 hours), scale bar=2um (image left) and 1um 
(center and right) (A). NTA analysis of exosomes dimension (B) and concentration 
(C). Exosomes internalization in recipient cells investigated using flow cytometry 
(D).  
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4.7 Exosomes co-culture induces V1G1 protein expression in 

recipient cells 

Since in ExoCarta databaseA is described the presence of different V-

ATPase subunits in exosomes from different cancer cell types, we 

evaluated whether NS exosomes vehiculated the V1G1 subunit. Through 

immunogold (Fig. 27A), western blot (Fig.27B) and FACS (Fig. 27C) 

analyses we could confirm that exosomes transport V1G1 protein. 

Specifically, V1G1 protein is present in around 30% of exosomes from 

V1G1LOW NS and after V-ATPase block by BafA1, whereas are present in 

around 50% of exosomes from V1G1HIGH NS (Fig. 27D).  

 

To determine whether exo-V1G1 was transferred to recipient cells, we 

evaluated its expression modulation both at gene and protein levels after 

co-culture of exosomes with GBM (+FBS) or MG cultures (+/- FBS). V1G1 

protein (Fig. 28 A-C) but not gene expression levels (Fig. 28B) significantly 

increased, both after ExoLOW and ExoHIGH co-culture. Genes and protein 

modulation of other V-ATPase subunits was also evaluated, but no 

modulation in recipient cells could be observed (data not shown). 

Interestingly, BafA1-mediated inhibition of V-ATPase activity in exo-

producing NS impaired V1G1 transfer to recipient cells and no modulation 

of the subunit could be determined in either GBM or MG cultures at gene or 

protein expression levels (Fig. 28D).  
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Fig.27_Exosomes carry V1G1 protein on their membrane. Representative 
images of immunogold performed on exosomes isolated from High V1G1 NS 
(scale bar= 200nm - A). Western blot of cell lysate (NS) and exosomes to 
investigate V1G1 protein expression (B). Exosomes was stained with PHK26 probe 
and then bind to CD63-coated beads in order to evaluate V1G1 staining using flow 
cytometry (C). 
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Fig.28_Co-culture with exosomes induce V1G1 protein expression in 
recipient cells. GBM tumor cells and MG tumor cells were co-cultured with 
exosomes for 24 and 48 hours respectively and V1G1 modulation was observed by 
immunofluorescence (A Exo

LOW
 and Exo

HIGH 
– D Exo

BafA1
), western blot (C) and 

gene expression (B).  
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4.8 Exosomes co-culture induces MAPK pathway in recipient 

cells 

We previously showed that V1G1 expression correlates with MAPK/Erk 

pathway activity in NS. Therefore we evaluated whether exosomes were 

able to modulate the MAPK/Erk pathway in recipient cells. In particular, the 

modulation of different genes and protein, associated to cell cycle and 

MAPK pathway, were investigated after co-culture of GBM tumor cells and 

MG tumor cells (+FBS) with ExoLOW and ExoHIGH. Heatmap analysis clearly 

shows how, after co-culture, there was a strong activation of all investigated 

genes, especially after co-culture with ExoHIGH (Fig. 29A). It is interesting to 

notice that BCL2 was activated only after co-culture with ExoHIGH. Moreover 

phospho-array analysis shows how, after three days of co-culture, ExoHIGH 

strongly increased phosphorylation of Erk1/2, Stat3, AMPKα, mTOR, 

HSP27 and PRAS and decreased phosphorylation of GSK-3β (Fig. 29B-C), 

compared to ExoLOW samples. These data suggest that, both ExoLOW than 

ExoHIGH activate MAPK-gene expression in recipient cells, but only after co-

culture with ExoHIGH there is an activation of MAPK pathway (given by 

modulation of different phospho protein and BCL2 activation). These results 

were validated by qPCR (Fig. 30A), western blot (Fig. 30B) and by 

immunofluorescence analysis (Fig. 30C). Moreover, IF data suggest that 

Erk localization to the nuclei in ExoHIGH cu-cultured samples (Fig. 30C) 

could be responsible of the Bcl2 up-regulation at transcriptional level. 
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Fig.29_MAPK pathway activation in recipient cells after co-culture with Exo-
High

V1G1
. Unsupervised heatmap (Average Euclidean metric) of GBM tumor cells 

at control condition and after co-culture with Exo
LOW

 and Exo
HIGH

 (A). Phospho-
array quantification (B) and representative image (C) of MG tumor cells at control 
condition and after co-culture with exosomes. For this purpose, TaqMan® Array 
Human Molecular Mechanisms Of Cancer 96-well plate (Life Technologies) and 
PathScan Intracellular Signaling Membrane Array Kit (Cell Signaling) were used.  
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Fig.30_ MAPK pathway activation in recipient cells after co-culture with Exo-
High

V1G1
.  Validation of MAPK genes using TaqMan quantitative real-time PCR (A). 

Western blot analysis of pERK and total ERK after co-culture and quantification 
(B). Representative immunofluorescence image (capture at 40X objective) of MG 
tumor cells (+FBS) after co-culture and quantification of nuclear traslocation of 
pERK (n=6) (C). 

 

Since exosomes isolated from V1G1HIGH-NS after BafA1 treatment did not 

induce a biological effect, we evaluated whether the treatment abrogated 

the effect on MAPK modulation. In line with our previous observation, 

BafA1 treatment of NS producing exosomes completely blocks the ability of 

ExoHIGH preparation to activate the MAPK pathway in recipient cells in terms 

of gene expression (Fig. 31A), protein phosphorylation (Fig. 31B-C-D) and 

Erk1/2 translocation (Fig. 31E). 
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Fig.31_BafA1 treatment of NS reverts the effect in recipient cells. Quantitative 
Real Time PCR of modulated MAPK genes after co-culture with Exo

HIGH
 and 

Exo
BafA1

 (A). Phospho-array quantification (C) and representative image (D) of MG 
tumor cells at control condition and after co-culture with exosomes. Western blot 
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analysis of pERK and total ERK after co-culture (D). Representative 
immunofluorescence image (capture at 40X objective) of MG tumor cells (+FBS) 
after co-culture and quantification of nuclear traslocation of pERK (n=5) (E). 

 

4.10 miRNA exo-signalling, but not mRNA, correlates with V-

ATPase expression in NS producing exo 

It is known that exosomes can transport mRNA and/or miRNA. To 

determine how MAPK/Erk was modulated by exosomes in recipient cells 

we analyzed both mRNA and miRNA contents of our exosomes 

preparations. Looking at MAPK- or Akt related mRNA, no difference could 

be observed between ExoLOW and ExoHIGH mRNA content (Fig. 32). 

 

 

Fig.32_mRNA vehiculated in exosomes. Heatmap shows unsupervised 
hierarchical clustering (Euclidean complete metric was used for sample and gene) 
of mRNA content in exosomes from NS with high or low-V1G1 expression. Blue 
square, under-expressed gene; red square, over-expressed gene. 
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Then, the miRNA profiling of NS and of NS-derived exosomes at different 

conditions was investigates. As expected NS miRNA content was higher 

than exo-miRNA content (not shown). In exosomes about 150 were 

expressed above threshold levels. By unsupervised hierarchical clustering 

(Fig. 33A) and principal component analysis (Fig. 33B), we could highlight 

that miRNA content in exosomes correlated with V-ATPase expression of 

NS. This analysis also showed that ExoLOW preparation expressed higher 

levels of miRNA. By SAM analysis we identify 45 significantly different 

miRNA between ExoLOW and ExoHIGH  (Fig. 33C and Table 5).  
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Fig.33_miRNA vehiculated in exosomes. (A) Heatmap shows unsupervised 
hierarchical clustering (linkage complete, metric manhattan) of miRNA content in 
exosomes from NS with high or low-V1G1 expression (n=12). Blue square, under-
expressed gene; red square, over-expressed gene. Spheres V1G1 over expression 
characterized (purple bars) produce exosomes with lower miRNAs levels 
compared to exosomes derived V1G1 down regulated spheres (orange bars), 
miRNAs (n=151). (B) Principal component analysis (PCA) of exosomes (Orange 
dots= Exo

LOW
 – Purple dots= Exo

HIGH
). (C) Statistical analysis of microarray (SAM) 

plot of miRNA differentially expressed between over and lower expressed V1G1 
subunit exosomes. miRNAs downregulated and upregulated in the Exo

LOW
 are 

shown in green and red, respectively (n=45). FC>1log (abs), median false 
discovery rate (FDR)< 0.05; q.value < 0.10. 
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Table5_45 SAM selected miRNAs in exosomes.  

 

We then looked at these miRNAs in the NS that generated the exosomes, 

but spheres and exosomes clustered in two different branches (Fig. 34A). 

Moreover PCA analysis demonstrate that miRNA profiling clearly 

distinguish (by PC1) V1G1HIGH-NS from corresponding ExoHIGH. Instead 



 

69 
 

4. RESULTS  

V1G1LOW-NS and ExoLOW partially overlap (Fig. 34B). Finally, focusing only 

on 45 miRNA found after SAM analysis in exosomes, unsupervised 

clustering (Fig. 35) confirm that miRNA content in exosomes (Fig. 35A) 

doesn‟t correlate with cells content (Fig. 35B); on the contrary in NS miRNA 

profile is the opposite of exosomes, with an higher expression in V1G1HIGH-

NS.  

 

 

Fig.34_miRNA in exosomes and neurospheres. (A) Heatmap shows 
unsupervised hierarchical clustering (linkage complete, metric pearson) of 
exosomes (green bars) and NS (blue bars) derived miRNAs. NS and exosomes 
clustered in two different branches. Furthermore, independently of V1G1 subunit 
expression, the NS shows higher miRNAs expression compared with exosomes. 
(B) PCA of exosomes and NS (Pink dots= HighV1G1 NS – Red dots= LowV1G1 
NS – Orange dots= Exo

LOW
 – Purple dots= Exo

HIGH
). 
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Fig.35_Different expression of 45 SAM selected miRNAs in exosomes and 
NS. (A) Heatmap shows unsupervised hierarchical clustering (linkage complete, 
metric manhattan) of Exo-miRNA and reveals a higher miRNAs expression in 
exosomes V1G1

LOW
 (orange bars). (B) Heatmap shows unsupervised hierarchical 

clustering (linkage complete, metric manhattan) of NS-miRNA and reveals an over-
expression of miRNAs in V1G1

HIGH
-NS (purple bars). 

 

By bioinformatics analysis of the predicted gene targets of 45 selected 

miRNA we could determine an enrichment of genes associated to cell cycle 

(62 out of 95) and to MAPK pathways (67 genes; Fig 36).  

miRNA associated to MAPK pathway were validated through quantitative 

real time PCR in a different subset of exosomes derived from NS (n=8) and 

10 miRNA were confirmed as strongly up regulated in ExoLOW compared to 

ExoHIGH (Fig. 37A). Moreover, it was investigated whether miRNA levels 

were modulated after BafA1 treatment. Figure 37B shows that BafA1 



 

71 
 

4. RESULTS  

treatment up regulates miRNA exosomes content, with level comparable to 

ExoLOW samples. 

 

Fig.36_Gene target pathway. Network of principal pathway targeted by significant 
miRNA (n=45) (CPDB software, over-representation analysis, each node 
represents a separate pathway whose member list size (number of genes 
contained) and P-value are encoded as node size and node color, respectively. 
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Fig.37_miRNA validated in Real Time PCR. Quantitative Real Time PCR of 
miRNA isolated from exosomes at basal condition (n=4 Exo

LOW
 and 4 Exo

HIGH
) (A) 

and after BafA1 treatment of NS (n=4) (B). T-test was performed for statistic. 

 

Finally, we evaluated whether that miRNA validated by qRealTime PCR, 

were modulation in recipient cells. Six out of 10 miRNAs (namely miR-9-5p, 

miR-15-5p, miR-21-5p, miR-30b-5p, miR-30c-5p, miR-195-5p) resulted up-

regulated in GBM and MG cultures only after supplementation with the 

ExoLOW and not with ExoHIGH or ExoBafA1 preparations (Fig. 38).  

 



 

73 
 

4. RESULTS  

 

Fig.38_Co-culture with Exo
LOW 

increase miRNA expression in recipient cells. 
MG tumor cells (n=3) and GBM tumor cells (n=2) were co-cultured with exosomes 
for 48 and 24 hours, respectively. miRNA level were investigated through 
quantitative Real Time PCR, and exogenous miRNA (spike-in or miR-39) was used 
as reference. 

 

4.11 miRNA exo-signalling blocks MAPK pathway activation in 

Exo-LowV1G1 

Based on our data, we envisioned a model in which miRNA vehiculated by 

ExoLOW, bind MAPK/Erk transcripts after internalization in recipient cells, 

thus blocking their translation and, as a consequence, the signaling 

pathway (Fig. 39).  

To confirm our model, first we confirmed the data using another V-ATPase 

inhibitor, such as Concanamycin A (ConcA). As expected, ConcA at 

dosages able to decrease lysosomal acidification without affecting cell 

viability (Fig. 40A,B) increased miRNAs (namely miR-9-5p, miR-21-5p, 

miR-30b-5p, miR-30c-5p, miR-195-5p) (Fig. 40C). This result further 

supports the role of V-ATPase in selecting miRNAs that will be loaded in 

MVB-generating exosomes.  
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Fig.39_Proposed model of exosomes activity. 
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Figure 40_Lysosomal acidification was investigated using lysotracker probe after 
ConcA treatment (A). Cell death was investigated as AnnexinV positive cells 
(percentage of positive cells; B). Quantitative RealTime PCR of miRNA content in 
exosomes produced by HighV1G1 NS after ConcA treatment (C). 
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5. DISCUSSION 

 

5.1 V-ATPase proton pump sustain glioma stem cells niche 

V-ATPase proton pump was recently found up-regulated in various type of 

tumors, in particular it has been described to sustain the cancer stem cell 

niche [57] and its activity appears to be required by ovarian or breast 

cancer cells to invade and metastasize [53, 58, 59], or to activate 

oncogenic signalling [22, 24, 60, 61]. In a previous work, published by our 

group (Di Cristofori et al., 2015 [62]), we demonstrated that V-ATPase G1 

is a novel marker of poor prognosis for glioblastoma patients and that it is 

selectively up-regulated in GSC. In this thesis, we confirmed that V-ATPase 

proton pump, in particular ATP6V1G1 subunit, has a central role in 

maintenance GSC viability, tumorigenicity and stem cell factors expression. 

In particular, in this work we got novel insights into the role of ATP6V1G1 

subunit in maintenance glioma stem cells niche, investigating the 

involvement of associated signalling pathway. Firstly, we demonstrated that 

ATP6V1G1 gene expression classified NS in two different groups, 

characterized by different stemness and aggressive features, such asstem 

genes expression, clonogenicity, invasiveness, and MAPK/Erk pathway 

activation. Moreover, the inhibition of V-ATPase activity by BafA1 

significantly reduced motility and clonogenicity of NS without affecting cell 

viability. On the contrary, in differentiated cells BafA1 treatment was 

ineffective.  

Glioma stem cells are involved in therapeutic resistance and disease 

relapse in glioblastoma patients, with consequent life expectancy of about 

14-16 months. For this reason, it is crucial to find new drugs able to 

specifically target the GSC niche. Therefore new information and study 
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regarding the molecular alterations that characterize different subsets of 

high-grade glioma are necessary. In this scenario, our work sheds light into 

a novel mechanism exploited by cancer stem cell to survive and invade, 

which relies on V-ATPase pump deregulation. Importantly, the V-ATPase 

could be a druggable target and directed drugs are currently under 

preclinical development [63, 64]. 

In this work we also demonstrated that in GBM NS there is a strong 

correlation between V1G1 up-regulation and MAPK/Erk pathway activation, 

whereas there is no association with other cancer pathway (e.g. Notch or 

PI3K/Akt/mTOR pathways). Indeed we demonstrated that V-ATPase 

impairment, using Bafilomycin A1, causes down-regulation of MAPK/Erk 

pathway. 

 

5.2 V-ATPase proton pump regulates exosomes signalling in 

glioma stem cells 

Recent evidences highlighted that GBM secreted microvesicles, particularly 

exosomes and large oncosomes, play a major role in the cross-talk 

between tumor cell and non-neoplastic parenchyma [34, 46, 65]. V-ATPase 

might regulate intra- and extra-cellular milieu by acidification and by 

modulating protein trafficking in organelles, such as endosomes and 

lysosomes [30, 53, 54]. Indeed, in ExoCarta database, V-ATPase subunits 

are described in exosomes from different cancer cell types [56].  

Therefore in this thesis we focused on the possible role of V-ATPase proton 

pump in regulating extracellular vesicles signalling in glioblastoma, in 

particular on exosomes. Initially, we demonstrated that GBM NS can 

product different types of extracellular vesicles, such as exosomes and 

large oncosomes, independently from V-ATPase G1 expression level. 

Nevertheless, exosomes produced by V1G1HIGH-NS have a higher ability to 
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be internalized in recipient cells. Since it is well know that EVs can 

influence the microenvironment through the horizontal transfer of bioactive 

molecules [22, 34, 40, 66-68], we investigated EVs effects on two different 

types of recipient cells. In particular, we observed that ExoHIGH strongly 

increase cell growth and cell motility both in non-neoplastic cultures from 

tumor margins (MG) and primary tumor cultures from GBM tissues. 

Moreover, our data suggest that V1G1 expression in NS producing 

exosomes correlates with biological effect on recipient cells, such as 

activation of MAPK/ERK pathway. In line with this, the treatment of 

V1G1HIGH NS with BafA1 reverts the exosomes-mediated biological effects 

in recipient cells.  

 

Interestingly both ExoLOW and ExoHIGH carry V1G1 protein on their surface, 

and V1G1 expression decreases in exosomes derived from NS treated with 

BafA1. Furthermore ExoLOW and ExoHIGH, but not ExoBafA1, induce V1G1 

expression in recipient cells, but only ExoHIGH activates the MAPK/Erk 

pathway in recipient cultures.  

To better understand the V1G1-MAPK/ERK signaling axe, we hypothesized 

that exo-miRNAs could play a role, as previously demontrated in other 

cancer context [65, 66, 69-72]. Accordingly we profiled the miRNome of 

exosomes prepared from V1G1 High and Low NS. Around 150 miRNAs 

were present in exosomes (whereas NS expressed 388 miRNAs ). 

Interestingly we found that exosomes-miRNA signaling inversely correlates 

with V1G1 expression in NS. In particular, ExoLOW vehiculates a higher 

number of miRNAs compared to ExoHIGH. Remarkably, when we 

investigated the expression of these miRNAs in NS, we found that their 

expression is higher in V1G1HIGH NS compared to V1G1LOW. Altogether 

these data suggest that V1G1HIGH NS selectively do not vehiculate these 

miRNAs in exosomes.  
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5. DISCUSSION  

Bioinformatics and in vitro analyses of the miRNAs targets revealed that the 

majority of ExoLOW-miRNAs are directed towards MAPK pathway members 

and cell cycle genes. These data suggest that ExoLOW-miRNAs, after co-

culture, are internalized by recipient cells where they repress expression of 

genes related to the V-ATPaseG1/ERK signaling.  

 

Further work is required to better investigate how V-ATPase activity and 

modulation may regulate exosomes content and to study the involvement of 

other V-ATPase subunits in regulating exosomes signaling.  

Moreover, the study analysis of specific miRNAs in glioma patients serum 

could provide translational insights into disease monitoring. The 

heterogeneous nature of GBM may contribute to the variation in survival 

observed in GBM patients with regards to response to the current clinical 

treatments. In this scenario, one possible approach would be to investigate 

the presence of specific miRNAs in exosomes isolated from human serum 

as tumor biomarker for tracking cancer progression through a „liquid 

biopsie‟ approach.  

 



 

80 
 

6. CONCLUSION  

6. CONCLUSION 

 

In this work we supported and confirmed the hypothesis that ATP6V1G1 

expression in human glioma stem cells confers proliferative advantage, it is 

required for cancer stem cell migration and invasion, and sustains cancer 

cell tumorigenicity. Moreover, we determined the central role of V1G1 

subunit in glioma stem cells, in influencing the tumor microenvironment 

throgh the horizontal transfer of bioactive molecules such as exosomes and 

large oncosomes. To conclude, these data identify V-ATPase as an 

important driver of gliomagenesis, and a novel, actionable therapeutic 

target for disease intervention. 

 

Moreover, in this thesis we documented the association between V-ATPase 

(in particular the V1G1 subunit) and the MAPK/Erk pathway activation. In 

fact, we demonstrated that V1G1 up-regulation in recipient cells 

(vehiculated by exosomes) induces the transcription of different MAPK 

associated genes. High level of V1G1 in NS producing exosomes causes a 

reduction of MAPK-associated miRNA internalized in exosomes. Indeed 

only the co-culture with ExoHIGH preparation induces the activation of the 

MAPK/ERK pathway, with the translocation of phosphorylated Erk in the 

nuclei of recipient cells and, as a consequence, the transcription of Bcl-2. 

On the contrary and further supporting our model, the co-culture with 

ExoLOW up-regulates MAPK-directed miRNAs in recipient cells.  

 

Given this data, we can conclude that V-ATPase is a novel player in glioma 

stem cell pathobiology and signaling.  
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