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ABSTRACT 

The need to fulfil sustainability requirements while increasing productions to feed the raising 

world’s population represents a big challenge for the agricultural sector. To achieve this goal, 

improving management of resources at farm level is acknowledged as one of the most effective 

solutions. However, this requires intensive activities targeting cropping system monitoring and 

data processing. The advances in remote sensing and simulation technologies – especially when 

used in an integrated way – provide a valuable solution to support farmers and technicians in such 

a context. 

This research aims at setting up and evaluating pre-operational tools based on the integration of 

crop models and remotely sensed information to support decision making in cropping systems 

management. The research was articulated in two main preliminary activities before the 

application of crop models and remote sensing in a case study. Extensive sensitivity analysis 

experiments were performed to deepen the knowledge about model behaviour and to identify the 

most influential parameters for yield simulation. A wide range of conditions was investigated, 

considering both current weather and future climate projections, as well as five major crops 

cultivated in several European sites and using two different modelling solutions (the standard 

version of WOFOST and a version of the model improved for the simulation of the impact of 

extreme weather events). Model outputs were mainly influenced by parameters involved with 

storage organs development; nevertheless, in case limiting conditions were explored, simulations 

were influenced by parameters driving crop growth during early stages. Given leaf area index (LAI) 

data are those mostly used when crop models and remote sensing are integrated, the second 

activity targeted the quantification of the impact of subjectivity in LAI estimates from 

hemispherical images. Precision was determined via the application of the ISO 5725 validation 

protocol, thus leading to define repeatability and reproducibility limits. Results proved the 

reliability of LAI estimates from hemispherical images; the precision obtained was indeed 

comparable with that of other commercial instruments. The best results were obtained in case of 

high LAI and continuous canopy, further underlying the reliability of this method for intensive 

agricultural systems characterized by continuous and homogeneous canopies. Both the activities 

just presented aimed at defining a sound starting point for the coupling of crop models and 

remote sensing, providing useful information for the design of the case study. For this last activity, 

a high-resolution pre-operational system based on the WARM model and remotely sensed 

information was evaluated using observations from paddy rice fields during the seasons 2014, 



 
 

2015 and 2016. The remotely sensed information, consisting in temporal series of LAI, were 

integrated in the model by automatically re-calibrating either parameters identified as the most 

influential or those strictly related with LAI dynamics. The system performances were compared 

with those obtained using the default parameterizations of the model. Results underlined the 

improvement in rice yield simulation after the integration of remotely sensed data, proving the 

reliability of the system. Overall, the simulation of rice yield was affected by a restrained RRMSE 

(13.8%), compared to the results obtained with the default model parameterizations (RRMSE = 

15.7%). Moreover, the assimilation of remotely sensed information at high spatial resolution (30 m 

× 30 m) led to satisfactorily describe the within-field yield variability. The obtained results make 

the proposed system a valuable solution to provide high-resolution estimates of rice productivity. 

Nonetheless, weakness were highlighted, related with some the inconsistencies between 

observed crop state variables and crop reflectance properties. This, as well as the possibility to 

consider other models and crops, lays the basis for further studies. 
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1.1 Increasing agricultural productions while preserving natural resources 

Starting from the Common Agricultural Policy (CAP) reform in the 1992, rising attention has been 

put on the sustainability of agricultural productions. This was dictated by a growing awareness of 

the environmental impacts caused by intensive agricultural systems and by the worries about the 

loss of environmental resources (Van der Werf and Petit, 2002). With the last CAP reform (2014-

2020), the environmental objectives assumed further importance; a quota of direct payments has 

been tied to the compliance of environmental requirements and the 30% of the Rural 

Development programme was reserved to measures targeting the environmental preservation 

(Council of the European Community, 2013). To comply with this newly regulations, farmers have 

modified the agronomic management of crops by adopting practices focused on environmental 

sustainability, like the interruption of cereal mono-culture and mono-cropping with the insertion 

of cover crops targeting a mitigation of land degradation, a contribution to the conservation of soil 

water and nutrients reserves and, in case of legumes, nitrogen fixation into the soil (Gaudin et al., 

2014). Other activities targeting environmental preservation are the minimum or no tillage 

practices; besides being energy saving, these practices, compared with intensive tillage, allow the 

preservation of soil’s structural properties and water resources (Mupangwa et al., 2007). Emphasis 

has also been put on the limitation of pollution due to agro-chemicals. Strategies to modulate 

fertilization rates based on optical crop sensing has been also developed to increase nitrogen use 

efficiency (Raun et al., 2002). To reduce the amount of herbicides with a potentially leading to 

groundwater pollution, strategies to contain weeds growth such as higher crop seeds rate, 

reduced row spacing and incorporation into the soil of green manure and cover crops were 

adopted (Blackshaw et al., 2006). Since agriculture is, globally, the largest freshwater consumer 

and considering that only half of the distributed water is actually used by the crops (Turral et al., 

2010), the recourse to efficient irrigation systems (Knox et al., 2012) and even the adoption of 

controlled water deficit (Du et al., 2010) represent other valuable practices targeting 

environmental sustainability. 

Beside the fulfillment of sustainability requirements, agriculture is called to feed the rising global 

population which is projected to be about nine billion people by 2050. This strong demographic 

growth will be accompanied by a substantial increase in food demand (Tilman et al., 2002). The 

described scenario is a big challenge for the agricultural sector considering also the exacerbation 

of the competition for resources (i.e., land, water, energy) with other production sectors (Godfray 

et al., 2010). The goal of increasing food production under scenarios characterized by decreasing 
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resources while preserving the environment can be reached improving the management of on-

farm resources (i.e., land, water, fertilizers, herbicide, pesticide) including energy inputs such as 

gas and oil (Fess et al., 2011). To achieve this aim, farmers and technicians have to increase the 

effort dedicated to cropping systems monitoring, this being a key assumption to optimize 

management practices. Decision support tools can support farmers in such activities, collecting 

and elaborating information from several domains of the agricultural system and producing 

synthetic data useful to optimize the agro-management (Sørensen et al., 2010). 

1.2 Decision support tools in agriculture 

In the last years, several kind of decision support tools were formalized, differing in structure, 

inputs needed and type of information spread. The most simple are based on empirical 

relationship between crop variables and the quantity of a certain input (e.g., canopy dimension 

and nitrogen fertilization rate). Besides those based on in situ measurements, often expensive in 

terms of labour and thus not applicable at large scale, the crop monitoring through sensors has 

been one of the most exploited technique. The main efforts have been directed towards the 

optimization of nitrogen fertilization, to reach the potential production while limiting nitrogen 

losses. Holland and Schepers (2010) and Solie et al. (2012) formalized two strategies to modulate 

nitrogen fertilization rate based on instruments for optical crop sensing. Although these 

instruments can be mounted on tractors, the high dependency on machinery availability and the 

need of reference value of crop reflectance for optimal nitrogen content limit their usefulness for 

operational purposes. Thanks to the continuous improvements in satellite technology and the 

possibility to equip airplanes with sensors, the remote sensing of environment has become one of 

the most popular technique to monitor agricultural systems. Wood et al. (2003) have found a 

correlation between an index of the photosynthetic surfaces (GAI, Green Area Index), estimated 

through airborne photography, and the fertilization rate that should be applied to gain the optimal 

GAI value. Through the adoption of vegetation indices (e.g., NDVI, PRI) and the monitoring of crop 

temperature during the growth cycle, Panigada et al. (2014) and Rossini et al. (2015), proposed 

strategies to detect water stress in cereal crops. Panda et al. (2014) showed the combined used of 

images from several satellite (LANDSAT, SPOT, NAIP) to retrieve information about the crop 

stomatal conductance, canopy temperature and leaf are index (LAI) dynamics. Lobell et al. (2015) 

proposed a method to perform yield forecasting based on crop monitoring from satellites. Other 

efficient instruments on which the formalization of decision support tools has been based are 

simulation models. These instruments are able to integrate the effects of different environmental 
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factors and management practices on crop growth and development (Basso et al., 2001), and can 

thus be adopted to support decision-making. For instance, crop models have been used to (i) 

optimize irrigation at farm level (García-Vila and Fereres, 2012); (ii) analyse the response of crops 

to different water and nitrogen availability (Singh et al., 2008); (iii) select the best management 

practices in specific environments (Morari et al., 2004) or even (iv) support the adaptation of crop 

management to climate change (Lehman et al., 2013). 

Despite the great diffusion of remote sensing and crop modelling to support decision-making, both 

technologies are characterized by some constraints. One the one hand, even if remotely sensed 

data bring useful information about the spatial variability of crops, they are linked to the temporal 

resolution of satellite and even to the presence of clouds thus determining the temporal 

discontinuity of these kind of data (Liu and Weng., 2012). Moreover, remote sensing allows 

deriving vegetation indices, which are not variable with a specific biophysical meaning. On the 

other side, crop models provide outputs for simulation units assumed to be homogeneous in 

terms of inputs. This makes them unable to describe, e.g., intra-field heterogeneity (Batchelor et 

al., 2002). To overcome the intrinsic limitations of each technology, their coupling appears as a 

promising technique. 

1.3 Integrating crop models and remote sensing 

Thanks to the advances in computer technology and to the availability of remotely sensed 

information with increased spatial and temporal resolutions, the coupling between remote 

sensing and crop models has been subjected to an exponential growth during last years. Several 

studies were indeed performed covering a wide range of crops and locations (e.g., Jongschaap, 

2006; Youping et al., 2008; Casa et al., 2012; Ines et al., 2013; Zhao et al,. 2013; Li et al., 2014). 

Different ways to include remotely sensed information into crop models were proposed; however, 

they can be grouped in the following categories: (i) calibration, which entails an automatic 

adjustment of model parameters or initial states to minimize the difference between simulated 

and exogenous state variable; (ii) forcing, which replaces the simulated variables with the 

observed ones (re-initialization) and (iii) updating, that consists in the continuous update of model 

state variables whenever an observation is available (Dorigo et al., 2007). Several crop variables 

have been sensed within monitoring activities; however, most studies focused on leaf area index 

(LAI), due to its direct influence on the canopy spectral reflectance. All the cited works deal with 

an improvement in crop monitoring along the growing season targeting the improvement in yield 

prediction. Despite the promising results obtained both in the monitoring of crop status and in the 
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prediction of yields, the main drawback of these works is the spatial resolution of the information 

provided. The outputs of the combination of crop model and remote sensing were at a district 

scale, thus being unsuitable to support the agro-management. The recent launch of satellites with 

an increased spatial resolution can allow the assimilation of remotely sensed data into crop 

models at a higher level of detail. 

1.4 Objectives 

The main goal of this research is the setup and evaluation of operational tools based on the 

integration of crop models and remote sensing for supporting decision-making in agriculture. 

While crop models allow describing, through a process based approach, the multiple interactions 

among agricultural systems components (e.g., soil, crop, weather, agro-management), the 

assimilation of remotely sensed information can allow describing the spatial variability of crop 

status. The work benefits from existing models – e.g., WARM (Confalonieri et al., 2009) and 

different versions of WOFOST (Van Diepen et al., 1989; Stella et al., 2014) – and software 

component (UNIMI.Forcing) which allows the assimilation of exogenous data in crop models. The 

latter mainly consist of LAI time series between crop establishment and canopy closure. Despite 

both technologies (i.e., simulation models and remote sensing) are continuously improved by the 

scientific community, their coupling still presents some limitations, due to different sources of 

uncertainty not properly managed. For these reasons, before the application of models and 

remote sensing in a study case, part of the research was targeted to: 

 The identification of the most reliable technique to assimilate exogenous data among 

those available (forcing and recalibration). The former entails a simple substitution of the 

simulated LAI values with the correspondent values estimated by satellite, and then a re-

initialization of all model state variable starting from the exogenous one and from the 

state at the previous time step. The second technique, instead, is based on an automatic 

recalibration of model parameter through a modified version of the downhill simplex 

optimization method (Nelder and Mead, 1965). In this case, parameter values are 

defined by optimizing an objective function between simulated and exogenous state 

variables. 

 The increase of the knowledge on model structure and behaviour under a wide range of 

conditions to identify the parameters at which the model is most sensitive, which are 

those to be automatically recalibrated during optimization. This can be achieved via the 

adoption of sensitivity analysis techniques in a wide range of agro-climatic conditions. 
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 The evaluation of the reliability of LAI estimates using hemispherical photography. The 

processing of hemispherical images is a widespread indirect method to estimate LAI and 

to validate the radiative transfer model adopted to derive LAI values from crop 

reflectance. However, this indirect method for LAI estimates is based on a supervised 

segmentation method, that can be subject to user subjectivity. 

The last part of the research was designed starting from the lesson learned from what above, and 

targeted the implementation of the case study, where the assimilation of exogenous LAI data from 

paddy rice fields let the WARM model to reproduce the within-field variability, thus providing 

information to support the agro-management practices planning. 

1.5 Outline of the Thesis 

Chapter 2 describes the formalization of a specific model (WOFOST-GTC) for rapeseed simulation. 

The model, derived from the WOFOST-GT2 model (Stella et al., 2014), benefit of a reduction of 

complexity substituting the AFGEN tables with functions driven by few parameters with a clear 

biological meaning. This activity aims at simplifying model calibration and limits the possibility of 

generating inconsistent parameterizations. Particular attention was put on the representation of 

photosynthetic surfaces within the vertical profile of rapeseed canopies, whose LAI is split into 20 

horizontal layers using a beta function changing according to crop development. In particular, 

most photosynthetic tissues are located in the bottom layers during early stages, whereas during 

flowering they are evenly distributed within the canopy, and – during senescence – they are 

located in the upper layers. This improvement compared to the original WOFOST version led to 

increase model accuracy both for LAI and biomass simulation, as well as for final yield. Moreover, 

the new version of the model allows the simulation of quality of production (i.e., oil content in the 

seeds and its composition). Despite the improved description of canopy dynamics (crucial for the 

assimilation of exogenous LAI values), some constraints still persist. Not all the process driving 

crop growth are formalized; in particular the effect of frost injuries on LAI and biomass are not 

reproduced. In these cases, the inclusion of exogenous data can improve model performances re-

initializing the simulation at the spring restart. 

Chapter 3 shows the results of sensitivity analysis experiments applied to the model WOFOST. To 

analyze model behavior under a wide range of conditions, both current weather series and mid-

term climate change scenarios were used at different European sites and for different crops. The 

effect of extreme weather events on crop growth and productivity was also considered (Villalobos 
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et al., 2015). This work aimed at deepening the knowledge of the model WOFOST through the 

identification of the most relevant parameters. This work enlarged the knowledge on model 

structure and allowed defining the procedure to select the parameters to be automatically re-

calibrated during assimilation. 

Chapter 4 presents the quantification of the impact of subjectivity when LAI is estimated using 

hemispherical photography and the widespread Can-Eye package. This is due to the need of 

specifying manually the thresholds for image segmentation. Four users processed hemispherical 

images, and repeatability and reproducibility limits were estimated. Hemispherical images were 

taken from a variety of tree canopies to cover a wide range of architectures. The best results were 

obtained for images constitutes by an high proportion of canopy (i.e., continuous and 

homogeneous canopies) whereas poorer results were obtained in case of sparse vegetation. In 

general, the low values of repeatability and reproducibility further demonstrated the reliability of 

hemispherical photography to estimate LAI values, in turn encouraging its adoption. 

Chapter 5 presents the application, in an operational context, of a system based on the integration 

of the WARM rice model and of 30 m × 30 m resolution remote sensing data. The main goal of this 

part of the research was to analyze the within-field spatial variability to support the agro-

management practices. The assimilation of remotely sensed LAI data into WARM was performed 

via recalibration of model parameters. The parameters under recalibration were selected via 

sensitivity analysis (maximum radiation use efficiency) or because strictly linked to LAI dynamics 

(initial and mid-tillering specific leaf area). The ability of the system to describe the within field 

variability was evaluated through the comparison with production maps generated at the harvest. 

Chapter 6 draws the overall conclusions of the research. Emphasis is given to the importance of 

the achievements and to the identification of further researches. 

 

Note 

Chapter 2 is published in Field Crops Research. Chapter 3 is published to Ecological Modelling. 
Chapter 4 is submitted to Agricultural and Forest Meteorology and Chapter 5 will be submitted to 
Remote Sensing of Environment. 
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2.1. Abstract 

Rapeseed is one of the most important sources of vegetable oils, and its cultivation in Europe is 

expanding due to the economic incentives to grow energy crops. Given the unique characteristics 

of this crop, simulation studies targeting yield predictions and scenario analysis should be 

performed using specific models rather than using generic crop simulators adapted to rapeseed 

via calibration. This study presents a new model – WOFOST-GTC – which implements a dynamic 

representation of the rapeseed canopy architecture and includes modelling approaches to 

simulate oil content and composition. We reduced the number of model parameters to 35, 

compared to the 97 parameters of the original WOFOST model, from which it derives. WOFOST-

GTC was developed using data collected in dedicated field experiments carried out in northern 

Italy in 2012-2013. The model ability to reproduce the underlying processes was evaluated using 

data collected in Europe between 1993 and 2013. In particular, dynamics involved with production 

and oil quality were evaluated on 7 and 18 datasets, respectively. The aboveground biomass and 

photosynthetic area index at different depths in the canopy were accurately simulated (R2 = 0.86 

and 0.78, respectively). Despite the lower complexity, WOFOST-GTC proved to be as accurate as 

the original WOFOST model. The simulation of the seed oil content (R2 =0.76) and of the oleic 

(R2=0.95), linoleic (R2=0.88) and α-linolenic acid (R2=0.95) fractions was accurate. Hence, we 

propose WOFOST-GTC as a suitable simulation model to analyse the rapeseed production and oil 

quality under different weather and management scenarios. 

 

Keywords 

Canopy architecture, canola, oil quality, WOFOST, WOFOST-GT. 
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2.2 Introduction 

Rapeseed (Brassica napus L.) is the third most cultivated oleaginous crop worldwide, with 

approximately seven million hectares planted in the European Union (EU) in 2013 (FAO, 2014). 

Rapeseed cultivars have a diverse range of fatty acid compositions in the seed oil, and this 

characteristic makes the crop suitable for a broad range of uses, such as the production of 

biodiesel (Ramos et al., 2009), edible oils (Ursin et al., 2003), livestock feed (Bell et al., 2003) and 

industrial lubricants (Wagner et al., 2001). Currently, rapeseed represents the major source of raw 

material for European biodiesel production, and its importance will further increase due to the 

incentives promoted by the Renewable Energy Directive (2009/28/EC), which imposes 

requirements on the member states to derive at least 10% of the total energy for the transport 

sector from renewable resources in 2020. 

In this context, the competition for land use between food and energy crops is emerging as a 

critical issue, and there is an increasing demand for tools for supporting the development of 

policies via the evaluation of alternative scenarios and management plans (Cappelli et al., 2015). 

The key role of crop models for this purpose is widely recognized because of their ability to 

simulate the non-linear responses of crops to management strategies and climatic conditions (De 

Carvalho Lopes and Steidle Neto, 2011). 

Despite the importance of rapeseed and its unique morphological and physiological traits, 

modelling studies for this crop are usually performed by adapting generic crop simulators via 

calibrations, which force the model to mimic the rapeseed growth dynamics without the 

formalization of algorithms to simulate rapeseed-specific traits (e.g., Habekotté, 1997; 

Confalonieri et al., 2016). In recent years, the rising importance of this crop led to several attempts 

to adapt widely known crop system models to the simulation of winter rapeseed. Examples 

include CERES (Gabrielle et al., 1998), AquaCrop (Zeleke et al., 2011), DSSAT (Deligios et al., 2013) 

and APSIM (Zeleke et al., 2014). Among the main factors that make the rapeseed modelling 

particularly challenging is the complex canopy architecture and the differential contribution of 

plant organs to photosynthesis during the crop cycle (Müller et al., 2005). The aim of this study 

was to develop and evaluate the WOFOST-GTC, a new model for the simulation of rapeseed 

production and oil quality. 
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2.3 Materials and methods 

2.3.1 WOFOST-GTC description 

WOFOST-GTC is derived from WOFOST-GT/GT2 (Stella et al., 2014), which improved the canopy 

description and reduced the model complexity of the original WOFOST model (Van Diepen et al., 

1989). Three main issues were addressed in the development of WOFOST-GTC: (i) the contribution 

of the different plant organs to photosynthesis during the crop cycle, (ii) the model simplification, 

and (iii) the simulation of seed oil content and composition. Other processes are based on the 

original WOFOST model (Van Diepen et al., 1989). 

2.3.1.1 Representation of the canopy architecture dynamics 

The vertical distribution of the photosynthetic area index (PAI, m2 m-2) is dynamic during the 

rapeseed cycle (Diepenbrock, 2000). From emergence to the differentiation of flower buds, the 

bottom leaves accounts for most of the PAI, whereas the PAI is homogeneously distributed along 

the vertical canopy profile during flowering. After pod formation, the basal leaves become 

senescent and the upper portion of the canopy intercepts most of the light (Müller et al., 2005). 

WOFOST-GTC simulates this temporal PAI pattern by splitting the canopy into 20 horizontal layers, 

each representing 5% of the total plant height. A Kumaraswamy cumulative distribution function 

(Kumaraswamy et al., 1980) was used to derive the fraction of the PAI in the different canopy 

layers (Eq. 1): 

 %, 1 1i iPAI x


              [1] 

where PAI%,i (0-1) is the cumulative fraction of the PAI allocated from the top of the canopy to the 

i-th canopy layer; x is the percentage of the canopy depth assigned to the i-th layer (which ranges 

from 0.05 in the top layer to 1 in the bottom layer); and α and β are the parameters of the 

distribution. The amount of PAI in each layer (PAIi, m2 m-2) is derived daily by allocating the 

PAItot according to the PAI%,i. The values of α and β in Eq. 1 determine the shape of the 

distribution and were derived as a function of the SUCROS-type development stage code (DVS; 0: 

emergence, 1: flowering, 2: maturity) according to the PAI dynamics observed in dedicated field 

trials. 

2.3.1.2 Model simplification 

The approach described by Stella et al. (2014) was used to replace the AFGEN (Arbitrary Function 

GENerator) tables of the WOFOST model with specific functions driven by a few parameters with a 

clear biological meaning. The AFGEN tables are sets of X, Y pairs, where Y is the parameter value 
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that corresponds to a certain X, and X is either the daily average air temperature or the DVS. The 

X, Y values are linearly interpolated every day to derive the parameter value to be used within the 

time step model. There are two main problems associated with the use of AFGEN tables. First, the 

large number of X, Y pairs for the same parameter corresponds to an equally large number of 

degrees of freedom during calibration, which increases the risk of an incoherent description of the 

underlying processes (Stella et al., 2014). Second, the AFGEN tables are not entirely compatible 

with advanced tools for sensitivity analysis and automatic calibration; such tools can only be 

applied by drastically reducing the number of X, Y pairs to minimize the risk of overlaps among 

parameter distributions for different values of X (Confalonieri, 2010). 

The analysis of the literature and of the AFGEN tables available for rapeseed in the official 

WOFOST release (v. 7.1.7, implemented in the WOFOST Control Centre 2.1) allowed replacing the 

AFGEN tables by new functions driven by a few parameters with a clear biological meaning (i.e., 

measurable quantities), listed in Appendix B. 

2.3.1.3 Oil content and composition in seeds 

The main variables that determine the quality of the rapeseed oil are its accumulation in kernels 

and the fractions of oleic, linoleic and α–linolenic unsaturated fatty acids (Bhardwaj and Hamama, 

2008). The data used for the development of the model derive from the studies by Baux et al. 

(2008; 2013), who monitored the fatty acid profiles of different rapeseed varieties from the 

beginning of grain filling to full maturity. The simulation of the effects of environmental conditions 

on the oil quality was described according to Walton (1999), who investigated the role of 

temperature and precipitation on the oil content and composition during ripening. 

2.3.2 Experimental data and model evaluation 

An experimental trial was performed during the 2012/13 crop season (Table 1; datasets 1 and 5) in 

two sites of northern Italy: Buscate (latitude 45° 32’ N, longitude 8° 48’ E) and Casorezzo (45° 31’ 

N, 8° 45’ E). Rapeseed (cultivar Excalibur) was sown on October 5 and 10 for datasets 1 and 5, 

respectively, and received 300 kg ha-1 of ammonium sulphate at the beginning of the spring as 

well as chemical treatments to keep the crop weed and pest free. Ideal agronomic and 

environmental conditions guaranteed nearly potential production levels. The aboveground 

biomass (AGB, kg ha-1) and the PAI were measured nine times during the season. The AGB was 

determined on 20-plant samples, whereas the PAI was estimated at different heights in the 

canopy with an Accupar LP-80 ceptometer (Decagon device Inc. Pullman, USA) to analyse the 

dynamic changes in the vertical distribution of photosynthetic tissues during the crop cycle. In 
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particular, the total PAI was measured in post-emergence and at three canopy depths (ground 

level, 1/3 and 2/3 of the maximum plant height) starting from stem elongation to the beginning of 

flowering. From flowering to maturity, an additional measurement was also taken below the 

inflorescence. After the beginning of the pod growth, the basal leaves became senescent and the 

PAI sampling at 1/3 of the plant height ceased. The relative abundance of oleic, linoleic and α-

linolenic polyunsaturated fatty acids was determined with 200 siliquae harvested in each field. The 

extraction of the total fatty acids followed the method of Bhardwaj and Hamama (2008), whereas 

gas chromatography was carried out according to Haines et al. (2011). 

The calibration of WOFOST-GTC to simulate the PAI and aboveground biomass dynamics was 

carried out with the experimental data collected in 2012-2013 in Buscate and Casorezzo as well as 

with literature data referring to five experimental trials carried out in Italy and France between 

1994 and 2013 (Table 1). The performance of WOFOST-GTC for reproducing the AGB values for the 

datasets presented in Table 1 was compared with the performance of the original version of 

WOFOST. 

The evaluation of the model performance for simulating the oil quality variables was carried out in 

16 additional datasets collected in four European sites during the period from 1993 to 2013 

(Appendix A). These datasets were divided into calibration and validation datasets, and the model 

performances were separately evaluated for each quality variable. The agreement between 

measured and simulated data was quantified using the normalized root mean square error 

(NRMSE, i.e., the ratio between RMSE and the range of observed values), the Nash and Sutcliffe 

modelling efficiency (NSE), and R2. 

2.4 Result and discussion 

2.4.1 Model development 

Most of the PAI was concentrated in the basal region of the canopy after emergence and in the 

apical region during ripening, and it was more evenly distributed around the flowering stage (Fig. 

1). During flowering, the uppermost five canopy layers did not contribute to photosynthesis; 

however, they intercepted the incoming radiation, in turn shading the underlying layers. 
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Figure 1. Changes in the relative distribution of the photosynthetic area index among the canopy layers 
as a function of developmental stage; layers 1 and 20 correspond to the apical and the basal part of the 
canopy, respectively. On the right, the functions for α and β used to parameterize Eq. 1 are shown. 
 

The new functions developed to simulate physiological changes as a function of temperature or 

DVS are reported in Appendix B. Each function substitutes an AFGEN table of the original WOFOST 

model. The parameters that drove the new functions have a clear morphological or physiological 

meaning, which allows determining the values through a literature search or by direct 

measurement in the field. The development of new functions reduced the number of model 

parameters to 35 (there are 97 in the original WOFOST version). 

The approaches implemented in WOFOST-GTC to reproduce the dynamics of oil accumulation and 

of the fractions of oleic, linoleic and α–linolenic acids are reported in Appendix C. The 

accumulation of oil in kernels was simulated using a sigmoid function from flowering to maturity, 

modulated by the effects of temperature and rainfall during ripening. The fractions of oleic and 

linoleic acid contents were determined as a function of the average minimum air temperature 

perceived by the crop during the post-pollination period. The fraction of α–linolenic acid content 

was estimated based on crop-specific parameters and the thermal time accumulated from the 

onset of flowering. 

2.4.2 Model evaluation 

2.4.1.1 Simulation of rapeseed growth dynamics and production 

As an example, time trends of measured and simulated values of the AGB and total PAI for Buscate 

(dataset 1 in Table 1) are shown in Fig. 2, together with the simulated values of the biomass of the 

aerial organs. The simulated dynamics were consistent with measured data, with the exception of 
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the first observation after emergence, which was markedly underestimated by the model for both 

the PAI and AGB. This discrepancy was attributed to the lack of specific algorithms for frost 

damage: a vigorous growth was observed after emergence, but part of the biomass and a 

substantial amount of photosynthetic tissues were lost during winter (Fig. 2). Currently, the model 

does not account for this process; however, it can be parameterized to simulate lower biomass 

accumulation rates during autumn and dormancy – without any damage to plant tissues – in 

winter. Simulations results can, in this way, match the observed AGB and PAI values at the end of 

the winter and reliably reflect the growth dynamics in the remaining part of the crop cycle. 

 
Figure 2. a) Aboveground biomass (AGB in t ha-1). b) Photosynthetic area index (PAI in m2 m-2). Both 
figures are simulations based on data from Buscate (dataset 1) and are compared with observations. In 
(a): simulated aboveground biomass is indicated with continuous line; stems, leaves and storage organ 
biomass are indicated with dashed, dotted and grey lines, respectively; measured aboveground biomass 
is indicated with empty circles. In (b): simulated photosynthetic area index is indicated with continuous 
line; measured photosynthetic area index is indicated with empty circles. 
 

The new algorithm used to simulate the PAI dynamics led to a satisfactory simulation of the 

distribution of photosynthetic tissues along the vertical canopy profile throughout the crop cycle. 

As an example, Fig. 3 shows the measured and simulated PAI values of Casorezzo (dataset 5) at 

four different canopy depths: ground level, 1/3 of the canopy height, 2/3 of canopy height, and 

immediately below the inflorescence. The best results were obtained for the simulation of the PAI 

in the top layers (NRMSE= 24%). Thus, this outcome allowed a realistic estimation of light 

interception in the flowering stage and, in turn, of the photosynthetic rates during grain filling, 

when the pods represent the primary organs of CO2 assimilation (Diepenbrock, 2000). 
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Figure 3. Measured and simulated photosynthetic area index (PAI) values for Casorezzo (dataset 5) at 
different canopy depths. The PAI refers to (a) ground level, (b) 1/3 of the canopy height, (c) 2/3 of canopy 
height, (d) immediately below the inflorescence. Simulated photosynthetic area index in each canopy 
depth is indicated with continuous line; total photosynthetic area index is indicated with dotted line; 
measured photosynthetic area index in each canopy depth is indicated with empty circles. 

The indices of agreement between measured and simulated AGB values are shown in Table 1. 

Within the calibration datasets, WOFOST-GTC demonstrated a greater accuracy in simulating the 

AGB data (average NSE = 0.59, NRMSE = 22.2%) compared to WOFOST (average NSE = -0.09, 

NRMSE = 34.4%). The new version of the model led to a higher correlation between measured and 

simulated values for the calibration datasets (average R2 = 0.94 versus 0.83 achieved by WOFOST). 

WOFOST-GTC performed slightly worse in the evaluation datasets. The model confirmed its higher 

accuracy (NRMSE = 22.6%) compared to the original WOFOST (NRMSE = 27.3%), although the two 

models achieved similar values for the other agreement metrics. Both models failed to properly 

reproduce the AGB dynamic in dataset 7 (Legnaro, 2008/09, cultivar PR45D01), which was 

characterized by a cold spring that resulted in low growth rates. This outcome supports the need 

to further investigate the temperature-dependent growth dynamics – especially after the winter 

dormancy – to improve the model representation. The lower number of parameters of WOFOST-

GTC compared to WOFOST and its higher accuracy led to a value of Akaike Information Criterion 
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(Akaike, 1974) that was decidedly better than the one achieved by WOFOST (210.97 versus 

596.24), which highlights an improved trade-off between model performance and complexity. 

Table 1. Performances of WOFOST (W) and WOFOST_GTC (GTC) for reproducing the aboveground 
biomass in calibration and evaluation. NRMSE: normalized root mean square error (optimum and 
minimum = 0; maximum = +100%); NSE: modelling efficiency (optimum and maximum = 1; minimum = -
∞); R2: coefficient of determination. a: this study; b: Gabrielle et al. 1998; c: Rossato, 2012; d: Prando, 
2011. 

ID Site Cultivar Cropping 
season 

Source 
NRMSE NSE R2 

    W GTC W GTC W GTC 

  Calibration 
1 Buscate Excalibur 2012/13 a 47.6 35.4 0.89 0.20 0.94 0.88 
2 Chalons Goéaland 1994/95 b 11.6 13.1 -0.56 0.86 0.79 0.95 
3 Legnaro Catalina 2011/12 c 52.1 28.9 -0.78 0.45 0.86 0.99 
4 Legnaro Excalibur 2008/09 d 26.3 11.5 0.1 0.85 0.72 0.93 

Average   34.4 22.2 -0.09 0.59 0.83 0.94 

  Evaluation 
5 Casorezzo Excalibur 2012/13 a 27.9 17.4 0.39 0.24 0.99 0.96 
6 Legnaro Viking 2008/09 d 19.1 23.3 0.53 0.27 0.75 0.75 
7 Legnaro PR45D01 2008/09 d 34.8 27.2 -0.44 -0.08 0.86 0.88 

Average   27.3 22.6 0.16 0.14 0.87 0.86 

 

The comparison between simulated and observed yields (Table 2) resulted in minor differences, 

with absolute deviations ranging from 0.09 to 0.65 t ha-1 (NRMSE = 0.18). WOFOST_GTC 

succeeded in reproducing the inter-annual variability of measured yields as confirmed by the 

values of the agreement metrics (NSE = 0.58 and R2 = 0.75, p < 0.01). This lays the basis for an 

accurate prediction of seed oil content and fatty acids fractions, which are respectively expressed 

as percentage of grain dry matter and of the total seed oil concentration. 

Table 2. Comparison between observed and simulated yield 

Site Cultivar Cropping season 
Observed yield 

[t ha-1] 
Simulated yield 

[t ha-1] 

Buscate Excalibur 2012/2013 3.36 3.56 
Chalons Goéaland 1994/1995 4.87 5.54 
Legnaro Catalina 2011/2012 3.85 3.38 
Legnaro Excalibur 2008/2009 3.64 3.46 
Legnaro Viking 2008/2009 3.34 3.46 
Legnaro PR45D01 2008/2009 3.37 3.46 
Changins Splendor 2004/2005 2.77* 3.42 
Changins Splendor 2005/2006 3.02* 3.13 

NRMSE NSE R2 
0.18 0.58 0.75 (p < 0.01) 

*mean yield in different experiments carried out in the same cropping season, with fixed 
sowing date. 
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2.4.1.2 Simulation of rapeseed quality 

The comparison between measured and simulated rapeseed oil quality variables (i.e., seed oil 

content and oleic, linoleic and α-linolenic acid fractions) is presented as scatterplots in Figure 4. 

WOFOST-GTC succeeded in reproducing both the seed oil content and composition, with better 

results achieved in the calibration (average NRMSE = 4.16%, NSE = 0.87 and R2 = 0.94) than in the 

evaluation datasets (average NRMSE = 6.5%, NSE = 0.83 and R2 = 0.85). The simulation of the total 

seed oil content denoted a slight overestimation when the measured content was low (below 

44%). The best performances were achieved for the oleic (average NRMSE = 2.62%, NSE = 0.95 and 

R2 = 0.96) and α-linolenic (average NRMSE = 8.15%, NSE = 0.95 and R2 = 0.96) acid contents. This 

result proved the ability of WOFOST-GTC for modulating the response according to the weather 

conditions experienced by the crop during the ripening phase. The lower accuracy for reproducing 

the fraction of linoleic acid content (average NRMSE = 7.12%, NSE = 0.86 and R2 = 0.88) could 

partly be due to the lower desaturation in high-oleic low-linolenic varieties (i.e., Splendor), which 

are known to be less sensitive to temperature in the critical period (Baux et al., 2013). 

 
Figure 4. Comparison between measured and simulated seed oil content (% of grain dry matter) and oleic 
(% of total seed oil content), linoleic (% of total seed oil content), and α-linolenic (% of total seed oil 
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content) acid fractions. Dotted and solid lines refer to calibration and evaluation, respectively. Dashed 
lines indicate perfect agreement between measured and simulated values (1:1). 

2.5 Conclusion 

The development of the WOFOST-GTC model aimed to improve the accuracy to simulate the 

unique characteristics of rapeseed while reducing the model complexity compared to the original 

version of WOFOST. The new dynamic representation of the vertical distribution of photosynthetic 

tissues during the phenological development increases the coherence with the underlying system 

and allowed improving the simulation of biomass accumulation. The significant reduction of the 

number of parameters enhances the model usability, whereas the inclusion of approaches to 

estimate the oil quality favours the application of WOFOST-GTC to support the optimization of 

crop system performances under different agro-climatic scenarios. Nevertheless, approaches for 

the important processes that affect rapeseed growth dynamics, such as frost damage to 

vegetative tissues during winter, still have to be developed and included in the model to further 

improve its ability to simulate the spatial and temporal variability of crop production. WOFOST-

GTC enlarges the family of WOFOST-GT models by providing approaches for the cultivation of 

rapeseed in addition to those already available for cereals (Stella et al., 2014). WOFOST-GT models 

are available – in a complete software development kit that includes the documentation of codes 

and algorithms as well as a number of sample applications – in the software library CropML 

(http://www.cassandralab.com/components/1). 
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2.6 Appendices 

Appendix A. Information related to the datasets used to calibrate and evaluate the model 
performances: site (latitude and longitude), cultivar, flowering date, activity (C=calibration, 
V=validation), available variables (acronyms are reported below the table and in the literature 
reference). 

Site Year Cultivar Flowering date Activity Available variables  Reference 

Italy: 
*
latitude 45° 32’ N, longitude 8° 48’ E; 

§
latitude 45° 31’ N, longitude 8° 45’ E 

Buscate
*
  2012/2013 Excalibur 26/04 C Oil, OAC, LAC, αLAC - 

Casorezzo
§
  2012/2013 Excalibur 02/05 V Oil, OAC, LAC, αLAC - 

Switzerland: latitude 46° 24’ N, longitude N, 6° 14’ E 

  
Changins  

 

2004/2005 
 

Splendor 
30/04 C Oil, OAC, LAC, αLAC 1 
28/04 C Oil, OAC, LAC, αLAC 1 
30/04 V Oil 1  

2005/2006 Splendor 

27/04 C Oil 1 
04/05 V Oil, OAC, LAC, αLAC 1 
27/04 C Oil 1  
04/05 V Oil 1  
04/05 C Oil 1  
27/04 V Oil, OAC, LAC, αLAC 1  

Poland: latitude 52° 26’ N, longitude 16° 54’ E 

Poznan 
 

1993/1994 

PN 3756/93 

01/05 C Oil, OAC, LAC, αLAC 
Oil, OAC, LAC, αLAC 

2  
1995/1996 28/04 V 2  
1996/1997 20/4 C OAC, LAC, αLAC 2 
1997/1998 12/4 C Oil, OAC, LAC, αLAC 2  
1998/1999 26/4 C Oil, OAC, LAC, αLAC 2 
1999/2000 01/05 V Oil, OAC, LAC, αLAC 2 
2000/2001 01/05 V Oil, OAC, LAC, αLAC 2 

Oil (%): oil content, as % of the seed dry matter; OAC (%): oleic acid content, as % of the total oil content; 
LAC (%): linoleic acid content, as % of the total oil content; αLAC (%), α-linolenic acid content, as % of the 
total oil content. 1: Baux, A., Colbach, N., Pellet, D., 2011. Crop management for optimal low-linolenic 
rapeseed oil production - Field experiments and modelling. Europ. J. Agronomy 35, 144-153; 2: 
Spasibionek, S., 2006. New mutants of winter rapeseed (Brassica napus L.) with changed fatty acid 
composition. Plant Breeding 125, 259-267. 
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Appendix B. Functions implemented in WOFOST-GTC to substitute the related AFGEN tables. 

 

  

Process 
AFGEN table 
[X units, Y units] 

WOFOST-GTC function 

Development DTSM [°C, °C-day]        
1.2

0 0/ / ; 0
c o

o b

T T

T T
b b c c b cT T T T T T T T if T T T elsewhere




 

         
 

 

Photosynthesis 

EFF [°C, kg ha
-1

 h
-1

 J
-1

 m
2
 s] 0.5 

KDIF [-, -] 0.54 

TMNF [°C, -] min min min min0 0; 0.33 0 3; 1 3if T T if T if T      

TMPF [°C, -]        0 0/ / ; 0
c o

o b

T T

T T
b b c c b cT T T T T T T T if T T T elsewhere



        
 

AMAX [-, kg ha
-1

 h
-1

] 1.2; / 0.8; 2ini iniAMAX if DVS m DVS q where m AMAX q m elsewhere       

 

Respiration RFSE [-, -] 1 

Biomass 
partitioning 

FR [-, kg kg
-1

] 
0.2 0.3; 0.2857 0.2857 0.3 1; 0if DVS DVS if DVS elsewhere     

 

FO [-, kg kg
-1

] 
20 28

1.451 0.7

mat

DVS

FO
   

 
 

 

FL [-, kg kg
-1

]  2

0.2;

2.4 1.44 0.2 1.2; 0

em

em em em

FL if DVS

DVS FL DVS FL FL if DVS elsewhere



       

 

SLA [-, ha kg
-1

] ; 0.1667 0.0002167em emSLA DVS m SLA m SLA        

Senescence 
RDRS [-, kg kg

-1
 day

-1
] 

0 1; 0.025 0.005 1 1.4;

0.0167 0.0067

if DVS DVS if DVS

DVS elsewhere

    

 
 

RDRR [-, kg kg
-1

 day
-1

] 0 1.5; 0.02if DVS elsewhere  

T: average daily temperature; DVS: development stage code; DTSM: daily increase in temperature sum. Cardinal 
temperatures for development: Tb = base, To = optimum, Tc = critical; EFF: light use efficiency of a single leaf; KDIF: 
extinction coefficient for diffuse visible light; TMNF: reduction factor of gross assimilation rate as function of the minimum 
temperature (Tmin); TMPF: reduction factor of AMAX as function of the average temperature. Cardinal temperatures for 
growth: Tb = base, To = optimum, Tc = critical; AMAX: maximum leaf CO2 assimilation rate. AMAXini = AMAX before 
flowering; RFSE: reduction factor of respiration for senescence; FR: fraction of the total dry matter increase to roots; FO: 
fraction of the aboveground dry matter increase to the storage organs; FOmat = partitioning to storage organs at maturity; 
FL: fraction of aboveground dry matter increase to leaves; FLem = partitioning to leaves at emergence; SLA: specific leaf 
area; SLAem = SLA at emergence; RDRS: relative death rate of stems; RDRR: relative death rate of roots. 
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Appendix C. Equations implemented in WOFOST-GTC to simulate the oil content and 
composition. 

 

  

Process Equations  

Oil accumulation [%] 
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Oilmax = maximum oil content (%); GDDflo = GDD from the onset of flowering (°C day
-1

); GDDmat = GDD to reach maturity (°C 
day

-1
); rain = cumulated rainfall (mm) and Tavg = average air temperature (°C) from flowering; DAFini, DAFend = number of 

days defining the start and end of the crop sensitivity period after flowering; Tmin = minimum air temperature (°C); OACmax = 
maximum oleic acid content (%); LACmax = maximum linoleic acid content (%); αLACmin, αLACmax = minimum and maximum 
of the α-linolenic acid content (%); GDDth = GDD threshold to trigger the decline in the relative content of α-linolenic acid. 
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Appendix D. Parameters values after calibration to simulate winter rapeseed production and oil 
quality. 

Process Parameter Value 

DTSM: daily increase in temperature sum as function of average temperature 

To 23 [°C] 

Tb 3 [°C] 

Tc 30 [°C] 

TMPF: reduction factor of AMAX as function of average temperature 

To 20 [°C] 

Tb 3 [°C] 

Tc 35 [°C] 

AMAX: maximum leaf CO2 assimilation as function of development stage code (DVS) AMAXini 
41 [kg ha

-1
 

d
-1

] 

FO: fraction of above ground dry matter to storage organ as function of development stage code 
(DVS) 

FOmat 0.6 [kg kg
-1

] 

FL: fraction of above ground dry matter to leaves as function of development stage code (DVS) Flem 
0.65 [kg kg

-

1
] 

SLA: specific leaf area as function of development stage code (DVS) SLAem 18 [m
2
 kg

-1
] 

Oil accumulation [%] 
Oilmax 50[%] 

GDDmat 
1200 [°C d

-

1
] 

Oleic acid content [%] 

DAFini 18 [d] 

DAFend 54 [d] 

AOCmax* 
66.1 (P, E); 
85.2 (S) [%] 

Linoleic acid content [%] 

DAFini 54 [d] 

DAFend 65 [d] 

LACmax 26 [%] 

α-linolenic acid content [%] 

αLACmin* 

7.7 (P); 5.0 
(E), 2.4 (S) 
[%] 

GDDth 568 [°C d
-1

] 

αLACmax 

11.3 (P); 7.7 
(E), 8.2 (S)  
[%] 

*: variety-specific parameters values. P=PN 3756/93; E=Excalibur; S=Splendor 
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3.1 Abstract 

The formalization of novel equations explicitly modelling the impact of extreme weather events 

into the crop model WOFOST (EMS: existing modelling solution; MMS: modified modelling 

solution) is proposed as a way to reduce the uncertainty in estimations of crop yield. A sensitivity 

analysis (SA) was performed to assess the effect of changing parameters values on the yield 

simulated by the model (both EMS and MMS) for different crops (winter and durum wheat, winter 

barley, maize, sunflower) grown under a variety of conditions (including future climate 

realisations) in Europe. A two-step SA was performed using global techniques: the Morris 

screening method for qualitative ranking of parameters was first used, followed by the eFAST 

variance-based method, which attributes portions of variance in the model output to each 

parameter. 

The results showed that the parameters related to the partitioning of assimilates to storage organs 

(FOTB) and to the conversion efficiency of photosynthates into storage organs (CVO) generally 

affected considerably the simulated yield (also underlying tight correlation with this output), 

whereas the parameters involved with respiration rate (Q10) or specific leaf area (SLA) became 

influential in case of unfavourable weather conditions. Major differences between EMS and MMS 

(which includes a component simulating the impact of extreme weather events) emerged in 

extreme cases of crop failure triggered by markedly negative minimum temperatures. With few 

exceptions, the two SA methods revealed the same parameter ranking. We argue that the SA 

performed in this study can be useful in the design of crop modelling studies and in the 

implementation of crop yield forecasting systems in Europe. 

 

Keywords 

Climate scenarios; Crop parameters; Crop yield; e-FAST method; Extreme weather events; Morris’ 

method; Sensitivity analysis; WOFOST. 
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3.2 Introduction 

Crop models mathematically represent the complex interactions between plant, weather, soil and 

agricultural practices. They play an important role in understanding and quantifying the 

relationships, or trade-offs, between crop management and environment on one side, and 

cropping systems productivity on the other. Crop models have evolved over time, increasing in 

complexity to meet the increasingly intricate challenges facing agriculture (e.g. Donatelli and 

Confalonieri, 2011). For instance, the global carbon balance has become an issue of great societal 

concern in the last decades, when the global emission of CO2 has continued to increase together 

with its impact on climate (IPCC, 2013). This has required modelling efforts, for instance, to 

represent plant responses to CO2 levels (e.g. Ethier and Livingston, 2004) and thus make crop 

models responsive to changing climate conditions (Asseng et al., 2013; Bassu et al., 2014; Li et al., 

2014). Nowadays, crop models are largely used to understand and anticipate the impacts of 

climate change on agricultural production (e.g. Ewert et al., 2005; Falloon and Beets, 2010; White 

et al., 2011; Supit et al., 2012; Nelson et al., 2014), to support the implementation of adaptation 

strategies (e.g. Tingem et al., 2009; Fernandes et al., 2012; Perego et al., 2014; Cappelli et al., 

2015), and to design future crop ideotypes (e.g. Paleari et al., 2017). 

However, robust simulation models are needed for diagnosing and prognosing the impacts of 

environmental factors on the crop production systems and, as a matter of fact, some modelling 

studies have not been completely successful in addressing the impact of extreme weather events 

on crop production (van der Velde et al., 2012; Zinyengere et al., 2014). Extreme events such as 

heat waves, cold shocks, droughts and frost affect directly and indirectly cropping systems by 

altering physiology and behaviour of plants, with impacts on the productivity as well as the 

seasonality and quality of crop production (e.g. Lesk et al., 2016). Moreover, the additional heat 

that is generated from ongoing temperature rise has increased the chances for severe heat waves, 

drought, and other forms of extreme weather (Field et al., 2012). Suggestions have been put 

forward that most of the existing crop models need an overhaul or an update as they often fail to 

correctly describe how crops respond to the impact brought about by extreme weather events 

(Rötter et al., 2011). 

Formalizing the biophysical interactions between the crop and its environment has required the 

development of customized modelling solutions (Luo et al., 2013) characterized by a large set of 

interdependent equations representing specific sub-domains of the system. Accounting for such 

complex interactions has inevitably increased the number of input factors in crop models 
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(variables and parameters) and the uncertainties associated with parameter values and their 

distributional assumptions, driving variables (climate, soil and management) and model structure 

(e.g. Gabrielle et al., 2006). The structure of crop models is generally too complex to easily shed 

light on the relationship between input factors and output variables, even more so the models are 

continuously improved with novel approaches. Parameter estimation, in particular, is a key 

challenge in model development, in light of the crucial role in determining the quality of model 

predictions (Richter and Sondgerath, 1990). There is therefore a need to better understand the 

behaviour of crop models under a wide range of conditions, also by identifying the parameters 

that have the greatest influence on outputs (Jacquez and Perry, 1990; Brun et al., 2001; Haag, 

2006). 

Sensitivity analysis (SA) is the main tool for a comprehensive evaluation of complex models (e.g. 

Rabitz, 1989; Omlin et al., 2001). It assesses the changes in the model outputs due to changes in 

the values of input factors (the latter being generated by sampling from inputs’ distributional 

range). As a result, SA provides a valuable method to identify properties that characterize the 

relationships between model outputs and input parameters and enhance the understanding of the 

system under study (Saltelli et al., 2000). The distinction – under specific conditions of application 

(Stearns, 1992) – between influential (relevant) and non-influential parameters is generally based 

on SA results (Cariboni et al., 2007; Confalonieri et al., 2009a). By ranking model parameters based 

on their relevance from the most to the least important (Cryer and Havens, 1999), SA offers 

guidance to the design of experimental programs as well as to more efficient model development 

and calibration. SA can be implemented either locally to examine the effect of minor variations of 

the parameter values on model results (Brun et al., 2001), or globally to consider the entire range 

of parameter values (Xu and Gertner, 2007; Confalonieri et al., 2010a). The latter is generally 

based on differential analysis through the use of Taylor series (e.g. Pastres and Ciavatta, 2005) and 

Monte Carlo methods (e.g. Annan, 2001). In particular, there is a challenge in ensuring robust 

modelling approaches under changing climate conditions, because the implicit assumption that 

well-designed and calibrated models under current conditions will remain valid under future 

climate realizations can be an unrealistic one. This is why the importance of improving the 

understanding of plant responses to the interactive effects of higher temperature and altered 

patterns of precipitation has been highlighted (e.g. Wang et al., 2012). 

This study focused on the generic crop simulator WOFOST (van Diepen et al., 1989), successfully 

used since years to reproduce growth and development of a variety of crops (de Wit et al., 2012; 
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Boogaard et al., 2013), to forecast crop yields (https://ec.europa.eu/jrc/en/mars), and within model 

intercomparison and ensemble studies (e.g. Todorovic et al., 2008; Palosuo et al., 2011; Bassu et 

al., 2014). In this study, we have performed a wide range of SA experiments on WOFOST using two 

versions of the model: an implementation referred to as existing modelling solution (EMS) and an 

improved model referred to as the modified modelling solution (MMS), with the latter including a 

software component (coupled to EMS) that explicitly takes into consideration the impacts of 

extreme weather events such as high and low temperatures, water deficit and frost (Villalobos et 

al., 2015). For both modelling solutions, SA was performed for five crops at eight sites 

representative of contrasting conditions in Europe (Italy, Spain, Switzerland and Ukraine) using 

two SA methods, and under current and altered weather conditions. 

3.3 Materials and methods 

3.3.1 WOFOST-based modelling solutions 

WOFOST (van Diepen et al., 1989) adopts a gross photosynthesis approach to calculate net carbon 

fixation, explicitly considering phenological development, light interception, gross CO2 

assimilation, transpiration, growth and maintenance respiration. Crop development is reproduced 

as a temperature-driven process, optionally accounting for photoperiod. Instantaneous gross CO2 

assimilation (estimated at three moments in the day for three depths into the canopy of plant 

leaves) is computed on the basis of intercepted solar radiation and of a photosynthesis-light 

response at leaf level. Light interception depends on total incoming radiation, as modulated by 

photosynthetic leaf area and leaf angle distribution. Assimilates are partitioned to the various 

organs according to partitioning factors, computed as a function of plant development stage: a 

fraction of assimilates is allocated to roots first, and then the remainder is split over the above-

ground organs (including below ground storage organs such as tubers). The emission of LAI units is 

driven by temperature in the early stages and it depends on specific leaf area and leaf-partitioned 

biomass later. Dead LAI units (i.e. leaves no more photosynthetically active) are quantified as a 

function of self-shading and senescence of old leaves. The model simulates both potential and 

water-limited production levels, providing information on crop water use, biomass growth and 

yield. Potential evapotranspiration is calculated via the Penman equation (Frere and Popov, 1979), 

and water stress is represented by the ratio of actual to potential transpiration. Crop water use is 

calculated separately for: crop canopy (transpiration), bare soil surface (soil evaporation), and soil 

surface with ponding (water evaporation). 

https://ec.europa.eu/jrc/en/mars
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The capability of the standard WOFOST version (EMS) was enhanced (MMS) thanks to a dedicated 

component for the impact of extreme weather events (Villalobos et al., 2015; Movedi et al., 2016). 

In particular, the effects of severe cold and high temperatures, frost and extreme water deficit on 

crop yields were accounted for by modulating the harvest index (HI) and LAI (only for frost) 

according to stress-related response functions (0 = maximum reduction; 1 = no effect) computed 

at a daily time step. These variations are mediated by the time of occurrence of an extreme event, 

the environmental conditions, and the crop-specific susceptibility. The decline of crop yield can 

even lead to crop failure in the case of severe extreme weather conditions. Two development 

phases are identified where crops are most sensitive to weather extremes: (i) around anthesis (+/- 

1 week from anthesis) with main effects on pollen viability, fertilization, and grain formation, and 

(ii) from anthesis to physiological maturity, with impacts related to rates of grain filling. For 

temperature-related damages, crop temperature is estimated (solving the surface energy balance 

equation) and used. The algorithms used to quantify the impact of weather extremes are fully 

documented in Appendix A. 

3.3.2 Sensitivity analysis methods 

The Morris screening method (Morris, 1991) as modified by Campolongo et al. (2007) was first 

applied to rank model parameters according to their influence on crop yield. Then, the extended 

version (eFAST, Saltelli et al., 1999) of the Fourier Amplitude Sensitivity Test method (FAST, Cukier 

et al., 1973) was applied to quantify the portion of the output variation due to changes in each 

parameter. 

For the Morris method, the number of model runs for each SA experiment is equal to the number 

of trajectories (r) multiplied by (n+1), with n being the number of parameters analysed. According 

to Confalonieri et al. (2010a), r was set equal to 5. The number of model runs (C) needed to 

complete a numerical experiment of SA with the eFAST method is equal to C = n Ns with n being 

the number of parameters and Ns being the sample size. We obtained the convergence of 

sensitivity indices with Ns = 330, which is above the minimum value of 128 indicated by Wang et 

al. (2013), and represents a balanced solution between computational cost and the ability to 

explore the full parameter space.  

The parameters related to light interception, gross photosynthesis, respiration, partitioning of 

photosynthates, leaf area expansion and senescence were subject to SA. Phenology-related 

parameters were not considered since they are limited in number and they are all potentially 

subject to local calibration (Confalonieri et al., 2010a). In WOFOST, a high number of parameters 
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are organized in AFGEN (Arbitrary Function GENerator) tables, which describe the linear 

dependence of parameters (dependent variables) on average air temperature (Tavg) or 

development stage (DVS) (independent variables). The number of pairs (DVS, parameter value; 

Tavg, value), which constitute AFGEN tables, was reduced in order to avoid parameter 

distributions’ overlap during samples generation (Confalonieri, 2010). Considering the relatively 

small number of parameters investigated (at most 31), all of them were analysed using both 

Morris and the eFAST methods. This allowed us to fully compare the results obtained with both SA 

methods. 

3.3.3 Sensitivity analysis experiments 

SA experiments were performed on five crops, i.e. winter wheat (Triticum aestivum L), durum 

wheat (Triticum durum Desf.), winter barley (Hordeum vulgare L), maize (Zea mays L.) and 

sunflower (Helianthus annuus L.), grown in eight experimental sites located in four European 

countries (Table 1). Parameters’ description, distribution and related sources of information are 

presented in Appendices B, C and D. 

Water-limited crop production was simulated, assuming unlimited nutrient supply and crops free 

from pests, diseases and weeds. Sowing and harvest dates were derived from local conventional 

farming practices. 

Table 1. Location of the sites (with the relative crops) where sensitivity analysis was performed. 

Country Site Latitude N (°) 
Longitude E 

(°) 
Elevation 
(m a.s.l.) 

Crops 

Spain 
Cordoba 37.85 -4.80 100 

Winter wheat, 
sunflower 

Granada 37.15 -3.00 650 Winter barley 

Italy Foggia 41.45 15.50 89 Durum wheat 

Switzerland 

Changins 46.40 6.23 455 
Winter wheat; 

maize 

Ellighausen 47.60 9.13 508 
Winter wheat; 

maize 

Reckenholz 47.43 8.52 444 
Winter wheat; 

maize 

Therwil 47.50 7.54 316 
Winter wheat; 

maize 

Ukraine Mironivka 49.66 31.00 155 
Winter wheat; 

maize 

 

Daily downscaled weather data (0.25° spatial resolution) for current climate conditions and future 

climate projections were used. Synthetic weather series were generated using two climate models 
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– ICHEC-EC-EARTH KNMI-RACMO22E (van Meijgaard et a., 2008) and CNRM-CERFACS-CNRM-CM5 

SMHI-RCA4 (Voldoire et al., 2013) – for the emission pathway scenario RCP8.5 (radiative forcing up 

to 8.5 W m-2 in 2100), which is the most extreme among those provided by the IPCC’s Fifth 

Assessment Report (Moss et al., 2010; van Vuuren et al., 2011). Time slices of near past (1981-

2010, with the exception of Spain, 1987-1999 and Switzerland, 1981-2014) and medium future 

(2041-2060) were considered. Fox Maule and Christensen (2015) describe the methods used in 

processing and post-processing the GCM/RCM outputs used in the generation of weather 

scenarios. The above methodology produced bias-corrected daily series of surface air temperature 

(minimum and maximum) and rainfall (different lengths of near-past time slices correspond to the 

varying observational data series used for bias-correction in different countries). Other variables 

needed to run the modelling solutions, such as global solar radiation, relative humidity and wind 

speed, were derived according to Duveiller et al. (2017). The beneficial effect of increasing CO2 

concentration on carbon assimilation rates was not considered in this study. The main reason for 

this choice is that the study was performed within a project (EU-FP7 MODEXTREME; 

http://modextreme.org) that targeted the WOFOST-based platform adopted by the European 

Commission to perform yield forecasts, which in its current version does not consider the effects 

of increasing atmospheric CO2 concentration on crop productivity. Moreover, the effect of 

increasing CO2 concentration on carbon assimilation rates in the presence of more frequent and 

intense extreme weather events is still controversial. This was highlighted by Long et al. (2006) 

and has been confirmed by two recent studies (Obermeier et al., 2016; Novak, 2017) 

demonstrating that CO2 fertilization effects decline or even disappear as weather becomes drier 

and warmer. 

For each combination crop × site, nine contrasting years were considered, three of them belonging 

to historical series and six belonging to projected weather series centred on 2050 at all sites. The 

nine years were selected to be sufficiently contrasting in terms of coldest-wettest, warmest-driest 

and average conditions, as represented by yearly-based agro-climatic indicators (Peterson et al., 

2001; Barnett et al., 2006). 

The range of climatic conditions represented by each scenario and time slice is shown in Fig. 1 by 

means of indicators of aridity and heat wave frequency. The possibility to discriminate between 

thermo-pluviometric conditions associated with aridity (b, De Martonne, 1942) gradients in the 

eight sites is given by the range published by Diodato and Ceccarelli (2004): b<5: extreme aridity; 

5≤b<14: aridity; 15≤b<19: semi-aridity; 20≤b<29: sub-humidity; 30≤b<59: humidity; b>59: strong 

http://modextreme.org/
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humidity. For identifying the frequency of heat wave (hw) days within a year in each site, we 

summarized the number of consecutive days (at least seven) when the maximum air temperature 

was higher than the average summer (June, July and August) maximum air temperature of all the 

available years (baseline) +3 °C (Confalonieri et al., 2010b after Barnett et al., 2006). The range 

limits in this study were given by the minimum and the maximum numbers of the hw days of all 

sites and conditions (after Sándor et al., 2016): hw≤14: extremely moderate frequency; 14<hw≤28: 

very moderate frequency; 28<hw≤42: moderate frequency; 42<hw≤56: high frequency; 

56<hw≤70: very high frequency; hw>70: extremely high frequency. 

 
Figure 1. De Martonne-Gottmann aridity index and heat wave days frequency calculated for each year of 

four weather scenarios and two periods, in a reference pixel for each study site. 

  



33 
 

3.4 Result and discussion 

3.4.1 Sensitivity analysis results (eFAST method) 

Figure 2 shows the crop-specific variations of total sensitivity indices achieved by the top 10 

ranked parameters across sites, years and modelling solutions considered. 

 
Figure 2. Distributions of total sensitivity indices for each simulated crop. Results from durum and winter 
wheat simulations were processed together since the same parameterization was operatively used 
within the simulation experiment. 

The parameter involved with partitioning to storage organs (FOTB100 for wheat and barley and 

FOTB110 for maize) remerged as the most influential in yield simulations and the most sensitive to 

variations in the conditions explored (0.06<Total sensitivity index<0.59, median=0.27). Conversely, 

the simulations of sunflower yield revealed the predominance of leaf dynamics- (SLATB000 and 

SPAN) versus photosynthesis- related parameters; the narrow range of variation of the total 

sensitivity index for both parameters denoted the primary role of temperature in limiting the leaf 

biomass conversion into leaf area at early crop stages regardless the site and year considered. 

Focusing on winter wheat simulations in the Swiss sites, several influential parameters were 

identified. Parameters related with life span at 35 °C (SPAN), partitioning to storage organs at 

flowering (FOTB100), conversion efficiency into storage organs (CVO), extinction coefficient for 

diffuse light at flowering (KDIFTB100) and conversion efficiency into leaves (CVL) are distinctly 

identifiable by high values of the eFAST total sensitivity index (Fig. 3 and supplementary material 

from Fig. S1 to Fig. S3). 
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Figure 3. eFAST total sensitivity index for winter wheat yield simulated with WOFOST at selected years in 
Switzerland (Changins site). Left panel = EMS (existing modelling solution); central panel = MMS 
(modified modelling solution); right panel = percent differences between the two modelling solutions. 

Certain balance in parameters ranking (i.e. the model is sensitive to several parameters) can be 

explained by the restrained meteorological variability which characterizes all the Swiss sites. 

Indeed, during the wheat cycle, temperatures rarely exceed 30 °C or drop below -8 °C. Moreover, 

water availability was always more than sufficient also in the years selected to represent warmest 

and driest conditions (>650 mm year-1 evenly distributed throughout the crop cycle). Substantial 

differences between modelling solutions emerged in three years out of nine, with MMS 

determining crop failure in the coldest and wettest year at all the Swiss sites due to the simulated 

effect of markedly negative minimum temperatures. These unexpected results underline the need 

to further adapt the component accounting for extreme weather events, which indicates very 

harmful impacts (i.e. crop failure) from a single day with minimum temperature below the 

threshold value for no damage at a time before hardening. A plausible solution to limit the 

frequency of frost shocks from single events could be the modulation of the crop response to 

temperature changes also considering the number of multiple consecutive days with extreme 

minimum temperature over the critical period (i.e. before hardening; Barlow et al., 2015). 
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KDIFTB100

LAIEM

Q10

RGRLAI
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9
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3
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0

4
4

2
0
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6

2
0

5
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2
0

4
7
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0
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0

2
0
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8



35 
 

The simulation of winter wheat in Mediterranean countries (Italy, supplementary material, Fig. S4; 

Spain, supplementary material, Fig. S5) provided quite different results. With few exceptions, 

FOTB100 was indicated as the most influential. In Spain, the parameter related with the relative 

increase in respiration rate per 10 °C (Q10) had the highest total sensitivity index in the warmest 

and driest growing seasons. In these years, due to high average temperatures and water scarcity, 

respiration rates are the factors that most affected crop growth and production (Tester and 

Langridge, 2010). In the other years, characterized by high amounts of rainfall and low average 

temperatures, CVO was instead the most influential. In these cases, the sub-optimal conditions led 

to a decrease in the partitioning to storage organs (Daniel and Triboi, 2002) and made CVO 

assuming the highest relevance. 

Also in the Ukrainian site, CVO achieved high total sensitivity indices, with the exception of the 

years referring to the baseline time frame (i.e., 2004, 2005 2007; supplementary material, Fig. S6). 

For these years, the parameter accounting for light use efficiency of single leaves at 10 °C 

(EFFTB010) emerged as the most influential. Indeed, the conditions for growing wheat in this 

country are less favourable owing to low levels of solar radiation. Moreover, for this site, the 

component accounting for extreme weather events determined crop failure in several years due 

to low minimum temperatures in winter (till -25 °C). 

In a recent study, Ma et al. (2013) established, through the same sensitivity analysis technique, 

that AMAXTB130, SPAN and CVO are the most influential parameters when simulating winter 

wheat with WOFOST in the Hebei province of China. These information were profitably used by 

Huang et al. (2015 and 2016) to calibrate WOFOST for the simulation of winter wheat in the same 

location and to identify the parameters to being re-initialized or re-calibrated to include in 

WOFOST remotely sensed data. The specific explored pedoclimatic conditions and the diverse 

varieties and crop management simulated led to different rankings among the parameters in the 

two studies, underlying the importance of performing sensitivity analyses before running models 

in a given operative context. Herein, the subset of WOFOST parameters to focus on was 

established according to the findings from previous studies carried out in European environments 

(van Diepen te al. (1988); Marletto et al. (2005); Priesack et al. (2006); Richter et al. (2010); 

Biernath et al. (2011); Rӧtter et al. (2011); Stella et al. (2014)) while the limited number of points 

used in the AFGEN tables (E.g. AMAXTB 100 and 130 were not considered) aimed at reducing 

possible overlaps between the distributions assigned to parameters. 
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The ranking of parameters for maize simulations in Switzerland was the same at each site 

(supplementary material, from Fig. S7 to Fig. S10). The high values of the total sensitivity index 

associated with the parameter related with partitioning to storage organs right after flowering 

(FOTB110) underlined the key role of this parameter in simulating maize yield. This was not the 

case for maize simulations performed in Ukraine under the warmest and driest climate conditions, 

where yields were mostly influenced by specific leaf area at emergence (SLATB000; supplementary 

material, Fig. S11). These years were characterized by a scarcity of water supply if compared with 

the others (on average 360 mm against 832 mm). This condition limited maize growth and made 

the simulation mostly influenced by the parameters related with the simulation of the early crop 

establishment (Subedi and Ma, 2009) rather than by those related with crop productivity at full 

canopy. The same rationale can be applied to the results achieved with sunflower simulation in 

Spain (Cordoba site; supplementary material, Fig. S12). SLATB000 achieved the highest total 

sensitivity indices (up to three times higher than the second-ranked parameter) in all selected 

years and with both modelling solutions. In this case, sunflower production was limited by high 

temperatures, which caused a reduction in the CO2 assimilation rate. This made SLATB000 the 

most influential parameter for sunflower yield simulation. The primary role of high temperatures 

in limiting crop growth and productivity is further underlined by the results achieved for the 

parameter SPAN (i.e. Life span of leaves growing at 35 °C), which denoted a higher value of total 

sensitivity index with the MMS rather than with the EMS. 

The results of winter barley simulations in Spain (Granada site; supplementary material, Fig. S13) 

identified FOTB100, extinction coefficient for diffuse light at flowering (KDIFTB100) and Q10 as the 

most influential parameters. Only in the coldest and wettest year of the baseline time frame (i.e. 

1996), the parameters’ ranking was slightly different. A reduction in the total sensitivity index 

achieved by FOTB100 was counterbalanced by an increased total sensitivity index for CVO. For this 

year, indeed, the high amount of rainfall and the low average temperatures determined a limited 

influence of the partitioning to storage organs in the simulation of crop yield (as already discussed 

for winter wheat simulations in Spain), which was mostly influenced by CVO. 

3.4.2 Comparison between sensitivity analysis methods  

The results obtained with the SA methods of Morris and eFAST were compared (Fig. 4 and 5 and 

supplementary material from Fig. S14 to Fig. S25) in terms of how they ranked parameters. In 

particular, the Savage Scores (Savage, 1956; Eq. 1) were used to compare the parameters’ 
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sensitivity metrics achieved with the two methods, thus emphasising the ranking of the most 

influential parameters. 

       
 

 

 
              [1] 

where SVk,n is the Savage Score for the k-ranked parameter of a set of n parameters. 

For the eFAST method the Savage Scores were computed considering the total sensitivity index, 

whereas for the Morris method we focused on μ*, which provides an indication of the overall 

influence of each parameter on the output. 

 

Figure 4. Comparison between results obtained with the Morris and eFAST sensitivity analysis methods 
for with winter wheat simulation in Italy (Foggia site). a) = Savage Scores for the EMS (existing modelling 
solution); b) = Savage Scores for the MMS (modified modelling solution); dotted line = 1:1 line. 

The two methods provided similar parameter rankings, being the linear regression between 

Savage Scores calculated for the two methods significant (p < 0.001), with R2 ranging from 0.61 to 

0.98 considering all the values). Furthermore, the ranking calculated based on the two methods 

for each combination crop × site was the same for the two modelling solutions (EMS, Fig. 4a; 

MMS, Fig. 4b). Major differences between the two modelling solutions arose when the component 

simulating the impact of extreme weather events determined crop failure; in these cases, the 

correlation between parameter rankings was higher for the MMS. An example is provided by 

winter wheat simulations in the Ukrainian site (Fig. 5), where the complete yield losses in the 

coldest years were explained solely by variations in parameters involved with the effect of 

extreme negative temperatures on HI (all other parameters were not relevant). In the same years, 

results achieved for EMS led to major discrepancies in the ranking of model parameters (Fig. 5a), 

meaning that several parameters related to yield formation played a key role in explaining yield 

responses at suboptimal temperature for growth. 



38 
 

 

 Figure 5. Comparison between results obtained with the Morris and eFAST sensitivity analysis methods 
for winter wheat simulation in Ukraine (Mironivka site). a) = Savage Scores for the EMS (existing 
modelling solution); b) = Savage Scores for the MMS (modified modelling solution); dotted line = 1:1 line. 

3.5 Conclusions 

The results of this sensitivity study increase the knowledge about the behaviour of the crop model 

WOFOST in the simulation of the yield of different crops across several European sites under 

current conditions and projected scenarios of climate change. The simulated crop yield was mostly 

influenced by parameters related with storage organs. Indeed, although with some exceptions, the 

parameters involved in partitioning to storage organs around flowering (FOTB100 – FOTB110) and 

conversion efficiency into storage organs (CVO) had the highest total sensitivity indices. 

Nevertheless, for sunflower simulations in Spain and maize in Ukraine, results were mainly 

influenced by specific leaf area at emergence (SLATB000), underlying the importance of early crop 

establishment in case of sub-optimal growth conditions. Some differences were observed between 

the results obtained for the two modelling solutions assessed in this study (i.e. EMS and MMS) in 

terms of both total sensitivity metrics and parameters’ ranking, especially when the simulated 

impact of extreme weather events determined crop failure. The two SA methods (i.e. Morris and 

eFAST) provided similar parameters’ rankings. This confirms the usefulness of the Morris method 

(which is less demanding in terms of computational time) for identifying the most influential 

parameters, and its suitability for screening purposes before the application of variance-based 

methods (computationally-expensive) in 2-step SA designs. 

These results also indicate the need to further improve the component simulating the impacts of 

extreme weather events, owing to its tendency to sometimes overestimate the impact of weather 

extremes. 
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The SA experiments led to identify the most influential parameters for the simulation of several 

crops across European sites, spreading useful information to achieve the best trade-off between 

parameterization effort and reliability of model estimates. The coupling of the WOFOST model 

with the component simulating the impacts of extreme weather events and its application under 

climate change scenarios lays the basis to improve the in-season crop growth monitoring and yield 

forecasting capabilities at EU level in the short and medium term. Indeed, the crop yield 

forecasting system of the European Commission lacks a dedicated module to consider the effects 

of climatic shocks or extreme events on yield formation. This limit could even be exacerbated in 

the near future due to the likely increase in the frequency of climatic extremes due to climate 

change (EEA, 2017). The development of an early forecasting and warning system more adherent 

to real conditions can thus be a valuable support to multiple stakeholders of the agricultural sector 

in ensuring citizens health protection, crop needs and environment preservation according to local 

priorities and national/European regulations. As noted, details about the effect of increasing 

atmospheric CO2 concentration go beyond the aim of this study. However, as a natural evolution 

of what has already been presented, dedicated routines can be arranged and implemented with 

the purpose of testing CO2 effects within the European Commission (Crop Growth Monitoring 

System; https://ec.europa.eu/jrc/en/mars) version of WOFOST. 
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3.6 Appendices 

Appendix A. Key processes and modelling approaches for the impact of extreme events 

General framework 

For each day around anthesis, the overall value of the response function to temperature (as driven 

by mean crop temperature) and water stress is calculated using the following equation: 

  
 

   
              

           [2] 

where F (-) is the response function to crop temperature and water stress; FT (-) is the response 

function to average crop temperature; FW (-) is response function to extreme water stress. 

In addition, the effect of frost (function of minimum crop temperature) and extreme heat 

(function of maximum crop temperature) are computed as: 

                   
           [3] 

where FA (-) is overall response function to stresses; FF (-) is the response function to frost; FH (-) is 

the response function to extreme heat. Then, the actual maximum HI that might be attained after 

anthesis is completed (HIAA, -) is computed as: 

                        [4] 

where HImax (-) is the potential HI for the specific species. 

From anthesis to maturity, the component assumes that the HI increases linearly from zero to 

HIAA, so the final HI is computed according to Eq. 5: 

   
    

   
              [5] 

where HI (-) is the final HI; dPA (d) is duration of the phase expressed as calendar days; t (d) is the 

time after anthesis expressed as calendar days. 

Any frost or heat event occurring during this period (e.g. at time t1) has an impact calculated 

according to Eq. 6: 

                
  

   
             [6] 

Response to extreme water stress 

The extreme water stress can be expressed as the cumulative reduction in transpiration since 

transpiration becomes limited. This limitation starts when the water content in the soil is 

equivalent to the concept of allowable depletion (Eq. 7), which is the fraction of plant available 

water that can be extracted by the crop without negative effects on transpiration, assimilation or 

growth. 
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                             [7] 

where    (mm) is the allowable depletion (0.1<AD<0.8); AD5 (-) is a crop-specific parameter that 

increases or decreases AD (reference values: 0.55 for winter/durum wheat, winter barley, maize; 

0.45 for sunflower);     (mm) is the reference evapotranspiration. 

For a given value of relative transpiration (i.e., actual to reference evapotranspiration ratio), the 

cumulative reduction in crop transpiration (fR) since the onset of water deficit is: 

                          [8] 

where   (-) is the relative transpiration. 

So the fraction of unreduced transpiration (fE, -) is equal to: 

                           [9] 

The response function to severe water stress is thus computed according to Eq. 10 and is set to 

one when it exceeds the crop-dependent parameter        (reference value: 0.7 for winter/durum 

wheat, winter barley, maize; 0.8 for sunflower): 

   
  

      
            [10] 

Response to heat 

The response to heat (i.e. FH; Eq. 11) is computed as a function of maximum canopy temperature 

(Tmax) and is equal to one when maximum crop temperature does not exceed a minimum 

damage threshold (TXC). For high values, FH decreases linearly to zero when an upper limit canopy 

temperature is reached (TX0, °C): 

    

         
          

         
            

        

         [11] 

where      (°C) is the daily maximum canopy temperature;     (°C) is the temperature below 

which no heat stress occurs during reproductive phase;     (°C) is the critical temperature at 

which the effect of heat stress on HI is maximum. 

Response to frost 

The simulation of the crop response to frost is described using two distinct equations accounting 

for the impacts on harvest index (FF1, Eq. 12), and LAI (FF2), as:. 

     

          
           

         
            

        

         [12] 
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where Tmin (°C) is the minimum daily canopy temperature; T0 (°C) is the critical temperature below 

which flower/grains number begins to reduce; T100 (°C) is the critical temperature at which 

flowers/grain number is zero [°C]. The algorithm computing the frost impact on photosynthetic 

tissues (FF2) is formally the same as the one used for HI, but the critical killing temperatures are 

referred to the number of dead leaves (as fraction of total LAI) instead of the number of 

flowers/grains. 

Calculation of maximum canopy temperature 

The maximum canopy temperature (    ; °C) is computed as: 

                       
   

    
        [13] 

where    (°C) is the maximum daily air temperature;    (-) is the fraction of net radiation invested 

in soil heat flux (assumed equal to 0.1 during daytime);    (W m-2) is the net solar radiation;    

(W m-2) is the latent heat flux;     (s m-1) is the aerodynamic resistance;   (kg m-3) is the air 

density;    [J kg-1 °C-1] is the specific heat of air. 

Calculation of minimum canopy temperature 

The minimum canopy temperature (     ) is computed as: 

     
                                             

                        
       [14] 

where:   (0.067 kPa K-1) is the psychrometric constant;    (kPa K-1) is equal to   (1+rc/ra); D (kPa) is 

the vapor pressure deficit; Taw (°C) is the air temperature measured at weather station;   [kPa K-1] 

is the slope of saturation vapor pressure versus temperature;    (kPa K-2) is the slope of   versus 

temperature; rc (s m-1) is the canopy resistance [700 s m-1 for dry canopies, 0 s m-1 for wet 

canopies]; ra (s m-1) is the aerodynamic resistance at a reference crop height of 0.12 m and at a 

standardized height for temperature, wind speed and humidity measurement (2 m above soil 

surface);    and    (-) are the emissivity of vegetation and of the atmosphere; a and b are 

coefficients of the linear form of the Stefan-Boltzmann equation. 
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Appendix B. WOFOST parameters used for winter wheat and winter barley and statistical 
settings used for sensitivity analysis (SA). Parameters with the field “Value” populated were not 
used for SA. For TSUM1 and TSUM2, first value refers to wheat, the second to barley. 

Parameter Units Value Mean 
Stand. 
dev. 

Source
d
 

Base temperature for emergence (TBASEM) °C 0 
  

1 

Maximum effective temperature for (TEFFMX) °C 30 
  

1 

Thermal sums to reach emergence (TSUMEM) °C-d 50 
  

1 

Daily increase in temperature sums (DTSMTB) at Tavg
a
=0 °C;°C-d 0 

  
1 

at Tavg=10 
 

10 
  

1 

at Tavg=18 
 

20 
  

1 

at Tavg=24 
 

24 
  

1 

at Tavg=28 
 

21 
  

1 

at Tavg=30 
 

13 
  

1 

at Tavg=31 
 

0 
  

1 

Thermal sums from emergence to anthesis (TSUM1) °C-d 1700 
  

1 

Thermal sums from anthesis to maturity (TSUM2) °C-d 850 
  

1 

Leaf area index at emergence (LAIEM) ha ha
-1

 
 

0.137 0.0068 1 

Maximum relative increase in leaf area index (RGRLAI) ha ha
-1

 °C
-1

 d
-1

 
 

0.01 0.0004 2, 3 

Specific leaf area (SLATB) at DVS
b
=0 -; ha kg

-1
 0.002 

  
2, 3 

at DVS=0.35 
  

0.022 0.0001 1 

at DVS=0.45 
  

0.002 0.0001 2, 3 

at DVS=0.65 
  

0.002 0.0001 1 

at DVS=2.00 
 

0.002 
  

1 

Specific pod area (SPA) ha kg
-1

 0 
  

1 

Specific stem area (SSATB) at DVS=0 ha kg
-1

 0 
  

1 

at DVS=2 
 

0 
  

1 

Life span of leaves growing at 35°C (SPAN) d 
 

35 1.75 2, 4 

Base temperature for leaf aging (TBASE) °C 
 

0 0.05 3, 5, 6 

Extinction coefficient for diffuse light (KDIFTB) at DVS=0 -;- 
 

0.4 0.03 2, 3 
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at DVS=0.65 
 

0.4 
  

1 

at DVS=1 
  

0.6 0.03 2, 3 

at DVS=2 
 

0.65 
  

1 

Light use efficiency single leaf (EFFTB) at Tavg=0 
kg ha

-1
 h

-1
 J

-1
 m

2
 s 

0.6 
  

1 

at Tavg=10 
 

0.6 0.03 2, 5, 7 

at Tavg=40 
 

0.6 0.03 2, 5, 7 

Maximum CO2 assimilation rate (AMAXTB) at DVS=0 -;kg ha
-1

 h
-1

 
 

36 1.79 3 

at DVS=2 
  

23 0.22 2, 3 

Reduction factor of AMAX (TMPFTB) at Tavg=0 °C;- 0 
  

1 

at Tavg=12 
 

0.7 
  

1 

at Tavg=14 
  

0.92 0.05 3 

at Tavg=23 
  

1 0.05 3 

at Tavg=28 
 

0.9 
  

1 

at Tavg=31 
 

0.6 
  

1 

at Tavg=33 
 

0 
  

1 

Reduction factor of AMAX (TMNFTB) at Tmin
c
=0 °C;- 0 

  
1 

at Tmin=3 
 

1 
  

1 

Efficiency of conversion into leaves (CVL) kg ka
-1

 
 

0.685 0.034 2, 4 

Efficiency of conversion into storage organs (CVO) kg ka
-1

 
 

0.709 0.035 2, 4 

Efficiency of conversion into roots (CVR) kg ka
-1

 
 

0.694 0.035 2, 4 

Efficiency of conversion into stems (CVS) kg ka
-1

 
 

0.662 0.033 2, 4 

Rel. incr. in respiration rate per 10°C (Q10) - 
 

2 0.1 2, 3, 4 

Rel. maintenance respiration rate for leaves (RML) kg kg
-1

 d
-1

 
 

0.03 0.001 2, 4 

Rel. maintenance respiration rate for storage organs (RMO) kg kg
-1

 d
-1

 
 

0.01 0.0005 2, 4 

Rel. maintenance respiration rate for roots (RMR) kg kg
-1

 d
-1

 
 

0.015 0.0007 2, 4 

Rel. maintenance respiration rate for stems (RMS) kg kg
-1

 d
-1

 
 

0.015 0.0007 2, 4 

Reduction factor for senescence (RFSETB) at DVS=0 -;- 1 
  

1 

at DVS=2 
 

1 
  

1 
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Partitioning to roots (FRTB) at DVS=0 -;kg kg
-1

 
 

0.5 0.025 2, 3, 8 

at DVS=1 
  

0.02 0.001 2, 3, 8 

at DVS=1.2 
 

0 
  

1 

Partitioning to leaves (FLTB) at DVS=0 -;kg kg
-1

 
 

0.65 0.032 2, 3, 8 

at DVS=0.5 
  

0.5 0.025 2, 3, 8 

at DVS=0.85 
 

0.1 
  

1 

at DVS=1 
 

0.01 
  

1 

at DVS=2 
 

0 
  

1 

Partitioning to storage organs (FOTB) at DVS=0 -;kg kg
-1

 0 
  

1 

at DVS=0.75 
 

0 
  

1 

at DVS=0.82 
  

0 0.01 2, 3, 8 

at DVS=1 
  

1 0.059 2, 3, 8 

at DVS=1.22 
 

1 
  

1 

at DVS=2 
 

1 
   

Partitioning to stems (FSTB) (function of DVS) -;kg kg
-1

 Derived as 1 – (FLTB + FOTB) 

Relative death rate of roots (RDRRTB) at DVS=0 -;kg kg
-1

 d
-1

 0 
  

1 

at DVS=1.5 
 

0 
  

1 

at DVS=1.5001 
 

0.02 
  

1 

at DVS=2 
 

0.02 
  

1 

Relative death rate of stems (RDRSTB) at DVS=0 -;kg kg
-1

 d
-1

 0 
  

1 

at DVS=1.5 
 

0 
  

1 

at DVS=1.5001 
 

0.02 
  

1 

at DVS=2 
 

0.02 
  

1 

a
 mean air daily temperature 

b
 development stage code (0: emergence; 1: flowering; 2: maturity) 

c
 minimum air daily temperature 

d
 1: adapted from Stella et al. (2014); 2: van Diepen et al. (1988); 3: Richter te al. (2010); 4: Arora and Gajri (1998); 5: 

Marletto et al. (2005); 6: Priesack et al. (2006); 7: Biernath et al. (2011); 8: Rӧtter et al. (2011) 
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Appendix C. WOFOST parameters used for maize and statistical settings used for sensitivity 
analysis (SA). Parameters with the field “Value” populated were not used for SA. 

Parameter Units Value Mean 
Stand. 
dev. 

Source
d
 

Base temperature for emergence (TBASEM) °C 10 
  

1 

Maximum effective temperature for (TEFFMX) °C 30 
  

1 

Thermal sums to reach emergence (TSUMEM) °C-d 40 
  

1 

Daily increase in temperature sums (DTSMTB) at Tavg
a
=0 °C;°C-d 0 

  
1 

at Tavg=8 
 

10 
  

1 

at Tavg=30 
 

23 
  

1 

at Tavg=35 
 

23 
  

1 

Thermal sums from emergence to anthesis (TSUM1) °C-d 1600 
  

1 

Thermal sums from anthesis to maturity (TSUM2) °C-d 1100 
  

1 

Leaf area index at emergence (LAIEM) ha ha
-1

 
 

0.372 0.0157 1, 2 

Maximum relative increase in leaf area index (RGRLAI) ha ha
-1

 °C
-1

 d
-1

 
 

0.03 0.0145 1, 2 

Specific leaf area (SLATB) at DVS
b
=0 -; ha kg

-1
 

 
0.003 0.0064 3 

at DVS=0.5 
  

0.002 0.0001 3 

at DVS=0.78 
 

0.001 
  

3 

at DVS=2.00 
 

0.001 
  

3 

Specific pod area (SPA) ha kg
-1

 0 
  

3 

Specific stem area (SSATB) at DVS=0 ha kg
-1

 0 
  

3 

at DVS=2 
 

0 
  

3 

Life span of leaves growing at 35°C (SPAN) d 
 

36.5 1 1, 2, 3 

Base temperature for leaf aging (TBASE) °C 
 

9 1.41 1, 2, 3 

Extinction coefficient for diffuse light (KDIFTB) at DVS=0 -;- 
 

0.6 0.03 2, 3 

at DVS=2 
  

0.6 0.03 2, 3 

Light use efficiency single leaf (EFFTB) at Tavg=0 kg ha
-1

 h
-1

 J
-1

 m
2
 s 

 
0.475 0.0353 1, 2, 3 

at Tavg=40 
  

0.2 0.01 1, 2, 3 

Maximum CO2 assimilation rate (AMAXTB) at DVS=0 
  

55 2.75 2, 3 



47 
 

at DVS=1.25 
 

50 
  

3 

at DVS=1.5 
  

40 2 2, 3 

at DVS=1.75 
 

35 
  

3 

at DVS=2 
 

 
21 1.05 

2, 3 

Reduction factor of AMAX (TMPFTB) at Tavg=0 
°C;- 

0 
  

 

at Tavg=9 
 

0 
  

 

at Tavg=20 
  

0.5 0.025 1, 2, 3 

at Tavg=30 
 

1 
  

1 

at Tavg=35 
  

0.9 0.045 1, 2, 3 

at Tavg=42 
 

0.078 
  

1 

Reduction factor of AMAX (TMNFTB) at Tmin
c
=5 °C;- 0 

  
1 

at Tmin=12 
 

1 
  

1 

Efficiency of conversion into leaves (CVL) kg ka
-1

 
 

0.7 0.028 1, 2, 3 

Efficiency of conversion into storage organs (CVO) kg ka
-1

 
 

0.695 0.035 1, 2, 3 

Efficiency of conversion into roots (CVR) kg ka
-1

 
 

0.705 0.021 1, 2, 3 

Efficiency of conversion into stems (CVS) kg ka
-1

 
 

0.674 0.023 1, 2, 3 

Rel. incr. in respiration rate per 10°C (Q10) - 
 

2 0.1 1, 2 

Rel. maintenance respiration rate for leaves (RML) kg kg
-1

 d
-1

 
 

0.03 0.0015 1, 2, 3 

Rel. maintenance respiration rate for storage organs (RMO) kg kg
-1

 d
-1

 
 

0.01 0.0005 1, 2, 3 

Rel. maintenance respiration rate for roots (RMR) kg kg
-1

 d
-1

 
 

0.013 0.0035 1, 2, 3 

Rel. maintenance respiration rate for stems (RMS) kg kg
-1

 d
-1

 
 

0.015 0.00075 1, 2, 3 

Reduction factor for senescence (RFSETB) at DVS=0 -;- 1 
  

1 

at DVS=2 
 

1 
  

1 

Partitioning to roots (FRTB) at DVS=0 -;kg kg
-1

 
 

0.4 0.02 1, 2 

at DVS=0.4 
  

0.262 0.013 1, 2 

at DVS=1 
 

0 
  

3 

at DVS=1.2 
 

0 
  

3 

Partitioning to leaves (FLTB) at DVS=0 -;kg kg
-1

 
 

0.62 0.031 1, 3 
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at DVS=0.5 
  

0.52 0.031 1, 3 

at DVS=0.88 
  

0.215 0.09 1, 3 

at DVS=1.2 
 

0 
  

3 

at DVS=2 
 

0 
  

3 

Partitioning to storage organs (FOTB) at DVS=0 -;kg kg
-1

 0 
  

1 

at DVS=0.9 
 

0.2 
  

1 

at DVS=1.1 
  

0.63 0.18 1, 3 

at DVS=1.2 
  

0.95 0.05 1, 3 

at DVS=2 
 

2 
  

1 

Partitioning to stems (FSTB) (function of DVS) -;kg kg
-1

 Derived as 1 – (FLTB + FOTB) 

Relative death rate of roots (RDRRTB) at DVS=0 -;kg kg
-1

 d
-1

 0 
  

3 

at DVS=1.5 
 

0 
  

3 

at DVS=1.5001 
 

0.02 
  

33 

at DVS=2 
 

0.02 
  

3 

Relative death rate of stems (RDRSTB) at DVS=0 -;kg kg
-1

 d
-1

 0 
  

3 

at DVS=1.5 
 

0 
  

3 

at DVS=1.5001 
 

0.02 
  

3 

at DVS=2 
 

0.02 
  

3 

a
 mean air daily temperature 

b
 development stage code (0: emergence; 1: flowering; 2: maturity) 

c
 minimum air daily temperature 

d 
1: adapted from Van Heemst et al. (1988); 2: Ceglar et al. (2011); 3: JRC (2012) 

  



49 
 

Appendix D. WOFOST parameters used for sunflower and statistical settings used for sensitivity 
analysis (SA). Parameters with the field “Value” populated were not used for SA. 

Parameter Units Value Mean Stand. dev. Source
d
 

Base temperature for emergence (TBASEM) °C 6 
  

1, 2 

Maximum effective temperature for (TEFFMX) °C 30 
  

1 

Thermal sums to reach emergence (TSUMEM) °C-d 80 
  

1 

Daily increase in temperature sums (DTSMTB) at Tavg
a
=0 °C;°C-d 0 

  
1, 2 

at Tavg=2 
 

0 
  

1, 2 

at Tavg=18 
 

16 
  

1, 2 

at Tavg=40 
 

38 
  

1, 2 

Thermal sums from emergence to anthesis (TSUM1) °C-d 1600 
  

1 

Thermal sums from anthesis to maturity (TSUM2) °C-d 1000 
  

1 

Leaf area index at emergence (LAIEM) ha ha
-1

 
 

0.005 0.000265 1, 2 

Maximum relative increase in leaf area index (RGRLAI) ha ha
-1

 °C
-1

 d
-1

 
 

0.029 0.00147 1, 2, 3, 4 

Specific leaf area (SLATB) at DVS
b
=0 -; ha kg

-1
 

 
0.003 0.00015 1, 2, 4 

at DVS=1 
  

0.002 0.00011 1, 2, 4 

at DVS=2.00 
 

0.002 
  

1, 2, 4 

Specific pod area (SPA) ha kg
-1

 0 
  

1 

Specific stem area (SSATB) at DVS=0 ha kg
-1

 0 
  

1 

at DVS=2 
 

0 
  

1 

Life span of leaves growing at 35°C (SPAN) D 
 

30 1.5 1 

Base temperature for leaf aging (TBASE) °C 
 

4.5 0.225 1, 2 

Extinction coefficient for diffuse light (KDIFTB) at DVS=0 -;- 
 

0.8 0.04 1, 2, 5 

at DVS=2 
  

0.8 0.04 1, 2, 5 

Light use efficiency single leaf (EFFTB) at Tavg=0 

kg ha
-1

 h
-1

 J
-1

 m
2
 s 

 
0.442 0.0221 1 

at DVS=40 
 

0.442 0.0221 1 

Maximum CO2 assimilation rate (AMAXTB) at DVS=0 -;kg ha
-1

 h
-1

 
 

43 2.15 1, 6, 7 

at DVS=1.5 
  

32.5 1.625 1, 6, 7 
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at DVS=2 
  

15 0.75 1, 6, 7 

Reduction factor of AMAX (TMPFTB) at Tavg=0 °C;- 0 
  

1, 8 

at Tavg=10 
  

0.5 0.025 1, 2, 8 

at Tavg=20 
 

1 
  

1, 8 

at Tavg=30 
 

1 
  

1, 8 

at Tavg=35 
  

0.75 0.0375 1, 8 

at Tavg=40 
 

0.5 
  

1, 8 

Reduction factor of AMAX (TMNFTB) at Tmin
c
=0 °C;- 0 

  
1 

at Tmin=3 
 

1 
  

1 

Efficiency of conversion into leaves (CVL) kg ka
-1

 
 

0.697 0.0348 1 

Efficiency of conversion into storage organs (CVO) kg ka
-1

 
 

0.695 0.0347 1 

Efficiency of conversion into roots (CVR) kg ka
-1

 
 

0.75 0.0375 1 

Efficiency of conversion into stems (CVS) kg ka
-1

 
 

0.69 0.0345 1 

Rel. incr. in respiration rate per 10°C (Q10) - 
 

2 0.1 1 

Rel. maintenance respiration rate for leaves (RML) kg kg
-1

 d
-1

 
 

0.031 0.00155 1 

Rel. maintenance respiration rate for storage organs (RMO) kg kg
-1

 d
-1

 
 

0.012 0.000575 1 

Rel. maintenance respiration rate for roots (RMR) kg kg
-1

 d
-1

 
 

0.01 0.0005 1 

Rel. maintenance respiration rate for stems (RMS) kg kg
-1

 d
-1

 
 

0.015 0.000745 1 

Reduction factor for senescence (RFSETB) at DVS=0 -;- 1 
  

1 

at DVS=2 
 

1 
  

1 

Partitioning to roots (FRTB) at DVS=0 -;kg kg
-1

 
 

0.5 0.025 1 

at DVS=0.5 
  

0.325 0.0162 1 

at DVS=1 
 

0 
  

1 

at DVS=2 
 

0 
  

1 

Partitioning to leaves (FLTB) at DVS=0 -;kg kg
-1

 
 

0.5 0.025 1 

at DVS=0.8 
  

0.2 0.01 1 

at DVS=1 
 

0 
  

1 

at DVS=2 
 

0 
  

1 
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Partitioning to storage organs (FOTB) at DVS=0 -;kg kg
-1

 0 
  

1 

at DVS=1 
 

0 
  

1 

at DVS=1.2 
  

0.739 0.0369 1 

at DVS=1.4 
  

0.869 0.0434 1 

at DVS=2 
 

1 
  

1 

Partitioning to stems (FSTB) (function of DVS) -;kg kg
-1

 Derived as 1 – (FLTB + FOTB) 

Relative death rate of roots (RDRRTB) at DVS=0 -;kg kg
-1

 d
-1

 0 
  

1 

at DVS=1.5 
 

0 
  

1 

at DVS=1.5001 
 

0.02 
  

1 

at DVS=2 
 

0.02 
  

1 

Relative death rate of stems (RDRSTB) at DVS=0 -;kg kg
-1

 d
-1

 0 
  

1 

at DVS=1.5 
 

0 
  

1 

at DVS=1.5001 
 

0.02 
  

1 

at DVS=2 
 

0.02 
  

1 

a
 mean air daily temperature 

b
 development stage code (0: emergence; 1: flowering; 2: maturity) 

c
 minimum air daily temperature 

d 
1: adapted from Tomorovic et al. (2009); 2: Archontoulis et al. (2011); 3: Hall et al. (1995); 4: Trápani et al. (1999); 5: 

Casadebaig et al. (2011); 6: Zahoor et al. (2011); 7: Steduto et al. (2000); 8: Paul et el. (1990) 
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3.7 Supplementary material 

 
 

Figure S1. eFAST total sensitivity index for winter wheat yield simulated with WOFOST at the 
selected years in Switzerland (Ellighausen site). Left panel = EMS (existing modelling solution); 
central panel = MMS (modified modelling solution); right panel = percent differences between 
the two modelling solutions. 
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Figure S2. eFAST total sensitivity index for winter wheat yield simulated with WOFOST at the 
selected years in Switzerland (Reckenholz site). Left panel = EMS (existing modelling solution); 
central panel = MMS (modified modelling solution); right panel = percent differences between 
the two modelling solutions. 
  

CVL

CVO

CVR

CVS

FLTB000

FLTB080

FOTB120

FOTB140

FRTB000

FRTB050

KDIFTB000

KDIFTB200

LAIEM

1
9

8
9

-50 -25 0 25 50
Percent differences

AMAXTB000
AMAXTB200

CVL
CVO
CVR
CVS

EFFTB010
EFFTB040

FLTB000
FLTB050
FOTB100
FRTB000
FRTB100

KDIFTB000
KDIFTB100

LAIEM
Q10

RGRLAI
RML
RMO
RMR
RMS

SLATB035
SLATB045
SLATB065

SPAN
TBASE

TMPFTB014
TMPFTB023

1
9
8
9

1
9
9
6

1
9
9
8

2
0
4
9

2
0
5
2

2
0
5
8

2
0
4
4

2
0
5
1

2
0
5
9

0.2 0.4 0.6
eFAST total sensitivity index

SLATB065

SLATB045

SLATB035

RMO

RMS

RMR

RML

Q10

TMPFTB023

TMPFTB014

RGRLAI

AMAXTB200

AMAXTB000

TBASE

EFFTB040

EFFTB010

SPAN

LAIEM

FRTB100

FRTB000

FOTB100

FLTB050

FLTB000

KDIFTB100

KDIFTB000

CVO

CVS

CVR

CVL

1
9

8
9

1
9

9
6

1
9

9
8

2
0

4
9

2
0

5
2

2
0

5
8

2
0

4
4

2
0

5
1

2
0

5
9

SLATB065

SLATB045

SLATB035

RMO

RMS

RMR

RML

Q10

TMPFTB023

TMPFTB014

RGRLAI

AMAXTB200

AMAXTB000

TBASE

EFFTB040

EFFTB010

SPAN

LAIEM

FRTB100

FRTB000

FOTB100

FLTB050

FLTB000

KDIFTB100

KDIFTB000

CVO

CVS

CVR

CVL

1
9

8
9

1
9

9
6

1
9

9
8

2
0

4
9

2
0

5
2

2
0

5
8

2
0

4
4

2
0

5
1

2
0

5
9

SLATB065

SLATB045

SLATB035

RMO

RMS

RMR

RML

Q10

TMPFTB023

TMPFTB014

RGRLAI

AMAXTB200

AMAXTB000

TBASE

EFFTB040

EFFTB010

SPAN

LAIEM

FRTB100

FRTB000

FOTB100

FLTB050

FLTB000

KDIFTB100

KDIFTB000

CVO

CVS

CVR

CVL

1
9

8
9

1
9

9
6

1
9

9
8

2
0

4
9

2
0

5
2

2
0

5
8

2
0

4
4

2
0

5
1

2
0

5
9

AMAXTB000

AMAXTB200

CVL

CVO

CVR

CVS

EFFTB010

EFFTB040

FLTB000

FLTB050

FOTB100

FRTB000

FRTB100

KDIFTB000

KDIFTB100

LAIEM

Q10

RGRLAI

RML

RMO

RMR

RMS

SLATB035

SLATB045

SLATB065

SPAN

TBASE

TMPFTB

TMPFTB023

2
0

0
1

2
0

0
3

2
0

1
2

2
0

4
4

2
0

4
6

2
0

5
7

2
0

4
1

2
0

5
3

2
0

5
4

AMAXTB000

AMAXTB200

CVL

CVO

CVR

CVS

EFFTB010

EFFTB040

FLTB000

FLTB050

FOTB100

FRTB000

FRTB100

KDIFTB000

KDIFTB100

LAIEM

Q10

RGRLAI

RML

RMO

RMR

RMS

SLATB035

SLATB045

SLATB065

SPAN

TBASE

TMPFTB

TMPFTB023

2
0

0
1

2
0

0
3

2
0

1
2

2
0

4
4

2
0

4
6

2
0

5
7

2
0

4
1

2
0

5
3

2
0

5
4

AMAXTB000

AMAXTB200

CVL

CVO

CVR

CVS

EFFTB010

EFFTB040

FLTB000

FLTB050

FOTB100

FRTB000

FRTB100

KDIFTB000

KDIFTB100

LAIEM

Q10

RGRLAI

RML

RMO

RMR

RMS

SLATB035

SLATB045

SLATB065

SPAN

TBASE

TMPFTB

TMPFTB023

2
0

0
1

2
0

0
3

2
0

1
2

2
0

4
4

2
0

4
6

2
0

5
7

2
0

4
1

2
0

5
3

2
0

5
4



54 
 

 

 
 
Figure S3. eFAST total sensitivity index for winter wheat yield simulated with WOFOST at the 
selected years in Switzerland (Therwil site). Left panel = EMS (existing modelling solution); 
central panel = MMS (modified modelling solution); right panel = percent differences between 
the two modelling solutions. 
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Figure S4. eFAST total sensitivity index for winter wheat yield simulated with WOFOST at the 
selected years in Italy (Foggia site). Left panel = EMS (existing modelling solution); central panel 
= MMS (modified modelling solution); right panel = percent differences between the two 
modelling solutions. 
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Figure S5. eFAST total sensitivity index for winter wheat yield simulated with WOFOST at the 
selected years in Spain (Cordoba site). Left panel = EMS (existing modelling solution); central 
panel = MMS (modified modelling solution); right panel = percent differences between the two 
modelling solutions. 
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Figure S6. eFAST total sensitivity index for winter wheat yield simulated with WOFOST at the 
selected years in Ukraine (Mironivka site). Left panel = EMS (existing modelling solution); central 
panel = MMS (modified modelling solution); right panel = percent differences between the two 
modelling solutions. 
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Figure S7. eFAST total sensitivity index for maize yield simulated with WOFOST at the selected 
years in Switzerland (Changins site). Left panel = EMS (existing modelling solution); central panel 
= MMS (modified modelling solution); right panel = percent differences between the two 
modelling solutions. 
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Figure S8. eFAST total sensitivity index for maize yield simulated with WOFOST at the selected 
years in Switzerland (Ellighausen site). Left panel = EMS (existing modelling solution); central 
panel = MMS (modified modelling solution); right panel = percent differences between the two 
modelling solutions. 
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Figure S9. eFAST total sensitivity index for maize yield simulated with WOFOST at the selected 
years in Switzerland (Reckenholz site). Left panel = EMS (existing modelling solution); central 
panel = MMS (modified modelling solution); right panel = percent differences between the two 
modelling solutions. 
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Figure S10. eFAST total sensitivity index for maize yield simulated with WOFOST at the selected 
years in Switzerland (Therwil site). Left panel = EMS (existing modelling solution); central panel = 
MMS (modified modelling solution); right panel = percent differences between the two 
modelling solutions. 
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Figure S11. eFAST total sensitivity index for maize yield simulated with WOFOST at the selected 
years in Ukraine (Mironivka site). Left panel = EMS (existing modelling solution); central panel = 
MMS (modified modelling solution); right panel = percent differences between the two 
modelling solutions. 
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Figure S12. eFAST total sensitivity index for sunflower yield simulated with WOFOST at the 
selected years in Spain (Cordoba site). Left panel = EMS (existing modelling solution); central 
panel = MMS (modified modelling solution); right panel = percent differences between the two 
modelling solutions. 
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Figure S13. eFAST total sensitivity index for winter barley yield simulated with WOFOST at the 
selected years in Spain (Granada site). Left panel = EMS (existing modelling solution); central 
panel = MMS (modified modelling solution); right panel = percent differences between the two 
modelling solutions. 
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Figure S14. Comparison between results obtained with the Morris and eFAST sensitivity analysis 
methods for winter wheat simulation in Switzerland (Changins site). a) = savage scores for the 
EMS (existing modelling solution); b) = savage scores for the MMS (modified modelling 
solution); dotted line = 1:1 line. 
 
 

 
 
Figure S15. Comparison between results obtained with the Morris and eFAST sensitivity analysis 
methods for winter wheat simulation in Switzerland (Ellighausen site). a) = savage scores for the 
EMS (existing modelling solution); b) = savage scores for the MMS (modified modelling 
solution); dotted line = 1:1 line. 
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Figure S16. Comparison between results obtained with the Morris and eFAST sensitivity analysis 
methods for winter wheat simulation in Switzerland (Reckenholz site). a) = savage scores for the 
EMS (existing modelling solution); b) = savage scores for the MMS (modified modelling 
solution); dotted line = 1:1 line. 
 
 

 
 
Figure S17. Comparison between results obtained with the Morris and eFAST sensitivity analysis 
methods for winter wheat simulation in Switzerland (Therwil site). a) = savage scores for the 
EMS (existing modelling solution); b) = savage scores for the MMS (modified modelling 
solution); dotted line = 1:1 line. 
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Figure S18. Comparison between results obtained with the Morris and eFAST sensitivity analysis 
methods for winter wheat simulation in Spain (Cordoba site). a) = savage scores for the EMS 
(existing modelling solution); b) = savage scores for the MMS (modified modelling solution); 
dotted line = 1:1 line. 
 
 

 
 
Figure S19. Comparison between results obtained with the Morris and eFAST sensitivity analysis 
methods for maize simulation in Switzerland (Changins site). a) = savage scores for the EMS 
(existing modelling solution); b) = savage scores for the MMS (modified modelling solution); 
dotted line = 1:1 line. 
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Figure S20. Comparison between results obtained with the Morris and eFAST sensitivity analysis 
methods for maize simulation in Switzerland (Ellighausen site). a) = savage scores for the EMS 
(existing modelling solution); b) = savage scores for the MMS (modified modelling solution); 
dotted line = 1:1 line. 
 
 

 
 
Figure S21. Comparison between results obtained with the Morris and eFAST sensitivity analysis 
methods for maize simulation in Switzerland (Reckenholz site). a) = savage scores for the EMS 
(existing modelling solution); b) = savage scores for the MMS (modified modelling solution); 
dotted line = 1:1 line. 
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Figure S22. Comparison between results obtained with the Morris and eFAST sensitivity analysis 
methods for maize simulation in Switzerland (Therwil site). a) = savage scores for the EMS 
(existing modelling solution); b) = savage scores for the MMS (modified modelling solution); 
dotted line = 1:1 line. 
 
 

 
 
Figure S23. Comparison between results obtained with the Morris and eFAST sensitivity analysis 
methods for maize simulation in Ukraine (Mironivka site). a) = savage scores for the EMS 
(existing modelling solution); b) = savage scores for the MMS (modified modelling solution); 
dotted line = 1:1 line. 
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Figure S24. Comparison between results obtained with the Morris and eFAST sensitivity analysis 
methods for sunflower simulation in Spain (Cordoba site). a) = savage scores for the EMS 
(existing modelling solutions); b) = savage scores for the MMS (modified modelling solutions); 
dotted line = 1:1 line. 
 

 

 
 

Figure S25. Comparison between results obtained with the Morris and eFAST sensitivity analysis 
methods for winter barley simulation in Spain (Granada site). a) = savage scores for the EMS 
(existing modelling solution); b) = savage scores for the MMS (modified modelling solution); 
dotted line = 1:1 line. 
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4.1 Abstract 

Digital hemispherical photography (DHP) has been widely used to estimate leaf area index (LAI) in 

forestry. Despite the advancement in the processing of hemispherical images with dedicated tools, 

several steps are still manual and thus easily influenced by operator’s subjectivity. The purpose of 

this study is to quantify the subjectivity component in the LAI estimates of woody canopies using 

the software Can-Eye. Following the ISO 5725 protocol, we quantified the repeatability and 

reproducibility limits defining the lower limits of the maximum accuracy obtainable in the 

estimation of LAI of a broad range of woody canopies differing from structure and dimension. 

Moreover we evaluated the effect of the segmentation method on LAI estimates of the same 

operator. The better results (restrained limits of repeatability and reproducibility), were obtained 

in case of high (>5) LAI values with limits which roughly correspond to 22% of the estimated LAI 

values. Poorer results were obtained in case of medium and low LAI values, with repeatability and 

reproducibility limits which exceeded the 40% of the estimated LAI values. Regardless of the LAI 

range explored, satisfactory results were achieved for trees in row-structured plantations (limits 

almost equal to the 30% of the estimated LAI values). The conducted paired t-test confirmed the 

relevant effect of the segmentation method on LAI estimates. Despite a non-negligible user effect, 

the precision metrics for DHP are consistent with those determined for other indirect methods for 

LAI estimates, thus confirming the overall reliability of DHP in woody canopies. 

 

Keywords 

Accuracy; digital hemispherical photography; leaf area index; precision, woody canopies. 
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4.2 Introduction 

Leaf area index (LAI; total one-sided area of leaf tissue per unit ground surface) is widely 

recognized as a key variable for a broad range of agro-environmental studies, given its tight 

relationships with primary production (Duchemin et al., 2006), transpiration (Cleugh et al., 2007), 

energy exchange (Leuning et al., 2005), CO2 sequestration (Confalonieri et al., 2013), and with a 

variety of other eco-physiological processes (Asner et al., 2003). However, the direct measurement 

of LAI is often unfeasible, especially in operational context or when woody canopies are involved 

(Jonckheere et al., 2004). In these cases, LAI is usually estimated via indirect methods, based on 

the measurement of the amount of radiation (i) reflected/absorbed by (remote sensing 

techniques) or (ii) transmitted through the canopy (optical proximal instruments). The digital 

hemispherical photography (DHP) – like other methods based on image processing (e.g., 

PocketLAI, Confalonieri et al., 2013) – can be assimilated to the last category, although they derive 

gap fraction from image segmentation instead of the above-to-below canopy luminance ratio. DHP 

is one of the less expensive techniques and gives users the possibility to reprocess archives (e.g., 

correction of incorrect exposure, removal of unwanted objects) because of its permanent image 

recording. For these reasons and for the partial suitability of other indirect methods, it is widely 

used for LAI estimates in orchards and forest stands (Macfarlane et al., 2007; Khabba et al., 2009; 

Liu et al., 2013; Orlando et al., 2015). However, it is more time-consuming than other methods like 

the use of LiDAR images to estimate LAI (Tang et al., 2012; Zhao and Popescu, 2009); because of 

the need of asynchronous and not automated processing of the images acquired, which anyhow 

provides information to fully characterize the canopy in terms of openness and foliage density 

(Rich et al., 1993; Easter and Spies, 1994; Beaudet and Messier, 2002). 

After acquisition, hemispherical images are processed using dedicated software packages (e.g., 

GapLightAnalyzer, Forest Renewal BC, Can-Eye), which classify pixels into two categories based on 

thresholds defined by the user through trial and error adjustments. Despite the widespread use of 

this method in forestry, some constraints still limit its reliability. For instance, the influence of 

camera exposure on LAI estimates (e.g., Englud et al., 2000; Zhang et al., 2005), the dependency 

on the view zenith angle detected by the device (Leblanc et al., 2005) and even the selection of 

the optimal segmentation thresholds, which is one of the main challenges (Jonckeere et al., 2004), 

involving high level of subjectivity due to the user’s sensibility and experience (Glatthorn and 

Beckschäfer, 2014). Moreover, threshold identification can be influenced by the pixels’ category 

(i.e., sky or green) from which the user decides to start (Jonckheere et al., 2005). Therefore, the 
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interference of these user-dependent steps on the accuracy of LAI estimates from DHP constitutes 

an important issue that deserve to be thoroughly investigated. Accuracy is composed by trueness 

and precision, the first being the agreement between real values and the means of replicated 

measurements, the latter – for in vivo methods – being the agreement within a series of replicated 

measurements, performed by the same user (repeatability) or by independent users under 

different conditions (reproducibility) (Confalonieri et al., 2014). 

This study aims at quantifying the precision of DHP for LAI estimates in tree species, computing 

the limits of repeatability and reproducibility. These limits represent the lower limits of the 

maximum accuracy obtainable within several estimates of the same user and between estimates 

of different users. Given direct LAI measurement in tree canopies is unfeasible and the process of 

image acquisition (using standard protocol) should not lead to additional sources of uncertainty, 

we focused on the components of precision related with image processing. 

4.3 Methods 

The dataset used for precision determination on woody canopies was acquired with a smartphone 

Samsung GT-i9105 Galaxy S II Plus equipped with a fisheye lens AKASHI ALTLENS4IN1SG2,  

during a previous work involving a wide range of canopy types (Orlando et al., 2015). In this study, 

only images from broad-leaved trees were used. The software used for image processing was Can-

Eye (v. 6.314; www.avignon.inra.fr/can_eye; Weiss et al., 2004), which obtained the best results in 

a comparative study from Liu et al. (2013). Precision metrics were determined by following the 

adaptation of the ISO 5725 protocol (ISO, 1994) to in vivo field methods proposed by Confalonieri 

et al. (2014). To estimate the repeatability and reproducibility of DHP, three classes of broad-

leaved tree species were considered (Table 1). This choice allowed complying with the ISO 5725 

protocol, which indicates to perform the analysis on different batches of materials. Within each 

class, four plants were selected on the basis of the mean LAI values estimated by Orlando et al. 

(2015), by dividing LAI values into quartiles (25, 50, 75, 100%) and choosing one set of images 

within each quartile, in order to explore a wide ranges of LAI values (i.e., levels in the ISO 5725 

protocol). 
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Table 1. Tree canopies used for determining digital hemispherical photography precision. 

ID Class (as in Orlando et al., 2015) Canopy class  Species for each quartile within the class 

4 

Broad-leaved trees in 
sparse or continuous 
canopy, with high scaffold 
branches 

Populus spp. 

Liriodendron tulipifera L. 

Fagus sylvatica L. 

Magnolia grandiflora L. 

3 
Broad-leaved trees in 
plantation row, with low 
scaffold branches 

Populus spp. 

Robinia pseudoacacia L. 

Populus spp. 

Populus spp. 

1 

Broad-leaved trees in 
sparse canopy, with 
medium scaffold 
branches 

Olea europaea L. 

Sorbus domestica L. 

Acer platanoides L. 

Fagus sylvatica L. 

 

The images of each of the entities reported in table 1 were processed by four independent users 

(laboratories A, B, C and D hereafter, according to the ISO 5725 terminology) familiar with the Can-

Eye software in four different 10-day periods (four measurement replicates for each entity and for 

each user), leaving free choice for the Can-Eye segmentation method and threshold identification. 

According to ISO 5725, possible outliers were identified by applying the Cochran’s (Cochran, 1941) 

and Grubbs’ (Grubbs, 1969) tests, targeting outlying values detection, respectively, in variances 

and means from different laboratories. 

According to the relationships between the test metrics and related tabulated values, laboratories 

were considered as non-outlying, stragglers (not enough different from others and thus 

maintained in following steps) or outliers (excluded from precision determination). Repeatability 

and reproducibility (as well as their relative values and limits; ISO, 1994) were quantified by 

targeting, respectively, the four sequential replicates from the same laboratory and all LAI values 

estimated by the laboratories that did not were identified as outliers for a certain entity. 

Then, the uncertainty in LAI estimates due to the effect of the selected segmentation method was 

quantified by considering the whole 126-item dataset of tree broad canopy images from Orlando 

et al. (2015). To avoid mixing different sources of uncertainty, a single user processed all the 

images in this phase, using alternatively the two segmentation methods (based on sky or green 

pixel detection). A paired t-test was used to assess the significance of the differences due to the 

segmentation method. 
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4.4 Result and discussion 

Table 2 shows the results of the statistical analyses performed on the three categories of tree 

canopies using DHP. The Grubbs’ test led to identify one value as outlier (laboratory C for 

Magnolia grandiflora L.) and two values as stragglers (laboratories B and C for Olea europaea L.), 

whereas the Cochran’s test led to identify laboratory B as outlier for Populus spp. The 

corresponding values were not used for repeatability and reproducibility determination. 

Table 2. Precision (repeatability and reproducibility) of digital hemispherical photography (Can-
Eye software) in estimating LAI in tree species. r: repeatability limit; RSDr: relative standard 
deviation of repeatability; R: reproducibility limit; RSDR: relative standard deviation of 
reproducibility. In case r was larger than R, R was set equal to r (Horwitz, 1995). 

Canopy class Species Estimated 
values 

Repeatability  Reproducibility 

r RSDr  
R RSDR 

Broad-leaved trees in sparse or 
continuous canopy, with high 
scaffold branches 

Populus spp. 1.45 0.65 15.89 

 

0.69 17.04 

Liriodendron tulipifera L. 3.78 2.57 24.26 

 

2.57 24.26 

Fagus sylvatica L. 3.33 1.81 19.35 

 

1.81 19.35 

Magnolia grandiflora L. 5.22
a
 1.06 7.09 

 

1.06 7.09 

Broad-leaved trees in plantation 
row, with low scaffold branches 

Populus spp. 1.48
b
 0.41 9.99 

 

0.43 10.32 

Robinia pseudoacacia L. 2.32 1.12 17.24 

 

1.12 17.24 

Populus spp. 3.66 0.85 8.27 

 

1.09 10.69 

Populus spp. 3.72 0.55 5.25 

 

0.73 7.03 

Broad-leaved trees in sparse 
canopy, with medium scaffold 
branches 

Olea europaea L. 0.82
c
 0.42 18.44 

 

0.42 18.44 

Sorbus domestica L. 3.29 2.36 25.68 

 

2.43 26.35 

Acer platanoides L. 5.11 1.66 11.58 

 

1.66 11.58 

Fagus sylvatica L. 5.52 0.83 5.37 

 

0.99 6.41 
a
 Laboratory C is an outlier according to the Grubbs’ test. 

b
 Laboratory B is an outlier according to the Cochran test. 

c
 Laboratories B and C are stragglers according to the Grubbs’ test. 

In general, the lowest values (and thus better) for repeatability and reproducibility limits were 

achieved for LAI higher than 5 (Fig. 1), corresponding to the 4th quartile of each canopy class 

(Table 1). 
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Figure 1. Relationships between repeatability (a) and reproducibility (b) limits of LAI estimates, 
and mean LAI values for the different canopy classes. Black circles refer to broad-leaved trees in 
sparse or continuous canopy, with high scaffold branches; grey circles refer to broad-leaved 
trees in sparse canopy, with medium scaffold branches; white circles refer to broad-leaved trees 
in plantation row, with low scaffold branches. 

 

For this range of LAI values, indeed, mean values for repeatability and reproducibility limits were 

equal to 1.18, roughly corresponding to 22% of the estimated LAI. Results for medium (between 

2.5 and 4) and low LAI values (lower than 1.5) were instead less satisfactory. For the medium LAI 

values, the average repeatability and reproducibility limits were equal to 1.54 and 1.56, 

corresponding to about 47% of the estimated LAI. Precision metrics were slightly better for low LAI 

values, with mean repeatability and reproducibility limits equal to 0.50 and 0.51 (almost 42% of 

the estimated values). These results suggest that, when hemispherical images were composed by 

a prevalent proportion of vegetation (high LAI values), the impact of the uncertainty in threshold 

definition during segmentation was negligible. In these cases, indeed, the limited relative presence 

of mixed pixels (or of image regions characterized by sky and vegetation pixels mixed up with a 

fine level of granularity) because of a large proportion of vegetation, simplified the determination 

of threshold values both between and within laboratories. On the contrary, when hemispherical 

images were either evenly composed by sky and vegetation pixels (intermediate LAI values) or 

characterized by an high proportion of sky (low LAI values), the determination of the threshold 

value – and thus the image segmentation – was more affected by the user sensibility and 

experience, because of a larger amount of pixels potentially subject to uncertain classification.  
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An exception to the positive relationship between mean LAI values and precision metrics was 

observed for broad-leaved trees in plantation row. For this class, intermediate value of the 

precision metrics were achieved, regardless of the mean LAI value (Table 2). Mean repeatability 

and reproducibility limits were indeed equal to 0.73 and 0.83, respectively (28.5% and 31.1% of 

the estimated LAI) and the corresponding relative standard deviations did not exceed 11.4%. 

Probably, the continuity of the canopy guaranteed by the planting layout and the position of 

branches (all the trees belonging to this canopy class were cultivated as short rotation forestry), as 

well as the protocol followed for images acquisition (Orlando et al., 2015), allowed obtaining close 

estimates both within and between laboratories, independently from the LAI values. 

The values of precision metrics achieved in this study for DHP are slightly larger than those 

estimated – on homogeneous rice crops – by Confalonieri et al. (2013) for the smart app PocketLAI 

and for the AccuPAR ceptometer (Decagon, Pullman, WA, USA). The mean values of repeatability 

and reproducibility limits for DHP determined in this study (including all the canopy classes) were 

1.19 and 1.25, respectively, whereas they were 0.80 and 0.82 for PocketLAI, and 0.73 and 0.82 for 

AccuPAR. Also, the variability among the precision metrics calculated for different samples for DHP 

was practically the same of that estimated for AccuPAR, whereas PocketLAI presented a larger 

variability. DHP achieved instead values for the precision metrics that were slightly better than 

those estimated for LAI-2000 (Decagon, Pullman, WA), regardless of the instrument 4- or 5-ring 

configuration (Confalonieri et al., 2013). 

Figure 2 shows the comparison of LAI estimates obtained – for the whole dataset of DHP images 

collected by Orlando et al. (2015) – by the same user with the two segmentation methods (sky or 

green) available in the Can-Eye software. 
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Figure 2. Comparison of LAI estimates obtained by the same user for 126 DHP images using the 
‘sky’ and ‘green’ segmentation methods available in Can-Eye. 

In more than 30% of the cases, the two segmentation methods led to differences in LAI estimates 

that exceeded 0.5, thus indicating that – beside the selection of thresholds – the choice of the 

segmentation method explain a large part of the variability in LAI estimates due to user 

subjectivity. This is confirmed by the paired t-test, which revealed that the differences between 

the two series of LAI estimates were significant (p < 0.001). In general, a tendency to estimate 

lower LAI values with the sky segmentation method was observed, likely due to the difficulty in 

threshold determination for the segmentation of pixels in the external profile of the canopies. 

Indeed, the corresponding portions of images were often characterized by canopy pixels that 

appeared very light because of light beams penetrating the vegetation. In these cases, the use of 

the sky method led to defining threshold values that segmented vegetation pixels as sky, thus 

determining lower LAI values compared to what achieved using the green segmentation method. 

4.5 Conclusions 

Here we quantified the source of uncertainty due to user’s subjectivity, by calculating the 

repeatability and reproducibility of the segmentation procedure as offered by Can-Eye, the most 

popular software for DHP estimates. Indeed, compared to other indirect methods, the protocol for 

image acquisition is less subject to possible user’s effects, which can instead affect LAI estimates 

during image processing. Although we observed a significant effect of the segmentation method 
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selected by the user, our study proved – once more – the reliability of LAI estimation with DHP. 

Indeed, this technique obtained values of repeatability and reproducibility consistent with those of 

the smart app PocketLAI and of the AccuPAR ceptometer, and slightly better than those estimated 

for LAI-2000. The best values for precision metrics were obtain in case of images characterized by 

high relative amounts of pixels entirely belonging to vegetation, whereas more uncertainty was 

observed for LAI estimates on images with many mixed pixels or with large image regions 

characterized by scattered presence of sky and vegetation pixels. 
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5.1 Abstract 

A deeper understanding of cropping system dynamics is fundamental to increase the sustainability 

of agricultural productions, and – to meet this goal – many resources have been recently invested 

on the refinement of technologies such as crop modeling and remote sensing. This study presents 

a system to estimate rice yields based on the integration of a biophysical model and remotely 

sensed products at sub-field scale. Leaf area index data derived from decametric optical imageries 

(i.e. Landsat-8, Landsat-7 and Sentinel–2A) were assimilated into the WARM model via automatic 

recalibration of model parameters at a fine spatial resolution (30 m × 30 m). The ability of the 

system to estimate rice yield was tested by comparing both output from default modelling and 

from assimilation solution with field data derived from yield maps acquired during 2014, 2015 and 

2016 from about 40 paddy fields in northern Italy. The assimilation of remotely sensed 

information improved model performances (MAE = 0.6 t ha-1 and RRMSE = 13.8%) compared to 

what achieved using only the simulation model (MAE = 0.8 t ha-1 and RRMSE = 15.7%). Moreover, 

the system allowed to properly capture the within-field variability, thus to identify areas within 

each field characterized by different degrees of productivity. 

 

Keywords 

Yield predictions; Decision support system; Crop model; Remote sensing; Data assimilation 
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5.2 Introduction 

The development and productivity of crops depend on a number of factors, such as cultivar/hybrid 

features, soil properties, weather conditions and agro-management practices (Lobell et al., 2005). 

Reliable tools able to capture the variability induced by changes in these factors are increasingly 

needed (Sørensen et al., 2010) to meet food demand of a growing population while complying 

with the most recent agricultural policies. Among available tools, process-based crop models have 

been widely used because of their capability to reproduce the interaction between genotypes and 

environmental factors under a variety of climate and management scenarios (Basso et al., 2001). 

Despite they are often used to run simulations at field scale or even on larger areas, these models 

estimate plant growth at point scale, i.e., on virtual areas for which all inputs are assumed to be 

uniform (Balcovič et al., 2013; Waha et al., 2015), thus requiring tailored strategies to properly 

assess spatial variability of yields and other relevant variables (Batchelor et al., 2002). A common 

approach is to split the simulation area into a number of spatial units small enough to reduce the 

uncertainty due to the unavoidable violation of the assumption of input homogeneity. The 

downside of this approach is the increased requirement of input data, which are often difficult and 

expensive to measure (Wong and Asseng, 2006). In order to reduce the acquisition costs for 

spatially distributed inputs and to allow the application of models at different scales, spatial 

variability can be analysed and transferred to the crop model using indirect methods. The recent 

advances in satellite technology and image processing make remote sensing one of the most 

intriguing techniques to downscale model applications (Lobell et al., 2015). Remote sensing can 

indeed provide information on how variables driving crop growth and development change in time 

and space (Panigada et al., 2014). Recent studies aimed at improving model performance using 

remotely sensed information focused on the spatial variability of crop reflectance (Launay and 

Guerif, 2005), crop nitrogen content (Jongschaap, 2006), sowing dates (Busetto et al., 2017), and 

the identification and quantification of possible stresses which affect crops (Baret et al., 2007). 

However, in most cases, the assimilation into crop models of remotely sensed information deals 

with estimates of leaf area index (LAI) (e.g., Casa et al., 2012; Zhao et al., 2013), i.e., the one-sided 

area of leaf tissue per unit ground surface (Campbell and Normann, 1989). The great interest for 

this variable is due to its influence on canopy spectral reflectance (Baret and Buis, 2007) and to its 

key role in mediating any relationship between plants and the atmosphere (Zhu et al., 2013). 

Moreover, LAI can be considered as a good indicator of canopy status, being closely linked with 

many other variables of interest, like aboveground biomass and plant nitrogen content (Casa et 
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al., 2012). Two main strategies are available to assimilate exogenous data in crop model 

simulations (e.g., Dorigo et al., 2007): (i) calibration, which entails the adjustment of model 

parameters or initial states by minimizing the error between exogenous data and corresponding 

model outputs, and (ii) forcing, which consists in periodic model re-initializations based on the 

replacement of simulated variables with exogenous ones. Both these methods have pros and cons, 

although the former is often preferred since it is able to preserve the conceptual and 

mathematical coherence during the entire simulation for both above- and belowground variables. 

To date, many studies succeeded in integrating remotely sensed data into dynamic models, even 

though the computational costs related to data assimilation via calibration is still a significant 

bottleneck for the dissemination of this technique in operational contexts (Dong et al., 2013). 

Here we present the high-resolution application of a multiple downhill simplex optimization 

method (Nelder and Mead, 1965; Acutis and Confalonieri, 2006) to the assimilation of remotely 

sensed time series of LAI into the WARM rice model (Confalonieri et al., 2009). The aim is to 

improve model performances in predicting final yield while allowing for the simulation of within-

field variability. With a view to applications at larger scale, computational costs are limited by 

performing assimilation only once in the growing season using all the available LAI data from the 

beginning of tillering to the end of flowering. 

5.3 Material and methods 

5.3.1 Study area and sub-field LAI data 

The study area was located in Northern Italy in the Pavia province (latitude 45°15’ N ± 1.5’, 

longitude 8° 34’ E ± 2’, 112 m ± 15 m a.s.l.). Figure 1 shows the rice farm in which data were 

acquired, composed by 81 fields covering about 100ha cultivated with different varieties (i.e., 

Mare, Sirio, Augusto, Opale, Selenio, Sole, Ecco61, Oceano, Centauro). 

Fertilizations, irrigations and treatments against weeds, pest and diseases guaranteed unlimiting 

conditions for rice growth and development. Sowings were carried out between mid-April and 

mid-May, depending on differences in cultivated varieties (long and short cycle) and on variability 

in meteorological conditions in the three years, whereas harvests were performed in late 

September or early October. For a sample of these fields (46, 40 and 37 fields in 2014, 2015 and 

2016 respectively; fields with an area lower than 3000 m2 were excluded), information on 

cultivated rice varieties, sowing dates, techniques and yield maps estimated by a GPS equipped 

harvester were provided by the farmer. 
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Daily weather data were retrieved from a close weather station of the regional environmental 

agency "ARPA Lombardia" (data available here: https://www.dati.lombardia.it/Ambiente/Dati-

sensori-meteo/647i-nhxk/data), assumed as representative for all the fields, since the latter are 

located in a flat area of about 20 km2. The LAI data used for assimilation into the model were 

generated during the EU FP7 ERMES project (http://www.ermes-fp7space.eu). LAI was derived from 

remote sensing high-resolution data such as Landsat-8 Operational Land Imager (OLI), Landsat-7 

Enhanced Thematic Mapper (ETM+) and Sentinel–2A (S2A) Level 1C images (Table 1) by inverting a 

radiative transfer model (PROSAIL, Jacquemoud et al., 2009) specifically designed for rice crops. 

Details on the method and performance of retrieval algorithm can be found in Campos-Taberner 

et al. (2016) and Campos-Taberner et al. (2017). 

An example of spatio-temporal variability of the LAI derived from satellite data is shown in Figure 

2 as only one variety was sown in the same date in the three fields, within field spatial variability 

captured by satellite data can be mainly ascribed to local plant-soil interactions. 

Table 1: Cardinality of exogenous LAI maps used in the assimilation process grouped by data 
source 

Year Start date End date ETM+ OLI S2A Tot. 

2014 June 9th October 23th - 6 - 6 

2015 April 1st September 24th 6 6 - 12 

2016 April 19th September 27th 4 7 8 19 

 

 

http://www.ermes-fp7space.eu/
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Figure 1: Fields distribution, cultivated varieties and sowing dates for the study area 

 

 

Figure 2: Example of LAI data spatial-temporal variability. Top panels show within field LAI 
variability as retrieved by OLI data (2014 and 2015) and Sentinel 2 (2016) in the first decade of 
July (DOY 184, 187 and 193 respectively). Bottom panels provide examples of LAI temporal 
profiles for the three specific locations. 
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5.3.2 Simulation model and assimilation procedure 

The rice-specific simulation model WARM was selected, given its extensive use in the region for 

both research (e.g., Paleari et al., 2017) and operational purposes (Busetto et al., 2017). The 

model, fully described in the seminal literature, simulates photosynthesis (at daily or hourly time 

step) using a net photosynthesis approach, with radiation use efficiency modulated by 

temperature, atmospheric CO2 concentration, diseases, senescence, floret sterility, and saturation 

of enzymatic chains in case of high radiation levels. Daily accumulated biomass is partitioned to 

different plant organs using a set of parabolic and beta functions. Daily increase in green leaf area 

index (gLAI) is derived from the biomass partitioned to leaves and a development-specific specific 

leaf area (SLA). Leaf senescence is calculated by subtracting dead leaf area index units – when a 

thermal time threshold is reached – from total LAI. 

The assimilation of exogenous LAI data was performed via recalibration of model parameters using 

a modified, multiple-start version of the downhill simplex method (Nelder and Mead, 1965). The 

simplex is a geometric concept with N+1 vertices in an N-dimensional parameter hyperspace; it 

moves through this space based on reflection, contraction, and expansion, following the gradient 

of an objective function. Changes to the standard version of the simplex deal with the use of 

multiple starting points (to reduce the risk of falling in local minima) and the adoption of 

boundaries to avoid the selection of parameter values outside a reasonable range (Acutis and 

Confalonieri, 2006). The relative root mean square error (RRMSE, obtained as the ratio between 

RMSE and the mean of observations; %) was used as objective function. Assimilation was 

performed using only LAI data estimated between beginning of tillering and end of flowering to 

avoid background effect on LAI estimates in case of limited vegetation (e.g., during early growth) 

or with the presence of senescent tissues (Haboudane et al., 2004). Phenological stages where 

dynamically estimated from the model for each combination of cultivated variety, sowing date and 

meteorological data, and then used to select relevant LAI data for each simulation unit. 

Parameters considered in the recalibration process were maximum radiation use efficiency (RUE, g 

MJ-1), being the most influential parameter in crop modelling as indicated by a previous sensitivity 

analysis study (Confalonieri et al., 2010), and specific leaf area at emergence (SLAini, m2 kg-1) and 

at tillering (SLAtill, m2 kg-1), both being strictly related with LAI dynamics. The other parameters 

were kept to the default values (Appendix A) for Indica- and Japonica-type cultivars, developed 

using data from dedicated trials carried out within the EU FP7 ERMES project. 

http://www.ermes-fp7space.eu/
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For the simulations without assimilation, inputs were at field-scale were homogeneous, thus 

requiring one simulation for each combination field × year. In the case of assimilation of 

exogenous LAI data each field was further divided in 30 × 30 m simulation units, corresponding to 

Landsat 7/8 spatial grid. Sentinel-2A LAI retrieved, at 10 m spatial resolution, were aggregated to 

the same spatial resolution. Yield data collected by the harvester were spatially interpolated to 

obtain high resolution (2 × 2 m) maps; and aggregated on the same 30 m × 30 m regular grid, in 

order to allow for the evaluation of simulated yields and their variability within each field. The 

agreement between observed and simulated yields was first quantified at field level using the 

mean absolute error (MAE) and the relative root mean square error (RRMSE). In addition to these 

agreement indices, for each 30 m × 30 m simulation unit the relative bias error (RBE, eq.1) was 

applied to quantify the system ability to describe the yields spatial variability, because of its 

capability to indicate direction and magnitude of the bias. 

      
     

  
       [1] 

where    (t ha-1) and    (t ha-1) are the simulated and observed yield values for the i-th simulation 

unit. 

In order to quantify the overall improvements in simulated yields due to LAI data assimilation, the 

integrals between -15% and +15% of the RBE probability distribution functions (∫RBE) were 

computed for each combination rice cultivar × year. This allowed to quantify the percentage of 

simulation units for which the error in yield simulation is less than 15% of the observed value, 

considered as a typical uncertainty associated with the estimation of yield in field experiments 

(Belder et al., 2007; Li et al., 2015). 

5.4 Results and discussion 

Yield simulation at field level was overall satisfactory using both approaches 1) default 

parameterizations and 2) LAI assimilation for parameters recalibration. Best results using the 

default parameterizations were achieved for the datasets collected in 2014, MAE and RRMSE 

being 0.70 t ha-1 and 14.5%, respectively. To a lesser extent, error metrics demonstrated the 

reliability of default parameterization also for datasets collected in 2015 (MAE = 0.85 t ha-1; 

RRMSE = 17.4%) and 2016 (MAE = 1.00 t ha-1; RRMSE = 17.5%). The assimilation of remotely 

sensed LAI data allowed improving model performances for 2015 (MAE = 0.74 t ha-1; RRMSE = 

15.5%) and 2016 (MAE = 0.76 t ha-1; RRMSE = 12.9%). On the other hand, no relevant 

improvements were achieved through LAI assimilation for the 2014 datasets (MAE = 0.68 t ha-1; 
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and RRMSE = 14.9%), with respect to the results obtained using the default parameterizations. 

However, the available dataset of LAI estimated in 2014 (6 dates, of which 3 in the period tillering 

– flowering, used for calibration) was noticeably lower to 2015 (12 dates, of which 6 in the period 

tillering – flowering, suitable for calibration) and 2016 (19 samples, of which 9 in the period 

tillering – flowering, suitable for calibration). The availability of lesser LAI data for calibration, 

could lead to a no sensible improvement of assimilation procedure with respect to well calibrated 

modelling solution. These results are comparable with those obtained in other recent studies 

about the improvement of maize yield at field level through the integration of remotely sensed 

information in crop models (Ines et al., 2013; Zhao et al., 2013; Li et al., 2014). In all these studies 

the inclusion of remotely sensed data improved modelling performances with a reduction of 

RRMSE ranging between 12% and 16%. 

The contribution of LAI assimilation can be better appreciated when data are analyzed at full 

resolution, comparing observed and predicted yield values for each simulation unit. Figure 3 

shows the distributions of      values (i being the simulation unit) for the two approaches. LAI 

assimilation produced errors generally distributed more centrally around zero if compared to 

those calculated with the default parameterizations. This demonstrates the higher reliability of the 

assimilation-based simulations to reproduce the spatial distribution of rice yields, although over- 

and under-estimations were still present (tails of the distributions in Fig. 3). However, most of 

these errors were calculated for simulation units located at the margins of the rice fields, where 

border effects may greatly affect growth dynamics, as well as factors not accounted for by the 

simulation model (e.g., effects of traffic due to tractors and other machineries, anomalies in 

fungicide distributions). Moreover, these areas are the ones characterized by pixel mixture in 

satellite data with 30 meter spatial resolution. These factors contribute to make LAI estimation 

close to the field border less reliable and more affected by estimation uncertainty. 

Only in two cases out of 14 (Augusto and Selenio varieties in 2015 and 2016, respectively), a 

worsening in model performance was observed when remotely sensed LAI data were assimilated. 

In these two cases, some inconsistencies were noticed in the relationship between remotely 

sensed LAI values and observed yields (data not showed). Many authors highlighted – although to 

a different extent – positive relationships between LAI and biomass values, and thus – under 

unlimiting conditions and without the presence of stressors leading to sterility – between LAI and 

yield (e.g., Takai et al., 2006; Li et al., 2009). Such relationship was not observed for the Augusto 

variety in 2015. Compared to the results obtained in 2014 for the same variety, remotely sensed 
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LAI at the end of flowering in the 2015 was higher, in light of the favorable weather conditions 

experienced by the crop during most of the season (i.e., between April and August: +1.93°C for 

average maximum temperature; +1°C for average minimum temperature; +1.46 MJ m-2 for global 

solar radiation). However, the larger LAI values did not correspond to larger observed yields, being 

yields in 2014 and 2015, respectively, equal to 5.32 ± 0.57 t ha-1 and 4.90 ± 0.53 t ha-1. This can 

be explained by possible errors in LAI estimates and, more likely, by factors that limited 2015 

yields for that variety, not taken into account by the model (e.g., effects of the previous cover 

crop, extreme weather events near harvesting which deplete the productions). A similar 

inconsistency was observed for Selenio variety in 2016. Also in this case, 2016 was warmer (+0.8°C 

for average maximum temperature for the period April-August) and with higher radiation (+3.89 

MJ m-2) compared to 2014, when Selenio variety was also sown. However, despite observed 

yields in 2016 were – as expected – larger than those recorded in 2014 (even by about 2 t ha-1), 

remotely sensed LAI values at the end of flowering were lower. This is the reason why assimilation 

of remotely sensed LAI led, in this case, to a general underestimation of yields for Selenio in 2016 

(Figure 3). 
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Figure 3. Frequency distributions of relative bias error (RBE; %) resulting from the comparison 
between observed and simulated yields for each simulation unit (corresponded to the cells of a 
30 m × 30 m regular grid). Red and blue refer, respectively, to the values of RBE calculated for 
simulations performed with the default parameterizations and for those benefiting from LAI 
assimilation. Dotted black (vertical) lines indicate RBE = 0%, i.e., perfect agreement between 
observed and simulated yield values. 

The good results achieved by assimilating remotely sensed LAI data were further underlined by the 

indices of agreement between simulated and observed yields (Table 2). Indeed, the model 
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capability to reproduce yield distribution within each field improved in almost all the cases, with 

mean values for MAE and RRMSE equal to 0.71 t ha-1 and 14.7% (while MAE = 0.80 t ha-1 and 

RRMSE = 15.7% using default parameterizations). Excluding the two cases discussed above 

(Augusto in 2015 and Selenio in 2016) where inconsistencies between LAI and observed yields 

were noticed, LAI assimilation overall led the indices of agreement to improve to a greater extent 

(average MAE and RRMSE = 0.66 t ha-1 and 13.8%).The use of the integrals between -15% and 

+15% of the     probability distribution functions (    ) confirmed the improvement in model 

performance when remotely sensed LAI were assimilated. The average      after the 

assimilation was indeed 0.70, whereas it was 0.65 with the default parameterizations. Even in this 

case, excluding the two cases discussed above, the average      would have been equal to 0.73, 

i.e., in 73% of the cells, the RBE for rice yield simulation was lower than 15%. 
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Table 2. Performances of the WARM model for simulating spatially distributed rice yields using 
the default parameterization (default) and after the assimilation of remotely sensed LAI data 
(recalibrated).      = integral of Relative Bias Errors between -15% and +15%; MAE = Mean 
Absolute Error (t ha-1; minimum and optimum = 0, maximum = +∞); RRMSE = Relative Root 
Mean Square Error, obtained as the ratio between RMSE and the mean of observations (%; 
minimum and optimum = 0, maximum= 100); default = results obtained with default 
parameterizations; recalibration = results obtained after parameters recalibration for LAI 
assimilation. 

  Simulation 
units (# of 

fields) 

∫ RBE MAE RRMSE 

  default recalibration default recalibration default recalibration 

Augusto 2014 118 (6) 0.53 0.69 0.78 0.63 16.4 15.1 

Augusto 2015 94 (9) 0.46 0.26 0.85 1.19 20.1 26.9 

Centauro 2015 61 (3) 0.74 0.78 0.73 0.61 16.7 16.6 

Ecco61 2015 17 (2) 0.98 0.90 0.69 0.38 12.2 8.18 

Oceano 2015 83 (8) 0.86 0.84 0.47 0.46 10.6 10.5 

Opale 2014 52 (3) 0.54 0.70 0.78 0.57 16.8 12.9 

Selenio 2014 146 (15) 0.68 0.70 0.64 0.67 15.3 16.2 

Selenio 2016 247 (10) 0.86 0.69 0.58 0.81 9.59 13.9 

Mare 2014 176 (16) 0.73 0.73 0.74 0.72 12.9 13.4 

Mare 2015 278 (13) 0.52 0.75 0.98 0.63 18.2 12.6 

Mare 2016 145 (18) 0.64 0.62 0.96 1.00 16.7 15.9 

Sirio 2014 135 (6) 0.61 0.61 0.67 0.71 16.4 17.0 

Sole 2015 118 (5) 0.53 0.60 1.09 1.01 17.0 16.7 

Sole 2016 166 (9) 0.44 0.88 1.27 0.52 20.3 9.23 

 

Results for the three sample fields shown in Figure 4 demonstrate the effectiveness of LAI 

assimilation for describing the within-field spatial variability of yields. Since the simulations 

obtained with the default parameterizations were performed using a single set of inputs (Fig. 4b), 

simulated yield is constant across field, without the possibility to reproduce the observed yield 

variability (Fig. 4a). On the contrary, LAI assimilation allowed to discriminate and quantify between 

highly and poorly productive areas (Fig. 4Figurec), thus providing useful information on the 

between-field and intra-field yield variability. As an example, looking at the upper field, LAI 
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assimilation allowed to properly simulate the higher yields in the top-right part of the field; the 

same can be discussed for the high productivity in the bottom-left part of the central field and for 

the low productivity in the bottom field. 

 

Figure 4: Spatially distributed yields (t ha-1) in three sample fields. Observed yields (a); 
simulated yields with the default parameterizations (b); simulated yields after remotely sensed 
LAI assimilation (c). 

5.5 Concluding remarks 

The parameterizations for the WARM model developed within the ERMES project demonstrated 

their reliability for the simulation of rice yield at field level, overall achieving satisfactory 

evaluation metrics. The assimilation of remotely sensed LAI data allowed improving model 

performances, although to a moderate extent, given default parameterizations were already 

developed using field observations collected under conditions very similar to those characterizing 

this study. For this reason, the contribution of LAI assimilation in case of less specific parameter 

sets is expected to be more impacting in yield estimation. Moreover, LAI assimilation allowed 

reproducing yield variability within fields, providing the model with an implicit spatial dimension 

despite all other inputs were constant at field level. Despite remotely sensed LAI data were used 

to recalibrate model parameters just once during the growing season, the agreement between 

simulated and observed within-field yield distributions (at 30 m × 30 m resolution) can be 

considered satisfactory. This makes this approach one of those eligible to provide high-resolution 

estimates of crop productivity. In the perspective of a more rationale use of inputs, possible 

applications of the methodology evaluated here deal with precision agriculture. Considering the 

fact that errors resulted higher at the margins of the rice fields (where the effect of mixed pixels is 

higher), it is reasonable to expect that the improvement of LAI spatial resolution could lead to a 

better estimations of the yield spatial variability. This will be possible from 2018, with the use of 

Sentinel-2A (here used for 2016) and Sentinel-2B (available since July 2017): the joint use of these 

two datasets will allow to have more dense time series at a better spatial resolution (10 × 10 m), 
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so reducing the effect of mixed pixels and allowing to estimate spatial variability also for smaller 

fields. Nonetheless, some aspects need to be further investigated, like those related with the 

inconsistencies found for two datasets (variety Augusto in 2015 and Selenio in 2016) in terms of 

relationships between LAI expansion and biomass/yield production, and between crop state 

variables and canopy reflectance properties. 
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5.6 Appendix 

Appendix A. Parameters values used as default for the WARM model. The Japonica-early 
parameter set was used for the varieties Augusto, Opale and Centauro, whereas the Japonica-
medium was used for Selenio and SoleCL. Indica-medium and Indica-late parameter sets were 
instead used, respectively, for SirioCL and Ecco61, and for MareCL and Oceano. 

Parameter 
Japonica 

early 
Japonica 
Medium 

Indica 
medium 

Indica 
late 

Specific Leaf Area at Emergence 36 28 34 28 

Partitioning to Leaves at Emergence 0.61 0.67 0.65 0.6 

PAR to Global Radiation Factor 0.5 0.5 0.5 0.5 

Specific Leaf Area at Tillering 19 17 16 17 

Maximum Panicle Height 66.24 66.24 66.24 66.24 

Growing Degree Days to Reach Emergence 80 120 100 100 

Growing Degree Days to Reach Flowering 840 830 830 1050 

Growing Degree Days to Reach Maturity 340 400 400 390 

Growing Degree Days to Reach Harvest 100 100 100 100 

Base Temperature for Development 11 11 11 11 

Optimum Temperature for Development 25 25 25 25 

Maximum Temperature for Development 42 42 42 42 

Photoinhibition 1 1 1 1 

PhotoInsensitivity 20 20 20 20 

Maximum Radiation Use Efficiency 2.2 3 3.1 3.15 

Threshold Radiation for Saturation 25 25 25 25 

Maximum Rooting Depth 100 100 100 100 

Full Canopy Water Uptake Maximum 8 8 8 8 

Full Canopy Coefficient 1.05 1.05 1.05 1.05 

Base Temperature for Growth 12 12 12 12 

Optimum Temperature for Growth 30.5 32 30.8 30.8 

Maximum Temperature for Growth 40 40 38 38 

Development Susceptibility to Water Stress 0.3 0.3 0.3 0.3 

Leaf Life 620 600 500 500 

Extinction Coefficient for Solar Radiation 0.5 0.5 0.5 0.5 
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6.1 Specific and overall conclusion 

The ultimate goal of this research was the setup and evaluation of procedures to support decision-

making based on the integration of process based crop model and remotely sensed information. 

Before the formalization and the evaluation of the tool with measured data, some activities were 

carried out to guarantee the reliability of the proposed methodologies. This led the following tasks 

to be performed: 

 The improvement in the simulation of canopy structure for a widespread crop model; 

 The evaluation of modelling solutions sensitivity to their parameters under a wide range of 

agro-climatic conditions; 

 The quantification of the precision of one of the most popular method for LAI estimates. 

The first task, presented in Chapter 2, was carried out for improving the simulation of crop growth 

and production dynamics via an increase in the level of adherence of the simulated system to the 

underlying one. The new model (WOFOST-GTC) allowed to satisfactorily reproduce rapeseed 

growth and productivity, as well as the quality of production. 

The second task (described in Chapter 3) was about a series of sensitivity analysis experiments 

performed on two WOFOST-based modelling solutions. Sensitivity analysis is a useful technique to 

obtain information about model structure and to identify the most influential parameters and it is 

usually applied before the operational use of modelling solution. It allows identifying the 

parameters on which the largest efforts should invested during the parameterization, as well as 

the parameters to automatically re-calibrate in case of exogenous data assimilation. Within this 

task, sensitivity analysis experiments were targeted to major crops in different European sites 

under different weather regimes. Moreover, the effect of extreme weather events on crop growth 

and productivity was considered by running simulation using different model configurations. The 

simulation of the final yield was mostly influenced by the parameters related with storage organs 

dynamics. Indeed, the parameters identified as the most influential were those related with 

biomass partitioning to storage organs and its conversion efficiency. Exceptions were found in case 

of anomalous weather conditions. In these cases, the modelling solutions were mostly influenced 

by the parameters driving the simulation during early crop stages. 

The third task, well documented in the chapter 4, was targeted to the validation (determination of 

repeatability and reproducibility) of the LAI estimates from hemispherical images, one of the most 

widespread indirect methods for LAI estimates. This activity is particularly important, given LAI 

estimates are also adopted to calibrate radiative transfer models used in remote sensing. The 
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quantification of the impact of subjectivity and the determination of precision metrics using 

rigorous validation protocols allowed to conclude that the hemispherical photography, despite its 

low cost, can be considered as a valuable technique for LAI estimates also in case of complex 

canopy structures. 

All the activities briefly summarized above allowed defining sound bases for the integration of 

crop models and remote sensing. In this sense, a case study is shown in chapter 5, where remote 

sensing LAI data collected during 2014, 2015 and 2016 were assimilated in the WARM rice model 

to analyze intra-field variability at 30 m × 30 m spatial resolution. Unless few cases, the inclusion 

of remotely sensed LAI data contributed to reduce the uncertainty in yield simulation. Moreover, 

the yield variability within each field was accurately simulated thorough the identification of the 

most and less productive areas. Results were obtained starting from default parameterizations 

and automatically recalibrating model parameters once during the growing season, thus improving 

model performances while saving computational costs. This allows the system to be adopted to 

derive spatially distributed information on crop status and to support the decision-making under 

operational contexts. 

6.2 Future perspectives 

Despite the promising results achieved, some weakness emerged during its validation. The 

inclusion of remotely sensed data did not improve modelling performance in two cases. Some 

inconsistencies were founded in the relationship between crop state variables and LAI data. In 

particular, a high LAI value at canopy closure did not correspond to a high final yield. So, further 

investigations about the mutual relationship between LAI and final yield are required. Within this 

issue, the refinement of LAI description will be of certain importance. Other works will be directed 

to the improvements of the techniques to include remotely sensed LAI values into crop models, 

thus avoiding unexpected unbalances in the relationship between crop state variables. The 

downscaling of model simulation to a fine resolution accompanied with low requirements in terms 

of computational costs make the system proposed a valid approach for large scale applications. 

Further researches will target the adoption of other modelling solutions which explicitly describe 

the effect of agro-management practices, to further validate this tool for supporting crop 

management. 

  



100 
 

PUBLICATIONS DURING THE DOCTORAL WORK 

Submitted 
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Published 
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