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“And the feeling is that there’s something wrong,
because I can’t find the words and I can’t find the songs.”
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Motivation

“Muovo le molecole immobili.”

AFTERHOURS

One of the biggest revolutions occurred during the second half of the 20" century in
physics was the introduction of computers in research. In particular, the use of fast com-
puting machines opened the possibility to study complex systems by simulating their
dynamics, without the need to pursue analytical solutions [1]], otherwise impossible to
tackle. The consequences of this breakthrough were huge both in the study of equilib-
rium and non-equilibrium many-body problems, with the strong limitation given by the
number of atoms involved in the calculation.

During the same period, molecular biology moved its first steps. During the 1950s the
a-helix [2] and the S-hairpin [3] were identified as the principal motifs in protein struc-
tures. The discovery of these small (in the order of the hundreds of atoms) structures
opened the possibility to apply this computational many-body approach to molecular
biology.

The first technique used in biology-related problems was the Monte Carlo Method [4} 5],
and some years later Molecular Dynamics (MD) [6] was formalized. In MD, for each
atom of the system one can solve its Newton equations of motion, obtaining a trajectory
in the phase space for the entire system, and study its behavior in equilibrium and non-
equilibrium conditions. The constant rise in computational power gave the possibility
to scientists to study larger and larger systems, while the advances in experimental tech-
niques enhanced the possibility for direct comparisons between wet and in silico data
at similar levels of resolution. Despite the validity of Moore’s Law (i.e., the exponential
growth of the computing power due to transistors miniaturization) until now [7], the
timescale of the events that can be simulated has an upper limit of the millisecond with
tailor-made computers [8], which is not enough to study all the biologically-relevant
phenomena. Since the birth of computational chemistry, a huge number of different sta-
tistical mechanics-based methods has been implemented to permit, given the computing
power limit, an effective reliable use of MD simulations in biochemistry.

xi
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One of the most relevant problems tackled by MD is the calculation of free energy differ-
ences, both in conformational changes and in sequence mutations of a protein. The main
reason of this difficulty is represented by the frustrated nature of interactions in proteins
and the size of these systems: this leads to a complex energy landscape which in prin-
ciple needs very long sampling times to overcome all possible energy barriers. A lot
of different methods have been developed to overcome this problem, but most of them
need the a priori knowledge of a meaningful collective variable for the system (like Um-
brella Sampling [9] or Metadynamics[10]), or, like in the case of free energy calculation
techiques (Free Energy Perturbation [11]]) the calculation strategy and its convergence
strongly depend on the choice of pathway in the potential space, which is also in this
case a system-dependent problem.

Moved by this reason, we studied and improved a path-independent and system-indep-
endent free energy calculation techique, called Simplified Confinement Method [12][13].
We describe this work in Chapter

Although MD has been successful in most of its applications, there are still many open
problems: as mentioned before, the available parametrizations of interaction potentials
(called force fields) are not completely reliable [14]. In particular, the choice of force field
parameters is performed comparing experimental data on a fixed set of (usually small)
molecules with computed data on the same molecules. This raises a significant problem:
large molecules can have a more complex behavior, and using these potentials can lead
to a systematic error; furthermore, the timescale in which the force field is tested needs
to be limited. Another strong limitation of MD depends on the equilibrium experiments
used for parametrization: the kinetic properties of a system are not considered [15].
Given the impossibility to reparametrize a general force field with non-equilibrium ex-
perimental data, we implemented a technique that uses equilibrium-based force fields,
adding a potential term based on time series resulting from kinetic experiments. This
approach, based on the principle of Maximum Caliber, restrains the system with an
experimental-based bias, returning a more realistic behavior of the simulation in con-
dition where the usual force fields show their limitations. We describe this work in
Chapter

The application of computational methods in the study of proteins confirms its efficacy
in other fields of life sciences: an actual and emerging topic is represented by vaccinol-
ogy. With techniques developed by Louis Pasteur at the end of the 19" century (isolation
of the pathogen, its inactivation and subsequent inoculation in the host), various scien-
tists developed vaccines for deadly diseases like poliomyelitis, diphterite and measles.
None of the mentioned was developed with molecular biology-based approaches.

Almost 50 years after the birth of molecular biology, the Human Genome Project de-
coded human DNA [16] and, at the same time, the genome of the most dangerous
pathogen was screened. This has laid the foundation of Reverse Vaccinology (RV)[17],
where the proteins responsible for immune reaction can be identified from the pathogen
DNA and tested directly on animal models, obtaining a new vaccine candidate with little
or no risk for the host, having removed the pathogen itself. At the beginning of the 21%
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century the first vaccine against Meningococcus B, responsible for the 50% of the meningo-
coccal meningitis, was developed using this protocol [18]. Since then, crystallographic
data was inserted in RV workflow to exploit conformational data, creating the so-called
Structural Vaccinology (SV) [19]. To enhance its efficacy, SV exploits all the aspects of
molecular modeling like computer-aided drug/protein design and MD to integrate in-
formation that come from experimental sources. One of the most promising technique
in this field is the grafting of an immunogenic sequence (i.e., a portion of a protein rec-
ognized by the immune system) on a foreign protein; this approach could lead to a new
vaccine component which have no risk for the patient. To date, the grafting technique
has been carried out by human-driven workflows.

Motivated by this reason, we studied immunogenic peptides from a family of pathogens
involved in respiratory diseases, exploiting Structural Vaccinology principles with both
computational and experimental approach. Furthermore, we developed and imple-
mented an unsupervisionated automated tool to design grafted protein sequences. We
describe this work in Chapter
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Organizational note

The present Thesis consists of 3 Chapters.

Chapter [T} Calculation of free energy differences in biomolecules: we describe
our original work based on the Confined Method (CM) proposed by Tyka et al. and
refined as Simplified Confinement Method (SCM) by Ovchinnikov et al.. The work
on single-point mutants has been completed in collaboration with E. Villemot, A.
van der Vaart, G. Tiana, E. Moroni, and G. Colombo and published in The Journal
of Physical Chemistry Letters (ref. 1 in Refereed Publications); the work on confor-
mational free energy differences using MBAR interpolation has been completed in
collaboration with F. Villemot, A. van der Vaart and G. Colombo and published in
the Journal of Chemical Theory and Computation (ref. 2 in Refereed Publications).

Chapter[2} Non-equilibrium sampling: we describe the application of principle of
Maximum Caliber to non-equilibrium sampling of biomolecules in MD. This work
has been completed in collaboration with G. Tiana and C. Camilloni and a paper is
currently in preparation (ref 1 of Publications in preparation).

Chapter[3] Peptide and protein design for immunology: we describe our original
study on peptides used as a probe for immunodiagnostic purposes. This work has
been completed in collaboration with E. Matterazzo, M. Amabili, C. Peri, A. Gori,
P. Gagni, M. Chiari, G. Lertmemongkolchai, M. Cretich, M. Bolognesi, G. Colombo
and L. J. Gourlay and published on ACS Infectious Diseases (ref. 4 in Refereed Pub-
lications). The work on automated grafting of epitopes on foreign scaffolds has
been completed in collaboration with F. Marchetti, G. Tiana and G. Colombo and
published in the Journal of Chemical Information and Modeling (ref. 3 in Refereed Pub-
lications). The first ongoing application of the SAGE workflow is also discussed;
this part involved M. Amabili, L. J. Gourlay, M. Bolognesi and G. Colombo and a
paper is currently in preparation (ref 2 of Publications in preparation).



CHAPTER 1

Calculation of free energy differences in biomolecules

“L’improbabilita di un’ipotesi ¢ esponenzialmente
proporzionale alle menzogne che invento per farla
verificare.”

UocHI Tok], il Non-illuminato

Proteins are linear polymers with an extremely small number of equilibrium conforma-
tions at biological conditions, which depends on their sequence [20]. To estimate the
stability of a protein the Gibbs free energy difference between two conformations (AG)
is used, which is related with the probability to find the system in a given configuration.
In the case of sequence mutation, the variation of the Gibbs free energy difference (AAG)
tells us if the change in protein sequence is stabilizing or destabilizing the structure the
system. In biochemistry, the computation of conformational AG or mutational AAG of
a protein is then crucial to understand the stability of a biomolecule, and, from an ap-
plicative point of view, it is fundamental in protein engineering and drug design.
Experimentally, it is possible to obtain the variation of Gibbs free energy difference using
fluorescence [21]], calorimetry [22] or kinetics experiments [23].

From the computational point of view, the calculation of free energy difference is far
from trivial. During my PhD, I have studied and improved a novel technique, called
Simplified Confinement Method, and I have applied it to the computation of free energy
difference in peptides and small proteins.

1.1 Introduction

Molecular Dynamics (MD) is the simulation technique devoted to solve numerically the
Newton equation of motion for a system of N particles, where their potential is described
by an approximated (derived from experimental data or with ab-initio calculations) force
field. In most of the applications of computational biophysics, one is interested in study-
ing by means of MD the equilibrium properties of a system. This leads to a clear problem:
MD is not the most efficient way to target the equilibrium properties of a biomolecule in
its solvent, because it returns a trajectory which is a single realization of all the possible
paths in the phase space of that system.
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Following the Ergodic Theorem, if one can perform a very long MD simulation, it is pos-
sible to achieve equilibrium and compute directly all the thermodynamic properties for
such a system. This could lead to a comparison with experimental data which are, by
construction, an average over ~ 10** molecules.

One of the most fundamental (and thus more interesting) system observables is the free
energy difference between two states of the system or between two independent sys-
tems. This quantity cannot be obtained directly from averaging, but can be obtain invert-
ing the equilibrium distribution of the system. As in the case of equilibrium observables,
the accuracy of free energy computation strongly depends on the number of conforma-
tion visited, making its (brute-force) computation a burdensome problem. Gibbs free
energy difference AG can be related to fundamental properties of biochemical interest
like solubility [24) 25], binding affinity [26] and biological activity [27].

For this reason, free energy calculation has been a central topic for a wide range of dif-
ferent sciences with different approaches, from biology to statistical physics [28§].

In the canonical ensemble, the Helmholtz free energy is defined as

F(N,V,T) = —kpTlog Z(N, V,T)

= kaTlog// exp < )) dVpdNq

where Z(N,V,T) is the partition function of the system in the canonical ensemble, and
H(p, q) is the hamiltonian that describes the dynamics of our system.

In molecular dynamics classical potentials, The hamiltonian is defined as H(p,q) =
U(q) + K(p) and thus the potential is completely independent from the momenta, and
the integral over p is then a constant (at fixed T').

Neglecting the “non-informative” kinetic part, the Helmholtz free energy results

F(N,V,T) = —kBTlog/exp ( Z(T)> dNq. (1.1)
All the derivations in this chapter for Helmholtz free energy which is based on canonical
partition function (i.e., number of particle N, volume V' and temperature T" are constant)
are equivalent in Gibbs free energy G(N, P,T') apart for the change of ensemble, from
canonical to NPT (i.e., number of particle N, pressure P and temperature 7" are constant).
Furthermore, the Gibbs free energy is the experimental measurable state function.

Given the definition of free energy and considering an incredibly long sampling of the
phase space for a system, the most trivial technique to obtain free energy differences be-
tween two states A and B, defined setting a threshold on a meaningful order parameter
(i.e. a reaction coordinate) of the system, is its naive application: we can count the num-
ber N of configurations in a state A and the number of configurations Vg in a state B
during the sampling

AF, 5= —kTln (NB> . (1.2)
Na
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As previously said, a sampling which gives a reasonable statistics to use the equation
is not reachable in a human being lifetime. In particular, one has to consider the free
energy barriers that have to be crossed by the system and the enormous dimensionality
of phase space, making overlap between the two states A and B completely unrealistic
in real-world applications.

During the last 50 years a plethora of different techniques based on statistical mechanics
assumptions has been developed to compute free energies given a limited sampling.
There are two major schemes to tackle this problem:

Enhanced Sampling: The first approach consists in studying the free energy vari-
ation along a reaction coordinate £(¢q) of interest; in this way, the dimensionality
of the problem is lowered to a small number of collective variables, instead of 3N
independent atomic coordinates. It is possible to add a bias term to U(g) which
depends on £(¢) and then subdivide the phase space in different parts which can
reach equilibrium in a reasonable time (like in Umbrella Sampling technique [9]).
Another way is to introduce in the potential a memory term for the reaction co-
ordinate £(g,t) (like in Local Elevation [29], Metadynamics [10] and in its well-
tempered variant [30]) in order to “lower” the free energy barriers and perform a
more efficient sampling.

Free Energy Calculation: The second approach consists in computing directly the
difference between a state A and a state B starting from a definition of a derivative
of free energy with respect to some parametrization. Having two different states
of interest A and B, we switch from a potential Ua that describes the state A as a
global minimum to a potential U that describes the state B following the variation
of a parameter A. Given the freedom in choosing the two potentials, this permits
also the so-called computational alchemy [31]]. To this class of techniques belong
Thermodynamic Intergration [32} [33] and Free Energy Perturbation [11]].

During my PhD, I worked towards enhancing the performance of a Free Energy Calcu-

lation technique based on Thermodynamic Integration.

1.2 Thermodynamic Integration

Given a classical system formed by NN particles subjected to a potential U(g), the goal of
Thermodynamic Integration (TI) is the calculation of free energy difference between two
different states (or even different systems) A and B. We introduce a new U(q)

U(g, \) = AUa(q) + (1 = A\)Us(q) (1.3)

where ) is a decoupling parameter in the potential such that, for A = 0, U(q) = Ua(q),
which is the potential function of the state A, while for A = 1, U(¢) = Us(g), which is the
potential function of the state B.

Inserting this potential in the expression of Helmholtz free energy and differentiat-
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ing with respect to A

OF(N,V,T,\) _ )
- T@Z(N,V,T,)\) 1
- B O\ Z(N,V,T,\)
oU(q, A
/% exp (—kpT U(g,\)) d"q
/eXp (~ksT U(q, X)) d¥q
9U(g,A)
= (== 14
< ) (1.4
Integrating equation (1.4), the free energy difference between the state A and the state B
results L
A
AFp = / <3U(‘J)> A\ (1.5)
0 2 A

This integral can be carried out numerically, simulating the system of interest with dif-
ferent values of A (called “windows”), computing directly the value of the (45 ) , after
the equilibration of the system with the new potential.

The major issue of the Thermodynamic Integration technique (apart from statistical error
in the evaluation of the average, which can be resolved with longer window simulations)
is the convergence of the integral in equation [34]. In particular, the lack of phase-
space overlap for subsequent values of A (approximately, we can set a maximum AF
between two consequent windows of about 2 kcal/mol) can results in large errors, and
thus in an unphysical value for the free energy difference between the two states. This
problem can be resolved in two ways: the naive one is the simulation of more A win-
dows; the wiser way is to choose a different path in the phase space which makes TI
avoid the crossing of high free energy barriers, to limit the presence of huge free energy
difference between windows. In particular, free energy at equilibrium is a state function,
thus AFa_,p is independent from the followed path.

Operatively, it is possible to break the transition between the two states inserting some
intermediate (even unphysical) states, that make the calculation convergence easier and
building a thermodynamic cycle (see Figure[1.T).

The use of a thermodynamic cycle is computationally necessary in some fundamental
applications of Thermodynamic Integration, such as the computation of solvation [35]
or binding free energies [36].

Given the possibility to split the pathway in different TI steps, it is however far from
trivial to build a path that converges in a reasonable time to the correct value of free
energy difference, and the wise choice of the intermediate states is the key point to get a
convergent simulation. During the years some solutions, like soft-core potentials [37, 38}
39], have been developed to overcome these problems. Another approach is the creation
of intermediate states which are independent from the force field free energy landscape,
and thus not affected by the overlap problem, like in the Confinement Techniques.
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A AFx_B o B

/AFA—>81 AFSN—>B

Sl SN

\AFSl_)S? AF'SN—1—>SN

AFAB = AFp s, + AFs, 45, ++ -+ AFsy_, sy + AFsy B

Figure 1.1: Example of a thermodynamic cycle. The free energy difference between states A and B
can be computed using an alternative pathway via N intermediate states S; ... Sn.

1.3 Simplified Confinement Method

One of the techniques that uses thermodynamical cycles with TI is the Confinement
Method (CM), proposed by Tyka et al. [12] and subsequently improved by Cecchini et al.
[40] and Ovchinnikov et al. [13] into the Simplified Confinement Method (SCM).

To avoid the overlap problem explained in section each state of interest has to be
“confined” (harmonically restrained) to a reference state which is equivalent to a system
of 3N non-interacting harmonic oscillators. Using T1I, it is possible to compute AF' from
the “real” state and the confined one, while the free energy difference between the two
reference states can be obtained analytically. The free energy between state A and state
B results then

AFA*)B - AFA_>AHO + AFAHO%BHO + AFBHO%B

as shown in the thermodynamic cycle in Figure
For the TI transition in the Confinement Method, we have a slightly different expression
of the potential U (g, \) with respect to the one in (1.3)

Ul(g, \) = Us(q) + AUno(q)

= Uila) + 3k la — ol 1.6
where Ug(q) is the original force field, Uno(q) is the confinement potential, k5 is the max-
imum harmonic constant used to constrained the system, and it should be big enough so
that U(q, \) ~ Nk |q — qo|? for A = 1 (i.e., the force field has to be only a perturbation
of the harmonic confinement). In this way, it is possible to avoid the switching-off of the
force field for different values of A.

For practical reason explained below;, it is possible to switch to a rappresentation based
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AFA_>AHO

> AHO

A Thermodynamic Integration

AFs g Analytical | A F'yno _,gHO

Y Y
Thermodynamic Integration
B= BHO

AF BHO B
Figure 1.2: Simplified Confinement Method thermodynamic cycle. The AF between the force

field states and the harmonic ones are obtained via TI, while the AF between the two confined
states is obtained analytically. The target free energy difference is represented by a red line.

on typical oscillation frequency

And the potential becomes
U(q, \) = Uslg) + 2x°mAv® |q — ol (17)
Inserting the new potential in the expression of AF for the TI and changing

the integration variable to ¢ = A\v? we have

L2
2
AF,_ pno 227T2M/ <’q_Q€‘ )¢ d¢,
0

where M is the total mass of the system. The squared average displacement can be
expressed in terms of average of the potential energy of the confinement, obtaining

(Uno)¢
¢

AFy  am0 =M / dc. (1.8)
0

And the integral is carried out numerically using a logarithmic fit (|g — qo|*)x =~ ak’.
Details on numerical integral calculation are in appendix

We choose 12 as integration endpoint because we can define a physical reasonable bound-
ary, which is in the order of the typical vibrational frequency of hydrogen atoms (~ 90

ps~H).

The analytical part of the thermodynamic cycle is based on the idea that the harmonically
confined state subject to the potential defined in (1.6) is a system of 3N non-interacting
harmonic oscillators. Introducing a best-fit on the configuration based on the reference



Calculation of free energy differences in biomolecules 7

initial state in the MD, we remove all the roto-translational entropy contribution in free
energy. In this way, the free energy of a confined system (which is represented only by
vibrational and roto-translational entropy) results

h
FHo—E0+3NkBT10g< v

kJBT> + Fr0t+tr»

where Ey = Ug(qo), h is the Planck constant, v is the typical frequency of the oscillators,
and Fyoi.t is the roto-translational contribution. In the case of the same number of atoms
N, the translational contribution is equal to 0 (see appendix[A).

The free energy difference between two different states of the same system results

AFAHO%BHO == FBHO - FAHO

hv hv
= ES + 3NkpTlog ( T ) + Fhwe — EY — 3NkpTlog ( T ) —FB .

— E} — FA

rot

=Ep+ Fpy —

rot

Considering all the thermodynamical cycle, the free energy difference results

AFA*)B == AFA*}AOH + AFAOH*)BOH + AFBOH*)B
= M/ HO Cd¢+ EP - Eb - M/ H0>< ¢ + AFR (1.9)

We applied this technique to compute AAG relative to single-point mutations of a hair-
pin (section[1.4) and we improved SCM performance in AG calculation using a interpo-
lation/extrapolation scheme for confinement energies (section [1.5).

1.4 Computation of mutational AAG
The AAG of mutation for a protein (or a peptide) is defined as

AAGWT—mut = AGqu,aUmm - AGFWTHUWT

= A(;[JWT*>Umm - AGFWT‘>qut

where WT refers to the wild type protein, mut to the mutant of interest, U for the un-
folded state and F for the folded state of the protein.

In the context of SCM, the calculation of mutational AAG can be expressed in the double
thermodynamic cycle in Figure

The right cycle (AG¥F,,—F,,) can be computed using as reference state the global mini-
mum of the force field in biological conditions, while for the left cycle we have a problem
in the reference state definition. The unfolded state is a huge collection of possible con-
formational states dominated by entropy [21]; for this reason it is impossible to cover all
the phase space belonging to the unfolded state considering only a single conformation.
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HO < - s pHO
Uwr Uwr Fwr Fwr

HO HO
Umut é Umut b qut b qut
Figure 1.3: AAG SCM thermodynamic cycle. The difference in AG which defines mutational
AAG regards blue arrows, while the equivalent difference is carried out on the red transitions,
that can be computed using two SCM cycles black arrows).

Following the work of Seeliger and De Groot [41], we will approximate the unfolded
state as a random coil where every residue is in contact with the solvent and with negli-
gible long-range interaction between distant amino acids. By means of this approxima-
tion we can consider only local changes in environment. For this reason, we compute
AGU;—Ume In GXG tripeptides, where X is the mutated amino acid (G is the glycine).
This permits us to consider all the chemical bonds (the covalent bonds at backbone ter-
minals of the amino acid of interest), neglecting all the interaction with other residues
(glycine have the simplest possible sidechain, an hydrogen atom).

In both the thermodynamic cycles we have a fundamental difference with respect to
the conformational AG calculation: the starting state and the final state have a different
number of atoms. In the analytical part of the cycle we have to add the vibrational
entropy due to the change in NV and, furthermore, add a new term for roto-translational
free energy term (extensive derivation for this last term is in appendix[A):

hv

AG w0y o = B — BT+ 3(N™ - NWTkpT log < T
B

> +AG€/?/E11%—>mutHO (1.10)
The application of the GXG tripeptides approximation gives us an advantage: we have to
compute only a single thermodynamic integration for every amino acid kind; in princi-
ple, it is possible to compute all the possible left cycles after 20 different thermodynamic
integrations: one for every natural residue. This leads us also to a possible systematic er-
ror due to the neglect of long-range interactions; for instance, the presence of a transient
secondary structure in the denatured state or the existence of a metastable intermediate
state [42]] can not be taken into account.

We applied this technique to study the thermostability and compute the AAG of 8 dif-
ferent mutants to alanine (W43A, Y45A, D46A, D47A, T49A, K50A, F52A, and V54A, see
Figure of streptococcus protein G immunoglobulin binding domain hairpin (PDB
code: 1GB1 [43] residues 41-56), comparing them with experimental data [44]. Only 5
mutants (D46A, D47A, T49A, K50A, and V54A) have an experimental AAG value, while
the remaining 3 (W43A, Y45A, and F52A) were shown to be too destabilizing to obtain
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accurate numerical results.

F52

V54

Figure 1.4: Wild type streptococcus hairpin of protein G immunoglobulin binding domain. Mu-
tated residues are highlighted.

1.4.1 Computational Implementation

All the minimizations and MD simulations were carried out with GROMACS 4.5.7 [45]
using the AMBER99SB force field [46]. The MD engine was patched with PLUMED 2.1
[47] for the biasing potential and for the roto-traslational best fit.

Starting from the crystallographic structure from Protein Data Bank, we designed the
tripeptides and all the single-point mutant for the hairpin with the PyMOL framework
[48]. Every structure (original crystallographic structure included) was then minimized
with a three-step protocol:

1. 2 - 10" steps with steepest-descent algorithm, with a convergence tolerance of 1
kJ/(mol nm);

2. 2-10* steps with conjugate gradient algorithm, with a convergence tolerance of 1
kJ/(mol nm);

3. 2-10* steps with L-BFGS algorithm 50], with a convergence tolerance of 1073
kJ/(mol nm).

obtaining in this way the reference structures for the SCM protocol.

All the MD simulations were performed at T = 298 K in GBSA implicit solvent [51]
with a leapfrog stochastic integrator [52] with a friction coefficient of 1 ps~*, using two



10 1.4 Computation of mutational AAG

Hamiltonian Replica Exchange simulations [53] for the lowest restraining, each one in-
volving 4 consecutive frequencies. Our choice on the use of implicit instead of explicit
solvent, while not necessary for the SCM approach (see [54], where the authors show
a SCM technique with a further explicit solvation calculation), permits us to speed up
simulations and sample better the conformational space of the system. Furthermore, we
found out that the main source of systematic error is related to the tripeptide approxi-
mation of the denatured state (see below), making this choice not crucial. To avoid noise
in harmonic oscillators we did not use LINCS [55] bond constraining in our simulations.
We simulated a total of 16 different frequencies exponentially spaced for the thermo-
dynamic integration, where the total simulation time was 10 ns for every replica while
the timestep and the number of steps were adapted to the restraint frequency to avoid
integrator errors. The parameters for the restraining is in table

Table 1.1: Simulation parameters for the SCM windows

Simulation v [ps™'] At[fs] ngep ‘ Simulation v [ps™'] At[fs] ngep

1 0.020 1 107 9 3.474 1 107
2 0.039 1 107 10 6.601 1 107
3 0.074 1 107 11 12.541 1 107
4 0.140 1 107 12 23.828 1 107
5 0.267 1 107 13 45.273 025 4107
6 0.506 1 107 14 86.019 025  4.107
7 0.962 1 107 15 163.435 025 4107
8 1.828 1 107 16 310.527 025 4107

To decrease the statistical error, the multistate Bennett acceptance ratio (MBAR) esti-
mator [56] was used to calculate (Uno)¢ in all the windows. The last four simulated
windows have shorter time steps to avoid integrator problems in the proximity of the
resonance frequency of hydrogen atoms. A longer discussion on energy reweighting
using multiple simulation is in section[I.5]

1.4.2 Results

Results in Figure show that AAG values for D46A, T49A, V54A, and D47 A strongly
correlate with the experimentally measured values when using the unfolded tripeptide
reference structure of Figure The calculated AAG values of these mutants fit the
experimental values according to

AAG e = 1.08AAGep — 4.79 keal /mol

shown by the dashed black line labeled “A” in Figure[I.5, with a correlation coefficient of
0.987. The K50A mutant strongly deviated from the trend, however. A possible explana-
tion for this observation is the strong mobility of the charged side chain, which could be
stabilized in the denatured state through nonlocal interactions with the rest of the chain.
If that is the case, the unfolded state configuration of the wild type differs from that of
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the mutant, violating our initial assumption.
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Figure 1.5: Comparison between experimental and calculated AAG values for GB1 domain hair-
pin mutants. Trend line labels refer to different GAG tripeptide conformations (Figure 4). Not
shown is K50A, which had a calculated AAG of -13.87 & 0.24 kcal/mol and an experimental
AAG of -0.45 + 0.26 kcal/mol. Also not shown are W43A (calculated: -3.72 + 0.24 kcal/mol),
Y45A (calculated: -7.66 + 0.24 kcal/mol) and F52A (calculated: -8.82 + 0.24 kcal/mol), which
were also unstable in experiments but lack experimental AAG values.

In this framework, because of the use of an implicit solvent model and the extended
tripeptide-model for the unfolded state, systematic errors in the calculation of AAG are
to be expected. However, if the mutations do not affect the conformations of the un-
folded and folded states, calculated AAG values should strongly correlate with experi-
mental values.

Considering that all the left SCM cycle used the same AGyuo_,y,  computed on GAG
tripeptide (all the considered amino acids mutates to alanine), we used 8 different ref-
erence conformations (Figure where conformation A is the one that followed the
original minimization protocol explained in Methods section, and for the other an ex-
planation is given below) to evaluate the possibility of a systematic error due to the
initial conformation.
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Figure 1.6: GAG tripeptide different reference conformations.

Although no experimental AAG values were available for the W43A, Y45A, and F52A
mutants, experiments showed that these mutations were medium (for W43A) to strongly
destabilizing [44]. In accord with the experiments, Y45A and F52A showed the most neg-
ative AAG values, but W43A showed the least negative value of all mutants. In fact, for
W43A AAG was higher than for the stabilizing D47A mutation. This deviation from ex-
perimental results could be ascribed to the presence of the large hydrophobic side chain
of tryptophan which can form nonlocal interactions in the denatured state to avoid sol-
vent exposure: these factors might be poorly represented in our minimalistic model of
the unfolded state.

Despite a good correlation between the predicted and experimental data for most mu-
tants, we observed a shift in AAG values (-4.79 kcal/mol) compared to experimental
values. To verify that this was indeed a systematic error, we changed the reference struc-
tures. We first changed the reference structures for the WT. Two new WT references for
the folded state were used: the first taken after a 5 ns MD simulation of the WT at 298
K and a second by subjecting this MD structure to the three-step minimization protocol.
After repeating the confinement simulations, we observed that the shift did not change
substantially when using either native wild type reference states, (the first WT had a
AAG drift of 4.98 kcal/mol; the second 4.58 kcal /mol).

As mentioned above, we also reran the calculations using different GAG tripeptide ref-
erence structures for the confinement simulations of the unfolded mutant. For each local
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minimum in conformational space (obtained from metadynamics [10] simulations), two
reference structures were generated: the first by MD and the second by minimizing the
MD structure using the three-step protocol. All GAG tripeptide reference structures are
shown in Figure and the effect on the calculated AAG values is shown by the vari-
ous dashed lines in Figure labeled according to the structures of Figure Also in
these cases, the shift in AAG did not change in a significant way.

Overall, the approach highly correlates with experimental AAG values. Except for two
outliers, the approach correctly predicted the order of thermodynamic stability of the
single—point mutants: AAGpga > AAGvyssa > AAGTaon > AAGpaga > AAGyssp >
AAGEsA.

Summarizing, we have shown that confinement simulations can be used as an alter-
native to alchemical free energy simulations when calculating mutational free energies
and that this method can be used to provide a practical scanning tool to evaluate the
direction of free energy changes upon mutations. We have illustrated the method by
evaluating the differences in unfolding free energies for mutants of a small S-hairpin.
Despite the use of additional approximations with respect to the unfolded state repre-
sentation, the approach largely predicted the correct order of thermodynamic stabilities
for the mutants.

1.5 SCM efficiency enhancement

As we have shown in the previous 2 sections, the confinement method provides an effi-
cient and robust way to calculate conformational free energy differences, even for states
that are highly dissimilar in structure, but the method has other computational benefits
that can be exploited. The free energy of transforming the system to a set of independent
harmonic oscillators is obtained through a series of restrained simulations, each with a
different strength of the harmonic restraint. While the strengths differ, the center of the
restraint is the same in all of these simulations and corresponds to the equilibrium struc-
ture of interest. This means that all configurational space accessible to the high restraint
simulation is contained in the accessible configurational space of the low constraint sim-
ulation. Naturally, the numerical value of this overlap will be very small when there is
a large difference in restraints (because the amount of accessible configurational space
shrinks as the restraint increases in strength); however, the overlap can be particularly
large for “neighboring” simulations for which the restraint force constants are closest
in value. The overlap in configurational space is closely associated with the overlap of
energy distributions, which is crucial for the accurate estimate of thermodynamic prop-
erties [57].

Here we exploit this overlap in order to maximize the efficiency and minimize the sta-
tistical error of confinement simulations. We will show that one can use the overlap in
configurational space to accurately predict confinement energies at unsampled strengths
and that this interpolation significantly decreases the error in calculated free energies.
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We will also show that instead of sampling at given intervals, one can use the overlap
to predict at which restraining strength to sample next for simultaneously optimal er-
rors and costs. Finally, by coupling these interpolations and extrapolations to relaxation
time analyses, we will introduce a robust protocol for optimal confinement simulations,
which is illustrated by applications to the alanine n-peptide and lactoferricin.

Because the system is confined to the vicinity of the same reference structure {go} in
each simulation, there is large spatial overlap between these sets of configurations. This
means that the configurations obtained at a given frequency can be used to estimate
ensemble averages at a different frequency. Consider N; configurations obtained from a
simulation with restraint frequency v;.

The ensemble average of an observable A at frequency v; is given by

HO

<A>Vj =(A e(iﬁ(UjiUi))%/- e PAGS; (1.11)

i

where 8 = (kpT)~!, AGHQ, = GO — GHO is the free energy difference between two
states restrained with typical frequencies v; and v;, and U; and U; are the biased potential
for such frequencies.
Remembering the potential expression (1.7), the difference between two biased states
with different frequencies v; and v; results

V2

Uj(q) — Ui(g) = 2n°m |q — qol” (VJQ - 1> ,
3

where the accuracy in observable average estimation increases for smaller |v; — v;|. An-
other way to improve accuracy in average estimation is to perform a longer sampling;
this can be done combining the conformations obtained from all the simulations at all
frequencies. As we did in the previous work (section[1.4), we applied Multistate Bennett
Acceptance Ratio (MBAR) [56] as estimator for confinement energy. MBAR is a tech-
nique that, given an ensemble of simulations performed in different conditions (in our
case, different confinement potentials), returns thermodynamic averages for each (even
not simulated) condition, reweighting all the available data. Its main advantage, com-
pared with other state-of-the-art methods (i.e. Weighted Histogram Analysis Method),
consists in associating an error to each computed average.

The application of the MBAR estimation has been performed also in frequencies higher
than the highest simulated during the TI calculation, giving an extrapolation that can
be used to assess the most convenient frequency for a new TI window. Operatively, we
start from a set of simulations performed with different restraints, up to an arbitrary
frequency vmax. We subsequently employ the extrapolation with MBAR to estimate the
confinement energy for a set of unsampled frequencies v; > Vmax. The computational
cost of this extrapolation is low (much lower than the actual sampling) and nearly inde-
pendent of the number of unsampled frequencies.

We chose this method because, in extrapolating toward higher frequencies, phase space
is compressed. This means that all relevant areas of space for the higher frequency re-
straint were sampled in the lower frequency simulation (but insufficiently). If we were to
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choose the other direction, that is, sampling at the higher frequency followed by extrap-
olation to the lower frequency, certain regions of space important for the low frequency
restraint would be left unsampled. After the extrapolation, a confinement simulation
is performed for each of the new frequencies in order to obtain the actual value of the
confinement energy, and these calculated values are compared with those obtained from
the extrapolation. The ratio between the extrapolated and actual confinement energy is
a measure of the error of the extrapolation. We express this ratio as a function of the free
energy difference AGH© between the simulations at v; and Vmax. AGHC can be obtained
from equation or, if simulations at multiple frequencies are used, from MBAR. The
latter approach would yield somewhat more accurate extrapolations because more data
is used. However, here we used data from only one simulation and the former approach
in order to base all comparisons on the same amount of data. For a given vmay, AGHO
increases with |vmax — ;| and represents a meaningful quantity that can be compared
across systems of different sizes.

The efficiency and accuracy can be improved further by considering the correlation time
of the system. This correlation time is affected by the addition of harmonic restraints,
especially at high frequencies, when the confinement energy accounts for a large portion
of the total potential energy. In addition, these restraints limit the configurations acces-
sible to the system to the ones close to the reference structure go, and the phase space to
sample gets smaller as the frequency gets higher. To attain comparable sampling for each
frequency, different sampling times are therefore needed, which can be estimated from
the correlation time. These were estimated by block-averaging the confinement energies
[58] and also by calculating the autocorrelation function of the confinement energy.

1.5.1 Computational Implementation
Alanine n-peptide

We performed confinement simulations of capped alanine n-peptides (n = 2, 4, 6, 8,
and 10, see Figure ), with the general formula CH3CO-Ala,,_;-NHCHj;. These simu-
lations were carried out with the CHARMM program [59], using the CHARMM polar
hydrogen parameter set param19 [60] and the ACE implicit solvent model [61]. The
two lowest-energy conformations of the alanine dipeptide are 7, and c7.q, which for
the force field and implicit solvent method used, correspond to backbone dihedral an-
gles of (¢,v) = (61.4,—71.4) and (78.0,138.7) degrees, respectively. The 7.« and c7¢q
conformations were used as the reference structures for the alanine dipeptide. Larger
alanine n-peptide systems behave nearly like independently linked alanine dipeptides
when the peptides are in the c7,« and 7,4 states [62} 63]. For instance, the energy min-
ima (C7,x, 7ax) and (c7eq, 7¢q) of the alanine 3-peptide correspond to (¢1,%1, 2,1%2) =
(61.1,—72.1,59.6, —71.6) and (—77.4,137.7, —76.7,137.8) degrees, respectively.

For all n > 3 alanine systems, the confinement reference structures were obtained by
setting all the (¢,) dihedral angles to the values of 7.« and c7¢q of the alanine dipep-
tide and performing an energy minimization. In the following, these configurations are
simply named c7.x and c7q, independently of the number of dihedral angles (see Figure
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Figure 1.7: The different analyzed alanine n-peptides in c¢7.x and c7.q conformations.

Also in this case, the analytical transition of the free energy difference contains a non-
vibrational term, which is the rotational entropy contribution. The moments of inertia
were obtained for the reference structures. The corresponding contribution to the free
energy difference between c7,, and c7.q equals

rot _ 1 I {3[ gI ?]?
AG o _,pro = —ENkBTlog <11AI§I§)

where I; are the momenta of inertia and N is the number of molecules (1 in our case).
All confinement simulations were performed using Langevin dynamics at 300 K, with
friction coefficients of 1, 5, 10, or 20 ps~!. The time step had a maximum value of 1
fs and was adjusted depending upon the restraint frequency. It was chosen so there
are at least 80 time steps per harmonic oscillator period, resulting in smaller time steps
for higher frequencies. Different time steps were tested, which showed that at least 40
steps per period are required to obtain accurate estimation of the confinement energy.
A conservative value of 80 steps/period was then chosen. SHAKE [64] was not used
in the simulations. To further restrict sampling to the state of interest, especially at the
lowest frequencies, we also added flat-bottom dihedral restraints. These were centered
on the energy-minimized values, with a force constant of 10 kcal/mol/rad? and a width
of 2.5°. This value was chosen so that the states of interest are the same as the ones
defined in the umbrella sampling. Interpolation of the confinement energy was done for
10 frequencies, equally spaced in log-space, between consecutive simulations. Adding
more points did not change the final free energy difference or the error bars.
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For comparison, free energy differences between the c7,, and 7eq, conformations were
also obtained from one-dimensional umbrella sampling simulations [9]. For the alanine
n-peptide, the transformation from c7, and c7.q involves (n—1) ¢ and (n—1) ¢ dihedral
transformations. These angles were treated as reaction coordinates and changed one at a
time (in the order (¢1,%1) = (¥n—1,¥n—1)) while keeping the others constant. For each
dihedral angle, 50 equally spaced umbrella windows were used, with a force constant of
150 kcal/mol/rad? and a simulation time of 100 ns per window. To maintain the trans
peptide configuration, flat-bottom dihedral restraining potentials were used for the w
backbone dihedral angles with a force constant of 10 kcal/mol/rad? and a width of 90°.
Simulations were performed with Langevin dynamics at 300 K, using a 1 fs time step, no
SHAKE [64], param19 [60], and ACE [61]. Potentials of mean force (PMF) were obtained
from MBAR [56].

Lactoferricin

Bovine lactoferricin is 25-residue peptide cleaved from lactoferrin with antimicrobial
properties [65]. In lactoferrin, the sequence is folded into an a-helix followed by a
B-strand, while the cleaved peptide adopts a -hairpin fold; the peptide contains one
disulfide bond (Figure [66, 167].

Figure 1.8: Structure of lactoferricin. Solution structure on right, structure of the lactoferricin
sequence within the lactoferrin protein on left, with disulfide bond highlighted.

No spontaneous conformational transitions were observed in long unbiased MD sim-
ulations [68]. Because of its size and the complexity of the transition, lactoferricin is a
good test system for the confinement method and representative of the more challenging
biological systems that are the ultimate target for the method.

The o + 8 conformation was obtained from residues 17-41 of lactoferrin (PDB: 1BLF
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[67]), while the 8-hairpin conformation was taken from lactoferricin in solution (PDB:
1LEC [66]). We used the CHARMMS36 force field [69] with the GBMV implicit solvent
model [70], Langevin dynamics, and no SHAKE [64]. A friction coefficient of 1 ps~*
was used for simulations with a confinement frequency lower than 2 ps~* and a friction
coefficient of 20 ps~! for frequencies above. Interpolation of the confinement energy
was done for 10 equally log-spaced frequencies between consecutive simulations. After
an energy minimization, each conformation of the peptide was heated and equilibrated
at 300 K. The reference structures used in the confinement simulations were obtained
from rmsd-based clustering with a cut off of 3.5 A of a 25 ns unrestrained trajectory. All
simulations were conducted with the CHARMM program [59].

1.5.2 Results
Alanine n-Peptide

Figure[1.9|shows the ratio between the extrapolated and actual confinement energies as
a function of AGHO for multiple values of vmax. Curves for all alanine systems are also
provided; a value of one indicates that the extrapolation perfectly predicted the confine-
ment energy. As expected, deviations from one strongly increased with the free energy
difference and the ratio was very close to one for small AGHC. A notable feature is that
the extrapolation stayed accurate for larger free energy differences as vmax increases. In
other words, as the system becomes more harmonic, it becomes easier to predict the re-
sult of a new simulation. This is due to the fact that at larger frequencies, the harmonic
restraints represent a larger portion of the total energy and the configurational space is
compactly distributed around ¢ in a predictable manner. In addition, we observed that
the extrapolation is more accurate as the size of the system increases. Larger systems
have narrower energy distributions, so that the weights in equation (L.11) are closer to
one another. More configurations will therefore contribute significantly to the ensemble
average at another frequency, thus lowering the error. This is a particularly encourag-
ing feature which will facilitate the application of the Simplified Confinement Method
to larger and more complex systems.

The information on Figure (1.9 can be used to extract the maximum value of AGH for
which the extrapolation error is below a desired threshold. We chose 5%, a fairly con-
servative value for this error, which corresponds to an extrapolated /actual confinement
energy ratio of 0.95 or 1.05. In the following, we will refer to this spacing as AG9.

Figure shows AGEYQ as a function of frequency for the alanine n-peptides. While
the curves are bumpy (due to the fact that the ratios switched between 0.95 and 1.05,
discretization of v, and finite sampling), the graph shows several clear trends: consistent

with the results of Figure AGH? increased with both frequency and system size.

ext

The physical relevance of AGH? is the following. When the free energy difference be-

tween the sampled system at vpy. and the unsampled system at higher frequency is
AGE9, there is sufficient overlap in distribution functions to estimate, within some pres-
elected error bound (here 5%), the confinement energy at the unsampled frequency from
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Figure 1.9: Ratio between the confinement energy computed from extrapolation and from an ac-
tual simulation for alanine 2-peptide (A), 3-peptide (B), 4-peptide (C), 6-peptide (D), 8-peptide
(E), and 10-peptide (F). Simulations with different restraints up to a frequency vmax were used to
extrapolate the confinement energy at higher frequencies. These extrapolated states have a higher
free energy than the state corresponding to vimax, with a difference of AG*©.
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Figure 1.10: Free energy difference corresponding to an error of 5% on the confinement potential
obtained by extrapolation. This free energy difference is between the simulated system having the
highest harmonic restraints and the one corresponding to the extrapolated frequency.
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simulated data at vmax. This means that after sampling at both frequencies, there will
be sufficient overlap in distribution functions to accurately calculate confinement ener-
gies at frequencies in between. The accuracy of this interpolation will be higher than
the accuracy of the extrapolation because more data is available for the interpolation
(one extra set of simulations). Furthermore, the error of interpolation can be reduced
further by taking into account all simulated data at all simulated frequencies. As shown
below, this interpolation significantly reduced the overall error in calculating the config-
urational free energies. Thus, we propose to exploit AGHO as guideline for selecting the
frequency spacing of the simulations. The goal of this procedure is to pick the maximum
spacing at which high quality interpolations remain feasible, thereby obtaining high ac-
curacy at minimal computational costs. If we have a set of simulations up to frequency
Vmax, the next frequency of simulation will be picked such that its free energy difference

with the vpax simulation is AGEQ.
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Figure 1.11: Interpolation of the confinement energy for alanine 2-peptide for different restraint
frequency ranges: (A) low frequencies (0.02-6.6 ps~*), (B) intermediate frequencies (6.6-18.4 ps™*),
and (C) high frequencies (26.6-38.8 ps™'), as well as (D) for alanine 10-peptide at low frequencies
(0.02-0.37 ps™'). The value of the confinement energy is interpolated (red) for frequencies between
two initial simulations (black). The thickness of the red line represents the error bar. Additional
simulations (blue) are added thereafter to estimate the accuracy of the interpolation.

Figure shows that interpolation can be performed to obtain confinement energies
at non-simulated frequencies. In Figure , the value of the integrand function U/v?
is shown in black for the alanine dipeptide at simulated frequencies of 0.021 and 6.6
ps~!. The free energy difference between these simulations was 4.2 kcal/mol. The black
line represents the value of the integrand that would vary linearly with the logarithm of
the frequency, which is the assumption made when performing the integration of equa-
tion (L.9) in logarithmic space (see appendix[A) and also the analytical solution for har-
monic oscillators. The red curve corresponds to interpolated values using MBAR. Addi-
tional simulations at intermediate frequencies confirm the accuracy of the interpolation.
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The simulated values (blue dots) show that the integrand does not follow a straight
line in logarithmic space but falls on the interpolated curve instead. The observed non-
logarithmic/linear behavior is expected for this frequency range because the system is
far from being purely harmonic. In fact, the harmonic terms contribute only 24% of
the total energy at a frequency of 6.6 ps—!. The interpolation accurately reproduced the
observed behavior, which demonstrates that meaningful information about the system
can be obtained through interpolation. It also shows how the interpolation can greatly
increase the efficiency of the method: while all simulations (represented by black and
blue symbols) would be needed to accurately compute the free energy difference over
that frequency range, just two initial simulations (black point) are sufficient if the inter-
polation is used. Greater accuracy can also be achieved by reducing the discretization
error arising from the frequency spacing, but this comes at additional computational
costs. Figure[T.TIB,C illustrate how the interpolation for the alanine dipeptide performs
at higher frequencies. The free energy differences between these two frequencies are
comparable to the one corresponding to Figure (5.9 and 4.2 kcal/mol versus 4.2
kcal/mol). Again, the interpolation correctly estimated the integrand for frequencies
that were not simulated. At higher frequencies, the integrand varied more linearly with
the log of the frequency, as expected for more harmonic system. The same behavior was
observed for the other alanine systems, such as alanine 10-peptide (Figure [1.11]D).
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Figure 1.12: Correlation times for (A) alanine 2-peptide and (B) alanine 10-peptide for different
restraint frequencies, calculated from the autocorrelation function of the confinement energy (tri-
angle symbols) and from block analysis (circle symbols). Multiple friction coefficients (from 1 to
20 ps~') were used as parameters for the Langevin thermostat.

Figure shows the correlation time of the confinement energy for the alanine dipep-
tide and decapeptide as a function of the restraint frequency. The correlation times were
calculated by block-averaging [58] (indicated by circles) and from the autocorrelation
function of the confinement energy (triangles). The two methods gave similar results,
which indicates that the correlation time could be properly estimated. For the dipeptide,
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the correlation time was similar for all frequencies <0.2 ps~! and irrespective of the fric-

tion coefficient, while for the decapaptide, higher friction coefficients led to higher cor-
relation times in this frequency range. This is likely due to the more complex landscape
of the decapeptide, which has subbasins; visiting the various subbasins is hindered by
large friction terms. Near a frequency of 0.2 ps~*, the correlation times dropped signifi-
cantly for all systems. At this frequency, U.ons represents between 2 and 4% of the kinetic
energy. Apparently, this energy is sufficient to limit the system to one subbasin, which
explains the precipitous decline in correlation time. At high frequencies, low correlation
times were observed, inversely proportional to the friction coefficient. We checked that
the average values of the confinement energies were not affected by the friction coeffi-
cient so that higher friction coefficients indeed led to faster sampling. The simulation
time needed to obtain a given number of independent measurements is proportional to
the correlation time. Figure shows that in order to obtain uniform sampling across
the frequencies, much smaller simulation times are needed at higher frequencies. In ad-
dition, by increasing the friction coefficient at high frequency, the simulation time can be
reduced, thereby further increasing the efficiency of the calculation.

To demonstrate the increased performance of the confinement method through extrapo-
lation, interpolation, and assessment of correlation times, we computed the free energy
difference between the ¢7.x and c7.q conformations of the alanine n-peptides. For each
frequency, the correlation time of the confinement energy was estimated at regular time
intervals and the simulation was stopped when the number of independent measure-
ments (which is the simulation time divided by the correlation time) was at least 1000.
The confinement simulations were run in an iterative manner. The first simulation was
performed at a frequency v = 0.02 ps~*.

The frequency of the next simulation was calculated by extrapolation. 4 different strate-
gies were employed:

1. The first used a constant free energy spacing of 5 kcal/mol. The other three strate-
gies used the information on Figure to vary this spacing as a function of v.

2. In the second strategy, the spacing was system-dependent and obtained from a
log-linear best fit of AGE? to v.

ext

3. The third strategy was system independent, and given by AGL? = 3+0.388 log(v/11)

(indicated by the lower dashed line in Figure [1.10), a conservative estimate of
AGEO (v).

ext

4. In the last strategy, a more aggressive estimate was chosen (indicated by the upper
dashed line in Figure|1.10): AGHQ(v) = 5 + 0.485log(v/v1). This iterative process
of extrapolation and simulation was repeated until the value U,y is equal to the

purely harmonic value of 3NkgT /2 was met.

Table[l.2)summarizes the free energy differences obtained with these strategies. For com-
parison, the table also shows the free energies obtained from one-dimensional umbrella
sampling (AGys), and from confinement simulations according to the setup of Ovchin-
nikov et al. [13] (AGHom), which involved 17 simulations at frequencies equally spaced
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in log space, with a simulation time of 20 ns per simulation. Finally, the total cost of the
simulations are shown relative to the total cost of the simulations using homogeneous
spacing in frequency space.

Figure shows the frequency spacing and number of steps for the alanine 10-peptide
for each of the simulation setups; the number of steps is indicated by the length of the
bars (but the unit length represents 10° steps for the homogeneous and 10° steps for the
other setups). Because of the small time step, the high frequency simulations are partic-
ularly costly in the homogeneous frequency setup. For this reason, Ovchinnikov et al.
recommended simulating up to a frequency of 86 ps™! because the free energy difference
for the alanine dipeptide is already converged at that frequency (even though the abso-
lute free energies of the 7. and c7.q configurations are not). A converged free energy
difference at a lower frequency implies that the anharmonicity of the system at higher
frequencies is the same for both configurations. However, this is not necessarily the case
for large conformational changes, especially if new interactions were formed. While we
also observed a convergence of the free energy difference for the alanine dipeptide at
86 ps!, omitting the high frequency portion led to an error in AG of between 0.10 and
0.31 kcal/mol for the alanine decapeptide and 0.98 kcal/mol for lactoferricin. Because of
these errors, we included all frequencies until the absolute free energies of the c7,« and
7q states were converged.
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Figure 1.13: Number of MD steps used in the confinement simulations of the alanine 10-peptide
in the ¢7.q conformation. Each vertical bar represents a simulation, and its length is linearly pro-
portional to the number of steps. Different strategies were employed (see text), and led to different
number of simulations.



Table 1.2: Free energy differences between the ¢7,. and c7.q conformations of the alanine n-peptides. All the errors are computed via error propa-
gation (details are in Appendix[A].

3y AGHO = 5 kcal/mol.

%) AGH? from system-dependent best fits of to AGH? (Figure . These fits are: AGE& = 3.19 + 0.541og(v/v1), AG’E& = 1.44 + 1.02log(v/v1),

ext

AGYD =095+ 1.27log(v/v1), AGKD = 3.36 + L.12log(v/v1), AGYY = 3.27 + 1.38log(v/v1), AGKY 4.87 + 1.55log(v/v1).

) AGHO = 3 + 0.388 log(v/v1), shown by the lower dotted line in Figure
4) AGHO = 5 + 0.485 log(v/v1), shown by the upper dotted line in Figure

€) AGys corresponds to the free energy difference calculated from one-dimensional umbrella sampling. AGpom corresponds the free energy obtained from con-
finement at frequencies that are equally spaced in log space. A total of 17 of these were performed per conformation, with a constant simulation time of 20 ns per
simulation, according to the setup of the work of Ovchinnikov et al. [13]. In the strategies 1-4, the simulations are spaced in free energy space according to a given
relation (see text). All free energies are in kcal /mol.

f) Total computational cost as a percentage of the total computational cost when using homogeneous spacing in log frequency.

Strategy
14 20 3¢ 44
System AGys © AGHom AG cost/ AG cost! AG cost/ AG cost/
(kcal/mol)  (kcal/mol)  (kcal/mol) (%) (kcal/mol) (%) (kcal/mol) (%) (kcal/mol) (%)

Ala, -342+006 -36+03 -325+£006 257 -315+006 241 -377£0.07 219 -3.6+£0.1 1.50
Alas -701+009 -68+04 -691+005 354 -703£006 220 -699+£0.07 229 -6.67=+0.07 198
Alay 94+02 -100+04 -972+£0.05 494 -1015+0.08 233 -1038=+0.07 312 -10.10+£0.08 2.86
Alag -163+03 -172+05 -1696+£0.05 6.72 -1675+0.09 288 -17.20+£0.06 4.46 -17.5+0.1 3.67
Alag 226+03 -234+05 -2347+005 924 -23.68+0.09 327 -2385=£0.06 550 -23.74+0.09 447
Alayg -29.0+04 -299+03 -3094+005 1228 -30.69+0.09 3.67 -29.6+0.2 6.87 -30.30=£0.09 5.39

ve
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The free energies obtained by umbrella sampling showed good agreement with the con-
finement free energies for all the alanine systems. The confinement simulations gave
free energies of ~ 3.3 — 3.5 kcal/mol per (¢, ¢) dihedral angles, which shows the lack
of correlations between (¢, 1) backbone angles. Backbone rotation in the larger systems
act as backbone rotation in independent alanine dipeptide systems, as observed before
for the alanine tripeptide [62}63]. The four extrapolation strategies gave similar AG val-
ues, with error bars 2-10 times smaller than with the homogeneous setup, which shows
that all strategies could be used with good accuracy. The low error bars came from in-
terpolation, which reduced the discretization error, the use of correlation times which
ensured sufficient sampling, and the use of MBAR. While the use of interpolation does
not significantly affect the free energy differences, it significantly contributes to the low
error bars. With these strategies, the free energy spacing between consecutive simula-
tions was small enough so that configurations from multiple simulations could be used
to increase the statistics at a given frequency. If the free energy spacing would be too
high, the weights in eq 5 would be very small, which would then effectively prevent the
mixing of configurations and increase the error on the interpolated values. Use of MBAR
and interpolation is therefore only useful when the frequencies are chosen judiciously.
While all strategies gave values that were relatively close with low error bars, not all free
energies of the various strategies overlap within their error bars, which indicates that
the error bars are underestimated. This is likely due to insufficient sampling, which is
not taken into account by the error bars. The problem of insufficient sampling cannot be
easily solved, as one cannot quantify missing information.

Because each simulation was run until a fixed number of independent frames was ob-
tained, the simulation time was different for each frequency. The low frequency simula-
tions required the highest number of simulation steps because of large correlation times
(Figure [1.13). This correlation time was system-dependent because at low frequen-
cies the harmonic restraints were fairly weak and the system dynamics were only slightly
affected by the restraints. Upon increasing the frequency, the simulation time dropped
significantly because of a drop in correlation times. At frequencies above ~12.5 ps™*,
smaller time steps were required so that even though correlation times were roughly
constant at high frequencies, the required number of steps increased (Figure [1.13). The
various extrapolation strategies had non-constant frequency spacings that were larger
than the homogeneous setup at low frequencies but smaller at high frequencies. The dif-
ference in spacing is due to the free energy difference between neighboring simulations
(AGHO of equation which increases with frequency for a given frequency spacing.
In addition, the total number of simulations increased with the size of the system. This
makes sense because for a purely harmonic system, the free energy difference between
two frequencies is proportional to the number of degrees of freedom. The number of
simulations at high frequencies, where the system is largely harmonic, will therefore
scale approximately linearly with the number of atoms. The cost of the first strategy,
which is based on a constant free energy spacing of 5 kcal/mol between consecutive
simulations, indeed increased with system size (Table[L.2).

The four extrapolation strategies led to much lower computational costs than the setup
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with homogeneous sampling in log-frequency space (between 1.5 and 12.3% of the cost).
This was mostly due to much shorter simulation lengths at high frequencies. The com-
putational cost of the three system-independent setups (strategies 1, 3, and 4 in Table
increased with the size of the system (as discussed above). The setup with a con-
stant free energy spacing of 5 kcal/mol was the most expensive of the four strategies, as
it required the most simulations at high frequency. The setup based on best fits of AGL?
was the cheapest overall as it used the largest free energy spacing. This advantage was
especially pronounced for the alanine decapeptide, for which extrapolations to high free
energy differences were possible (Figure[1.10). For future applications, obtaining system-
dependent expressions for AGHC is not practical due to the simulation costs associated
with estimating this expression. System-independent strategies are much more practi-
cal, and even the most aggressive strategy (strategy 4) presented here was accurate as
well as cost efficient.

While the optimized protocol consists of a combination of interpolation, extrapolation,
optimized friction coefficients, and correlation analysis to determine simulation lengths,
the contribution of the interpolation and extrapolation to the decrease in error was es-
timated for the alanine decapeptide by calculating AG using the 17 windows of the
homogeneous setup and optimizing the friction coefficients, simulation length, and time
steps only. This resulted in a free energy difference of -31.55 + 0.44 kcal/mol, at 1.0% of
the cost of the homogeneous setup. Relative to umbrella sampling results, the partially
optimized 17-window strategy led to a larger shift in the free energy than the fully opti-
mized strategies while the statistical error was also significantly larger (8.8, 4.9, 2.8, and
4.9 times larger than the fully optimized schemes, respectively).

When taking the difference in simulation lengths into account, these statistics suggest
that the interpolation/extrapolation strategy reduces the error 2-fold for the alanine de-
capeptide. In fact, when calculating AG using the fully optimized schemes but at exactly
the same cost of the partially optimized 17-window strategy (by using less frames), free
energies of -31.18 &+ 0.17, -31.61 £ 0.18, -29.58 £ 0.28, and -30.24 £ 0.22 kcal/mol were
obtained for the four schemes, respectively.

Thus, for the alanine decapeptide, errors were about factor of 2 (2.6, 2.4, 1.6, and 2.0, re-
spectively) lower when interpolation/extrapolation was used. Lactoferricin results sug-
gest that interpolation/extrapolation might become more important for larger systems
though.

Lactoferricin

As shown by the alanine systems, larger molecules require simulations at more frequen-
cies to maintain high accuracy. Performing these simulations sequentially, as was done
for the alanine n-peptides, can be impractical if a high number of CPUs is not available:
running multiple simulations at the same time is then usually more wall-clock time effi-
cient. In this case, two strategies can be employed. One can either use the extrapolation
protocol to estimate the optimal frequencies from short test simulations and then extend
these simulations in a parallel fashion, or one can start multiple simulations at prede-



Calculation of free energy differences in biomolecules 27

termined frequencies (estimated from experience), calculate the free energy differences
between these simulations using MBAR, and insert extra simulations to obtain the de-
sired free energy spacing between consecutive simulations. This second approach was
used here in order to compute the free energy difference between the two lactoferricin
conformations. The free energy spacing used corresponds to strategy 4 of Table
which is the most aggressive.

8
S °
s |
3 °
o
23
2
gs | / . .
= o i b
2o L J
© O -
o ¢
Sg |
N
o
e 7 o —v—3
° ° P \ s .
° _——e—
o $§— \.>.
T T T T T
0.02 0.05 0.10 . 0.20 0.50
v(ps™)

Figure 1.14: Correlation times for lactoferricin in the a+ /3 conformation, using temperature replica
exchange and a reference structure obtained from energy minimization (black) and clustering
(red). Clustering had a modest effect on low frequency correlation times.

Because we observed that extrapolation and interpolation are more accurate for larger
system, we expect this strategy to be very accurate for lactoferricin. Simulations were
run until 1000 independent frames were obtained, except when using replica exchange,
for which we used 100 frames per replica (500 frames total). Similar to the alanine sys-
tems, the correlation time of the confinement energy for lactoferricin was much higher at
low frequencies than at high frequencies (Figure[1.14) because at low frequencies the har-
monic restraints had a small impact on the overall dynamics of the molecule. For lacto-
ferricin, this correlation time was as high as 10 ns for some frequencies, which would
require extremely long simulations to obtain sufficient uncorrelated data. The long cor-
relation times are likely a general feature for more complex biomolecules. To gain effi-
ciency, it is therefore highly desirable to lower the correlation times at low frequencies.
Multiple strategies can be employed: a careful choice of the reference structure, the use
of additional restraints to eliminate subbasin hopping, or the use of replica exchange.

While any configuration that belongs to the basin of interest can be used as a reference
structure, depending on the free energy landscape, different configurations may result
in different correlation times. An energy-minimized configuration is a straightforward
choice, but there is no guarantee that this structure is most representative of the free
energy basin because the energy-minimized configuration corresponds to zero temper-
ature and excludes entropic effects. A more representative configuration can easily be
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obtained by performing rmsd-based clustering of an unrestrained MD trajectory, which
may then yield lower correlation times (Figure [.14). This procedure was used here to
obtain the reference structures for both lactoferricin conformations. At low frequencies,
the dynamics of the system are only slightly affected by the harmonic restraints. The
correlation time of the confinement energy is therefore very close to the correlation time
of the rmsdfor an unrestrained simulation of the same molecule. Restricting the motion
of the molecule, by using additional restraints, will therefore lower the correlation time.
However, the free energy might also be affected, depending on whether the definition of
each basin is modified.
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Figure 1.15: (A) Correlation times for lactoferricin in the 8 conformation, using a reference struc-
ture obtained from clustering (blue), the same reference with the addition of restraints (black), and
temperature replica exchange in addition to the restraints (red).

(B) Number of MD steps used in the confinement simulations. Each vertical bar represents a sim-
ulation, and its length is linearly proportional to the number of steps.

Analysis of the o + 3 conformation trajectories showed that some backbone dihedral
angles switched between two different values with a long correlation time. We therefore
added flat-bottom dihedral angle restraints to confine these angles near the values of
the reference state. Fraying was observed in simulations of the S-hairpin conformation,
which was prevented by the addition of NOE restraints to maintain hydrogen bonding
between residues 2 and 24. While these restraints indeed restricted the peptide to a sin-
gle basin, the effect on the correlation times was marginal (Figure ).

Finally, correlation times can be broken and sampling can be enhanced by using tem-
perature replica exchange. In replica exchange, multiple independent simulations are
run at different temperatures, and at given time intervals, coordinates between the dif-
ferent simulations are swapped based on a criterion that preserves detailed balance [53].
Sampling is enhanced by the use of elevated temperatures, while correlations times are
broken after swapping. In order not to unfold the peptide, we only used a small temper-
ature range. For each simulation with a harmonic oscillator frequency lower than 0.72
psfl, replica exchange with five replicas at temperatures of 300, 312, 324, 337, and 350 K
was used. This setup reduced the correlation times by a factor ~10-100 (Figure ).
In addition, extra efficiency was gained because data from all the temperatures could be
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combined using MBAR.

Using these approaches, we obtained a free energy difference of 2.13 + 0.05 kcal/mol
in favor of the 8-hairpin, which is indeed the stable form in solution. While many sim-
ulations were needed for each conformation (Figure [1.I5B), most of these were at high
frequencies and only required short simulation times (typically 10°-107 steps per sim-
ulation). Most simulation steps were needed at frequencies between 0.7 and 2 ps™, but
simulation times could likely have been reduced by also using replica exchange for these
frequencies. When excluding interpolation/extrapolation from the optimization proto-
col (i.e., using the 17 frequencies of the homogeneous setup, but optimizing friction coef-
ficients, lengths, and time steps), a free energy difference of of 4.67 + 4.19 kcal/mol was
obtained, indicating the importance of the interpolation and extrapolation strategy for
larger systems.

1.5.3 Discussion

We showed that the accuracy and efficiency of the confinement method can be greatly in-
creased by the use of interpolation and extrapolation of the confinement energies and the
careful consideration of correlation times. Interpolation can be used to obtain confine-
ment energies at unsampled frequencies, which significantly reduces the discretization
error. The free energy difference between two consecutive simulations must stay below
a certain value for accurate interpolations; however, this difference can be increased for
larger systems and at higher frequencies. Extrapolated free energy differences between
simulated and unsimulated frequencies can also be used as a guide to select the optimal
frequencies of the simulations. Cost and accuracy can be further optimized by basing the
duration of each simulation on correlation times, costs can be decreased by increasing
the friction coefficient at high frequencies, and accuracy can be increased by combining
all data from multiple simulations. This setup proved to be efficient, as it led to proper
estimations of conformation free energy differences for alanine n-peptides, with signifi-
cantly increased accuracy (factor of 2-10) and greatly decreased computational costs (fac-
tor of 8-67) compared to homogeneous sampling. Additional techniques were used to
speed up sampling for lactoferricin, a much more complex system with very long corre-
lation times at low frequencies. Correlation times were significantly reduced by the use
of temperature replica exchange (factor ~10-100). They were also slightly reduced by
using a reference structure obtained from rmsd-based clustering of unrestrained simula-
tions and by the application of additional restraints to restrict the configurational space.

Our analysis revealed promising features for application of the confinement method to
large systems. As illustrated by our alanine n-peptide and lactoferricin simulations,
large systems will clearly take longer sampling times because their configurational space
is larger. To maintain accuracy, the total number of simulations grows with system size,
but most of these simulations are at high frequencies where sampling is relatively short
(Figure[1.15B). Moreover, the growth in the number of simulations is partly counteracted
by the fact that at a given accuracy, the spacing in free energy can be larger for larger sys-
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tems. It is likely that large and complex systems will suffer from long correlation times
at low frequencies, as also observed for lactoferricin. We showed, however, that sam-
pling at low frequencies can be significantly reduced by temperature replica exchange
and other strategies to reduce the correlation times. While treatment of large systems
will be computationally expensive, our study provides effective ways by which costs
and accuracy can be managed and controlled.



CHAPTER 2

Biasing non-equilibrium simulations

“Yes, sir! Prepare ship for light speed!”
“No-no-no, light speed is too slow!”

“Light speed too slow?”

“Yes, we’re gonna have to go right to... Ludicrous
speed!”

SPACEBALLS

In life sciences, most of the interesting phenomena is represented by non-equilibrium
events. Biomolecules, in particular, perform most of their biological function in a non-
equilibrium context; for example folding, the most fundamental transition in a protein,
is a non-equilibrium process.

Both experimentally and computationally, the study of non-equilibrium is a challenging
problem: in both cases we have to withstand the restrictions given by our instruments,
whether they are due to physical limits in the experiment or in the lack of computational
power.

During my PhD, I have implemented an approach based on the principle of Maximum
Caliber to simulate the kinetic behavior of a biomolecule using MD, starting from exper-
imental data. I applied this technique to the correction of approximated force fields used
in MD, and to accelerate molecular dynamics simulations.

2.1 Introduction

The experimental investigation of the dynamic, time-dependent properties of biomolec-
ules is usually much more difficult than the study of their equilibrium, time-independent
features. The measurement of dynamic properties is affected by instrumental dead
times, necessity of concentrated samples to compensate the lack of signal-accumulation
time, experimental noise. Except for few types of single-molecule techniques, like those
performed with optical tweezers or based on Forster resonance energy transfer, common
biochemical experiments report the time course of properties averaged over very many
molecules. Moreover, techniques suitable to detect kinetic properties, like fluorescence
spectroscopy, circular dichroism and small-angle X-ray scattering (SAXS), usually de-
pend on overall molecular features (like size, shape, internal symmetries, etc.), and are
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difficult to be mapped to an atomic level.

Molecular dynamics (MD) simulations are a popular way to complement the informa-
tion provided by kinetic experiments in solution. With the available computational
power it is relatively easy to simulate multiple trajectories followed by small biomolecules
on the time scale of hundreds of nanoseconds, and using tailor-made computers, to
milliseconds[8]; in this way one can investigate some, but not all, the time scales associ-
ated with conformational changes in proteins and nucleic acids.

However, there are two major problems in using MD simulations to investigate biomolec-
ular kinetics. First of all, portable force fields have been greatly refined over the last
years, but show serious limitations when one attempts to reproduce quantitatively spe-
cific properties of well-defined molecules. In fact, while it was shown that standard
force fields are all reasonably good at reproducing equilibrium properties of small pro-
teins, they fail much more often with kinetic properties [15].

Furthermore, MD simulation are still limited to a range of time scales that does not cover
all phenomena taking place in biomolecules. While several algorithms have been de-
veloped to enhance the equilibrium sampling of complex systems, little was done to
foster the simulation of their dynamic trajectories, often restricting the attempts to the
brute—force solution of the equations of motion, and thus relying only on the increasing
power of nowadays processors. Among the algorithms developed to enhance the study
of kinetic molecular properties are Markov State Models [71} [72], methods based on the
identification of the most likely trajectories [73, 74, 75, 76] and milestoning [77].

Herein, we present a computational scheme to generate MD trajectories guided by time
series resulting from kinetic experiments. The algorithm is based on the Principle of
Maximum Caliber (pMaxCal), that is the dynamic version of the principle of maximum
entropy [78] and that was so far used to study basic aspects of non-equilibrium systems
[79]180] and to model chemical reactions [81]].

2.2 Principle of Maximum Entropy

A large part of the problems in statistical mechanics are represented by inverse problems,
where one wants to obtain the microscopic parameters of the system (e.g. the interaction
parameters in a Ising model) starting from the measurement of some meaningful observ-
ables. In this kind of problems, typically the number of known variables is lower with
respect to the number of variables we want to find. One of the main issues in tackling
this kind of problems is the possibility to add information that does not come from ex-
perimental data, introducing a bias. The principle of maximum entropy [82] is the most
honest way to make a guess in our solution.

Let be £ a random variable, which can assume the discrete value &; = 1, 2, ...,n with some
probability distribution p; = {p1, p2, ..., p» } withits natural normalization ), p; = 1, and
we want to infere that probability distribution p;, knowing only the expectation value of
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a known function f(&)
<f(§)> = Zpif(fi)-

we need n—2 constraints more to obtain the exact evaluation of the probability distribu-
tion.
Given this problem, the principle of maximum entropy (pMaxEnt) [82] says that

From among all the probability distributions compatible with empirical data, the only
unbiased distribution is the one with the highest information entropy.

We then have to maximize the Shannon entropy, defined as

S(p) =—> pilogp:. (2.1)
=1

Introducing the Lagrange multipliers A and p, the probability distribution results

pi = exp (A — uf(&)), (2.2)

f and inserting this expression in the normalization and in the definition of (f(£)) we can
obtain the values of the Lagrange multipliers from the constraint equations

<ﬂ&=—£ﬂ%ﬂm 23)
A =log Z(u) (2.4)

where Z(u) is the partition function defined as

Z(w) =Y exp (—uf (&) 2.5)

i=1

This approach can be generalized to any number m of functions f(¢) that constraints the
probability distribution, redefining it as

pi =exp (—=Xo — A\ f1(&) — oo = Amfm (&) s (2.6)
and we obtain a system of m+1 equation which defines the Lagrange multipliers
o)
=———IlogZ 2.7
(Ful€)) = =55 o 7)
Ao =log Z (2.8)

for any k € [1,m], being the partition function

Z(M,y s Am) = Zexp <— ZMfk(fi)) ; (2.9)
i—1 P

Choosing the distribution obtained with pMaxEnt, we obtain the most uninformative
answer to our initial question. Any other distribution containing more information (thus
less entropy), will introduce a bias in our guess, making the distribution obtained by
pMaxEnt the only consistent choice.
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2.3 Principle of Maximum Caliber

In the previous section we showed a technique to obtain unbiased probability distri-
butions for equilibrium states maximizing their information entropy. It is possible to
extend this approach, looking for probability distribution over paths in non-equilibrium
conditions. This generalization, called principle of Maximum Caliber (pMaxCal), was
introduced by Jaynes in 1980 [78].

We can define a path entropy for a non-equilibrium transition

Zp ) log p(v (2.10)

where the sum is over all the possible  paths of the system, and p(v) is the probability
to follow a particular path. If we have m different functions f(;), with k = 1,...,m, and
we know their ensemble averages along the path ff ,)33 , it is possible to apply m linear
constraints [83]] in the form

> (N f () = fi =0 (2.11)
.

Inserting the Lagrange multipliers A;, to maximize our path entropy, we obtain a defini-
tion for the probability distributions

p(v) =Z 'exp (Z Akf(k-)(’V)) ; (212)

k=1

where the dynamical partition function Z is

Z(A1y s A Zexp (Z NS (v ) (2.13)

To date, the maximum caliber approach was exploited in systems with discrete dynami-
cal states on stochastic dynamics. We decided to apply the pMaxCal on non-equilibrium
trajectories that came from equations of motion.

2.4 Force field correction and accelerating of non-equilibrium sam-
pling

Similarly to what done in equilibrium statistical mechanics [82], it is possible to use
Lagrange multipliers to constrain the optimization of S[p| in such a way that the aver-
age > p(7)f(7) of some conformational property f of the system matches at each time
any function of time, and in particular that which report the time course of some ex-
perimental data. The resulting distribution p(vy), besides being in agreement with the
experimental data, guarantees to minimize the amount of further, arbitrary information
we provide to the model.

To implement the pMaxCal, we started from an approach which proved successful to
correct force fields to reproduce known experimental data under equilibrium conditions
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[84} 85], extending it to kinetic simulations. In brief, we performed replica MD simu-
lations controlled by a suboptimal force field and a potential which drives the average
of the conformational properties over all replicas to match the experimental data. We
showed in some test cases that not only the very quantity which is biased in the simu-
lation follows the biasing curve, but also quantities which are weakly correlated with it
and their fluctuations follow the correct dynamics.

Implementing the pMaxCal can also be useful to accelerate MD simulations. The time
scale associated with the biasing data can be different from that of the underlying un-
biased simulation. Consequently, rescaling the time scale of the biasing data to lower
nominal values can force the dynamics to take place on a faster nominal rate, basically
modifying the time units of the biasing data. We showed that in this way we can accel-
erate the simulation of a factor between 10 and 100, maintaining unchanged (in the new
time units) the dynamics of the biasing quantity and of the quantities perpendicular to
it.

2.4.1 Theoretical framework

The goal of the algorithm we developed is to simulate the ensemble of kinetic trajectories
that initiate from a given conformation (or ensemble of conformations), match as ensem-
ble average the time course of a set of time-dependent experimental data and minimize
the subjective bias we introduce into the system, maximizing the associated caliber. We
define {7} as the set of trajectories of the system, where the trajectories are regarded
as discrete set of conformations v = {rg,71,...,7r}, as those usually generated in MD
simulations. Kinetic experiments usually return time-dependent quantities that depend
on the conformations visited along the trajectory. We define f; " the time-course of the
quantity monitored in the available experiment, indexed by the discrete time ¢; this can
be one- or higher—dimensional. We assume to know the forward model associated with
the experiment, that is the function f(r;) that maps a conformation r, visited along a
trajectory into the ideal result that the experiment would give if applied to an ensemble
of identical conformations r;.

The probability p(y) of a given trajectory that maximizes the caliber under the constrain

S p(fr) = 7 (2.14)
-

that the average of the forward model over all possible trajectories is equal to the ex-
perimental value at each time ¢, and that the microscopic diffusion coefficient is D is

p(y) = z exp | — Z (Vt [res1 — > + )\tf(rt)) ) (2.15)

Zg -
where Z; is a dynamic partition function, A\; and 1, are the Lagrange multipliers that
implement the experimental data and the diffusion coefficient, respectively. In principle,
the numerical values of the Lagrange multipliers can be found from dlog Z;/0\: = f,*
and 0log Z;/0v; = D. However, these are implicit equations involving the sum Z; over
all trajectories, and are thus computationally useless.
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Similarly to the case of equilibrium simulations [86], it can be shown (see the Appendix
for a detailed derivation) that the maximum-—caliber distribution of trajectories of Eq.
is automatically sampled by coupled replica MD simulations, each replica (identi-
fied by greek letters) biased by a time-dependent potential

LSRR EO IR 216)
p=1

that forces the average conformation, averaged over the n replicas, to match the experi-
mental data in the limit of large k. The main drawback of this method is that the effective
diffusion coefficient that the molecules experience is not the same as the nominal one D,
this effect being more marked the more different is the generated trajectory from that
one would generate in absence of an experimental bias.

2.4.2 Validation strategy

To test the validity of the replica—averaging scheme on molecular models, we performed
some sand-box studies selecting some protein systems and defining for each of them two
different interaction potentials. One of the two (U, is regarded as the “true” potential
that controls the dynamics of the system in the experiment (which is unknown in real
life) while the other (U,ppros) is regarded as the approximated potential we known and
we can use in real-life MD simulations. The two potentials are chosen in such a way that
the system displays markedly different kinetic properties when interacting with each of
them, but similar equilibrium properties.

We performed multiple simulations with Uy, that serve as reference for the tests. We
also defined some low—dimensional functions f(r) of the conformation r of the system
(the forward model) to mimic the experimental observables. Some of them (like the
RMSD or the fraction of native contacts) are good approximations of the reaction coor-
dinates of the system, while others (like the SAXS intensities) are closer to what one can
obtain in real experiments. The time courses f(r;) of the forward model applied to the
different trajectories are averaged together at each time to obtain the putative experi-
mental data f;".

We then applied the pMaxCal to the system interacting with the potential Uy, pproz, per-
forming MD simulations of n replicas of the system biased by f; ¥ through the potential
described in Eq. (fig. 2.1). The dynamics of the biasing variable averaged over the
replicas, of its fluctuations over the replicas and of other variables weakly coupled to it
are then compared with the reference dynamics.

2.4.3 Computational Implementation

MD simulations are performed with Gromacs 4.5.7 [45] I87] coupled to Plumed 2 [47].
We implemented a CALIBER module into Plumed to apply the potential describe in Eq.
(2.16). The simulations biased by SAXS data were carried out with the Plumed-ISDB
module[88]. Simulations were performed with a Langevin integrator with v = 1 ps!
and a time-step of 0.1 fs.
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Figure 2.1: A sketch of the MD simulations, where n replicas of the system evolve in time coupled
by Eq. (2.16). Lines colored in different hues of red and yellow represent the time evolution of the
biasing variable in the various replicas. The grey line is the average of the biasing variable over the
replicas. The biasing potential is an harmonic spring acting on this average, centred at the value
of the experimental value (blue line) at the corresponding time.

We tested different quantities to bias the simulations, such as the root mean square devi-
ation (RMSD) of the position of the C,, from those of the crystallographic conformation,
and the fraction () of native contacts, defined as [89]

1

1
Q) = ; L+ exp(B(ry — Ar}y))’

(2.17)

where N is the total number of pairs in the potential, ;; = |r;—7;]| is the distance between
the i-th and j-th atom, r?j is the distance between the two atoms in the crystallographic
structure, 8 = 50 nm~! and \ = 1.8 are two switching parameters.

More realistic variables are the SAXS intensities, whose forward model is [90]

=33 f@fita Sln(qflf), (2.18)

i jF£i Tij

where ¢ is the scattering vector, fi(g) is the atomic form factor of the k-th atom, and r;; is
the distance between the i-th and the j-th atom. Operatively, we selected 15 equispaced
values of ¢ from 0.02 A to 0.4 A and added 15 corresponding biasing terms to the inter-
action potentials in the form of Eq. (2.16).

The values of the harmonic constant % are chosen to be as large as possible, compatibly
with the time step of the simulation.
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2.44 Results
GB1 hairpin

The first test to verify the ability of replica—averaged simulations to correct the dynamics
of a molecular system were carried out on an all-atom model of the second hairpin of
protein G B1 domain (residues 41-65, pdb code 1PGB [91]]) in vacuo. We built two differ-
ent structure-based Go potentials [92], these potentials stabilize by definition a reference
conformation. The choice of in vacuo condition is a huge simplification of the system ki-
netics. In fact, we start assuming any potential “wrong”, because the main point of our
technique is the correction of a force field which is, by definition, approximated, using
real data. The potential Upeaq is obtained rescaling the interactions between the pairs of
atoms of a factor which is proportional to the distance from the turn of the hairpin, from
1.5 for pairs close to the turn, to 0.5 for pairs close to the termini (Fig. 2.2). In this way,
we expect to induce a folding dynamics that nucleates from the turn. The other potential
Utail is obtained inverting the scaling factors to weaken by a factor 0.5 the interactions
close to the turn and strengthen by 1.5 those close to the termini, in order to induce a
different folding dynamics while keeping comparable stability between the folded and
the unfolded state. In Fig. [2.3|is shown the heat capacity for both potentials showing a
comparable melting temperature. The dynamics of the hairpin interacting with both po-
tentials was simulated starting from an unfolded conformation at 7' = 50K (note that in
a Go model energy units, and consequently temperature units, are arbitrary), generating
500 folding trajectories for each of them. In Fig. 2.4]is displayed the average value Q(t)
of the fractio of native contacts as a function of time, which result qualitatively different
for the two systems.

The test consisted in biasing the system interacting with Upe.q (regarded as U,pprox) to
display the dynamics of the system interacting with Uy, (regarded as Uyyy.). For this
purpose, we used the function Q(¢) of the latter as putative experimental data foP(t),
and simulated the dynamics of the hairpin with the potential Uy + Upiqs, Varying the
number of replicas from n = 4 to n = 128 and using a harmonic constant for Uy;,s equal
to k = 2.5 - 10% - n. The behavior of Q(t) for the resulting simulations is essentially in-
distinguishable from that of the simulations we wanted to target for any n, indicating
that the two dynamics are identical at least when projected over the space defined by the
biasing variable.

To compare in more detail the biased to the target trajectories, we plotted in the left panel
of Fig. 2.5 the dynamics of other unbiased conformational variables of the system which,
although not orthogonal to @, report different features of the system. Also in this case,
the biased curves match reasonably well the target dynamics, quite independently on
the number of replicas (cf. also the x? displayed in Figs. 2.6/and .

In the right panel of Fig. we plotted the fluctuations, defined as the standard de-
viation of these quantities over the replicas as a function of time. In spite of their noisy
behavior, the bias is able to push the system interacting with Uneaq to display fluctuations
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Figure 2.2: Cartoon representation of protein G GB1 hairpin (PDB: 1PGB, rr. 41-56). The colored
lines show how the potential was modified.
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Figure 2.3: Heat capacity vs. temperature for GB1 hairpin under Uy (blue) and Uhead (red). There
is a single broad transition between 120 and 200 K in both the potentials.
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Figure 2.4: Average fraction of native contacts (Q) in function of time for unbiased Upe.d (dark
grey), unbiased Uy, (light grey, covered by caliber-restrained simulations), and caliber-restrained
simulations from Unead to Ui, from 4 (red) to 128 replicas (yellow) in color scale.

similar to those of the system interacting with Uy,y. Also for them there is not a clear be-
havior as a function of the number n of replicas, except for the fact that n = 4 gives an
agreement much worse than the case for larger n (see also Figs. ). Finally, as a control,
similar results are obtained by using Uneaq as putative “true” potential and biasing the
system interacting with U, to follow its dynamics (see Appendix .
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Figure 2.5: To the left, the dynamics of the RMSD (top), of the gyration radius (middle) and of the
end-to—end distance (bottom) of the hairpin. The dark-grey line indicate the dynamics generated
with Usead, the light—grey line is the target dynamics generated with U, and the colored lines are
the simulations performed with Uneaq and biased using from 4 (red) to 128 replicas (yellow). To
the right, the standard deviations over the replicas of the same quantities.
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Figure 2.8: Same as Fig. @ but displaying the standard deviation of Q over the replicas.
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Protein G - ()-biased

Given the ability of pMaxCal replica-simulation to correct the dynamics of a simple sys-
tem, we challenged the algorithm with a larger system. We defined two models for the
full protein G Bl domain. The first described by the standard Go potential Ugs and the
second in which the Gb potential is modified strengthening the intra-helix interactions
by a factor of 2 (we shall label the latter as U,). The equilibrium properties of the two
models are similar (Fig. [2.10), but their folding dynamics, starting from a disordered
conformation, is different (cf. the shapes of () displayed as dark-grey and light-grey
curves in Fig. 2.11). A simulation, carried out over 32 replicas, biasing the molecule
interacting with the potential U, to follow the dynamics of the mean fraction of native
contacts @ of the molecule interacting with Ug; is almost indistinguishable from the dy-
namics of its target simulation when comparing the biasing variable (cf. the red curve
in Fig. 2.11). Importantly, the dynamics of other conformational variables, like the total
RMSD, the gyration radius, the RMSD restricted to the two S-hairpins and to the whole
f-sheet are very similar to those of the target system (see Fig. 2.12).
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Figure 2.10: Heat capacity vs. temperature for protein G under U, (blue) and Usmoc (red). There
is a single folding transition between 110 and 120 K in both the potentials.

In principle, the biasing procedure based on the pMaxCal can be used, besides correcting
a potential, to speed up simultaneously the simulation. To reach this goal it is enough
to modify the time scale at which the experimental data change as a function of time,
rescaling its time units to a smaller value by a factor A,. In other words, one “pretends”
that the data evolve following a dynamics that is faster than in reality, restoring a pos-
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Figure 2.11: Average fraction of native contacts @ as function of time calculated from the unbiased
simulations of protein G interacting with Ugs (dark grey), interacting with U, (light grey), and
calculated from biased simulations of the molecule interacting with U, on 32 replicas, with a time
compression of A\; = 1 (red), A\; = 10 (dark orange), A\; = 100 (light orange), and As; = 1000
(yellow). Simulations are performed at 7' = 106K starting from a conformation denatured at
400K.

teriori the correct time units. This feature can be critical for future applications of the
algorithm because a number of non-equilibrium experiments report on time-scales that
are often longer than those that is possible to reach with MD.

To test the correctness and the efficiency of this scheme, we repeated the above simula-
tions compressing time of the target “experimental”-data by factors A\, = 10, A, = 100
and A, = 1000. In Figs. 2.1T]and 2.12)we compare the dynamics of the biasing coordinate
and of other coordinates, respectively, with that of the target system interacting with Ugs,
rescaling back the time axis to the original time scale to allow a clear comparison. A time
compression of a factor A; = 10 gives results which are essentially identical to the case
without time compression. With a time compression of a factor A; = 100 the qualitative
agreement is still good, but the two curves are no longer perfectly overlapping, while a
factor A\; = 1000 gives a dynamics which is completely different from both the unbiased
and the target-molecule ones (see Fig[2.13).

To compare the behavior of the system kinetics under the different potentials, we per-
formed a tICA analysis [93} [94] on unbiased and biased simulations, obtaining a quali-
tative estimate of the relaxation times of the tICA-derived slow collective variables (cf.
Fig 518 in the Supplementary Materials). The two original potentials Ugs and U, show
significantly different relaxation times, and the caliber-biased simulation with A; = 1 dis-
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Figure 2.12: The dynamics of the average C,-RMSD (top left), gyration radius (top right), « RMSD
(center left), 5-hairpin-1 RMSD (center right), 5-hairpin-2 RMSD (bottom left), and the RMSD of
the interface between S-hairpins 1-2 (bottom right) for the same simulations (and with the same
color code) as those displayed in Fig.
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Figure 2.13: The fluctuations over replicas of () in the simulation described in Fig.

plays a good agreement with the target potential relaxation times, demonstrating once
again that replica-averaged simulations can be used to include time dependent data in
MD. As expected, with the increase of A, the system shows a speed up in all the slow
variables. The worse behavior of the simulations with Ay = 100 and 1000 can be ex-
plained considering the system diffusion time, which is in the order of 1 ps: With a too
strong time acceleration, the resulting relaxation time is in the order of the ps, and thus
the system cannot follow the caliber bias.

Protein G - SAXS-biased

All the former simulations have been biased to follow a quantity that is not experimen-
tally accessible, this to test if at least in principle pMaxCal replica-simulations could
work. To test our approach in the case of more realistic biasing quantities, we used the
same two models described in the previous section and used SAXS intensities as the
source of information. Indeed, SAXS is routinely use to follow conformational changes
of biomolecules[95]. We calculated the SAXS intensities from the target system interact-
ing with Ugs and used the dynamics of the SAXS intensities at 15 equispaced values of
the scattering vector as putative experimental data (see Sect. for details) to bias the
model interacting with Ul,.

The dynamics of the SAXS obtained from the target simulations applying Eq.
is displayed in the upper panel of Fig. while in the lower panel it is shown the
dynamics of the SAXS intensities at the values of @ (0.08A71, 0.25A~! and 0.35A71),
chosen as an example. For these ¢ and for all the others which are not shown here, the
biased dynamics can follow perfectly well the dynamics of the target system. In Fig.
it is shown the dynamics of other conformational variables not used for biasing the
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Figure 2.14: In the upper panel, the dynamics of the SAXS spectrum simulated for the model
of protein G interacting with Ugs. In the lower panel, the dynamics of the SAXS intensities at
g = 0.08A7"', at ¢ = 0.25A7" and ¢ = 0.35A~". The light grey curve is the unbiased dynamics,
the dark-grey curve is the target dynamics and the red curve is the biased dynamics.
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simulation that are also in good agreement with the target dynamics. Finally, also the
tICA-derived slow variables relaxation times are in good agreement with the ones of the
unbiased target potential (Fig. 2.16).
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Figure 2.15: The dynamics of some conformational coordinates of protein G obtained biasing by
means of the SAXS intensities. The light grey curves are obtained from the unbiased simulations
of the model interacting with U,, the dark grey come from the target model interacting with Ugs
and the red lines from the biased simulations.
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Figure 2.16: Relaxation times for all the variables obtained by tICA analysis on the C,, positions.
The original unbiased potential U, (white dots) shows a longer relaxation time with respect to
the unbiased Usmoc potential (magenta dots). Without time acceleration, both the caliber-biased
simulations shows a good agreement in relaxation time (blue dots for the SAXS-biased one and
red dot for the -biased one) with the target potential. Varying the acceleration parameter \,, we
obtain a decrease in relaxation times, although it is not sufficient to reconstruct the correct kinetics
for As = 100, 1000. To corroborate our hypotesis, we show the typical diffusion times of the system
on the plot.
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2.4.5 Discussion

The quality of molecular mechanics force—fields is generally improving[96}97], but these
improvements, even if significant, are limited by the difficult of training them on sys-
tems with size comparable to the one of interest (e.g. small to medium sized proteins)
and by the approximations that are intrinsic in the functional form. To overcome these
limitations, system dependent solutions have been developed to model equilibrium en-
sembles of structures based on experimental data either by reweighing a posteriori an
MD simulation or by adding a bias to the force field[88]. Among these, replica-averaged
simulations[98]], based on the maximum entropy principle[86] and recently extended to
include a Bayesian treatment of the errors[99]], have been particularly successful[100} 88].

In the present work, we used replica-averaged MD to perform out-of-equilibrium sim-
ulations, by introducing a time-dependent bias. We showed that simulating multiple
replicas of a system and coupling them with an harmonic potential acting on the av-
erage over the replicas of some conformational variable and centred around the time
course of the corresponding experimental observable, is a way to implement the princi-
ple of maximum caliber. The equivalence is formally showed if the simulation is driven
only by the biasing potential, while it remains to be studied what is the relation with the
pMaxEnt when the simulation is driven both by a force field and by the biasing potential,
furthermore a consideration of the errors is also currently missing. Nonetheless, using
some test-box cases, we could show that biasing the folding of model proteins, we can
recover a target dynamics not only for the biasing variablfe, but also for other standard
conformational variables of the protein and, importantly, their fluctuations. Importantly,
we obtained good results not only biasing an ideal function, but also simulating the out-
come of a SAXS experiment. In this case, the lack of the actual reaction coordinate of
the system was compensated by the fact that all length scales of the protein were under
control at the same time.

A powerful byproduct of the algorithm is that it allows speeding up MD simulations,
simply rescaling time in the reference time course used to bias the simulation. In this way
one can easily gain a factor of 10 to 100 in computer time, being thus able to carry out
simulations of unprecedented duration. This is particularly relevant given the fact that
most real-time experiments (H/D exchange[101], real-time NMR[102] as well as time-
resolved SAXS/WAXS|103} 95]) are performed on time scales that are longer than those
usually accessible by MD (i.e. on the order of milliseconds). In this case the choice of
the biasing variable plays an important role to ensure the realism of the resulting trajec-
tories. The biasing scheme (independently on its equivalence with the pMaxCal) affects
the time-dependent probability distribution of conformations only along the direction
defined by the biasing variable. No direct effect is exerted in the directions perpendicular
to it; these are only controlled by the molecular force field. Consequently, if one chooses
a biasing variable which is correlated with the slowly-varying reaction coordinate of the
system, the macroscopic dynamic will be correct, and this will strongly constrain the
faster degrees of freedom perpendicular to it. The dynamics of these fast variables de-
pends on the force field, but they are constrained to the subspace identified by a given
value of the reaction coordinate. On the other hand, if one biases the dynamic with a
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fast—varying variable, perpendicular to the actual reaction coordinate, the macroscopic
dynamics of the system will only rely on the force field. Now the biasing mechanism
will force the fast-varying variable to follow an apparently—correct dynamics but on a
possibly wrong subspace. This poses a theoretical limit to the time-compression factor
As one can use to speed—up MD simulations. In fact, if one biases the reaction coordi-
nate and simultaneously accelerates too much its dynamics, the next-to-slowest degree
of freedom perpendicular to the reaction coordinate, whose motional time scale is not
affected by A, will be promoted to new reaction coordinate, and its dynamics will only
depend on the force field.

In conclusion with the present work we introduced a hybrid scheme for the integration
of time-resolved experimental data into molecular dynamics simulation. This with the
aim of improving at the same time MD accuracy and efficiency in generating ensembles
of trajectories corresponding to experimentally accessible processes.



CHAPTER 3

Peptide and protein design for immunology

“E poi prendo proteine e le tiro, le tiro, le tiro, finché
faccio opere che rendano questo mondo migliore, come
anziani imbottiti di tritolo.”

DAw, Brullonulla

Novel immunological tools for efficient diagnosis and treatment of emerging infections
are an urgent necessity. From the point of view of an efficient medical treatment, the
rise in the number of drug-resistance pathogens [104] and the lack of effective and/or
new antibiotics [105] poses major challenges for effective management of infections. In
diagnostics, a large number of pathogens cannot be detected with existing tools, and
consequently those disease are underreported and/or misdiagnosed.

A way to tackle this problem is the use of peptide-based diagnostic tools and vaccines
that use engineered proteins or peptides[106]. At the molecular level, the recognition
and the immune response against pathogens is driven by protein-protein interactions
and the design (or partial redesign) of those molecules can provide new solution to de-
tect pathogenic infection and to trigger the correct immune response in an individual.

During my PhD I have worked on immodiagnostic tools design (Section and on
a new unsupervised algorithm aimed to redesigning part of a protein to enhance its
immunoreacting activity with a vaccine-oriented purpose (Sections3.6/and [3.7).

3.1 Introduction

The immune system is a complex machinery that uses cells and different types of molecules
to defend the organism against pathogenic invasions[107]. Inside the immune system,
we can find many complex activities, such as recognition tasks, learning, and memory
storage of previous infections.

One of the main actors in the immune system are lymphocites, a class of white blood

cells. Those cells are created in the bone marrow, are are transported along the body
via the blood stream. Furthermore, they can exit the blood stream passing trough the
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capillaries and the body, searching for foreign cells (recognized binding some exposed
proteins of the pathogen called antigens) and then return back via the lymphatic system.
Lymphocites are subdivided in two classes:

B cells: this kind of lymphocites produces antibodies, which are large proteins that
bind to the target pathogen (see below). Antibodies can block the life cycle of the
pathogen or enhance the activity of the T cells against them.

T cells: this kind of lymphocytes are subdivided in two classes: T helper cel
which marks the foreign cell with a marker called CD4 that promotes the produc-
tion of antibodies in the B cells, and the cytotoxic T cells, which are responsible to
physically kill the pathogen via a marker called CD8 that activates the NK (natural
killer) cells, also secreted by cytotoxic T cells.

Both types of lymphocites have a pattern recognition mechanism formed by receptor
molecules on their membrane which can identify antigens. In the case of B cells those
molecules are immunoglobulins (antibodies), while for T cells are called T Cell Recep-
tors (TCR).

Operatively, the antigen-recognition is performed by the immune system at molecular
level: the receptor has a complementary 3D structure with respect to a particular bind-
ing site (called epitope) of the antigen. The interaction is usually due to van der Waals
interaction, electrostatic and hydrogen bonds.

The molecules responsible of the first recognition of foreign objects are the antibodies. At
molecular level, an antibody is a big protein tetramer formed by two simmetric dimers.
Every dimer is composed by two different chains called heavy chain and light chain
(“heavy” and “light” refers to the relative molecular weigth of those proteins). Antibod-
ies have a distinctive “Y” shape (see Figure[3.1)

The binding site of the antibodies is located at the end of the Y arms, in a pocket formed
by the two chains. This region is called “hypervariable loop” and corresponds to the
quasi-random part in the antibody sequence, which optimally adapts to a specific anti-
gen (see below). The rest of the antibody, that forms the stable structural part, is uniform
in structure; this characteristic guarantees the recognition of the antibody by the other
cells of the immune system, like NK cells, macrophages and other lymphocites for fur-
ther processing of the antigen and completion of the immune response.

Each lymphocyte presents 10* to 10° random receptors on its surface. B cells, when stim-
ulated, produce a soluble version of their surface antibodies: antibodies are extremely
specific and adapt to every possible change in the antigen structure and chemical prop-
erties. This leads to a clear problem: if the organism is under attack, the lymphocites
which can recognize the pathogen antigen will be in a small number. To get around this
issue, the immune system applies the so called clonal selection: only the lymphocites that

I This kind of cells are the main target of HIV, the retrovirus responsible of Acquired Immune Deficiency
Syndrome (AIDS).
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Hypervariable
region

Heavy Chain Light Chain

Figure 3.1: Schematic and surface representation of an antibody. On the left we can see the struc-
ture of an antibody: two symmetric dimers formed by a light chain (yellow) and a heavy chain
(red); the binding site for antigens, called hypervariable region for its capacity to change its in
function of the target antigen, is highlighed. On the right we can see the surface representation of
an antibody, with the same colors of the left sketch.

are activated by antigen recognition proliferate, creating a huge number of clones of the
original “random” lymphocite and trigger an immune response. The possibility to ac-
tivate a response with clonal selection is however not sufficient. During the life of an
individual, the selection and differentiation of the antibodies repertoire reflects the in-
teraction with the environment. Evolution favors the creation of a learning system that
biases the creation of random sequences in antibodies, with the aim to be more efficient
in immune response. For example, if a particular antigen has been detected in the past,
the immune system responds to subsequent encounters with a larger number of lym-
phocites presenting the corresponding antibody, amplifying the reaction. This behavior
is called secondary immune response, and is the cellular basis of immune system memory
and, of course, the principal motivation for vaccination.

The practice of vaccination begun with a scientific approach in 1796, when Edward Jen-
ner, noticing the absence of deadly smallpox cases in milkmaids, inoculated pus from a
cowpox lesion to a 8-year-old boy, having seen the similarity between the two diseases.
After 3 weeks, Jenner inoculated material coming from a smallpox lesion in the same
patient, which showed no clinical consequences [108]. Jenner, after this first result, per-
formed a clinical trial on 16 additional cases formalizing the variolation process, which
consisted in the inoculation of the material coming from a cowpox lesion to the arm of a
healthy patient using a lancet.

After the discovery of microbes in late 19" century, Louis Pasteur estabilished the fun-
damental principles of rational design of vaccines, called the “31” approach:

Isolate the microorganism responsible of the disease,
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Inactivate the microorganism by means of physical of chemical intervention,
Inoculate the inactivated microorganism in the patient.

With this approach, he developed a rabies vaccine in 1885. The same rules were used for
more than a century, developing vaccines for a then-deadly diseases like diphtheria and
tethanus (Ramon and Descombey, 1920s), poliomyelitis (Salk and subsequently Sabin in
1955), and measles (Enders and Pebbles in 1963). All those vaccines contained attenu-
ated living pathogens, which could lead in a small minority of cases, to the disease.

By the end of the 20" century, the introduction of recombinant DNA technologies in
live-attenuated vaccines greatly enhanced the reliability of vaccines and reduced in a
significant way the appearance of adverse effects in vaccinated patients [110].

At this point, the original 3I approach was starting to show its limitations. For example,
some pathogens can not be grown in vitro, some others have an intracellular cycle and
thus their infection is blocked by T cells rather than humoral response, and some others
present antigenic hypervariability (the most famous —and problematic- case is HIV).

The change of paradigm needed to tackle some of those pathogen came in 1995, when
the first entire genome of an organism was published [111]]. Knowing all the proteins
expressed by an organism, it was possible for the first time to rationally design a vaccine
without the need of the entire microorganism, using only the antigens responsible of the
immunitary response. This new approach is called Reverse Vaccinology (RV) [112] and
the first target was the Meningococcus B, resposible of the 50% of the meningococcal
meningitis worldwide [113]. The Pasteur paradigm did not work in this case because
its capsular polysaccharide is identical to a human self-antigen, whereas the bacterial
surface proteins are extremely variable [17]. From the genome, 600 different possibly
antigenic surface proteins were identified, and a small number of candidates with high
conservation and sequence similarity in all the strains of the pathogen (~20) was selected
in silico and then tested in mice [18, [114]. In 2014, the vaccine (under the commercial
name of BEXSERO™) was approved for human use in the United States, Canada, Aus-
tralia, and European Union.

3.2 Structural Vaccinology

A further step forward was represented by the inclusion of the structural information on
antigens from crystallography experiments in the context of Reverse Vaccinology during
the first decade of 21% century, which led to the introduction of Structural Vaccinology
(SV) [115]. The enhancement in experimerimental techniques in the field of crystallog-
raphy made possible a new revolution in vaccinology: the possibility to express and
crystallize a protein permits to study, besides sequence information (exploited by means
of bioinformatics tecniques), also the physicochemical properties of a target antigen.
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Figure 3.2: 1941 poster of Chicago Department of Health encouraging smallpox vaccination.
Smallpox was the first disease successfully eradicated thanks to mass vaccination: the last nat-
ural case was reported in 1977. The global eradication was certified by WHO in 1980 [109].
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The interacting part of antigens, the epitopes, interact with the antibodies thanks to their
particular 3D conformation and physico-chemical properties: in principle, it is not nec-
essary to use the whole immunogenic protein to elicit an immune response, but it is suf-
ficient to present the interacting part alone [116]. To date, the design of a peptide-only
vaccine has been not so successful, though. The mechanism of in vivo protease-mediated
peptide degradation, combined with the difficulties to mantain the peptide in a correct
3D structure in the patient strongly limited the efficacy of this approach.

To overcome the limitation of epitope presentation in vivo, a series of different solution
were presented in the last 10 years, where the two most promising are nanoparticles car-
riers and epitope grafting.

A correct epitope presentation can be achieved covering inorganic nanoparticles (gold
nanoparticles) with peptides or inserting them on vescicular nanoparticles [117] (like li-
posomes, already used in commercialy available vaccines for influenza and hepatitis A
[118]]). Furthermore, it is possible to present multiple antigens on a single carrier, elicit-
ing in this way a broader immune response or, like in case of influenza, obtain a response
versus different strain of the same pathogen.

The epitope grafting approach consists in inserting in a non-immunogenic protein, or in
a protein already carrying other reactive epitopes, the recognized part of the antigen of
a pathogen of interest. The interaction of those proteins with a foreign functional motif
(or multiple motifs) can elicit an immune response and can be adapted to address anti-
genic variability in different pathogenic species. This approach will be discussed with
our automated grafted technique in section 3.6}

Another important application of the knowledge of the antibody-antigen interaction at
molecular level is related to diagnostics. The presence of antibodies in patient serum
is the molecular signature of a pathogen. As we explained earlier, if a host has been
attacked by an external organism, a immune reaction starts, and the specific antibodies
are spread through the bloodstream. This brings us to the serodiagnostics: it is possible to
diagnose the presence of a pathogen in an indirect way, i.e. detecting the presence of the
specific antibodies related to the pathogen. To do so, we need to identify the antibody-
binding region of the antigens (the epitopes) and use them as a probe in experiments
involving serum of patients (see section[3.3).

3.3 Peptides for immunodiagnostics

In 21%t century, despite the tremendous advance in pharmaceutics, pathogen infections
remain one of the major cause of death and economic loss (especially —but not only— in
developing countries) [119]. In particular, the emergence of drug-resistance [120] and
novel pathogens [121] represents a challenge to the modern biological and medical re-
search.

In this context, diagnostics plays a key role to minimize the effect of a novel or drug-
resistant disease. The state of the art is represented by enzyme immune assays (EIA),
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carried out in the ELISA (enzyme-linked immunosorbent assay) tests, that uses parts of
antigens bound to a surface that “capture” antibodies from a patient. Despite its effi-
ciency, ELISA tests show some limitations: is impossible to bind an entire antigen to the
surface, and this can rise a problem of epitope presentation. Furthermore, it is possible
to use only a limited number of probes, with the result that a “complete” screen on anti-
gens can have a high cost, making it not sustainable, especially in developing countries.

One of the most promising alternatives to ELISA test is the use of microarray technol-
ogy, which would allow a huge increase in number of probes in a single test and make
the diagnostics more statistically significant [122} [123]. A microarray is a plastic planar
slide on a solid substrate in glass or silicon. On this surface, a molecule (in our case an
entire antibody or an epitope) can be chemically linked and, in particular, tens of dif-
ferent probes can be displayed on the same chip, allowing a parallel, high-throughput
screening. When a microarray is covered with probes, it has to be washed with a serum
that contains a primary antibody, that recognizes and binds the probes. After this step,
a secondary antibody with a fluorescent label which recognizes the first one is applied.
Measuring the fluorescence given by the latter, one can have a quantitative evaluation
on the binding affinity of the probe with respect to the serum.

The main issue for the widespread use of this technique is the cost due to the expression
of the recombinant proteins and their conservation on the microarray.

A possible solution to overcome this limitation is represented by peptide microarrays,
where entire libraries of antigenic peptides are bound on the microarray [124]. Peptides
synthesis and/or expression is cheaper, and the mantainance of a peptide bound on a
microarray is way simpler with respect to a whole antigen.

One of the major advantages of peptides is the possibility to insert and evaluate small
chemical modification in the probes to enhance binding zone presentation. Moreover,
the use of cross-reactive epitopes provides the possibility to design a single immunolog-
ical test that can be used in very diverse context.

3.4 Epitope prediction

In both the two delivering techniques discussed above, we need to know the position of
the epitope in the immunogenic protein. Experimentally, it is extremely difficult to iden-
tify the antibody-binding site of an antigen as a whole, and computational prediction
methods play an important role in epitope search.

Given the exponential growth of computational power and immunology databases (like
IEDB [125], AntiJen [126] and IMGT [127]), now it is possible to follow a statistical ap-
proach, like in epitope predictors based on sequence information (MULTIPRED [128§],
TEPITOPE [129] and ProPred [130]), or on physicochemical properties of the epitopic
region, like hydrophobicity, flexibility and charge (ElliPro [131] and SEPPA [132]).

In our work, we used a structural prediction method called MLCE (Matrix of the Lo-
cal Coupling Energies) [133]. This technique is based on a simple assumption: all the
residues that guarantee structural stability cannot be involved in inter-protein interac-
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tions, like antigen-antibody recognition.

The algorithm analyzes the interaction between all the amino acids via a MM-GBSA
calculation considering only non-bonded interaction (van der Waals, electrostatic inter-
actions, solvent), obtaining, for a protein composed by N residues, a M;; interaction ma-
trix of dimension NV x N. This symmetric matrix can be diagonalized and reconstructed
using the resulting eigenvalues and eigenvectors

N
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Where )\, is the a-th eigenvalue and vj} are the k-th components of the corresponding
eigenvector. Sorting and labeling the eigenvalues from the most negative to the most
positive, we can assume [134] [135] that the first eigenvector labeled in this way contains
most of the information regarding the stabilizing interactions between amino acids. In
this way, we can obtain an approximated interaction matrix M;; that does not contain
noise and ignores weaker interactions

Mij >~ Mij = Aﬂ]’l’l}l‘

Knowing the structure of the antigen of interest, it is possible to compute a boolean
contact matrix C;; defining a distance threshold to consider two amino acids in contact.
The Hadamard product between the approximated and the contact matrices returns the
Matrix of the Local Coupling Energies L;;

Lij = Cij - M

which contains only the non-bonded interaction between residues which are close to
each other.

Remembering our assumption, the residues with a strong interaction will be ones re-
sponsible of structure stability, while the residues with weak interaction will be prone to
interact with an external protein [133]. The non-stabilized amino acids identified in this
way are labeled as part of a candidate epitopic zone. This technique has been recently
made available to the public on a webserver [136].

3.5 Design of a probe for Burkholderia family diagnostics

In our work, efforts have focused on the analysis of epitope conservation between B.
pseudomallei (Bp) and B. cenocepacia (Bc). The former is the etiologic agent of melioido-
sis, a severe endemic disease in Southeast Asia and an emerging threat in Australia,
on the Indian subcontinent, and in South America. Melioidosis can cause septicemia
and organ failure, with a high mortality rate; treatment with antibiotics is largely in-
effective because of multidrug resistance [137| [138]]. B. cenocepacia is an opportunistic
pathogen that colonizes the respiratory apparatus of cystic fibrosis (CF) patients, caus-
ing lung infections that often have fatal consequences [139, [140]. Genomic similarities
between the two bacteria raise the possibility of designing cross-reactive epitopes for the
simultaneous diagnosis of Burkholderia species. Such designed molecules, once shown
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to be immunoreactive in serological tests, may be further developed into components of
protective vaccines, thus opening new and long-sought perspectives for the therapeutic
treatment of Burkholderia infections.

In this context, detailed structural information on the antigens and epitopes of the pathogen
offers prime opportunities to engineer biomolecules with specific immunological and
recognition properties. In previous studies, starting from the X-ray structure of the
peptidoglycan-associated lipoprotein from B. pseudomallei (Palg,), an epitope peptide
(BpEp3 comprising Palp, residues 72 to 91) was predicted and designed using in silico
methods [141]. BpEp3 showed improved immunological properties with respect to the
initial recombinant antigen as well as cross-reactivity and significant diagnostic perfor-
mances for B. cenocepacia infections in CF patients, demonstrating that rational epitope
engineering can be an effective strategy for delivering better immunoreagents [142,[143].
The conformational flexibility of BpEp3 was found to be a key property affecting its di-
agnostic potential; a cyclic, more rigid form of the peptide performed better [144].

In our work, we targeted the Pal antigen from B. cenocepacia (Palg.) as the basis for com-
parative and structure- based epitope discovery, design, and immunodiagnostic stud-
ies. Palg. and Palp, are highly conserved proteins (sequence identity of 84%) with only
27/170 differing amino acids. Four such residue differences fall in the region corre-
sponding to Ep3 in Palpp, with the most significant substitution from a structural point
of view being an Ala to Pro replacement (residue 81). The presence of Pro81 raises the
possibility that the region corresponding to BpEp3 in Bc may influence the dynamic
states of the epitope when synthesized and used as an isolated peptide, as previously
carried out on BpEp3 [142]]. Such residue substitution could ultimately provide different
diagnostic properties for BpEp3 and BcEp3, despite two otherwise very similar epitope
sequences, thus providing new insights into the design requirements for efficient im-
munoreactive probes.

To investigate the above issues, we solved the crystal structure of Palg. at 1.8 Aresolution
for subsequent in silico epitope predictions and epitope design (Figure3.3). Epitope pre-
dictions carried out on the crystal structure identified the region of Palg. corresponding
to BpEp3 as a potential candidate for epitope design. We synthesized BcEp3 as a free
peptide and carried out comparative functional and structural analyses with its Bp coun-
terpart. Specifically, we probed sera from individuals affected by Bp and Bc infections
on a microarray platform, comparing the immunodiagnostic performances of the BcEp3
and BpEp3 epitopes both in the context of their corresponding recombinant full antigens
(Palp. and Palg,) and as isolated synthetic peptides.

Our analyses suggest that sequence- and structure-based conservation of the full-length
antigen alone may not be enough to correlate with immunodiagnostic properties. At-
tention must be paid to the conformational dynamics of the epitope sequence and to the
main ensembles that this may determine.
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Figure 3.3: 3D structure of Palg.. (A) The three Palg. chains present in the asymmetric unit are
shown by gray (chain A), blue (chain B), and green ribbons (chain C). (B) Secondary structure
representation of superposed 3D structures of Palg. chain A (blue) and Palp, chain A (gray, PDB
entry 4B5C [142]). The Ep3 a-helix is indicated by shading.

3.5.1 Results
Palg, crystal structure

Palg. (residues 19-170) was expressed as an N-terminal His-tagged fusion protein and
crystallized at the Structural Biology Lab of University of Milan. A single crystal was
used to collect data at a resolution of 1.8 A, and the structure of Palg. was solved by
molecular replacement. Three identical Palg. chains (A-C; RMSD values of 0.24-0.42
Aover the traced C,, chains) were present in the crystal asymmetric unit; such a trimeric
arrangement is not proposed to be biologically relevant because there are no significantly
extended interaction surfaces between chains (Figure[.3]A). Electron density was visible
for residues 52 to 170 (for chains A and B) and for residues 52 to 169 (chain C) but was
absent for the first 62 (29 pertaining to the vector) N-terminal residues, indicating that
this region is flexible and lost to the solvent.

The overall 3D structure conforms to the canonical Pal o — 8 sandwich fold, organized
in helix-strand-helix topology (Figure .3B). Structural comparisons were made between
the A chains of Palg, and Palg. using the Superpose module available under the CCP4
suite [145]. As expected, the two structures are very similar (RMSD 0.43 A; sequence
identity 84%) (Figure[3.3B). Among the 27 residues that differ between the primary struc-
tures of Palp, and Palg,, 4 (positions 76, 78, 81, and 83) are located in the region corre-
sponding to the highly antigenic BpEp3; at residue 81, an Ala to Pro replacement occurs
in the region encompassing an a-helix in BpEp3. Despite the conformational restraints
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posed by Pro residues that typically cause distortions in polypeptide chains, such as
kinks in a-helices, BpEp3 and BcEp3 maintain the same backbone conformation as in
the full-length proteins (Figure 3.3B).

There is one oxalate ion bound to each Palg. chain. Hydrogen bonds are formed be-
tween backbone and sidechain atoms contributed from residues D71, D105, R107, N113,
and R120. As reported in the literature, an acetate ion was bound to each Pal Bp chain,
interacting with equivalent residues present in Palg.. The cavity that houses these anions
is the proposed peptidoglycan-binding pocket [142} [146].

Structure-Based Computational Epitope Mapping of Palg. Epitopes

We previously identified B-cell epitope BpEp3 using the matrix of local coupling ener-
gies (MLCE) computational epitope prediction method applied to the crystal structure of
Palg,, [142}133]. In peptide form, BpEp3 elicited bactericidal antibodies (Abs), triggered
Ab-dependent agglutination, and was preferentially recognized by recovery melioido-
sis IgGs, in comparison to healthy controls and seropositive individuals, thus implying
potential diagnostic and therapeutic applications.

T-cell epitopes conserved between Bc and Bp have been observed for the flagellin anti-
gen [147]. Furthermore, B-cell epitope conservation was also demonstrated in a separate
microarray study that showed that a panel of Bp epitope peptides could specifically
detect Bc infections in CF patients [143]. These results suggested the possibility of ratio-
nally designing cross-reactive probes for the diagnosis of Burkholderia species infections
in general.

In this context, to investigate the potential effects of sequence and structural proper-
ties on immunoreactivity, an analogous strategy using the MLCE epitope prediction ap-
proach was applied to the Palg. crystal structure [142,[133]. Following in silico analysis,
two main epitope regions were identified largely overlapping with the previously deter-
mined Palp, putative epitopes; one is equivalent to BpEp3, and here labeled BcEp3, and
the second region maps a conformational epitope (Figure B.4), strongly suggesting that
Palg. and Palp, share immunoreactive regions.

The BcEp3 was then synthesized as isolated peptide and tested for immunitary response.

Probing the Human Antibody Response to BpEp3 and BcEp3 in Burkholderia-Affected
Individuals

As previously mentioned, the BpEp3 isolated peptide was found to be cross-reactive
and immunodiagnostic for Bc infections in CF patients [143]. Here we investigate the
immunoreactivity of the Bc counterpart against Bc patient sera and assess its cross-
reactivity against melioidosis patient sera samples. To this aim, we compared the sero-
diagnostic capability of the two epitopes to identify individuals affected by Bc and Bp
infections, both in the context of Pal full antigens and as-synthesized free peptides. All
the experimental work in this section was performed at the AuS lab at ICRM-CNR.
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Burkholderia cenocepacia Pal Burkholderia pseudomallei Pal

Figure 3.4: Location of predicted Palp. epitopes. The location of predicted reactive epitopes on the
two Pal structures, from B. cenocepacia (left) and B. pseudomallei (right), is highlighted in color.

A protein microarray displaying recombinant Palg. and Palg, antigens was probed with
12 serum samples from Bc-positive CF patients, diagnosed by microbiological culture
and MALDI-TOF spectrometry, and with 20 melioidosis patient serum samples (10 healthy
seropositive sera and 10 recovered melioidosis cases, as judged by indirect hemagglu-
tinin assay (IHA) Ab titers (Khon Kaen University and Srinakarin Hospital, Thailand)
[143]. As a control group, seronegative serum samples from healthy donors were used
(12 samples for the Bc patients and 10 sera samples for melioidosis patients). The antigen-
specific IgG content in each serum was evaluated by fluorescence detection using an an-
tihuman IgG labeled with the Cy3 dye. The ability of each antigen to distinguish controls
and patients was evaluated by performing the unpaired t test (significant if p values are
< 0.05) on the protein-specific fluorescence signals detected in the groups (FigureB.5).
As expected, Pal Bp and Pal Bc effectively captured patient Abs elicited by Bc and Bp
infections and, as predicted by sequence and structure conservation between the two
protein antigens, showed significant cross-reactivity. Specifically, Bc-affected individu-
als (upper panel) were correctly diagnosed (p values <0.01) by both antigens, whereas
recovered melioidosis patients (lower panel) were successfully distinguished from con-
trol individuals. A slightly higher sensitivity of the directly related Pal Bp antigen was
observed, thus allowing the detection of low Ab titers in seropositive individuals. The
immunodiagnostic capability of corresponding isolated peptides BpEp3 and BcEp3 were
assessed in analogous serological tests on the same set of serum samples. The peptides
were chemoselectively immobilized by a terminal cysteine residue via specific thiol ad-
dition to maleimides on microarray chips coated with a polymer bearing maleimido
groups [144]. The ability of each peptide to distinguish controls and patients was evalu-
ated performing the unpaired t-test (significant if p values were <0.05) on the peptide-
specific fluorescence signals detected in the groups. A summary of the diagnostic per-
formance for each peptide is detailed by representations of the t-test analysis (Figure
B4).

The BpEp3 peptide was found to be significantly serodiagnostic and cross-reactive for
both Bp and Bc infections, being able to detect Bc-positive individuals versus healthy
controls and allowing one to distinguish Bp seropositive and recovery individuals from
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Figure 3.5: (Upper panel) Results of the unpaired t test for Bc infection. The Bc positive patient
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Figure 3.6: (Upper panel) Results of the unpaired t test for Bc infection. The Bc-positive patients
group is labeled as P. The healthy control group is labeled as C. (Lower panel) Results of the
unpaired t test for B. pseudomallei infection (Bp). The seropositive patients group is labeled S+,
recovery patients are labeled R, and the seronegative control group is labeled C. (ns means not
significant. Significant: p < 0.05,* = p < 0.05, ** = p < 0.01, ** = p < 0.001, and **** = p < 0.0001).
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seronegative controls (all p values <0.05). On the contrary, BcEp3 failed to discriminate
patients from healthy individuals for both types of infections, indicating that mutations
in the epitope sequence may be reflected by completely different immunoreactivity of the
free peptide epitope, most likely linked to different conformational ensembles resulting
from differences in amino acid composition, and in particular from the presence of Pro81.
To address these issues, we carried out comparative MD analyses of BpEp3 and BcEp3,
in the context of both their cognate proteins and as isolated peptides in solution.

Comparative MD Study of BpEp3 and BcEp3 within Palg. and Palg, and in Isolation

In light of the different immunoreactivities shown by BpEp3 and BcEp3 epitope pep-
tides, extensive MD simulations were carried out to gain insight into the conformational
preferences of the two Pal epitope sequences. The most significant sequence difference is
the Ala (BpEp3) to Pro (BcEp3) substitution at position 81. Other changes entail BpEp3-
Lys to BcEp3-Gln (residue 76), BpEp3-Glu to BcEp3-Gln (residue 78), and BpEp3-Glu to
BcEp3-Met (residue 83). Despite such substitutions, the crystal structures show no sig-
nificant conformational difference for the polypeptide backbones of the two full-length
proteins (Figure[3.3B). This observation holds true also when focusing specifically on the
epitope regions: in the context of their cognate proteins, both epitope stretches populate
analogous helical conformations, which are stabilized by the structural and packing con-
straints imposed by the rest of the protein in the native 3D fold.

Notable differences, however, emerge when the two epitopes are investigated in isola-
tion. Figure[3.7]shows, as a function of time, the RMSD of the conformations sampled
by the free epitope peptides during the MD simulations having the epitope structure
adopted in the cognate full-length proteins as the reference structure.

In general, BcEp3 and BpEp3 tend to show different dynamic behavior, with the former
recursively populating conformations with low RMSD vs the same polypeptide stretch
in the full-length protein context at 300 K. In contrast, time-dependent RMSD plots show
that this is not the case for BpEp3: higher RMSD values consistently emerge, and more
varied ensembles of BpEp3 conformations are populated. Additional MD simulations
were run at 330 K to speed up sampling, confirming such observations. We next calcu-
lated Root Mean Square Fluctuations (RMSF), defined as

N

1
RMSF(k) = \J N Z (Tk,i - 7nlc,ref)za

=1

where k is an amino acid, N is the total number of frames, r;, ; is the position of the cen-
ter of mass of the k-th amino acid at the i-th frame, and ry, , is the reference position (in
our case, the crystallographic structure) the center of mass of the k-th amino acid.
RMSF gives us an insight into the flexibility properties of both epitope peptides in so-
lution. RMSF values are consistently higher for BpEp3, indicating higher flexibility for
this peptide, a property that may in turn favor its ability to explore a wider ensemble of
conformations. (Figure[3.8).

In terms of secondary structure content, as expected, the presence of Pro81 in free BcEp3
acts as a helix breaker, forcing the peptide toward alternative turn conformations (Figure
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B.9). Interestingly, no significant secondary structural differences were evident in the
context of simulations run on the respective full-length proteins.
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Figure 3.9: Time-dependent evolution of the secondary structure content of BcEp3 (left panel) and
BpEp3 (right panel) in isolation, in solution. Results from three independent 500 ns simulations
per system are shown. Color code: White, coil; black, a-helix; red,3-sheet; green, 5-turn; and blue,
polyproline (II).

To corroborate our computational calculations, the tendency of BpEp3 and BcEp3 pep-
tides to populate helical conformations was assessed by circular dichroism spectroscopy
(CD). Although both epitopes did not adopt characteristic helical conformations in ab-
sence of TFE, BpEp3 displayed a remarkable propensity to fold into an a-helical struc-
ture, as revealed by spectral minima in the 222 and 208 nm regions, upon addition of
low concentrations of structure-inducing cosolvent trifluoroethanol (TFE) (Figure .
This behavior was not observed for BcEp3 (Figure 3.11).

Overall, the BpEp3 sequence shows a more pronounced tendency to populate helical
conformations, which also characterize the sequence in the full-length structure of the
cognate protein, while displaying higher conformational flexibility. The presence of Pro
diminishes the tendency of the peptide to populate helical conformational ensembles
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Figure 3.10: BpEp3 circular dichroism spectra comparison at variable trifluoethanol (TFE) con-
centration. While the BpEp3 peptide alone is not shaped into a canonical a-helix conformation,
the typical a-helical CD signal is promptly observed upon increasing concentration of TFE. This
analysis was carried out at PPC lab at ICRM-CNR.
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11: BcEp3 circular dichroism spectra comparison at variable trifluoethanol (TFE) con-

centration. In contrast to BpEp3, the typical a-helical CD signal is not observed upon increasing
concentration of TFE, indicating a lower propensity to fold into an a-helical structure. This analy-

sis was carried out at PPC lab at ICRM-CNR.
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while decreasing its flexibility, trapping the isolated BcEp3 peptide in conformations
that are poorly recognized by patient sera Abs that were ultimately generated against
the original protein antigen.

In this context, we examined the free-energy landscape of the two peptides, projecting
the trajectories on the collective variable represented by the RMSD from the a-helical
structure, using the weighted histogram analysis method (WHAM) [148] approach to
evaluate the free energies of the conformational basins visited (Figure 3.12).
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Figure 3.12: The results of the WHAM free-energy analysis from the combined trajectories of
BcEp3 and BpEp3, together with representative structures from each basin.

BcEp3 shows a broader free-energy minimum in which the helical conformation is sep-
arated by relatively low barriers corresponding to turnlike structures. Qualitatively, we
have 4 different conformers for BpEp3 and 3 conformers for BcEp3. The helical basin
for BpEp3 is separated from alternative conformations by higher barriers, compared to
those in the previous case, confirming the possibility of the peptide to be locally trapped
in a helical conformation. Nevertheless, alternative conformations are also accessible,
consistent with the observed increased flexibility for BpEp3.

A minimalistic model to rationalize the overall differences characterizing BcEp3 versus
BpEp3 thus originates from the consideration of the differences in conformational dy-
namics observed for the two synthetic epitopes. One can in fact hypothesize that the
more structurally flexible BpEp3, while conserving a higher tendency than its Bc coun-
terpart to populate helical conformations, can adapt to a larger and more diverse pool
of Abs, providing broader cross-reactivity, capturing Abs elicited against homologous
antigens from different species. In this framework, because the aim is to identify pools
of polyclonal Abs able to detect general Burkholderia infections and not to discriminate
between them, the ability of BpEp3 to explore several sets of conformations may effec-
tively facilitate the binding of several diverse Abs by expanding the dimensions of the
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conformational ensemble accessible to the epitope. This property may also be partially
reflected in the context of the full-length protein, whereby the more flexible epitope in
Palp, may allow local conformational changes or unfolding events that prompt adapta-
tion and binding to diverse Ab pools. In this context, the restriction of the conformational
freedom by the Ala81 to Pro mutation (in Palg.), combined with the lower tendency to
populate helical conformations reminiscent of the epitope structure in the full-length
parent antigen, translates into a decrease in diagnostic performance in this particular
application, where the aim is to detect infections caused by different Burkholderia strains.

Along these lines it was previously shown that favoring BpEp3 helical structuring, throu-
gh conformational restriction by chemical stapling, improved the diagnostic performance
when targeting specific Abs within a patients group infected with Bp only, with the ca-
pability of distinguishing between seropositive and recovered patients [144]. Preorga-
nization to a a-helix is expected to increase the affinity for specific Abs raised against
a given structural subpopulation, which would translate into stronger signals. On the
other hand, the stapled peptide was shown to elicit Abs that were significantly less bac-
tericidal than those generated against the unrestricted BpEp3 [144]. We speculate that
conformational restriction of the immunogen, combined with the fact that such con-
formations may be quite different from those in the 3D structure of the full antigen,
translates into the generation of Abs capable of recognizing only a limited ensemble of
specific epitope conformations at any time. The effect of such a conformational limita-
tion primes the Abs to target (in vivo) only epitopes that present structures very similar
to that of the stapled epitope, thus decreasing their bactericidal potential compared to
Abs raised against the more flexible BpEp3.

3.5.2 Computational Implementation

We performed energy minimization of all of the structures with AMBER16 [149] in ex-
plicit solvent (TIP3P water model [150]) using the FF14SB force field [151] with a steepest-
descent method (3- 107 steps), followed by a run in a conjugate gradient algorithm (7-103
steps). After minimization, we heated the system from 0 to 300 K (or 330 K) in the NVT
ensemble over 2.5 - 10* MD step with a time step of 2 fs. After the heating process, the
simulation was run for 50 ps (2 fs time step) in the NPT ensemble (Berendsen barostat
[152], Langevin temperature control with v = 2ps~!) using the SHAKE algorithm [64]
to constrain all of the hydrogen-containing bonds.

All production simulations were performed under the same conditions of the last equi-
libration part; we carried out MD simulations at 300 and 330 K (three replicas per tem-
perature, 250 ns each) of the crystal structures of Palg, and Palg.. For both epitopes, we
followed the same protocol at 300 and 330 K, performing a longer MD run (500 ns) on
three different replicas for both systems.

All trajectory analyses (RMSD, RMSEF, radius of gyration, and structural clustering) were
performed using the GROMACS suite (version 4.5.5) [45]. To prove, in an unsupervised
way, the different behavior of the two epitopes, we performed a cluster analysis on a
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trajectory obtained by concatenating all of the C,, positions (to maintain a fixed number
of atoms for all the frames) from MD runs carried out on both epitopes. If this analysis
separates the two different epitopes in different clusters, then we have statistical proof
of the dynamical difference of the two sequences due to the four amino acid mutations.
Secondary structure analysis was carried out using the STRIDE algorithm [153]. Finally,
we studied the free-energy landscape of all of the systems reweighting data from all of
the trajectories using WHAM in the implementation provided in the SMOG suite [154].
Epitope predictions were carried out on representative structures of the most populated
structural clusters obtained during MD by applying the matrix of local coupling energies
(MLCE) method, as previously described [142} [133].

3.5.3 Discussion

Our work presents a simple viable approach to the characterization of the molecular
determinants that guide recognition in designed immunodiagnostic probes. The proto-
col was applied to study the potential of two highly related epitope sequences for the
detection of related B. pseudomallei and B. cenocepacia infections. Present treatment
of both Burkholderia species relies on intravenous and/or oral antibiotic administra-
tion that is often inefficient because of the resistance of both bacteria to most common
antibiotic classes [155]. Immunodiagnostic tests would accelerate the selection of the
most appropriate antibiotic to be used, avoiding laborious diagnosis based on bacte-
rial cultures. Our approach allowed us to explore the impact of sequence variation and
structural flexibility on Ab binding and to identify BpEp3 from Bp (a more conformation-
ally flexible epitope) as the probe with the higher cross-reactivity and better diagnostic
performances to simultaneously reveal infections from both Bp and Bc. These charac-
teristics make BpEp3 a lead candidate for further refinement for use in the diagnosis of
Burkholderia species infections. In this context, epitopes with cross-reactivity against dif-
ferent species of the same pathogen may represent optimal candidate components for
the development of broadly protective vaccines, thus generating interesting therapeutic
applications. Under such perspectives, the results presented here highlight the poten-
tial offered by current experimental and simulative methods to expand and modulate
the molecular and conformational diversity space of reactive Burkholderia epitopes using
rational, structure-based approaches.

3.6 SAGE: automated epitope grafing

A possible improvement to the direct use of peptidic epitopes consists in implanting
them onto a scaffold of interest to improve their stability. Moreover, to maximize the
efficacy and the durability of the immune response, multiple epitopes can be inserted
into the starting structure. This procedure, termed epitope grafting, has been widely
used on viruslike particles (VLPs) since the early 1980s [156}[157] and was pioneered for
immunogenic proteins by the Schief group[[158) 159, 160, [161].

Epitope grafting involves the transplantation of a structural/functional motif onto a
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structurally homologous region of an unrelated protein target, possibly already hosting
other reactive sequences. The antigen target protein must display one or more regions
that are conformationally compatible with those of the epitope to be grafted. Once the
epitope is transplanted, its conformation should be stable in the new context, to support
optimal presentation for the binding of the antibody and for processing by the immune
system. To date, all the design part is carried out with a strongly limited use of compu-
tational tools (with the only exception represented by ROSETTA [162]), and an eventual
lenghtly and costly experimental validation, which restricts the possibility to efficiently
obtain viable grafted candidates.

For this reason, the availability of an automated tool for the design of multiepitope anti-
gens is expected to be a relevant support for vaccine development and for their testing
in different contexts, from structural biology to immunology. In particular, it permits
to rapidly select stable protein constructs containing a foreign antigen among an en-
semble of alternative solutions, without resorting to complex and lengthy techniques of
structural biology and modeling. Our computational pipeline, called SAGE (strategy
for alignment and grafting of epitopes), was tested analyzing the results of blind linear
epitope grafting predictions and benchmarking against known cases of successful de-
sign reported in the literature [158} 160} 161} [163] [164]. It is found that SAGE, despite
its simple approach, identifies successfully the best experimentally validated candidates
among its top scoring solutions without any preliminary knowledge-based input.

3.6.1 Workflow

The prediction of the grafting position requires the knowledge of the structure of the tar-
get, of the structure of the whole immunogenic cognate protein that contains the epitope
to be transplanted and of the position of the epitope along the sequence. It consists of
four phases:

1. Structural/sequence alignment

2. Secondary structure prediction

3. Structure scoring

4. Exposed surface scoring
SAGE is written as a Python 2.7 package that performs the analysis by accessing external
resources such as PSIBLAST and Naccess.
Alignment phase

The program takes the user-defined linear epitope from the original crystallographic
structure of the cognate protein and performs three different types of alignment onto the
target protein. For this step PyMOL [48] scripts are used, namely a pure sequence align-
ment (Pymol script align), a structure-based alignment (Pymol script super) and hy-
brid alignment (Pymol script CEA1ign [165]). In every alignment run, the script returns
the three best candidates. To obtain a larger set of suboptimal candidates, the alignment
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is repeated for several cycles, constraining the search to segments of decreasing length
which cover exhaustively the protein, as shown in Figure3.13]

At the end of this first part, SAGE generates a set of FASTA files containing the sequences
of all the grafting candidates.

Secondary Structure Scoring

Since the secondary structure of the cognate fragment and of the scaffold can change
upon grafting, we evaluated the secondary-structure propensities of the two based solely
on their sequence, independently of the actual secondary structure they display. For this
purpose we applied the s2D method [166], which returns a per-residue «/3 formation
probability based on sequence information. Applying the prediction to a scaffold of
N amino acids, the /3 propensities can be seen as two different points a®# in an N-
dimensional euclidean space.

After the alignment, we obtained M different sequences of N amino acids each. Thus,
we can define a distance

N
2
dop(@®?507) = || 37 (a0 = )

i=1

between such points that quantifies the difference in each of the two types of secondary
structure between any two sequences. These distances are calculated between the scaf-
fold and the sequences obtained from the alignment to evaluate how similar the grafting
candidates are expected to be to the original structure. The scores on the two types of
secondary structures are then merged in a score for secondary-structure scaffold com-

patibility, defined as
1 1

dola,t) * da(a,b)’

To take into account the similarity between the epitope in its original protein and in
the candidates, we also evaluated the similarity in secondary-structure propensity in
the epitope-containing segment. If this is composed by L residues, we compare L-
dimensional vector a®# for the epitope in its cognate protein and two different L- di-
mensional vectors b*? for every candidate. Therefore, we define another score which
reports the epitope secondary structure compatibility

Ssc(b) =

1 1

Secl®) = ) T Tty

Exposed Surface Scoring

The structural information available is used to evaluate how grafting affects the exposed
surface of the protein. The exposed surface area is measured using Naccess [167]. For
every candidate, SAGE, via the PyYMOL mutagenesis tool, creates a new structure mu-
tating the residues of the original scaffold with those of the new epitope using the most
probable rotamer. The exposed surface is evaluated for all epitope residues in the cog-
nate protein and for the corresponding grafted residues on all the putative structures.
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Figure 3.13: Scheme of the structure/sequence alignment. In red, the superposed epitope (4e10)
and in blue the part of the scaffold aligned (1Z6N). In the first step (i = 1) the epitope is aligned
on the full scaffold, from residue 1 to N. In the second step, it is aligned first on the first half
(residues [1, N /2]), then on the second half [N /2, N], in the middle part [V /4, 3N /4], and so on.
The alignment process can be performed with a user-defined number of steps.
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We obtain a L-dimensional vector a with the reference exposure and, having M candi-
dates, a collection of M L-dimensional vectors for the exposure of the grafted fragment.
We can compute again an Euclidean distance

L
d(a,b) = | Y (a; — b;)?
i=1

between the per-residue exposed area ¢ measured on the epitope in the cognate protein
and b measured on the grafted epitope, and an exposure score is defined as

Selection of the candidates

To restrict the number of viable candidates, we need to define a single score. The main
problem with the three scores defined above is that they are incommensurable, being de-
fined on different scales. To make them comparable, every score is normalized between
0 and 1 dividing it by the highest score found in the whole candidate pool.

A reactive epitope in an immunogenic context has to be exposed to the solvent to be
recognized by the immune system. To exploit the structural information given by the
exposed surface analysis and to penalize the candidates with a hidden grafted epitope
we use the normalized exposed surface score as a weight for the remaining scores

. _ Sep(d)  Sucec(b)
Sscec(b) = maXb(Sexp(b)) maxy(Sscec(b))

Finally, we generate the total score as the average of the scaffold and the epitope similar-
ity reweighted scores defined above

Stot(b) =

3.6.2 Validation of the algorithm

To validate the algorithm, we compared the grafting candidates obtained by SAGE with
the structure shown in previous structural epitope grafting works. It is important to
note here that a limited number of grafting reports have appeared in the literature, in
particular with regards to cases where the final structure of the protein could be crystal-
lized/obtained by homology modeling. We therefore retrieved the most possible avail-
able cases with structural information, running our analysis for viral sequences taken
from HIV-1, RSV, and snake toxin [160} [161} 163} [168], in which the authors grafted a rel-
evant linear epitope onto a set of different scaffolds. We also tested SAGE performance
for epitope grafting on viruslike particles [164}[169], although the graft length in one case
[164] does not correspond to the length of the scaffold deletion. The authors used frag-
ments of different length, ranging from extremely short [161} 164} [169] (<10 residues), to
short [160} [163] (10-12 residues), and to long [168] (24 residues). The number of cycles in
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the alignment phase was chosen considering the ratio between the length of the epitope
and the length of the smallest aligned scaffold fraction.

Given a N residues long scaffold and a L residues long epitope, the number of cycles k&
is given by k = 4. For short epitopes, the number of cycles can be decreased to speed

up the candidate generation.

Extremely short epitope

In the work of Azoitei et al. [161]], the authors expressed four sequences grafting the 2F5
binding site from the gp41 HIV-1 glycoprotein (PDB: 1TJI/P) on two different scaffolds
(PDB: 1TWNU and 2CX5). We performed the grafting candidate search using three dif-
ferent section of the 2F5 binding site, corresponding to residues 661-667, 661-666, and
662-667. In every run the correct original grafting zone was found by the algorithm (see

Table[3.T).

Table 3.1: SAGE grafting site prediction results for extremely short epitopes

Scaffold  Epitope Graft Original  no. of 1% ond 3t 4th 5th Rank
Position Graft cycles
1WNU 2F5 661-666 48-53 13 56-61 48-53 75-80 80-85 61-66 2nd
661-667 48-54 11 56-62 80-86 135-141 86-92 73-79 6
662-667 49-54 13 57-62 81-86 94-99 49-54 87-92 4t
2CX5 2F5 661-666 85-90 14 71-76  145-150 25-30 84-89 85-90 5th
661-667 85-91 12 31-37 25-31 71-77 84-90 145-151 7t
662-667 86-91 14 32-37 85-90 72-77 70-75 26-31 6
32V MAGE-3 168-176 76-84 9 76-84 2-10 12-20 134-142 30-38 1%t
80-89 1%
hamVP1 CEA 571-579 288.205 20 82-90  241-249 83-91 193-201  338-346 14th

In three cases out of six, the position chosen by the authors (obtained from the PDB
structures 3RFN and 3RI0) was in the top five of our selection. In the remaining cases
the original graft was predicted as the sixth (two cases) and the seventh candidate (one
case).

In the work of Kazaks ef al. [169], a melanoma-specific antigen (MAGE-3, PDB: 4VOP/A)
was grafted onto a Hepatitis B virus core protein (PDB: 3]2V/A). In the original paper,
the epitope was grafted in the middle of the scaffold and inserted at the end of the C ter-
minal region of the scaffold. While the insertion was not detectable by SAGE workflow,
the grafted part was correctly predicted as the first candidate (see Table 3.1).

In the work of Lawatscheck et al. the authors delete residues from 4 sites (residues 80-89,
222-225, 243-247, and 288-295) of the hamster polyomavirus and inserted a carcinoem-
bryonic epitope (CEA) characterized by a different length than the excised sequence,
thus varying the overall length of the final protein. Both the structures needed recon-
struction: the immunogenic protein described in the original paper was a homology
model (PDB: 10E7) that we completed using PULCHRA [170], while the structure for
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the scaffold was reconstructed using MODELLER [171] having as template the murine
polyomavirus capsid (PDB: 1SID) and the simian virus 5S40 capsid (PDB: 1SVA)[172].
Since the lengths of insertion and deletion do not match, SAGE could only find the zone
of insertion in the sites that differed less than two amino acids in length from the origi-
nal epitope: the first and the fourth site (residues 80-89 and 288-295). Importantly, SAGE
found site 1 as the first candidate (residues 82-90) and the site 4 as the 14" candidate
(residues 288-295) (see Table 3.1).

Short epitope

In the work of Correia, Ban, et al. [160] the authors expressed 103 different designed pro-
tein obtained by a side chain grafting method, using the 4E10 epitope of the gp41 HIV-
1 glycoprotein (PDB: 2FX7/P) on six different scaffolds (1EZ3, 1ISE, 1151, 1V17, 1XIZ,
1Z6N). Six of them were deposited in the Protein Data Bank. In contrast to the previous
case, the epitope (residues 671-680) is not grafted entirely on the scaffold, but it contains
a gap of 2 residues (NWFDIT-LW instead of NWFDITNWLW). Furthermore, the authors
changed the sequence both in the scaffold and in the epitope by single-point mutations
to favor protein stability. SAGE was applied to reproduce this grafting, with the dif-
ference that only the wild-type sequences were used and no mutation was applied. In
Table[3.2]we show the redesign results, comparing them with the grafting position in the
original paper.

Table 3.2: SAGE grafting site prediction results for short epitopes

Scaffold  Epitope Graft Original  no. of 1 2ond 31 4t 5th Rank
Position Graft cycles
1EZ3 4E10 671-680 68-77 7 68-77 27-36 110-119  32-41 132-141 1
1151 4E10 671-680 149-158 10 144-153  106-115  149-158  33-42  124-133 3
1ISE 4E10 671-680 149-158 10 144-153 68-77 149-158  33-42  106-115 3
1VI17 4E10 671-680 149-158 11 108-117  135-144  100-119  34-43  147-156 14t
1XI1Z 4E10 671-680 111-120 8 111-120 88-97 139-148 3847  114-123 18t
1Z6N 4E10 671-680 138-147 9 119-128  138-147 22-31 33-42 3-12 ond
2CRD INEA 26-37 25-36 4 3-14 4-15 25-36 19-30 12-23 3

Importantly, the original grafting zone was found in all the candidates. In five out of six
calculations, the original grafting position was in the first three suggested candidates.
In the remaining case of the 1VI7 candidate, the original grafting position was in the
14" position. This is probably due to the massive residue deletion in the scaffold (135
out of 206 amino acids), which eliminated possible grafting sites detected by SAGE. In
fact, neglecting the predictions obtained on the deleted part, the original position scores
third.

In the work of Drakopoulou et al. [163], the authors grafted a 12 residue long epitope
from a snake toxin (PDB: 1INEA) onto a 37 residue long scaffold from a scorpion toxin
(PDB: 2CRD). In this case, the grafted sequence was mutated with respect to the original
one by inserting two cysteine residues to stabilize the final construct through disulfide
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bridges; furthermore, the first six amino acids in the final chimeric protein were deleted.
SAGE predicts the correct position at the third place, but the first two candidates are
partially in the deleted portion of the sequence (see Table [3.2).

Long epitope

A comparison is performed with the work of Correia, Bates, et al. [168]. The authors,
starting from a single structure (3LHP), graft a long epitope from the F1 glycoprotein
of RSV (BIXT/P), obtaining four different candidates with the same final position of the
epitope sequence. The scaffold in this case is rather short (116 residues), considering the
epitope length (24 residues). Results are in Table

Table 3.3: SAGE grafting site prediction results for long epitope

Scaffold  Epitope Graft Original  no. of 1% ond 31 4th 5th Rank
Position Graft cycles
3LHP 3IXT 254-277 74-97 5 74-97 76-99  85-105 71-94  94-117 1

The first suggested position obtained by SAGE is the one chosen by the authors for ex-
perimental grafting.

3.6.3 Discussion

We presented a new method for redesign of antigens with the goal of creating immunore-
active proteins displaying multiple epitopes. Presenting multiple immune-reactive se-
quences on a single biomolecule is expected to elicit a more efficient and durable im-
mune response. This concept was first introduced using nanoparticle-based constructs
and multivalent synthetic systems [173] but can aptly be applied to entirely biomolecu-
lar systems. In this respect, SAGE provides a novel solution for the initial screening of
sequences coding for potentially highly reactive protein antigens, alleviating the need
of producing and testing high numbers of candidates. A graphical summary of SAGE
performance is in Figure3.14).

As a caveat it must be stated that currently SAGE works only on linear epitopes. How-
ever, since many antibody mediated recognition phenomena involve conformational
epitopes, we foresee the inclusion of procedures for discontinuous epitope grafting as
a natural extension of our approach. Due to several technical hurdles, this implementa-
tion is currently under development.

Operatively, we believe SAGE is a useful tool for structural vaccinology studies, at the
computational as well as at the experimental level. It provides a platform which is suit-
able for integration with other approaches of sequence/structure optimization, such as
Rosetta-based methods or MD refinement and checks of the stabilities of resulting con-
structs [174], 1168, [162].

Furthermore, SAGE will be implemented in a general-purpose web server to provide
access to structural vaccinology to a diverse community of scientists. At this moment,
SAGE is available as a Python 2.7 package which performs the explained analysis by
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Figure 3.14: Prediction performance in SAGE validation.

accessing external programs that can be downloaded from the Internet: PSIBLAST [175]
(via s2D [166])) and Naccess [167].

3.7 Applications of SAGE and preliminary experimental results

After the validation (see Section [3.6), we applied the SAGE algorithm to transplant the
known Palg, epitope BpEp3 onto two immunogenic proteins from Burkholderia pseudo-
mallei, already known to host other immunoreactive sequences.

3.7.1 Grafting of Palg, BpEp3 on FliCg,

FliCg,, is the flagellin of Burkholderia pseudomallei, which assembles to form the flagellar
filament responsible for the bacterium motility (see figure B.15). FliC has been shown
to induce T-cell responses in mice and humans [176]. In mice, FliC inoculation induces
partial protection against Burkholderia reinfection, thus reducing mortality and morbid-
ity. Sterile protection, however, has not been achieved to date [177].

In a previous study [178], 3 principal epitopes (the green, red and blue regions in Figure
have proven to be immunogenic in seropositive patients.

We took the original crystallographic structure presented in the work of Nithichanon et
al. [178] (PDB: 4CFI) and reconstructed the missing parts with an homology model using
the homologue flagellin from Salmonella typhimurium. Later, we refined the structure
carrying out a minimization. After a MLCE analysis of the reconstructed protein, one
new epitope was detected in position 51-69 (the yellow region in Figure ; however,
this epitope can be considered as an “incidental” epitope, because that part of the protein
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in the pathogen is buried into the flagellum structure.

B. pseudomallei ’ Longitudinal view Transverse view

Figure 3.15: Schematic representation of B. pseudomallei flagellum at microscopic and molecu-
lar level. In the top-left part we have a scketch of a procariotic cell like B. pseudomallei (source:
Wikipedia). In the top-right panel we have a molecular representation of the motility flagellum of
the bacterium. Every color represent a different FliCp, monomer. In the lower panel we can find
the ribbon representation of FliCp,. The 4 colored regions of the structure was identified as natural
epitopes of the monomer in solution (taken from [178]).

In our work, we designed using SAGE a list of possible grafts of the Palg, Bp3Ep epitope
onto the reconstructed and refined FliCp), scaffold as a proof of concept of the “super-
antigen” principle. Herein, we consider a superantigen a protein that contains known
reactive epitopes, whise reactivity is augmented by the insertion of a foreign epitope
from a different pathogen antigen. We run SAGE with a number of cycles L = 9, ob-
taining 46 candidates. The first 10 candidates predicted by SAGE are in Table 3.4 (The
complete prediction are in Appendix|[C] Table|C.14).

The first two candidates (101-120 and 100-119) were selected, for their distance from the
N- and C-terminal zones of the protein, and for their partial superposition on an exist-
ing almost non-immunogenic epitope (the blue one in Figure 3.15). In fact, the presence
of a native epitope suggests that this region of the protein does not contain any crucial
residue for protein stability, and therefore it is an ideal position where insert a foreign
epitope.
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Insertion Exposure  Structure score Epitope score Final
Rank  position score Raw  Weighted Raw  Weighted score

101-120 0.749 0.835 0.625 1.000 0.749 0.687

—_

2 100-119 0.702 0.983 0.690 0.927 0.651 0.670
3 70-89 0.963 0.790 0.761 0.482 0.464 0.612
4 319-338 0.928 0.725 0.673 0.562 0.522 0.597
5 294-313 0.711 0.784 0.557 0.756 0.538 0.548
6 81-100 0.787 0.915 0.720 0.432 0.340 0.530
7 13-32 0.741 0.956 0.708 0.448 0.332 0.520
8 105-124 0.621 1.000 0.621 0.597 0.371 0.496
9 66-85 0.898 0.676 0.608 0.422 0.380 0.494
10 46-65 0.778 0.873 0.679 0.354 0.275 0.477

Table 3.4: SAGE prediction for Ep3Bp epitope grafting on FliCg,.

The two selected candidates have been expressed at the Structural Biology Lab at Uni-
versity of Milan, and crystallization experiments are currently being performed.

3.7.2 Grafting of Palg, BpEp3 on BPSL2520

BPSL2520 is a symmetric homodimer with a horseshoe form (see Figure 3.16), with un-
known function. This particular protein was chosen for grafting for its ease in expres-
sion, purification and crystallization.

Figure 3.16: Frontal and lateral view of BPSL2520 dimer. The zone highlighted in green and blue
are the epitopes detected by MLCE [[133].
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Preliminary computational analyses on the wildtype protein

We analyzed via MD simulation the behavior of the dimer; in particular, we focused on
the stability of the crystallographic open configuration and the possibility for the protein
to populate alternative, namely closed, conformation. This expectation was based on the
observation that most of the amino acids in the interior of the horsehoe conformation are
hydrophobic.

After a two step minimization (3-10° steps with steepest descent algorithm and 7-10°
steps with conjugate gradient algorithm), we heated the system to 300 K with a 50 ps
simulation (TIP3P water model [150], Langevin thermostat with v = 2 ps'l, 2 fs timestep,
Berendsen barostat [152], SHAKE [64] constraints on hydrogen-containing bonds) and
then equilibrated with further 50 ps of MD at same conditions. The production run was
performed for 3 replicas, 500 ns per replica at the same conditions of the equilibration.
All the simulations were performed with AMBER16 [149] using FF14SB force field [151].
All analyses performed on MD trajectories were carried out using GROMACS 4.5.5 [45].

In Figure 2 replicas out of 3 reach the closed conformation within 100 ns of simula-
tion, while the last replica shows a slighly different behavior, reaching the closed state at
~ 350 ns of simulation.

We also studied the largest amplitude motions in the essential space of the wildtype
protein: operatively, we computed a PCA of the covariance matrix of the position of all
the residues during the trajectory, applyng a projection of all the trajectory along the 2
principal eigenvectors (Figure|3.18). The essential space analysis confirms the behavior
seen in RMSD analysis: we can find a stable (closed) structure due to the hydrophobic
interaction in the middle of the horsehoe (upper left part of Figure [3.18). From the last
replica trajectory (blue dots in Figure[3.18), which was open for most of the MD run, we
cannot find a localized open conformation in the eigenvector space, suggesting that the
open conformation is a metastable state for the dimer.
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Figure 3.17: RMSD with respect to the crystallographic structure and gyration radius for BPSL2520
MD simulations
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Figure 3.18: Representation of the essential modes from MD of BPSL2520. The replica 2 (blue)
shows a different behavior in the essential space with respect to replica 1 (red) and 3 (black).
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SAGE design and selection of candidates

SAGE was applied on BPSL2520 and on Ep3Bp epitope from Palg, (residue 72-91) with
a number of cycles L = 8, obtaining 30 candidates. The first 10 grafting candidates
selected are in Table [3.5|(complete prediction results are in Appendix|C| Table|C.15).

Insertion  Exposure Structure score Epitope score Final

Rank  position score Raw  Weighted Raw  Weighted score
1* 66-85 0.989 0.838 0.828 0.790 0.781 0.805
2f 85-104 0.779 0.850 0.662 1.000 0.779 0.721
3* 62-81 1.000 0.827 0.827 0.611 0.611 0.719

4~ 156-175 0.768 0.841 0.646 0.936 0.719 0.682
5* 115-134 0.945 0.704 0.665 0.740 0.699 0.682
6' 168-187 0.847 1.000 0.847 0.606 0.513 0.680
7* 118-137 0.901 0.789 0.710 0.720 0.649 0.680
8 89-108 0.855 0.761 0.651 0.753 0.644 0.647
9 169-188 0.829 0.958 0.794 0.590 0.489 0.642
10 88-107 0.803 0.792 0.636 0.797 0.640 0.638

Table 3.5: First 10 candidates from SAGE prediction for Ep3Bp epitope grafting on BPSL2520.
Candidates marked with f cover part of the existing epitopes, thus was removed from the ranking.
Candidates marked with * were the 5 best candidates.

Some of the candidates cannot be considered: SAGE does not manage multichain pro-
teins, and we performed the grafting protocol on a single monomer. In this way, the
exposure score is not completely reliable and we need to check manually the surface of
the epitope on the grafted protein. Fortunately, none of the first 10 candidates results
buried in the dimer interface.

The 2"? and the 6" candidates share a large part of their position with an existing epi-
tope, and thus were eliminated from the viable candidates.

We selected the best 5 candidates (see Figure3.19) with smallest possible epitope overlap
with the natural ones and carried out further in silico analyses to identify the more stable
construct with the aim to express and crystallize it.

Computational analyses on candidates

Like in the case of wildype protein, we carried out MD simulations for 3 replicas with
shorter production runs (250 ns instead of 500 ns).

All the grafting candidates show a similar behavior with respect to the wildtype scaffold:
the majority of the replicas start from an open conformation and reach the closed state.
Both the RMSD and the radius of gyration analyses do not give us a clear hint on which

are the most promising grafts (see Figures C.2).
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Figure 3.19: 5 selected candidates for Ep3Bp grafting on BPSL2520. In green and blue we
higlighted the natural epitopes of BPSL2520, in red the grafted epitope.
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On the other hand, analyzing the projection of the graft trajectories on the essential space

pe trajectories, we found the candidates
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Figure 3.20: Representation of the essential modes of the graft trajectories. Black dots are relative
to the wildtype trajectories, red dots are the one from the grafting candidates. Plots order is:
first candidate (top left), third candidate (top right), fourth candidate (center left), fifth candidate
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Experimental validation

All the 5 candidates was sent to Structural Biology Lab at University of Milan, to express
and crystallize them.

To date, the first SAGE candidate (graft in position 66-85) crystallized (see Figure
and was sent to ESRF in Grenoble to perform X-ray scattering experiments to resolve
its structure. Optimization of the crystal resolution conditions are currently ongoing. If
the experimental validation will confirm the in silico 3D structure prediction, we plan to
perfom immunological tests on patients sera using this superantigen as a probe.

Figure 3.21: Crystal of the 1°* SAGE-designed superantigen



Conclusions and future directions

“Ci fu una grande battaglia di idee e alla fine non ci
furono né vincitori, né vinti, né idee.”

STEFANO BENNI, Elianto

Computational modeling of proteins, despite the enormous progress made in both the-
oretical and technical approaches, remains an extremely challenging research field. This
topic has been addressed in the present thesis from a theoretical point of view, applying
statistical mechanics-based principles to molecular mechanics, and from a more applica-
tive point of view studying the conformational and energetic properties of peptides with
the aim to use them in a diagnostic tool and/or in a vaccine.

In the first chapter of the present thesis we proposed a path-independent free energy cal-
culation technique, called Simplified Confinement Method, applying it to a new problem
(single point mutants AAG calculation) and enhancing its efficiency with respect to its
original formulation. For the single-point mutants calculations, despite the very good
agreement in thermostability order, we found a systematic drift in our free energy es-
timate, probably due to the oversimplified approximation applied to model denatured
state (GXG tripeptide approximation). In the future, we plan to focus on this problem,
trying to remove (or at least limit) the effect of this approximation.

In the SCM efficiency enhancement section, we exploited interpolation and extrapolation
of confinement energies to sensibly reduce the computational effort needed to obtain re-
liable conformational free energy differences in biomolecules. After a proof of principle
on alanine-n-peptides, we applied interpolation and extrapolation on a larger system,
lactoferricin, showing the capability of the method to tackle also biologically-relevant
biomolecules in a reasonable time.

In the second chapter, we studied non-equilibrium transitions in biomolecules using
MD, correcting a force field following the principle of Maximum Caliber. In particu-
lar, we showed that, adding a bias which follows reference time series to an inaccurate
force field, it is possible to obtain a good kinetic behavior also in unbiased collective
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variables. Interestingly, in our simulation time becomes a bias parameter, and we also
showed the possibility to “accelerate” the non-equilibrium simulation, keeping a good
agreement with the experimental behavior of the system. As a last test, we biased our
system with SAXS intensity data generated in silico, reproducing also in this case the
non-equilibrium transition of the system. For the future, we plan to apply this technique
using time-resolved data that comes from real experiments (NMR, SAXS, CD), directly
integrating experimental information to MD.

In the first part of the third chapter we applied the principles of Structural Vaccinology
to study two immunogenic peptides extracted from homologous proteins that comes
from a bacterial family of pathogens to study their molecular determinants, with the
aim to obtain a good diagnostic candidate which can be used in both the diseases. Our
approach enlightened the role of small sequence mutations and the resulting structural
flexibility change. The exploitation of this cross-reactivity can enhance the diagnostic
capability of a tools as well as represent a good vaccine candidate.

In the second part, we presented an automated tool to graft linear immunogenic se-
quences onto foreign proteins, called SAGE. We applied this algorithm to graft epitopes
on already immunogenic proteins, with the aim to obtain a broader response in the host.
Currently we are waiting for experimental structural determination for our designed
candidates and the subsequent tests to verify their immunogenic response. In the fu-
ture, we plan to extend the reliability of SAGE predictions adding some new features,
like coevolutionary evaluation of grafted sequences, or their solubility. Furthermore, we
want to add the possibility to design grafting candidates starting from conformational
epitopes.

Overall, my thesis shows the relevance and reach of atomistic simulations and theoreti-
cal methods in different realms of computational biophysics. I believe that the increase
of structural and functional data we are currently witnessing will benefit from and spur
the optimization and integration of methods such as the ones I developed into actual
integrative biology approaches.

Pushing structure-based design and atomic resolution kinetic understanding of experi-
ments into the analysis of biology will likely be the key to capture the physical basis of
fundamental phenomena.
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APPENDIX A

Derivation of Simplified Confinement Method

A.1 Numerical integral calculation for TI

Numerical integration of the windows’ average of the restraining energy was performed
using the trapezoidal rule in a double log scale, fitting the consecutive points using a
power law, as explained by Tyka et al. [12] and in Cecchini ef al. [40].

Defining y; = % and z; = (;, the power law is

yi = ax} (A1)

Given two consecutive points (z;,y;) and (z;,y;) with j = i + 1, the area A; under the
curve results
xj . 1
b a b+17%:
Ai:/r az dx:b+1 [x+}xi:b+1(y‘7wj—yixi) (A.2)

And, computing the logarithm of the power law (A.I) for both the points, and subtract-
ing one to the other, we can obtain an expression for the parameter b

log (y;) =loga+blog(z;) N b log (y;) — log (v:)
log (y;) =loga+blog(x;) log (z;) — log (z:)
And the total free energy difference results
n—1
AGp w0 =D A (A.3)
i=1

where n is the total number of the simulated windows.

For the integral error calculation, we considered the statistical uncertainities on energy
interpolation with MBAR reweighting [56] and applied the error propagation, consider-
ing null the error on the frequency. The error on every step of the integral then results

04N o (947 ,
oA = o o
A; ayi Yi ayj Y
9 I-m\\? 9 L'm 2
=0y, k-l zi+1——y2+1 + oy, k-1l x;‘? (A.4)
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where the parameters k, [, and m are

k =log(ziy1) — log(z;),
I 1
log(yi+1) — log(y:) — k’

m = Yi+1Ti+1 — Yi%i-

A.2 Derivation of roto-translational free energy

In the confined state, as we explained in section the free energy of the system is
represented only by entropy contributions. The roto-translational free energy for a N
molecules in a box is defined as

N
Grotstr = —kpT'log Z = —kpT'log ((JIV')

where ¢ = grot + Gr-
Applying the Stirling approximation

C7vr0’t+’tr = _kBT IOg ( < q?\);qtr )

= —kgTlog (eqtr) — kpT'10g (grot)

N
= Gtr + GYrot

For the translational part we have [179]

1% 3 (2rmkpT
Gy = —NkgT (log <N> +1+4 7 log (””};f))

N ormkpT
— _NkpT (—log (v) +1+4 glog (”TLSB» (A.5)

where N/V is the molecule concentration in the box, and we consider a 1 M standard
concentration. Note that here we assume that the ideal gas equation holds, and thus
there is no interactions between molecules (in our case we simulate only one molecule,
without periodic boundary conditions).

For the rotational part we have [179]

1 2kgT
Grot = —NkpT (2 log (w1115 13) + glog (87T thB ) - log(a)) (A.6)

where I; are the 3 moments of inertia along the principal axes and ¢ is the symmetry
number, which is equal to 1 for asymmetrical molecules.

The moments of inertia are computed on the confined trajectories using the g_gyrate
routine of the GROMACS suite, or the coor module in CHARMM.
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Considering two systems A and B in their confined states, the roto-translational free
energy difference results

rotstr 1 IBIBIB mg
AGR o = =5 NkgT (log (Iiié f}) +3log (mA» (A7)







APPENDIX B

Derivation of Maximum Caliber

B.1 Proof of the equivalence between pMaxCal and biased replica sim-
ulations

If {7} is the set of stochastic trajectories of the N—particle system starting at point ro,
we are interested in the probability p(y). Since computational algorithms usually pro-
duce trajectories over discrete time steps and kinetic experiments are usually recorded
at discrete times, we assume that p(y) = p(ro, 71, ..., 7). Defining f;*" as the experimen-
tal time course of some conformational property of the system, and f(r) the associated
forward model, and assuming to know the diffusion coefficient D of the system, the
principle of maximum caliber requires that p(rg, 71, ..., ) maximizes

S[p] = - Z p(TO,Th...77’T)10gp(7”0,7"1,...,TT) (Bl)

TiT2...TT

with the constraints

> p(ro,ra, o rr) f(r) = f£77 (B.2)
T1r2...TT
and
1
A Z p(ro, 1, ooy rr)[re41 — Tt]2 =D (B.3)
T™r2..T7

at each discrete time ¢, and that _ p(r9,71,...,77) = 1. The constrained maximization
gives

p(To,Tl, ...,TT) — eXp Z V¢ Tt+1 — Tt + )\tf(rt)) N (B4)
t

where Z; is the normalization constant and v, is the set of Lagrange multipliers which
implement the average of Eq. and ); that implementing Eq. (B.2). In principle, A,
can be obtained by d(log Z,)/d\; = f{*", but in practice this is useless because it is an
implicit equation and it involves the sum Z; over all possible paths.

It is useful to extend the expression found in Eq. in two ways, which so far are just
formally correct, and whose use will be clear later. First, let us consider n independent,
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100 B.1 Proof of the equivalence between pMaxCal and biased replica simulations

identical replicas of the system, each defined by coordinates {73} with o = 1,...,n and
t =0,...,T7. The maximum-caliber probability distribution can be easily extendend to

p{ri}) = 7, &P [ D i i+ /\?f(v“?‘))] : (B.5)

t,a

Moreover, one can require that

2
Z ({rh) [ Zfrt emp] :U?ztv (B.6)
{re}

that is the standard error of the average of f over the replicas is some value o,,. For sake
of compactness, let’s define

&=- Z Forf) = £, (B.7)

implying that the experimental data are matched if §& = 0 for all t. Applying the
Lagrange-multipliers method also to this constrain, the maximum-—caliber distribution
becomes

p({r}) = Zidexp =S R — S AL + pied) | (B.9)

t,a

In the limit n — o0, 0,4 — 0 for every ¢ because of the law of large numbers, and
consequently one can set y&, — oo for each ¢t and a. In particular, o, ~ n~'/2 and
consequently u&, ~ logn.

To generate trajectories distributed according to Eq. (B.4), we follow a computational
strategy based on coupled replica MD simulations, similarly to what done to correct
force fields to match equilibrium data [86]. The replicas are controlled by the time-
dependent potential

U({r®},t) ( Zf ”’p) : (B.9)

where r® is the conformation of the system in the replica «, n is the number of repli-
cas and k is an harmonic constant. The associated stochastic process in the (3N x n)-
dimensional replica space can be regarded as a Markov chain

Pa({ri'}) = pn (rg)w(rg — r)w(ry — rg).w(ry_y = rf) (B.10)

which can be written according to the simplest form of the Onsager-Machlup function,
corresponding to an over—damped stochastic dynamics discretized according to Ito pre-
scription [[180]

2
o ri, — e+ kAL
pn({rt }) =c-exp |— Z ( t+1 QBIAt t) , (B'll)

ta
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recalling that by definition the initial point r§ is fixed for all replicas. Here the diffusion
coefficient is D’ = T'/+', where ~/' is the friction coefficient chosen as an input of the
simulation. In the limit of large & this can be approximated as

H5 (&) (B.12)

Po({r}) = c-exp [— > (”;}9, A’;f

ta

because of the definition of Dirac’s delta, that is for any distribution ¢(§) and any ¢

& — e 4 kALE)”
c/dft exp [_Z (rffs —rf + BAL)

2D'At

2
ro — o
@(&) = c-exp l— Z (t;)’Att)] -¢(0)
(B.13)
in the limit k — 0.

Equation (B.12) can be rewritten multiplying its rh.s. by the exponential of a linear
function of gt, that is which is equivalent to

o (Tt—H
pn({rt }) = C-€exXp l ; 2DIAt Z%‘& : H ) (B14)
for any ;. In fact, for any distribution (&) and any ¢

2

c/d{ exp 72 7(T?+1 - T?)

' —  2D'At
2
=c / dé exp [— > (= rt) ke | 8 (&) (&) (B.15)
= 2D'At ’

meaning that Eq. (B.12) is equivalent to Eq. (B.14).
Using the Gaussian representation of Dirac’s delta §(¢;) = lim,, . exp(—r&7), Eq. (B.14)
becomes

6 (&) (&) =

pa({ri'}) = c-exp

-2 m;b Att Z%& Znt &) ] (B.16)

ta

in the limit x; — oo for any ¢. Choosing v; = A, remembering that both x, and x; — oo
for large k, then Eq. is equivalent to the maximum-—caliber distribution of Eq. .
However, there is a further difficulty involving the diffusion coefficient. If the experi-
mental data are not taken into account, i.e. Ay = p&, = 0, then the partition function
in Eq. is a Gaussian integral and the condition dlog Z;/0v* = D defining the
Lagrange multipliers gives v;* = 1/D and thus D = D’. In this case, the diffusion coef-
ficient used as an input to the replica simulation is the same required by the maximum-
caliber principle.

On the other hand, if one accounts for the experimental data, then v* # 1/D and the
simulated diffusion of the particles becomes different from that required by the principle
of maximum caliber. If the constraining effect of the experimental data is mild, one
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can expect that A\ are small and the dynamical partition function in Eq. (B.8) can be
approximated as

Zd=:§jexp{—§ju?val—wa]<1——§2A?f0fv>, (B.17)
{T? } t,a t,a
and consequently to the first order in A

1 0

D=— - /\?87 (fri)g, (B.18)
t

i

where (-)4 is the unperturbed average over paths. Comparing this with Eq. (B.16) gives
[e3% a (o3

D = D'+ X} (D) 55 {f(r))a (B.19)

suggesting that the actual diffusion coefficient is modified by the bias with respect to
that used as input to the simulation.

B.2 Uil — Uneaq results
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Figure B.1: Average fraction of native contacts (¢) in function of time for unbiased Uneaqa (dark
grey), unbiased Uy (light grey, covered by caliber-restrained simulations), and caliber-restrained
simulations from Ui to Unead, from 4 (red) to 128 replicas (yellow) in color scale.
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Figure B.2: x2, between experimental Uy and biased Ugi t0 Uneaa fluctuations of fraction of
native contacts (q) during the first half of the simulation. Despite some small differences in x24
value, all the simulations are almost identical to the original one and the number of replicas does
not change the result of the bias
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Figure B.3: Fluctuations of average fraction of native contacts (q) in function of time for unbiased
Uhead (dark grey), unbiased Uy (light grey), and caliber restrained simulations from Ui to Unead,
from 4 (red) to 128 replicas (yellow) in color scale.
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Figure B.4: Average C,-RMSD (top), gyration radius (center), and end-to-end distance (bottom)
in function of time for unbiased Uheaq (dark grey), unbiased Ui (light grey), and caliber restrained
simulations from Ui to Upead, from 4 (red) to 128 replicas (yellow) in color scale.
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Figure B.5: X2.4 between time series from experimental Uy, and biased Uit t0 Unead fluctuations
of RMSD (left), gyration radius (center), and end to end distance during the first half of the simu-
lation.
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Figure B.6: Fluctuations of average C,-RMSD (top), gyration radius (center), and end-to-end dis-
tance (bottom) in function of time for unbiased Uheaa (dark grey), unbiased U (light grey), and
caliber restrained simulations from Ui t0 Unead, from 4 (red) to 128 replicas (yellow) in color scale.



APPENDIX C

Complete data from SAGE predictions

Insertion ~ Exposure Structure score Epitope score Average
Rank  position score Raw  Weighted = Raw  Weighted score
56-61 0.679 0.937 0.636 1.000 0.679 0.657
2" 48-53 0.880 0.627 0.552 0.344 0.303 0.427
3 75-80 0.831 0.826 0.687 0.199 0.165 0.426
4 80-85 0.724 0.562 0.407 0.599 0.434 0.421
5 61-66 0.461 1.000 0.462 0.738 0.341 0.402
6 118-123 0.676 0.801 0.541 0.316 0.213 0.377
7 86-91 0.649 0.638 0.414 0.393 0.255 0.335
8 49 0.531 0.890 0.472 0.340 0.180 0.326
9 70-75 0.704 0.708 0.499 0.218 0.153 0.326
10 94-99 1.000 0.367 0.367 0.278 0.278 0.322
11 44-49 0.610 0.828 0.505 0.205 0.125 0.315
12 12-17 0.410 0.792 0.325 0.632 0.259 0.292
13 131-136 0.607 0.715 0.434 0.160 0.097 0.265
14 149-154 0.548 0.642 0.352 0.227 0.125 0.238
15 89-94 0.508 0.455 0.264 0.345 0.200 0.232
16 29-34 0.531 0.545 0.289 0.307 0.163 0.226
17 106-111 0.535 0.655 0.350 0.166 0.089 0.220
18 71-76 0.707 0.295 0.209 0.274 0.194 0.201
19 43-48 0.494 0.363 0.179 0.164 0.081 0.130

Table C.1: SAGE prediction for 2F5 epitope (residues 661-666) on IWNU scaffold. Candidate
marked with x is the one chosen in the original paper.
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Insertion ~ Exposure Structure score Epitope score Average
Rank  position score Raw  Weighted = Raw  Weighted score
1 56-62 0.631 0.861 0.543 1.000 0.631 0.587
2 80-86 0.737 0.680 0.501 0.565 0.416 0.459
3 135-141 0.695 1.000 0.695 0.232 0.161 0.428
4 86-92 0.651 0.453 0.295 0.551 0.359 0.327
5 73-79 0.874 0.558 0.488 0.180 0.157 0.323
6" 48-54 0.876 0.415 0.364 0.316 0.277 0.320
7 118-124 0.628 0.670 0.420 0.325 0.204 0.312
8 70-76 0.719 0.623 0.448 0.194 0.140 0.294
9 94-100 1.000 0.305 0.305 0.260 0.260 0.283
10 4-10 0.510 0.764 0.390 0.341 0.174 0.282
11 130-136 0.610 0.771 0.471 0.152 0.093 0.282
12 75-81 0.844 0.387 0.326 0.270 0.228 0.277
13 12-18 0.405 0.728 0.295 0.624 0.253 0.274
14 44-50 0.584 0.646 0.377 0.202 0.118 0.248
15 32-38 0.822 0.380 0.312 0.217 0.179 0.245
16 106-112 0.534 0.724 0.387 0.165 0.088 0.238
17 29-35 0.541 0.512 0.277 0.278 0.150 0.214
18 119-125 0.530 0.509 0.270 0.274 0.145 0.208
19 71-77 0.709 0.255 0.181 0.250 0.177 0.179
20 148-154 0.466 0.281 0.131 0.320 0.149 0.140
21 105-111 0.490 0.354 0.173 0.156 0.077 0.125
22 42-48 0.452 0.337 0.152 0.167 0.075 0.114

Table C.2: SAGE prediction for 2F5 epitope (residues 661-667) on IWNU scaffold. Candidate
marked with * is the one chosen in the original paper.

Insertion  Exposure Structure score Epitope score Average

Rank  position score Raw  Weighted = Raw  Weighted score
1 57-62 0.421 1.000 0.421 1.000 0.421 0.421
2 81-86 0.482 0.654 0.316 0.572 0.276 0.296
3 94-99 1.000 0.355 0.355 0.209 0.209 0.282
4* 49-54 0.578 0.523 0.302 0.362 0.209 0.256
5 87-92 0.481 0.475 0.229 0.375 0.180 0.204
6 13-18 0.287 0.589 0.169 0.735 0.211 0.190
7 48-53 0.607 0.290 0.176 0.300 0.182 0.179
8 45-50 0.475 0.556 0.264 0.181 0.086 0.175
9 119-124 0.416 0.539 0.224 0.262 0.109 0.167
10 76-81 0.597 0.300 0.179 0.242 0.145 0.162
11 107-112 0.411 0.599 0.246 0.145 0.059 0.153
12 95-100 0.654 0.240 0.157 0.215 0.141 0.149
13 90-95 0.401 0.384 0.154 0.234 0.094 0.124
14 28-33 0.398 0.358 0.142 0.209 0.083 0.113

Table C.3: SAGE prediction for 2F5 epitope (residues 662-667) on IWNU scaffold. Candidate
marked with  is the one chosen in the original paper.
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Insertion  Exposure Structure score Epitope score Average

Rank position score Raw Weighted Raw Weighted score
1 71-76 0.587 1.000 0.587 0.744 0.437 0.512
2 145-150 0.630 0.573 0.361 1.000 0.630 0.496
3 25-30 0.932 0.749 0.698 0.293 0.274 0.486
4 84-89 0.827 0.516 0.427 0.606 0.501 0.464
5% 85-90 1.000 0.297 0.297 0.578 0.578 0.438
6 41-46 0.739 0.369 0.272 0.789 0.583 0.427
7 69-74 0.727 0.459 0.334 0.670 0.487 0.411
8 122-127 0.580 0.540 0.313 0.713 0.414 0.363
9 110-115 0.717 0.506 0.362 0.342 0.245 0.304
10 46-51 0.513 0.346 0.178 0.837 0.429 0.304
11 83-88 0.682 0.282 0.192 0.599 0.408 0.300
12 64-69 0.491 0.884 0.434 0.286 0.140 0.287
13 129-134 0.512 0.452 0.231 0.548 0.281 0.256
14 27-32 0.760 0.288 0.219 0.366 0.278 0.248
15 137-142 0.556 0.474 0.263 0.386 0.214 0.239
16 126-131 0.435 0.553 0.240 0.512 0.223 0.232
17 114-119 0.521 0.538 0.280 0.342 0.178 0.229
18 23-28 0.653 0.390 0.255 0.278 0.182 0.218
19 101-106 0.466 0.576 0.268 0.358 0.167 0.217
20 125-130 0.445 0.372 0.166 0.558 0.248 0.207
21 24-29 0.734 0.264 0.194 0.282 0.207 0.200
22 63-68 0.461 0.509 0.235 0.258 0.119 0.177

Table C.4: SAGE prediction for 2F5 epitope (residues 661-666) on 2CX5 scaffold. Candidate
marked with « is the one chosen in the original paper.

Insertion  Exposure Structure score Epitope score Average
Rank  position score Raw  Weighted  Raw  Weighted score
1 31-37 0.854 0.965 0.825 1.000 0.854 0.839
2 25-31 0.894 0.881 0.787 0.176 0.158 0.473
3 71-77 0.627 1.000 0.627 0.406 0.255 0.441
4 84-90 0.908 0.530 0.481 0.365 0.332 0.407
5 145-151 0.683 0.600 0.410 0.472 0.322 0.366
6 69-75 0.760 0.549 0417 0.387 0.294 0.356
7" 85-91 1.000 0.319 0.319 0.354 0.354 0.336
8 42-48 0.673 0.365 0.246 0.584 0.393 0.319
9 43-49 0.599 0.453 0.271 0.498 0.298 0.285
10 122-128 0.590 0.560 0.330 0.391 0.231 0.281
11 93-99 0.712 0.458 0.326 0.267 0.190 0.258
12 64-70 0.533 0.753 0.401 0.171 0.091 0.246
13 83-89 0.736 0.314 0.231 0.351 0.258 0.244
14 110-116 0.717 0.484 0.347 0.186 0.133 0.240
15 137-143 0.580 0.534 0.309 0.233 0.135 0.222
16 129-135 0.528 0.469 0.247 0.307 0.162 0.205
17 23-29 0.692 0.404 0.280 0.164 0.114 0.197
18 101-107 0.501 0.568 0.285 0.209 0.105 0.195
19 126-132 0.459 0.513 0.235 0.285 0.131 0.183
20 54-60 0.614 0.395 0.243 0.183 0.112 0.178
21 63-69 0.488 0.556 0.271 0.153 0.075 0.173
22 114-120 0.537 0.423 0.227 0.205 0.110 0.169
23 102-108 0.495 0.302 0.150 0.210 0.104 0.127
24 52-58 0.549 0.260 0.142 0.193 0.106 0.124

Table C.5: SAGE prediction for 2F5 epitope (residues 661-667) on 2CX5 scaffold. Candidate
marked with x is the one chosen in the original paper.
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Insertion ~ Exposure Structure score Epitope score Average
Rank  position score Raw  Weighted = Raw  Weighted score
1 32-37 1.000 1.000 1.000 1.000 1.000 1.000
2 85-90 0.969 0.421 0.408 0.344 0.333 0.371
3 72-77 0.588 0.795 0.467 0.459 0.270 0.369
4 70-75 0.750 0.478 0.358 0.387 0.290 0.324
5 26-31 0.746 0.676 0.504 0.171 0.127 0.316
6" 86-91 0.787 0.325 0.256 0.428 0.337 0.296
7 94-99 0.605 0.613 0.371 0.246 0.149 0.260
8 42-47 0.708 0.239 0.169 0.389 0.275 0.222
9 123-128 0.486 0.541 0.263 0.358 0.174 0.219
10 65-70 0.488 0.599 0.292 0.176 0.086 0.189
11 138-143 0.539 0.432 0.233 0.238 0.128 0.180
12 130-135 0.474 0.445 0.211 0.311 0.147 0.179
13 47-52 0.481 0.314 0.169 0.420 0.202 0.176
14 115-120 0.480 0.440 0.211 0.229 0.110 0.161
15 25-30 0.828 0.222 0.184 0.163 0.135 0.159
16 106-111 0.573 0.294 0.168 0.238 0.136 0.152
17 55-60 0.584 0.283 0.165 0.173 0.101 0.133
18 102-107 0.412 0.430 0.177 0.202 0.083 0.130
19 126-131 0.402 0.275 0.110 0.288 0.116 0.113
20 103-108 0.446 0.255 0.114 0.215 0.096 0.105

Table C.6: SAGE prediction for 2F5 epitope (residues 662-667) on 2CX5 scaffold. Candidate
marked with * is the one chosen in the original paper.

Insertion  Exposure Structure score Epitope score Average

Rank  position score Raw  Weighted  Raw  Weighted score
1" 68-77 1.000 0.756 0.756 0.446 0.446 0.601
2 27-36 0.995 0.669 0.665 0.489 0.487 0.576
3 110-119 0.708 0.571 0.404 1.000 0.708 0.556
4 32-41 0.787 0.996 0.784 0.344 0.271 0.527
5 132-141 0.777 0.874 0.679 0.360 0.279 0.479
6 88-97 0.695 0.877 0.609 0.447 0.310 0.460
7 36-45 0.697 0.970 0.676 0.342 0.238 0.457
8 133-142 0.869 0.675 0.586 0.376 0.327 0.457
9 116-125 0.684 0.609 0417 0.721 0.494 0.455
10 94-103 0.735 0.485 0.357 0.690 0.508 0.432
11 72-81 0.853 0.654 0.557 0.345 0.294 0.426
12 42-51 0.630 1.000 0.630 0.333 0.210 0.420
13 52-61 0.704 0.730 0.514 0.432 0.304 0.409
14 82-91 0.679 0.691 0.470 0.490 0.333 0.401
15 126-135 0.718 0.711 0.510 0.340 0.244 0.377
16 47-56 0.625 0.777 0.485 0.341 0.213 0.349

Table C.7: SAGE prediction for 4E10 epitope (residues 671-680) on 1EZ3 scaffold. Candidate
marked with x is the one chosen in the original paper.
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Insertion ~ Exposure Structure score Epitope score Average

Rank  position score Raw  Weighted = Raw  Weighted score
1 144-153 1.000 0.510 0.510 0.896 0.896 0.703
2 106-115 0.796 0.498 0.397 0.774 0.616 0.506
3" 149-158 0.669 0.447 0.299 1.000 0.669 0.484
4 33-42 0.513 0.906 0.465 0.813 0.417 0.441
5 124-133 0.482 0.825 0.397 0.987 0.476 0.436
6 70-79 0.645 0.585 0.377 0.693 0.447 0.412
7 50-59 0.482 1.000 0.482 0.707 0.341 0.412
8 71-80 0.574 0.481 0.276 0.748 0.429 0.352
9 16-25 0.504 0.884 0.446 0.470 0.237 0.341
10 131-140 0.503 0.780 0.392 0.541 0.272 0.332
11 15-24 0.557 0.721 0.401 0.468 0.261 0.331
12 109-118 0.548 0.530 0.291 0.663 0.363 0.327
13 76-85 0.489 0.596 0.291 0.594 0.290 0.291
14 10-19 0.541 0.437 0.237 0.597 0.323 0.280
15 161-170 0.522 0.486 0.254 0.573 0.299 0.276
16 18-27 0.516 0.458 0.236 0.557 0.287 0.262
17 132-141 0.485 0.506 0.245 0.543 0.263 0.254
18 75-84 0.442 0.508 0.225 0.618 0.273 0.249
19 171-180 0.499 0.390 0.195 0.541 0.270 0.232

Table C.8: SAGE prediction for 4E10 epitope (residues 671-680) on 1IS1 scaffold. Candidate
marked with x is the one chosen in the original paper.

Insertion  Exposure Structure score Epitope score Average
Rank position score Raw Weighted Raw Weighted score
1 144-153 1.000 0.465 0.465 0.487 0.487 0.476
2 68-77 0.485 0.553 0.268 1.000 0.485 0.376
3* 149-158 0.716 0.475 0.340 0.519 0.372 0.356
4 33-42 0.425 0.958 0.407 0.461 0.196 0.301
5 106-115 0.709 0.424 0.301 0.423 0.300 0.300
6 16-25 0.452 1.000 0.452 0.261 0.118 0.285
7 53-62 0.470 0.633 0.297 0.531 0.250 0.273
8 104-113 0.520 0.515 0.268 0.466 0.242 0.255
9 124-133 0.411 0.713 0.293 0.526 0.216 0.254
10 2-11 0.527 0.237 0.125 0.554 0.292 0.208
11 119-128 0.430 0.555 0.239 0.402 0.173 0.206
12 71-80 0.475 0.477 0.227 0.385 0.183 0.205
13 109-118 0.505 0.443 0.224 0.366 0.185 0.204
14 159-168 0.447 0.642 0.287 0.262 0.117 0.202
15 74-83 0.413 0.624 0.258 0.299 0.124 0.191
16 18-27 0.500 0.397 0.199 0.314 0.157 0.178
17 167-176 0.439 0.507 0.223 0.286 0.126 0.174
18 76-85 0.425 0.468 0.199 0.329 0.140 0.169
19 153-162 0.443 0.389 0.172 0.366 0.162 0.167
20 162-171 0.411 0.470 0.193 0.295 0.121 0.157
21 132-141 0.432 0.426 0.184 0.299 0.129 0.157
22 13-22 0.419 0.394 0.165 0.331 0.139 0.152
23 157-166 0.458 0.286 0.131 0.372 0.171 0.151
24 164-173 0.435 0.372 0.162 0.317 0.138 0.150
25 75-84 0.382 0.426 0.163 0.335 0.128 0.146

Table C.9: SAGE prediction for 4E10 epitope (residues 671-680) on 1ISE scaffold. Candidate
marked with x is the one chosen in the original paper.
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Insertion  Exposure Structure score Epitope score Average
Rank  position score Raw  Weighted = Raw  Weighted score
1 108-117 1.000 0.526 0.526 1.000 1.000 0.763
2 135-144 0.810 1.000 0.810 0.304 0.246 0.528
3 110-119 0.764 0.532 0.407 0.753 0.575 0.491
4 34-43 0.879 0.757 0.666 0.318 0.279 0.473
5 147-156 0.824 0.742 0.612 0.380 0.314 0.463
6 184-193 0.725 0.771 0.559 0.308 0.224 0.392
7 111-120 0.573 0.582 0.333 0.620 0.355 0.344
8 39-48 0.836 0.509 0.425 0.308 0.257 0.341
9 31-40 0.652 0.641 0.418 0.393 0.256 0.337
10 40-49 0.675 0.698 0.471 0.283 0.191 0.331
11 187-196 0.626 0.757 0.474 0.296 0.186 0.330
12 181-190 0.736 0.512 0.377 0.375 0.276 0.327
13 161-170 0.610 0.639 0.390 0.399 0.243 0.316
14* 149-158 0.641 0.628 0.403 0.349 0.224 0.313
15 30-39 0.578 0.641 0.370 0.400 0.231 0.301
16 38-47 0.636 0.653 0.415 0.292 0.185 0.300
17 191-200 0.553 0.753 0.417 0.312 0.173 0.295
18 186-195 0.704 0.449 0.316 0.344 0.242 0.279
19 127-136 0.677 0.509 0.345 0.309 0.209 0.277
20 46-55 0.712 0.392 0.279 0.375 0.267 0.273
21 83-92 0.508 0.634 0.323 0.440 0.224 0.273
22 81-90 0.468 0.645 0.302 0.482 0.225 0.264
23 94-103 0.446 0.827 0.369 0.279 0.125 0.247
24 122-131 0.511 0.584 0.298 0.289 0.148 0.223

Table C.10: SAGE prediction for 4E10 epitope (residues 671-680) on 1VI7 scaffold. Candidate
marked with « is the one chosen in the original paper.

Insertion ~ Exposure Structure score Epitope score Average
Rank  position score Raw  Weighted  Raw  Weighted score
1" 111-120 1.000 0.901 0.901 0.800 0.800 0.850
2 88-97 0.782 0.927 0.725 1.000 0.782 0.753
3 139-148 0.743 0.992 0.737 0.640 0.475 0.606
4 38-47 0.761 0.829 0.631 0.763 0.581 0.606
5 114-123 0.759 0.952 0.723 0.635 0.482 0.603
6 121-130 0.752 1.000 0.752 0.576 0.433 0.593
7 128-137 0.761 0.855 0.651 0.677 0.515 0.583
8 44-53 0.646 0.970 0.627 0.751 0.486 0.556
9 19-28 0.664 0.975 0.648 0.586 0.389 0.519
10 133-142 0.694 0.797 0.553 0.655 0.454 0.504
11 40-49 0.618 0.981 0.606 0.611 0.377 0.492
12 25-34 0.649 0.821 0.533 0.574 0.372 0.453
13 42-51 0.654 0.681 0.446 0.701 0.459 0.452
14 119-128 0.674 0.737 0.497 0.552 0.372 0.434

Table C.11: SAGE prediction for 4E10 epitope (residues 671-680) on 1XIZ scaffold. Candidate
marked with x is the one chosen in the original paper.
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Insertion ~ Exposure Structure score Epitope score Average

Rank  position score Raw  Weighted = Raw  Weighted score
1 119-128 0.785 0.813 0.638 0.590 0.463 0.550
2" 138-147 1.000 0.691 0.691 0.335 0.335 0.513
3 22-31 0.851 0.686 0.584 0.396 0.337 0.460
4 33-42 0.747 0.503 0.376 0.676 0.505 0.440
5 3-12 0.729 0.827 0.603 0.370 0.270 0.436
6 6-15 0.626 1.000 0.626 0.365 0.229 0.427
7 42-51 0.896 0.592 0.531 0.356 0.319 0.425
8 63-72 0.541 0.438 0.237 1.000 0.541 0.389
9 131-140 0.659 0.615 0.405 0.500 0.329 0.367
10 94-103 0.691 0.583 0.403 0.437 0.302 0.352
11 147-156 0.615 0.718 0.442 0.397 0.244 0.343
12 41-50 0.762 0.547 0417 0.339 0.258 0.338
13 43-52 0.741 0.536 0.397 0.345 0.255 0.326
14 95-104 0.612 0.672 0.411 0.395 0.242 0.326
15 27-36 0.628 0.617 0.388 0.329 0.207 0.297
16 74-83 0.475 0.758 0.360 0.411 0.195 0.278
17 66-75 0.452 0.447 0.202 0.720 0.326 0.264
18 72-81 0.438 0.724 0.317 0.453 0.198 0.258
19 56-65 0.476 0.644 0.306 0.394 0.187 0.247

Table C.12: SAGE prediction for 4E10 epitope (residues 671-680) on 1Z6N scaffold. Candidate
marked with x is the one chosen in the original paper.

Insertion  Exposure Structure score Epitope score Average
Rank  position score Raw  Weighted = Raw  Weighted score
1" 74-97 1.000 1.000 1.000 0.887 0.887 0.943
2 76-99 0.804 0.713 0.573 0.941 0.756 0.664
3 82-105 0.759 0.836 0.634 0.834 0.633 0.634
4 71-94 0.777 0.445 0.346 1.000 0.777 0.561
5 94-117 0.690 0.754 0.520 0.797 0.550 0.535
6 97-120 0.693 0.535 0.371 0.931 0.645 0.508
7 90-113 0.688 0.538 0.370 0.885 0.608 0.489
8 21-44 0.942 0.201 0.189 0.822 0.774 0.482
9 12-35 0.689 0.381 0.262 0.821 0.565 0.414
10 60-83 0.855 0.536 0.458 0.386 0.330 0.394
11 7-30 0.885 0.395 0.350 0.398 0.352 0.351
12 31-54 0.991 0.319 0.316 0.356 0.353 0.334
13 43-66 0.761 0.170 0.129 0.594 0.453 0.291
14 36-59 0.741 0.340 0.252 0.429 0.318 0.285
15 29-52 0.802 0.179 0.144 0.487 0.390 0.267
16 54-77 0.686 0.345 0.236 0.408 0.280 0.258
17 30-53 0.797 0.265 0.211 0.371 0.296 0.253

Table C.13: SAGE prediction for F1 glycoprotein epitope (residues 254-277) on 3LHP scaffold.

Candidate marked with * is the one chosen in the original paper.
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Insertion  Exposure Structure score Epitope score Average
Rank  position score Raw  Weighted  Raw  Weighted score
1 101-120 0.749 0.835 0.625 1.000 0.749 0.687
2 100-119 0.702 0.983 0.690 0.927 0.651 0.670
3 70-89 0.963 0.790 0.761 0.482 0.464 0.612
4 319-338 0.928 0.725 0.673 0.562 0.522 0.597
5 294-313 0.711 0.784 0.557 0.756 0.538 0.548
6 81-100 0.787 0.915 0.720 0.432 0.340 0.530
7 13-32 0.741 0.956 0.708 0.448 0.332 0.520
8 105-124 0.621 1.000 0.621 0.597 0.371 0.496
9 66-85 0.898 0.676 0.608 0.422 0.380 0.494
10 46-65 0.778 0.873 0.679 0.354 0.275 0.477
11 260-279 1.000 0.586 0.586 0.214 0.214 0.400
12 348-367 0.736 0.613 0.451 0.454 0.334 0.393
13 329-348 0.617 0.870 0.536 0.398 0.246 0.391
14 292-311 0.539 0.859 0.463 0.561 0.302 0.383
15 302-321 0.599 0.745 0.446 0.506 0.303 0.375
16 50-69 0.700 0.655 0.458 0.396 0.277 0.368
17 353-372 0.603 0.723 0.436 0.490 0.295 0.366
18 115-134 0.562 0.868 0.488 0.308 0.173 0.330
19 290-309 0.704 0.436 0.307 0477 0.336 0.321
20 369-388 0.476 0.724 0.345 0.506 0.241 0.293
21 76-95 0.519 0.546 0.283 0.561 0.291 0.287
22 151-170 0.591 0.692 0.409 0.276 0.163 0.286
23 252-271 0.557 0.825 0.460 0.183 0.102 0.281
24 124-143 0.544 0.796 0.433 0.223 0.121 0.277
25 293-312 0.575 0.515 0.296 0.435 0.250 0.273
26 109-128 0.509 0.641 0.326 0.419 0.213 0.269
27 324-343 0.469 0.762 0.357 0.385 0.181 0.269
28 64-83 0.539 0.611 0.329 0.346 0.187 0.258
29 157-176 0.532 0.733 0.390 0.235 0.125 0.257
30 79-98 0.427 0.631 0.270 0.557 0.238 0.253
31 296-315 0.440 0.550 0.242 0.601 0.265 0.253
32 145-164 0.575 0.593 0.341 0.218 0.125 0.233
33 215-234 0.512 0.619 0.317 0.237 0.121 0.219
34 154-173 0.530 0.480 0.255 0.346 0.183 0.219
35 262-281 0.490 0.663 0.325 0.219 0.107 0.216
36 110-129 0.458 0.449 0.205 0.477 0.219 0.212
37 217-236 0.590 0.472 0.279 0.230 0.136 0.207
38 184-203 0.508 0.610 0.310 0.186 0.094 0.202
39 161-180 0.496 0.568 0.282 0.220 0.109 0.196
40 68-87 0.424 0.545 0.231 0.360 0.153 0.192
41 310-329 0.478 0.375 0.179 0.419 0.200 0.190
42 185-204 0.439 0.663 0.291 0.178 0.078 0.185
43 219-238 0.572 0.345 0.197 0.261 0.149 0.173
44 222-241 0.488 0.482 0.236 0.224 0.110 0.173
45 141-160 0.530 0.417 0.221 0.227 0.120 0.171
46 182-201 0.411 0.523 0.215 0.193 0.079 0.147

Table C.14: SAGE prediction for Ep3Bp epitope grafting on FliC.
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Insertion  Exposure Structure score Epitope score Average

Rank  position score Raw  Weighted  Raw  Weighted score
1 66-85 0.989 0.838 0.828 0.790 0.781 0.805
2 85-104 0.779 0.850 0.662 1.000 0.779 0.721
3 62-81 1.000 0.827 0.827 0.611 0.611 0.719
4 156-175 0.768 0.841 0.646 0.936 0.719 0.682
5 115-134 0.945 0.704 0.665 0.740 0.699 0.682
6 168-187 0.847 1.000 0.847 0.606 0.513 0.680
7 118-137 0.901 0.789 0.710 0.720 0.649 0.680
8 89-108 0.855 0.761 0.651 0.753 0.644 0.647
9 169-188 0.829 0.958 0.794 0.590 0.489 0.642
10 88-107 0.803 0.792 0.636 0.797 0.640 0.638
11 84-103 0.718 0.792 0.569 0.959 0.689 0.629
12 161-180 0.791 0.884 0.699 0.695 0.549 0.624
13 157-176 0.792 0.778 0.616 0.750 0.594 0.605
14 92-111 0.791 0.692 0.547 0.828 0.655 0.601
15 174-193 0.780 0.789 0.615 0.706 0.550 0.582
16 90-109 0.754 0.790 0.596 0.734 0.554 0.575
17 113-132 0.824 0.729 0.601 0.650 0.535 0.568
18 47-66 0.876 0.660 0.578 0.602 0.528 0.553
19 105-124 0.726 0.709 0.515 0.668 0.485 0.500
20 65-84 0.694 0.716 0.497 0.719 0.499 0.498
21 77-86 0.827 0.640 0.529 0.550 0.454 0.492
22 172-191 0.765 0.708 0.542 0.563 0.430 0.486
23 122-141 0.755 0.594 0.449 0.621 0.469 0.459
24 49-68 0.723 0.592 0.428 0.633 0.458 0.443
25 61-80 0.654 0.694 0.454 0.628 0.411 0.432
26 42-61 0.669 0.617 0.413 0.616 0.412 0.412
27 131-150 0.867 0.337 0.293 0.605 0.524 0.408
28 53-72 0.731 0.506 0.370 0.600 0.439 0.404
29 133-152 0.734 0.308 0.226 0.760 0.558 0.392
30 135-154 0.716 0.376 0.269 0.591 0.423 0.346

Table C.15: SAGE prediction for Ep3Bp epitope grafting on BPSL2520.
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Figure C.1: RMSD for BPSL2520 grafting candidates.
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