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Cardiovascolari, Università degli Studi di Milano, Dipartimento di Scienze Cliniche e
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Abstract. Undiagnosed atrial fibrillation (AF) patients are at high risk of

cardioembolic stroke or other complications. The aim of this study was to analyze

the blood volume pulse (BVP) signals obtained from a wristband device and develop

an algorithm for discriminating AF from normal sinus rhythm (NSR) or from other

arrhythmias (ARR). Thirty patients with AF, 9 with ARR and 31 in NSR were included

in the study. The recordings were obtained at rest from Empatica E4 wristband device

and lasted 10 minutes. The analysis, on a two-minute segment, included spectral,

variability and irregularity analysis performed on the inter-diastolic interval series,

and similarity analysis performed on the BVP signal. Variability parameters were the

highest in AF, the lowest in NSR and intermediate for ARR, as an example pNN50

values were, respectively, 81±8, 20±5, 55±27 (p<0.05). The similarity parameters

were the highest in NSR, the lowest in AF and intermediate for ARR, as an example

using a threshold for assessing similarity of π/4: 0.90±0.09, 0.40±0.20, 0.58±0.23, all

p<0.05. The rhythm classification was preceded by over-sampling (using Synthetic

Minority Over-sampling Technique) the class of ARR, being it the smallest class.

Then, the features selection was performed (using the Sequential Forward Floating

Search algorithm) which identified two variability parameters (pNN70 and pNN40) as

the best selection. The classification by the k-nearest neighbor classifier reached an

accuracy of about 0.9 for NSR and AF, and 0.8 for ARR. Using pNN70 and pNN40,

the specificity for the three rhythms was SpNSR=0.928, SpAF =0.963, SpARR=0.768,

while the sensitivity was SpNSR=0.773, SpAF =0.754, SpARR=0.758.

1. Introduction

Atrial fibrillation (AF) may be paroxysmal, i.e., it can occur episodically and terminate

spontaneously, and is often asyntomatic [24], making the identification of subjects with

this rhythm disorder even more difficult. Undiagnosed AF patients are at high risk

of cardioembolic stroke or other complications and even an increased risk for death is

associated to AF [28, 2, 12]. Thanks to long-term oral anticoagulation therapy about
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two-thirds of AF related ischemic strokes can be prevented [11]. However, in about

one fourth of patients with stroke or transient ischemic attack, AF is diagnosed only

after the event [29], in absence of any preventive therapy. Thus, detection of AF before

the occurrence of ischemic stroke is one of the most important and future strategy

in preventing stroke, as clinical benefit has been shown by using oral anticoagulation

therapy in patients with moderate to high risk of stroke [15]. Opportunistic or systematic

screening of the general population has been proposed as a tool for an appropriate

identification of patients with asymptomatic AF [4]. Recently, new technologies have

been developed to monitor heart rate by means of everyday sensors, as mobile phone

cameras [19], thumb ECG [13], and videocameras [14, 8]. These everyday sensors offer

the possibility to record and study biosignals providing information which could help in

discriminating patients with AF and other arrhythmias (ARR) from subjects in normal

sinus rhythm (NSR), without symptoms. One of these devices is the Empatica wristband

that can record the blood volume pulse (BVP) by using a photoplethysmografic (PPG)

sensor.

The aim of this study was to analyze the BVP signals obtained from the wristband

device and develop an algorithm to discreminate AF from NSR, and, more interestingly,

from ARR.

2. Methods

2.1. Patients

We analyzed BVP signals recorded from 70 patients admitted to the Maggiore Policlinico

Hospital in Milan, Italy. Thirty patients had persistent AF (AF group), 9 suffered

from other arrhythmias (ARR group), and 31 were healthy subjects (NSR group).

The group of patients with other arrhythmias included patients with atrial flutter,

with many ectopic ventricular beats, with atrial tachycardia and variable conduction.

Clinical characteristics are shown in Table 1. All data were recorded between March

and November 2015.

The study conforms with the Declaration of Helsinki, and was approved by the

Ethics Committee of Maggiore Policlinico Hospital in Milan (Italy). All patients gave

their written informed consent for the procedures related to the study.

2.2. Protocol

All recordings were performed with the subject in a supine position, at rest. The

subject was asked to stay as still as possible to reduce motion artifacts. While the

patient layed in a relaxed position, the Empatica E4 wristband was applied on the wrist

of the non-dominant arm, with the main part of the device facing upward, in a similar

way to a regular wrist watch. Ten-minute recording was acquired for each subject. The

Empatica E4 wristband is a wearable wireless device designed for continuous, real-time

data acquisition in daily life. The device is equipped with sensors for the registration
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Table 1. Clinical characteristics of the study population.

NSR AF ARR

N 31 30 9

Gender(male/female) 16/15 12/18 8/1

Age (years) 40±17 (27-75) 76±9 (58-89) 65±15 (48-92)

Diabetes 0 6 2

Hypertension 3 20 4

Beta-blockers 2 22 3

Flecainide 4 0 0

Amiodarone 0 1 1

ACE-inhibitor 4 12 4

NSR: normal sinus rhythm, AF: atrial fibrillation, ARR: other arrhythmias.

of different biosignals: an electrodermal activity sensor, an infrared thermopile, a 3-axis

accelerometer and a PPG sensor which measures the BVP signal. The BVP is sampled

at 64 Hz.

2.3. Signal preprocessing

The first preprocessing step is the detection and removal of noise: the raw BVP signal

may be noisy, due to artifacts, mainly caused by the patient moving his/her arm with

the device on, during the measurement. To identify segments corrupted by noise, data

from the 3-axis accelerometer were used: the norm of the accelerations on the three

axes was computed and the deviation from the acceleration of gravity g calculated. The

absolute value of the deviation was then compared to a threshold. When the threshold

was exceeded, the algorithm classified that portion of the signal as noisy and discarded

from further analysis. The threshold was empirically set to 0.07g.

The second preprocessing step is the detection of systolic peaks and diastolic minima

in the BVP signal. First, the diastolic minima are found by low-pass filtering the BVP

signal using a moving-average of 23 samples (∼0.36 seconds), acting on the signal as

a low-pass filter, similarly as in [22]. Therefore, a smoother signal is obtained where

the local minima are easily identifiable. These positions are taken as coarse temporal

reference for each diastolic peak, whose timing is then refined by searching the minimum

on the original signal in a 0.2-s window around it (see Figure 1). To automatically locate

the systolic peaks, first all local maxima in the BVP signal are detected. Then, using

the information on the location of the diastolic minima, the first local maximum after

each diastolic minimum is defined as a systolic peak (with the restriction that there can

be only one peak for every cycle).

From the systolic peaks and diastolic minima, the inter-systolic and the inter-

diastolic intervals series are computed, respectively. These series can be used as a

surrogate of the RR series, thus providing information on the heart rate of each subject.
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Figure 1. Diastolic minima detection: the local minima (t∗i ) are found on the low-pass

filtered signal (b) and reported on the original signal (a), where the minimum (ti) are

found in a 0.2-s window (the grey rectangle) centered in t∗i , represented by the dashed

line.

2.4. Signal characterization

Twenty-four indexes were computed belonging to the following three classes: i) Spectral

analysis, ii) Variability and Irregularity analysis, iii) Shape analysis. Parameters from

the first two classes were computed on the inter-systolic and inter-diastolic interval

series, whereas shape analysis was performed on the BVP signal. All parameters were

computed on a two-minute segment for each subject. All subjects had at least one

two-minute segment without movement artifacts.

2.4.1. Spectral Analysis Power spectral analysis of the inter-systolic and inter-diastolic

interval series was performed by means of an AR model:

y(n) =
p∑

k=1

aky(n− k) + e(n) (1)

where e(n) is a gaussian white noise process, n is the discrete time index, p is the model

order and the ak’s are the AR model coefficients. In the z-domain, the model transfer
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function becomes

H(z) =
1

A(z)
=

1

1−∑p
k=1 akz

−k =
zp∏p

i=1(z − zi)
(2)

where the zi are the model poles. In this study, the model coefficients were estimated

using the Levinson Durbin algorithm, the Andersons test [16] was used to check the

validity of the model, and the model order was selected by Akaike information criterion

[1]. Using Cauchy’s residue theorem, the AR spectrum, P (ω), can be divided into a sum

of p components [30]. Consequently, the spectrum can be decomposed into bell–shaped

curves, named the spectral components. The central frequency fi and the power Pi of

the i-th spectral component can be computed as [21]

fi ≈ fs
6 (zi)

2π
Pi = µ

σ2
e

fs
Re {γ(zi)} (3)

where 6 (·) is the phase expressed in radians, and µ = 2 for complex pole pairs and µ = 1

for real ones; σ2
e is the prediction error variance, and γ is the pole residue.

The spectral decomposition algorithm [21, 3] was used to measure the central

frequency and the power of the spectral components falling in the low frequency (LF,

0.03 - 0.15) and high frequency (HF, 0.15 - 0.40 Hz) bands.

2.4.2. Variability and Irregularity Analysis Variability and irregularity quantify

different properties: variability is related to the dispersion of data, whereas irregularity

is related to the degree of unpredictability of the data fluctuations.

Variability analysis of the inter-diastolic intervals series includes the mean (M), the

standard deviation (SD), the root of the mean squared differences of successive intervals,

(rMSSD) and the percentage of interval differences of successive intervals greater than

x ms (pNNx, with x = [10, 20, . . . , 100]).

Irregularity of the inter-diastolic intervals series was assessed by sample entropy

(SampEn), that quantifies the unpredictability of fluctuations. The presence of

repetitive patterns of fluctuation in a time series makes it more predictable than a time

series in which such patterns are absent. SampEn reflects the likelihood that similar

patterns of observations will not be followed by additional similar observations. A time

series containing many repetitive patterns, i.e., a regular and predictable series, has a

relatively small SampEn; a less predictable, i.e., more irregular process has a higher

SampEn. In particular, SampEn is the negative natural logarithm of the conditional

probability that two sequences of length m that match within tolerance r will also match

at the m+ 1 length. Defining as A the total number of matches of length m+ 1 and B

the total number of matches of length m, SampEn is computed as [26]

SampEn = − ln(A/B) = − ln(A) + ln(B) (4)

In this study, m was used equal to 1 and 2, while r equal to 0.25 times the standard

deviation of the series, as commonly used [?].
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Figure 2. Example of normalized pulses for three patients in (a) NSR, (b) AF and

(c) ARR.

2.4.3. Shape Analysis To assess wave similarity, each wave is represented as a point

of the p-dimensional real space, the normalized waves are points belonging to the p-

dimensional unitary sphere. Hence, the morphological dissimilarity between two waves

is evaluated by using the standard metric of the sphere to compute their distance [10]

Di,j = arccos(wi
N ·wj

N) (5)

where wi
N and wj

N represent the i-th and j-th normalized waves, i.e., wi
N = wi/ ‖ wi ‖

and (·) denotes the scalar product. A measure of similarity between waves is obtained by

calculating the relative number of similar pairs of waves in the recording. The similarity

depends on the threshold ε used in evaluating the similarity, that is, two waves are

considered to be similar when their distance is lower than ε. In this study, one pulse

in the BVP signal is considered as wave and five different thresholds are tested in this

study: ε = [π/2, π/4, π/8, π/16, π/32], defining Sim1, Sim2, Sim3, Sim4, Sim5. As an

example, in Figure2 the similarity between pulses in the three rhythms is shown. It can

be observed that in NSR the waves are very similar, whereas during AF the waves are

more different, and they are in between for the patient with arrhythmias.

2.5. Statistical Analysis

One-way ANOVA test was performed to compare the computed parameters during

NSR, AF and ARR. If the p value of the ANOVA test was significant, an unpaired

t-test or Wilcoxon test with Holm’s correction was applied. A p < 0.05 was considered

statistically significant. All analyses and statistical tests were performed using MATLAB

R2012b (The MathWorks, USA).

2.6. Classification

To distinguish NSR from AF and ARR, feature selection was first performed, then

followed by classification.

A two-step features selection procedure was used: first, features with a significant

p-value of the ANOVA test were selected; second, a sequential forward floating search

Federico Lombardi
Barra
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(SFFS) algorithm was used to identify a small subset of optimal features. The SFFS

algorithm [25] is briefly described in the following. Starting from the empty set of

features, the feature xi that maximizes the objective function J when combined with

the k features that have already been selected (Yk) is added (forward step). The objective

function values with different number of features J(k) is memorized, where k indicates

the number of features. After the forward step, a backward step is performed. The

backward step consists in removing from Yk the feature that makes the objective function

J∗(k) larger than J(k), where J∗(k) is the objective function after removing one feature.

The backward step is repeated as long as J∗(k) is larger than J(k), with k decreasing,

with the constrain that the last added feature cannot be removed. In this study, the

objective function was the average of the accuracy for AF and for ARR, in order to

decrease the false negative rate.

A dataset (like the one in our study) is imbalanced if the classes are not

approximately equally represented. A way to overcome this problem is to re-sample

the original dataset, by oversampling the minority class. The algorithm used in this

study is Synthetic Minority Over-sampling Technique (SMOTE): the minority class is

over-sampled by creating synthetic examples. Briefly, the minority class is over-sampled

by taking each minority class sample and introducing synthetic examples along the line

segments joining the q minority class nearest neighbors (q was chosen equal to 3) [5]. In

this study, we over-sampled the class of ARR, so that all the three classes were equally

represented.

After the feature selection step, the classification was performed using the k-nearest

neighbor classifier. In the training phase, 2/3 of the data are used to build the model,

whereas in the test phase the remaining 1/3 of the data are classified according to the

model generated in the training phase [17]. The k-nearest neighbor classifier with k equal

to 3 was used in this study [18]. Leave-p-out cross-validation (p = 30) was performed

with 100 bootstrap repetitions, from which performance metrics were averaged [17].

3. Results

3.1. Signal characterization

Tables 2 and 3 show results obtained analyzing the inter-diastolic intervals series in the

three groups along with the p-values of the ANOVA test (results for the inter-systolic

intervals series are not shown as they were very similar). In particular, Table 2 reports

the spectral parameters and it can be observed that some of them are significantly

different when comparing AF or ARR to NSR, but they are not able to distinguish AF

from ARR. In particular, the power in the HF band was found to be significantly lower

in NSR than in patients with arrhythmias.

Many of the variability and irregularity parameters are significantly different among

all the three groups, as shown in Table 3 . Among the variability parameters, all the

pNNx are significantly different when comparing NSR to arrhythmias as well as when
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Table 2. Frequency domain parameters in the three groups (mean ± one standard

deviation).

NSR AF ARR p-value Pairwise

K-W significance

LF (frequency) 0.081 (0.061-0.110) 0.079 (0.055-0.105) 0.098 (0.053-0.104) ns -

HF (frequency) 0.244 (0.192-0.320) 0.217 (0.194-0.256) 0.211 (0.0198-0.272) ns -

LF (power) 5·10−7 (2·10−7-1·10−5) 2·10−5 (10−5-6·10−5) 9·10−6 (2·10−6-2·10−4) ns -

HF (power) 2·10−7 (7·10−8-4·10−6) 10−5 (9·10−6-3·10−5) 6·10−6 (3·10−6-2·10−5) 0.008 NSR vs. AF

NSR vs. ARR

NSR: normal sinus rhythm, AF: atrial fibrillation, ARR: other arrhythmias.

Table 3. Variability and irregularity parameters in the three groups (mean ± one

standard deviation).

NSR AF ARR p-value Pairwise

ANOVA significance

M 834 (772-918) 877 (808-1035) 918 (763-997) ns -

SD 89 (70-174) 330 (266-509) 223 (176-580) 0.001 NSR vs. AF

NSR vs. ARR

pNN10 84 (78-88) 97 (96-98) 92 (86-96) 0.0006 All

pNN20 51 (40-65) 93 (89-94) 82 (62-90) 10−11 All

pNN30 51 (40-65) 93 (89-94) 82 (62-90) 10−11 All

pNN40 29 (20-45) 87 (82-92) 69 (39-79) 10−19 All

pNN50 15 (10-28) 84 (76-88) 57 (32-74) 10−22 All

pNN60 15 (10-28) 84 (76-88) 57 (32-74) 10−22 All

pNN70 8 (5-20) 78 (66-83) 48 (25-69) 10−24 All

pNN80 7 (3-12) 75 (60-81) 41 (25–66) 10−24 All

pNN90 7 (3-12) 75 (60-81) 41 (25–66) 10−24 All

pNN100 5 (1-11) 70 (54-77) 35 (23-65) 10−22 All

rMSSD 108 (66-273) 470 (390-726) 356 (267-785) 0.0006 NSR vs. AF

NSR vs. ARR

SampEnm=1 10.31 (0.395-1.396) 1.349 (1.156-1-458) 0.365 (0.190-0.821) 0.0004 All

SampEnm=2 0.924 (0.391-1.370) 1.297 (1.089-1.496) 0.340 (0.147-0.758) 0.0002 All

NSR: normal sinus rhythm, AF: atrial fibrillation, ARR: other arrhythmias.

comparing AF to ARR. In particular, pNNx tend to have high values for patients with

AF, low values for subjects in NSR and values in-between in presence of ARR. The

irregularity parameter, SampEn, is significantly different across the groups: SampEn

is higher during AF than during NSR or in patients with ARR. Moreover, SampEn is

higher in subject in NSR than during ARR.

Tables 4 shows the results on the similarity of the waves morphology for different

thresholds (different rows). It can be observed that in each rhythm the smaller the

threshold, the lower the value of the similarity index. When comparing the different

rhythms, for all the tested thresholds, NSR always has the highest similarity, AF has

the lowest values and the ARR group has intermediate values.
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Table 4. Similarity indexes in the three groups (mean ± one standard deviation).

Threshold NSR AF ARR p-value Pairwise

K-W significance

Sim1 π/2 0.98 (0.98-0.99) 0.92 (0.82-0.94) 096 (0.92-0.98) 10−6 All

Sim2 π/4 0.92 (0.85-0.98) 0.44 (0.20-0.52) 0.66(0.41-0.78) 10−16 All

Sim3 π/8 0.64 (0.44-0.87) 0.10 (0.02-0.13) 0.36 (0.08-0.56) 10−15 All

Sim4 π/16 0.19 (0.09-0.51) 0.01 (10−4-0.02) 0.08 (0.01-0.28) 10−7 All

Sim5 π/32 0.02 (0.01-0.12) 10−5 (0-10−4) 0.002 (0-0.04) 10−4 All

NSR: normal sinus rhythm, AF: atrial fibrillation, ARR: other arrhythmias.

0 0.2 0.4 0.6 0.8 1

Sim1

Sim2

Sim3

Sim4

Sim5

pNN10
pNN20
pNN30
pNN40
pNN50
pNN60
pNN70
pNN80
pNN90
pNN100

SampEnm=1

SampEnm=2 AccNSR
AccAF
AccARR

Figure 3. Mean accuracy for NSR, AF and ARR, obtained using only the parameter

as indicated on the y-axis.

3.2. Rhythm classification

Globally, seventeen parameters were found significantly different in the three rhythms (as

shown in the previous section): Figure 3 shows the mean accuracy for the three rhythm

using only one of these 17 parameters at a time. It can be noted that the classification

with one variability (pNNx) parameter makes the accuracy for AF and NSR the highest.

Good accuracy for AF and NSR is obtained also with the similarity parameters, whereas

irregularity parameters are worse in classifying the three rhythms, being the worst for

NSR. The accuracy for ARR is about 0.7 with almost all the parameters.

Figure 4 shows the accuracy for NSR, AF and ARR, obtained using an increasing

number of parameters, as selected by the SFFS algorithm. In Figure 4, the n-th dot

represents the mean accuracy (over the 100 repetitions) obtained using n parameters. It

can be observed that passing from one to two parameters, the mean accuracy increases,
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Table 5. Selected parameters (using at maximum six) and the corresponding accuracy

(mean± one standard deviation) for the three rhythms.

Selected Features Accuracy NSR Accuracy AF Accuracy ARR

pNN70 0.86 ± 0.06 0.88 ± 0.05 0.75 ± 0.07

pNN70, pNN40 0.88 ± 0.05 * 0.91 ± 0.05 * 0.80 ± 0.06 **

pNN70, pNN40, Sim5 0.87 ± 0.06 0.92 ± 0.05 0.80 ± 0.07

pNN70, pNN40, Sim5, Sim4 0.88 ± 0.05 0.91 ± 0.05 0.80 ± 0.06

pNN70, pNN40, Sim5, Sim4, SampEnm=1 0.88 ± 0.06 0.92 ± 0.04 0.80 ± 0.06

pNN70, pNN40, Sim5, Sim4, SampEnm=1, Sim3 0.87 ± 0.06 0.92 ± 0.05 0.81 ± 0.06

* p < 0.01, ** p < 0.0001 Accuracy using two features vs. accuracy using one feature.

Table 6. Sensitivity and specificity using tow parameters (pNN70 and pNN40) for

the three rhythms.

Rhythm Specificity Sensitivity

NSR 0.928 0.773

AF 0.963 0.754

ARR 0.768 0.758

NSR: normal sinus rhythm, AF: atrial fibrillation, ARR: other arrhythmias.

Table 7. Sensitivity and specificity using two parameters (pNN70 and pNN40) for

the three rhythms.

Rhythm Specificity Sensitivity

NSR 0.990 0.874

AF 0.960 0.880

ARR 0.885 0.083

NSR: normal sinus rhythm, AF: atrial fibrillation, ARR: other arrhythmias.

then it is almost constant, and then when new parameters are added, slightly decreases.

Table 5 shows the best selected parameters using up to six parameters. It can be noted

that the mean accuracy significantly increased using two parameters compared to only

one parameter, for all the three rhythms. Using two parameters, namely pNN70 and

pNN40, seems to be the best compromise which balances the number of features and the

accuracy values. In particular, using these two parameters, the specificity and sensitivity

are shown in Table 7.

4. Discussion

In this study, we assessed for the first time, the possibility to discriminate AF from

NSR and ARR by using biosignals recorded by a wristband device. The main finding is

that AF can be well detected, with high sensitivity and high specificity, using only few

parameters computed on the BVP signal. The differences between AF and NSR signals
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Figure 4. Mean ± the standard deviation (black line and the grey area, respectively)

of the accuracy for (a) NSR, (b) AF (c) and ARR.
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are usually very pronounced, as the heart rate during AF, without atrioventricular

node block, is much more irregular [7]. This causes the RR series and, similarly, the

inter-diastolic intervals series to be more variable and more irregular during AF [6]. In

addition, during AF as R waves may not be coupled with an adequate left ventricular

output to generate discrete pulses, thus the arterial blood pressure and consequently the

BVP signal may look different from those in NSR [23]. However, AF irregularity may

cause problems in discriminating AF from ARR, that can include atrial tachycardia,

atrial flutter, and premature ventricular contractions. In respect to this, it is worth

noting that the classifier was able to correctly classify AF from ARR with an average

false negative rate of ∼25%.

Previous studies have shown that recording the BVP signal by a pulse oximeter,

similar information to that from HRV analysis can be obtained [20]. Simil-BVP signals

have been recently extracted from everyday sensors as smartphone [19] or video cameras

[8], with the aim of detecting AF episodes. In [19], AF was detected from pulsatile signals

in the human fingertip using the camera of an iPhone 4s. They computed parameters

similar to those in our study assessing variability and irregularity (rMSSD, SampEn and

Shannon entropy). The accuracy using rMSSD was 0.98 (without cross-validation), but

the protocol included 25 patients with AF before and after cardioversion, thus in NSR,

without the presence of the ARR group. In [8], they used a video camera to record an

individuals face and extract the subtle beat-to-beat variations of skin color reflecting the

cardiac pulsatile signal. They analyzed recordings from 11 patients with AF undergoing

electrical cardioversion, before and after the procedure, thus comparing AF and NSR,

introducing a novel quantifier of pulse variability called the pulse harmonic strength.

Among the 407 epochs of 15 seconds of synchronized ECG and videoplethysmographic

signals, the pulse harmonic strength was associated with a 20% detection error rate,

while the error rate of the automatic ECG-based measurements ranged between 17%

and 29%. It is worth noting that some differences exist between these studies and ours.

Our protocol included patients with ARR, such as atrial tachycardia, that makes the

correct classification of AF more difficult: in our classification, the AF group was very

rarely misclassified as NSR, being the false negative rate (AF classified as NSR) only

0.004. Moreover, the wrist-band device allows the recording without patient interaction,

i.e., once the device is on, the patient does not need to be compliant.

With the aim of detecting paroxysmal AF, there is the need of monitoring

the patients for longer periods. A recent study assessed the possibility of using a

handheld device (thumb ECG) to record short ECG [13]. The main finding was that

intermittent ECG recording was superior to routine 24-hour Holter ECG in manually

detecting relevant paroxysmal arrhythmias in a patient population reporting symptoms

of palpitations, dizziness/presyncope. The intermittent recordings were repeated over

four weeks, both regularly twice daily and when having symptoms. During this period

the compliance was high, as the 95 included patients had a median of 59 registrations.

Another possibility for long monitoring is using an insertable cardiac monitor [27]. In

this study [27] the insertable cardiac monitor correctly identified 37 of the 38 patients
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with Holter-detected AF (diagnostic sensitivity of 97.4%) and 97 of the 100 patients

without AF according to Holter analysis (diagnostic specificity of 97.0%). The main

disadvantage of these two devices are, respectively, the need of high compliance of the

patients and the invasive nature of the insertable cardiac monitor. On the contrary,

the wrist-band device can be used for longer periods, without causing discomfort to the

patients and without needing their compliance.

Given the increasing number of people at risk for AF, and the high prevalence of

paroxysmal and asymptomatic AF, a wider screening of people at risk, using non-invasive

comfortable devices may be helpful. Empatica E4 wristband device, used in this study,

is a wearable wireless device designed for continuous, real-time data acquisition in daily

life, being non-invasive and worn like a regular wrist watch, without causing discomfort

to the patient, not even after prolonged acquisitions. The results highlighted the

possibility to discriminate AF from NSR and more interestingly from ARR based on two-

minute recording, thus laying the groundwork for longer recordings for patients at risk

of AF. The results were obtained with the patients laying still, in controlled condition.

Therefore additional studies will be needed to assess the feasibility of AF detection by

using wristband device during daily activities, where artifacts caused by daily activity

may prevent the detection of events. The first step toward this final goal was to analyze

the BVP wristband signals and develop an algorithm for discriminating AF from sinus

rhythm and other arrhythmias. To test this possibility, we analyzed the most stable

situation to avoid external disturbance. Finally, it is worth noting that the most relevant

parameters were those assessing waveform similarity as well as variability of the inter-

diastolic intervals series. These variability parameters, despite their simplicity, have

been previously found to be predictive of long-term clinical outcome in a population

of patients with mild-to-moderate heart failure and AF [9]. Thanks to their simplicity,

they might be even implemented on the device itself.
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