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Abstract 

Dry coating techniques enable manufacturing of coated solid dosage forms with no, or very limited, 

use of solvents. As a result, major drawbacks associated with both organic solvents and aqueous 

coating systems can be overcome, such as toxicological, environmental and safety-related issues on 

one hand as well as costly drying phases and impaired product stability on the other. The 

considerable advantages related to solventless coating has been prompting a strong research interest 

in this field of pharmaceutics. In the present article, processes and applications relevant to 

techniques intended for dry coating are analyzed and reviewed. Based on the physical state of the 

coat-forming agents, liquid- and solid-based techniques are distinguished. The former include hot-

melt coating and coating by photocuring, while the latter encompass press coating and powder 

coating. Moreover, solventless techniques, such as injection molding and 3D printing by fused 

deposition modeling, which are not purposely conceived for coating, are also discussed in that they 

would open new perspectives in the manufacturing of coated-like dosage forms. 

 

Keywords: dry coating, hot-melt coating, photocuring, press coating, powder coating, thermal 
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modeling 3D printing  

 

 

List of substance acronyms 

 

AMG  acetylated monoglyceride 

EC  ethyl cellulose  

GMS  glyceryl monostearate 

HEC  hydroxyethyl cellulose  

HPC  hydroxypropyl cellulose 

HPMC  hydroxypropyl methylcellulose 

HPMCAS hydroxypropyl methylcellulose acetate succinate 

PEG  polyethylene glycol 

PEO  polyethylene oxide 

PVP  polyvinylpyrrolidone 

TEC  triethyl citrate 
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1.  Introduction 

Manufacturing of coated solid dosage forms entails the deposition of different materials onto 

substrate cores, such as powder, granules, pellets, tablets and capsules, with the aim of achieving 

superior organoleptic and aesthetic characteristics, providing physical and chemical protection or 

modifying the drug release profile.  

Conventional coating techniques, carried out by fluid bed or rotating pan equipment, involve 

spraying of a solution or suspension of the coating material(s) in an organic and/or aqueous vehicle, 

which generally represents not less than 70% w/w of the composition [1]. 

The use of organic solvents was preferred in the past as it enables shorter processing times and 

straightforward film formation. In more recent times, increasingly strict toxicological, 

environmental and safety-related requirements have led to progressive replacement of organic 

solvent- with aqueous-based coating, which may lower the overall manufacturing costs. 

Nevertheless, aqueous systems involve long and expensive drying phases, to remove the large 

amounts of water used, and frequently bring about stability issues. Indeed, because water migration 

may occur during the coating process or within storage, aqueous systems turn out unsuitable not 

only when moisture-sensitive bioactive compounds are dealt with, but also when the overall quality 

of the final product may be affected by humidity. 

Hence, in view of the many issues associated with the use of solvents of whatever nature, 

alternative procedures or novel applications of well-established ones have been proposed over the 

years to improve pharmaceutical coating. Techniques that are generally referred to as “solventless” 

or “dry coating” include manufacturing methods that completely avoid solvents or at least markedly 

reduce the solvent to coating material ratio [2–4].  

Notably, amounts of liquid <50% w/w on the solid material have long been employed in powder 

deposition processes, such as sugar coating derived from confectionary industry. This also applies 

to the layering of solid drugs onto inert seeds, wherein aqueous binding formulations are added to 

promote particle adhesion and cohesion. An attempt to exploit the powder layering technique for 

coating has recently been described. In this case, a swellable/erodible polymer (HPMC) powder was 

applied to drug-containing tablets for the manufacturing of a coated oral delivery system for time-

controlled release [5]. 

Techniques that would properly be identified as dry coating processes may be classified relying on 

the physical state of the coat-forming agents when applied onto the substrate (Figure 1) [6]. 

Accordingly, liquid- or solid-based techniques are distinguished in this review article. In the first 

ones, melts or liquid precursors applied to the core surface are consolidated by cooling (hot-melt 

coating) or polymerization (coating by photocuring), respectively, to give a continuous layer. In 
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solid-based techniques, the coating material is directly applied to the substrate by compression 

(press coating), or else it can be layered and simultaneously consolidated by heating (powder 

coating). When layering is performed, the process can be improved, especially as regards the initial 

deposition phases, by spraying liquid aids and/or through the use of electrically charged powder 

particles.  

In addition, innovative solventless techniques based on hot processing of thermoplastic materials 

allow the manufacturing of core+shell systems or of capsular devices comprising a functional shell 

and an inner drug formulation. Although not attained through any standard coating procedures, both 

such dosage forms may be regarded as “coated-like”, and specific examples are reviewed in this 

article. 

 

2. Liquid-based techniques  

2.1.  Hot-melt coating  

In hot-melt coating processes, low-melting materials are deposited in the liquid state onto the 

surface of the cores, generally by spraying, and subsequently congealed in a controlled manner [7]. 

Such operations are commonly carried out by rotating pan or fluid bed for the manufacturing of 

coated pellets and granules. When the coating material is sprayed, it needs to be maintained at 40–

60°C above its melting point [2,7,8]. The temperature represents the most critical process parameter 

and has to strictly be controlled in any part of the equipment. For this reason, the tubes through 

which the molten materials are conveyed from the reservoir to the spray nozzle have to be heated 

and/or properly insulated to prevent undesired cooling and consequent plugging. Moreover, nozzles 

purposely devised for spraying of melts may be needed. In particular, a triaxial nozzle structure 

comprising a central tube for supply of the coating agent, surrounded by a cavity for nebulizing air 

flow, enclosed within a further cavity for heated compressed air has been described (Figure 2) [9]. 

The nozzle should also be insulated to prevent re-melting of the applied coating upon contact of the 

units with its hot surface. Besides, it should correctly be located in the processing chamber thus 

enabling efficient deposition of droplets.  

As a general rule, the spray rate has to be remarkably lower and more strictly controlled in hot-melt 

as compared with solvent-based coating, in order to achieve homogeneous distribution of the 

coating material and avoid agglomeration of the units. On the other hand, the overall processing 

time can be much shorter because no solvent removal is required. Indeed, the formula of the 

sprayed material corresponds to that of the final coating. 
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Easy flowing and sprayability of the melt are fundamental requisites for an excipient to be selected 

as a coating agent. These characteristics are generally satisfied by materials having <80°C melting 

point and <300 cps melt viscosity [2].  

An alternative to spraying of the coating agent is represented by its direct addition to the core bed in 

the form of solid particles, thus having it melted in situ [10–13]. Subsequent cooling allows the melt 

deposited to solidify. In this case, reduction of equipment costs and simplified setup as well as 

cleaning operations are in principle possible, because spraying devices, thermostatic jackets and 

other related appliances are not required. The use of a hot air operated venturimeter has also been 

proposed to simultaneously fluidize core granules and a low-melting coating agent [14–16]. In this 

equipment, hot air is injected into a pipe, which aspires, by Venturi effect, the blend of solid 

materials introduced by a vibrating funnel, thus providing automatic feeding of the device. The 

blend, driven by a non-turbulent flux of air, moves forward within a thermostated path, along which 

melting of the coating material occurs, mainly at the particle surface. Subsequent falling of the 

cores at room temperature enables formation of a continuous coating by re-solidification. 

In hot-melt coating, fatty acids, partially hydrogenated vegetable oils, glycerol esters, waxes and 

PEGs have broadly been employed [9,17]. A critical issue in the use of lipid coating agents of plant 

or animal origin is batch-to-batch reproducibility of their physico-chemical characteristics, which 

may affect consistency of processing and product performance. 

Hot-melt coating has mainly been used for the production of prolonged-release formulations 

[11,12,18–22]. Nonetheless, taste-masked or moisture-protected dosage forms for immediate 

release have also been obtained [10,13,23,24]. 

In Table I, the main pharmaceutical applications of hot-melt coating and relevant process details are 

summarized.  
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2.2. Coating by photocuring 

Photocuring, also known as light-curing or polymerization coating, provides a chemical approach to 

the attainment of coating layers exploited in many industrial fields and for medical applications [2]. 

It involves polymerization of functionalized liquid precursors (pre-polymers or monomers) in the 

presence of an initiator or a photosensitizer, and takes place at room temperature or below, resulting 

in rapid formation of a cross-linked network. This reaction is triggered by UV or visible light and 

may be based on free radical, cationic or anionic mechanisms depending on the nature of the 

precursors and initiators used. Equipment for photocuring needs to be provided with a light source, 

and a nitrogen purging system may also be necessary when the outcome of coating would be 

impaired by the presence of oxygen in the reaction environment. 

A major advantage of photocuring over other solventless techniques is the possibility of operating at 

relatively low temperatures within short processing times, making this coating method appropriate 

for heat-sensitive compounds. However, photocuring appears to have a narrow potential for 

application in the pharmaceutical field on account of toxicological constraints, poor availability of 

proper starting materials and unsuitability for use in the case of photosensitive drug molecules. 

Indeed, only few examples of coating by photocuring are described in the literature. A number of 

these concerns UV light-induced coating of pellets with siloxane materials, which required the 

incorporation of various solid pore forming agents for drug release modulation [25–27]. More 

recently, two methacrylate monomers, extensively utilized in dental composites, were polymerized 

on the surface of pellet cores by means of visible light [28,29]. Photostable functional coatings able 

to withstand handling stresses were successfully achieved, and an impact on the final release profile 

was observed as a function of their composition and thickness. 

An analogous coating technique, initially exploited in the pharmaceutical field for encapsulation of 

particles, is the initiated chemical vapor deposition [30]. As the name suggests, gaseous 

formulations, consisting of vaporized monomers and initiators, are involved. In this case, a thin 

coating layer is formed when the monomers, along with primary radicals generated by heat 

activation of the initiator, are adsorbed onto the surface of cooled particles, where polymerization 

occurs. Depending on the monomers used, differing functional coatings were obtained, including 

gastroresistant, temperature-responsive and prolonged-release ones [31–35]. Furthermore, the 

application of a polymeric coating by initiated chemical vapor deposition, synthesized from acrylic 

precursors directly upon clotrimazole-containing cast films, was recently demonstrated to be a 

viable approach to prevent crystalline transitions of amorphous compounds [36]. 
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3. Solid-based techniques 

3.1 Press coating 

Press coating, also referred to as double compression or compression coating, has largely been 

employed since the first pharmaceutical application was described in the late 50s [37]. 

This technique entails (i) filling of the die of a tableting machine with one half of the overall 

amount of coating powder formulation, (ii) positioning of the tablet core onto the powder bed, (iii) 

filling of the die with the remainder of the powder and (iv) final compression to consolidate the 

applied material into an outer layer of defined thickness.  

In order to avoid multi-step processes and circumvent the critical operation of positioning the core 

inside the die, which may impair the coat thickness homogeneity, a one-step manufacturing method 

was proposed based on the use of special tableting equipment [38]. 

The use of double compression necessarily leads to coatings having relatively high thickness, with 

possible undesired repercussions on the dissolution/release performance, and is limited to cores 

with appropriate physico-technological characteristics in terms of size, shape and mechanical 

resistance. Moreover, coating materials with adequate compaction properties can only be applied, 

and the addition of excipients may be required to improve the outcome of compression. 

Although more advantageous techniques, such as spray coating, have been introduced so far, the 

use of compression coating is still described chiefly for the application of functional polymer 

coatings intended for modified release [39–42]. In this respect, swellable hydrophilic and 

microbially degradable polymers have mostly been employed for the purpose of attaining 

prolonged, pulsatile or colonic oral drug delivery systems. Among swellable hydrophilic polymers, 

cellulose derivatives, namely HPMC [43–49], HPC [50] and HEC [51], have especially been 

utilized because of their broad availability at affordable costs and acceptable compaction properties. 

Although less frequently, the use of PEO has also been reported [52–54]. Coating formulations 

based on polysaccharides of natural origin, mainly pectin [55–57], guar gum [58,59], xanthan gum 

[59] and locust bean gum [60] have extensively been employed especially due to their 

biodegradability by colonic bacteria. The latter two materials were employed in admixture as 

compression coating agents for the SyncroDose™ chronotherapeutic delivery platform based on the 

TIMERx
®
 proprietary technology (Penwest Pharmaceuticals Co.) [61,62]. 

Enteric polymers (Eudragit
®
S, Eudragit

®
L and HPMCAS) were also applied by press coating with 

the aim of attaining pH-dependent systems for colonic release [63–65]. 

Finally, based on mixed wax and brittle materials as the coating agents, a press-coated delivery 

platform (Geoclock™) was developed, and a related prednisone-containing product (Lodotra™, 
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Mundipharma Pharmaceuticals Srl) is commercially available for chronopharmaceutical treatment 

of early-morning stiffness associated with rheumatoid arthritis [66]. 

In Table II, the main pharmaceutical applications of press coating and relevant process details are 

summarized. 

 

3.2 Powder coating 

Powder coating techniques involve the deposition of multiple layers of powder, the consolidation of 

which occurs through particle modifications prompted by heat. Indeed, after initial spreading and 

adhesion of particles to the substrate, possibly favored by the application of a priming sub-coating 

of a different material, their heat-induced softening, deformation and coalescence are necessary for 

a smooth and continuous layer to be formed. Levelling and sintering of the powder layers applied is 

strictly dependent on the thermo-mechanical behavior of the material at the operating temperature 

and is aided by the mechanical forces involved. The process has to be carried out above the glassy-

rubbery transition temperature (Tg) of the coating formulation so that the particles may undergo 

plastic deformation. For this reason, plasticizers are often added to lower the Tg of the coating 

agent, also allowing milder processing conditions to be adopted. 

Such techniques generally make use of conventional coating equipment (e.g. fluid bed and rotating 

pan) provided with devices for the in-line addition of the powder into the processing chamber. The 

rate of powder feeding can be controlled by single-screw, loss-in-weight or Venturi feeder devices 

(Figure 3). In all cases, attentive selection of particle size ranges and appropriate flow properties of 

powder formulations are necessary to ensure reproducibility of the coating thickness.  

Powder coating techniques can be classified into thermal adhesion, liquid-assisted and electrostatic 

processes depending on whether aiding factors are used to promote particle adhesion and, if so, on 

what factor is concerned (Figure 4).   

 

3.2.1 Thermal adhesion coating  

In thermal adhesion coating, elsewhere referred to as heat dry coating, the formation of a coating 

from layered powders is enabled by heat only [3]. The thermal properties of the coating powder are 

therefore critical to the outcome of the process.  

Plasticizer concentrations up to 40% and thermal post-processing treatments (curing) are generally 

necessary to enhance the coalescence of particles and allow films of good quality to be formed. Pre-

plasticized polymers, obtained by hot-melt extrusion (HME) followed by cryogenic grinding, are 

generally employed. Talc is normally present in the powder formula to prevent sticking of the units. 
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The few applications of thermal adhesion described in the literature all rely on the use of acrylic 

polymers. An existing manufacturing equipment, namely a spheronizer provided with a smooth 

stainless steel disk, was adapted through the addition of a powder feeding device and an IR lamp 

positioned on top as a heating source to maintain constant processing temperatures. 

In one case, effectively taste-masked and moisture-protected tablets were achieved without 

plasticizers, thanks to the relatively low Tg of the polymer employed (Eudragit
®
E PO) [67]. 

However, an extensive curing phase was required for a continuous and compact film to be obtained, 

and the inclusion of low-melting excipients in the coating formulation was found to improve 

powder adhesion.  

In another instance, pre-plasticized mixtures of Eudragit
®

RS and Eudragit
®
RL, prepared by HME, 

were applied onto theophylline-containing tablets having a sub-coating of a low melting material 

[68]. The rate of drug release from the final powder-coated tablets was influenced by the coating 

level, the plasticizer concentration and the temperature selected for the curing phase. 

Finally, Eudragit
®

L 100-coated tablets containing two different water soluble drugs were also 

manufactured [69–71]. Formulation variables, such as the nature sub-coating material, the level of 

plasticizer and the type as well as amount of pore-forming agents, were demonstrated to impact on 

the mechanical and drug release properties of the coated units. 

 

3.2.2 Liquid-assisted coating  

In liquid-assisted dry coating, small amounts of water or aqueous binding solutions are sprayed to 

help, by interfacial capillary action, adhesion of coating particles to the core surface. In order to 

completely replace the use of solvents, liquid excipients that are intended to be included in the 

coating, such as plasticizers, can be employed, which also results in improved particle coalescence. 

In this respect, a larger amount of plasticizers is generally necessary for film formation in dry- as 

compared with spray coating techniques.  

The adjuvants in  the liquid state are added separately from the powder, in a concurrent or alternate 

mode. Therefore, rotating pans or fluid beds may be provided with a conventional nozzle for 

spraying of liquids, whereas the coating powder is introduced in admixture with the cores, or by 

means of powder feeding devices. Otherwise, a three-way nozzle, generally inserted within the core 

bed, can be adopted to have liquid and powder delivered in close proximity to each other (Figure 5).  

A recently proposed alternative to the spraying of plasticizers in the liquid state is represented by 

their use as powders. These would be spread onto pre-heated core/polymer mixtures inside the 

coating chamber through two-fluid nozzles based on Venturi effect [72].  
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In the earliest application of liquid-assisted dry coating, HPMCAS was layered onto pellets and 

tablets with the aid of a plasticizing mixture consisting of TEC and AMG [73]. The process was 

performed by different apparatuses, such as a centrifugal granulator, a fluid bed and a ventilated pan 

coater. After completion of powder feeding, small volumes of water or of an aqueous HPMC 

solution were sprayed to improve film formation during the curing phase. Although the use of water 

was not fully avoided, it was possible to reduce the process time to one third as compared with that 

required by conventional spray coating. By adapting the above-described coating procedure, 

HPMCAS was also applied to soft gelatin capsules by rotary fluid bed [74]. At first, plasticizers 

alone were sprayed to prime the capsule surface thus limiting the loss of powder in the early stages 

of coating. However, due to the adhesive properties of the substrate, HPMCAS needed to be pre-

mixed with relatively large amounts of talc in order to overcome sticking of the units.  

Silicon dioxide in very limited amounts was investigated as an alternative anti-sticking agent for 

the coating of pellets with HPMCAS by rotary fluid bed apparatus [75]. Again, TEC and/or AMG 

were used as plasticizers in the liquid state, and a curing phase was performed [76–79]. An in-

depth understanding of the formulation and processing parameters that affect film formation, 

coating efficiency and storage stability was gained, also by making use of a factorial design of 

experiments. In other studies, carried out under the same experimental settings, the role of AMG, 

isopropyl myristate and isopropyl palmitate as capillary force promoters was highlighted. Such 

compounds proved effective in improving the adhesion of the polymer onto the cores and 

enhancing the coating efficiency [80,81]. Moreover, liquid adjuvants having good spreading 

ability, as assessed through contact angle measurements with respect to the coating polymer, were 

found advantageous for the development of efficient dry coating processes [82]. 

Recently, liquid-assisted dry coating was exploited to apply HPMCAS onto pellets containing 

probiotics [83]. Notably, this process allowed higher bacterial survival rates to be attained as 

compared with conventional coating techniques. 

Polymeric materials other than HPMCAS, such as shellac, Eudragit
®

 RS and EC, were also used in 

dry coating. The latter two materials were employed as coating agents for prolonged-release dosage 

forms [84–86]. In all cases, emulsions of plasticizers with an aqueous solution of HPMC were 

sprayed. The release rate from the coated units turned out to be affected by the type and level of 

plasticizer as well as by the curing conditions, whereas the physical stability of the product was 

improved by the use of micronized coating powders. 

In another instance, pre-plasticized EC was used as the coating polymer. Pre-plasticization was 

obtained by HME co-processing or adding the plasticizer(s) to commercially available aqueous 
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polymer dispersions (Aquacoat
®
, Surelease

®
), which were then spray-dried to yield powders 

suitable for dry coating [87]. 

 

3.2.3 Electrostatic coating 

Coating procedures based on electrostatic charging of powders are well-established in the metal-

finishing industry and are now of interest also for the development of drug dosage forms and 

medical devices [3].  

In pharmaceutical coating, electrostatic forces are exploited to promote the adhesion of powder 

particles to the substrates, mainly tablets or pellets. The process is generally carried out by 

grounded rotating pans provided with an electrostatic gun, through which the coating particles are 

charged via differing mechanisms and sprayed onto the cores [88]. After deposition, the powder has 

to remain in place long enough to enable film formation by heat-induced coalescence of the 

individual particles. A smooth and homogeneously thick coating is achieved by reduction of the 

free volume, while its hardening takes place on cooling [89]. Any powder able to accumulate 

charge with a low decay rate is potentially suitable for being employed as an electrostatic dry 

coating agent [90].  

Because many materials of pharmaceutical interest can retain electric charges, powder charging has 

been used not only for coating but also in other manufacturing operations. For example, it was 

exploited to improve the active pharmaceutical ingredient (API) content uniformity in mixing, and 

to obtain thin films by solvent-free deposition of API/polymer blends [91–93].  

Electrostatic charging of particles may be obtained via a triboelectric or corona mechanism. In 

tribocharging, charge accumulation results from friction between the fluidized coating particles and 

the wall of a triboelectric gun, according to the well-known phenomenon of electron transfer that 

occurs when different materials are rubbed with each other and then separated. The same 

mechanism is operating when charges are generated during powder handling in several 

pharmaceutical processes. The gun wall is generally made of polytetrafluoroethylene that tends to 

assume negative charges, thereby leading to positively charged particles. Tribocharging is rather a 

complex and poorly predictable operation because it is markedly influenced by many factors, such 

as particle properties (electrical resistivity and surface roughness) and environmental conditions 

(temperature, relative humidity) [90,94,95]. For this reason, triboelectric charging is less commonly 

effected than corona charging. 

Corona charging, also referred to as corona discharge, entails that particles accumulate charges onto 

their surface by crossing an electric field in the presence of free ions. Corona gun devices include an 

electrode able to generate a potential gradient with a neutral or grounded substrate when a high 
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voltage is applied. This allows free ions to be obtained by stripping electrons from gas molecules 

surrounding the electrode. Therefore, the coating particles, sprayed by the gun in the direction of the 

substrates to be coated, are introduced into the electric field that has established in the area between 

the emitting electrode and the grounded surface. According to the field charging mechanism, the 

perturbation of the field provoked by the particles results in free ion deviation and adsorption.  

A major drawback of corona charging is the possible accumulation of charges on the surface of the 

substrate, which would prevent adhesion of further coating particles. Moreover, the oppositely 

charged ions that are formed may neutralize the incoming charged particles and, also, those already 

deposited, possibly causing their ejection from the coating layer and consequent defects in its 

surface. 

In electrostatic coating, it is often necessary to enhance the conductivity of the core dosage forms. 

In this respect, a short-lasting exposure of the substrate to high humidity conditions was proposed 

with the aim of having water molecules adsorbed prior to powder deposition [96]. More recently, 

the spraying of small amounts of plasticizers in the liquid state was alternatively undertaken. Thus, 

not only the electrostatic deposition of particles was enhanced, but also their adhesion and 

coalescence could be improved, by capillary action and Tg reduction, respectively. The combined 

use of liquids and electrostatic charging was successfully applied to the coating of tablets and 

pellets with different polymers, intended for immediate, prolonged or enteric release [97–101]. 

In particular, the coating efficiency was found higher when employing both electrostatic charging 

and plasticizers in the liquid state as compared with the sole plasticizers. Moreover, it turned out to 

be influenced  by the charging voltage of the electrostatic gun [99,100]. 

An example of industrial application of electrostatic dry powder coating is represented by 

LeQtracoat
®
 technology (Diurnal Group PLC), developed by Phoqus Pharmaceuticals [102]. In a 

custom-designed equipment, the coating of tablets takes place according to the same principle used 

in photocopying for the deposition of ink toner. The coating material is applied to one side first and 

then to the other. The extent of precision allowed is such that images (brands, signs) can be 

imprinted on the tablet surface. By LeQtracoat
®

 technology, clinical batches of Chronocort
®
, a 

modified-release formulation of hydrocortisone for the treatment of adrenal hyperplasia, were 

manufactured [103,104].  

In Tables III-V, the main pharmaceutical applications of powder coating techniques, namely 

thermal adhesion, liquid-assisted and electrostatic coating, respectively, are summarized along with 

the relevant process details. 
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4. Other techniques  

Different techniques based on hot processing of thermoplastic polymers, widely exploited in many 

industrial areas albeit only marginally in the pharmaceutical field, are deemed to fall within the 

scope of this review article in that they allow coated-like dosage forms to be manufactured without 

the use of solvents. Such dosage forms may be presented in the form of core+shell systems or of 

capsular devices consisting in functional shells filled with drug formulations.  

Injection molding (IM) and three-dimensional (3D) printing by fused deposition modeling (FDM) 

are the main solventless techniques employed for fabrication of coated-like dosage forms. While IM 

holds great potential with respect to its possible suitability for continuous manufacturing, FDM 3D 

printing is especially attractive as a real-time prototyping technique and as a tool for medicine 

personalization. 

In IM, a properly softened or melted material is injected, under high pressure conditions, into a 3D 

mold, by which it is shaped into the finished item on cooling [105]. IM represents a versatile 

manufacturing technique in that it enables the production of objects with different size and shape as 

well as detailed geometries. Over the last years, it has drawn much attention due to its viable 

exploitation in either the manufacturing of consolidated dosage forms or the development of 

original delivery systems with peculiar design and enhanced therapeutic performance.  

A capsular device obtained by IM was proposed for extended residence within specific regions of 

the gastrointestinal tract [106]. For this purpose, a small magnet was inserted into the capsule, 

which could be kept at the target site by positioning an external control magnet in the corresponding 

area of the body surface. Such a device was manufactured starting from polymers that were 

demonstrated to be biodegradable to a different extent.  

Egalet
®
 is a delivery platform produced by IM and developed for either prolonged or pulsatile 

release [107]. In the prolonged-release configuration, it consists in a drug-containing hydrophilic 

erodible matrix enclosed within a shell provided with two openings at each end, composed of an 

insoluble and impermeable polymer. The rate of drug release from the inner matrix is controlled 

through a diffusion/erosion-based mechanism. Because only the two bases of the matrix come into 

contact with the gastrointestinal fluids, zero-order kinetics can be achieved, which is exploited for 

reducing the daily frequency of drug dosing, particularly with opioids in pain management. In this 

instance, the formulation is specifically conceived to resist physical and chemical manipulation 

methods, thus lowering the risk of misuse and addiction (Egalet Guardian
TM

 Technology) [108]. 

The Egalet
®
 system in its pulsatile-release configuration was attained by positioning, at the open 
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ends of the shell, two erodible polymer plugs able to impart a delay phase through their surface 

erosion. The core and shell components of these devices were basically fabricated by one-step IM 

processes involving two successive injections from distinct nozzles into a single mold, wherein 

cavities to be filled with the concerned materials were timely created by the alternate movement of 

a plunger. 

The Chronocap
®
 delivery platform consists in a functional capsular container formed from a cap 

and a body, able to convey differing drug formulations [109]. The release of the active molecule can 

be modulated by selecting the appropriate composition (type of polymer, presence of other 

excipients) and design characteristics (geometry, wall thickness) for the shell. Capsular devices 

based on swellable/erodible (HPC) or enteric-soluble (HPMCAS) polymers were obtained by IM 

after design of special molds [110,111]. The HPC shells, filled with a model drug, were shown to 

give rise to pulsatile release, lag time being related to their thickness. Such a system was proposed 

for time-dependent colon delivery following application of a gastroresistant outer film by spray 

coating [112]. 

As any 3D printing process, FDM is an additive manufacturing approach that involves the 

deposition of successive layers of material to construct objects from their digital models. In this 

technique, the printer is fed with filaments produced by HME, and the thermoplastic material, 

properly melted/softened, is applied by a heated extrusion head moving along the x and y axes 

above a build plate that moves along the z axis. The item under construction thus grows in the 

bottom-up direction [113].  

The Chronocap
®

 system for pulsatile release was also fabricated by FDM, showing comparable 

performance versus a reference formulation produced by IM [114]. This finding pointed out the 

potential advantages such a technique may offer not only as a manufacturing strategy for 

personalized drug delivery but also as a rapid prototyping tool for the molded capsular device. 

Finally, by means of a dual 3D printer, suitable for concurrent deposition of different materials, a 

gastroresistant tablet was recently produced [115]. The enteric-soluble shell and the drug-containing 

core, made of Eudragit
®

L 100 and PVP, respectively, were shaped within a single-step process.  

 

 

5. Conclusions  

In the pharmaceutical field, dry coating techniques are proposed with the aim of avoiding or 

limiting the drawbacks associated with the use of solvents. Although spray coating definitely 

remains the most popular approach to attaining coated dosage forms, the need for processes suitable 
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for water-sensitive drugs or formulations, together with an increasing demand for less costly 

production, has been prompting the research in this area of pharmaceutical technology.  

Among the diverse processes discussed in this overview, traditional and well-established press 

coating, exploited for the manufacturing of a number of commercially available products developed 

in the past, is currently proposed for fabrication of oral delivery systems mainly intended for 

pulsatile, colonic or prolonged release when other techniques are not viable.  

Besides press coating, which involves utilization of conventional or customized tableting machines, 

other techniques, particularly melt coating and powder coating, rely on already available equipment 

following proper adaptation to the specific operating modes and conditions. Such techniques may 

thus have concrete chances of industrial application, provided that appropriate large-scale facilities 

can be developed. On the other hand, in the case of less consolidated processes, such as photocuring 

and initiated chemical vapor deposition, more difficulties are likely to be encountered not only 

because of the technical issues related to the construction of purposely devised apparatuses, but also 

due to the safety constraints and consequent regulatory burden to be faced. 

More recently, on account of the growing popularity of hot-processing techniques, innovative 

approaches intended for attainment of coated-like dosage forms, based on IM or FDM 3D printing, 

have increasingly been investigated as an alternative to standard coating procedures and are being 

looked at as a topic of great interest for the future of pharmaceutical manufacturing.  
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FIGURE CAPTIONS 

 

Figure 1: classification of solventless techniques used to obtain coated or coated-like dosage 

forms.  

 

Figure 2: nozzle for hot-melt coating having triaxial structure without (left) and with (right) 

Teflon insulation: entries for a) melted coating material, b) nebulizing air flow, c) heated 

compressed air (Adapted from [9]). 

 

Figure 3: rotating pan equipped with a powder-feeding device (Courtesy of IMA S.p.A., 

Italy). 

 

Figure 4: outline of dry powder coating techniques. 

 

Figure 5: three-way nozzle (left) and rotor insert of a fluid bed (GPCG 1.1, Glatt
®
, 

Germany) with the nozzle in place (right). 

 

Figure 6: cross section of a press-coated tablet. 

 


