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Abstract. Limited automata are one-tape Turing machines that are al-
lowed to rewrite the content of any tape cell only in the first d visits,
for a fixed constant d. When d = 1 these models characterize regular
languages. An exponential gap between the size of limited automata
accepting unary languages and the size of equivalent finite automata
is proved. Since a similar gap was already known from unary context-
free grammars to finite automata, also the conversion of such grammars
into limited automata is investigated. It is proved that from each unary
context-free grammar it is possible to obtain an equivalent 1-limited au-
tomaton whose description has a size which is polynomial in the size of
the grammar. Furthermore, despite the exponential gap between the sizes
of limited automata and of equivalent unary finite automata, there are
unary regular languages for which d-limited automata cannot be signifi-
cantly smaller than equivalent finite automata, for any arbitrarily large d.

1 Introduction

The investigation of computational models and of their computational power
is a classical topic in computer science. For instance, characterizations of the
classes in the Chomsky hierarchy by different types of computational devices are
well-known. In particular, the class of context-free languages is characterized in
terms of pushwdown automata. A less known characterization of this class has
been obtained in 1967 by Hibbard, in terms of Turing machines with rewriting
restrictions, called limited automata [2]. For each integer d ≥ 0, a d-limited
automaton is a one-tape Turing machine which can rewrite the content of each
tape cell only in the first d visits. For each d ≥ 2, the class of languages accepted
by these devices coincides with the class of context-free languages, while for d = 1
only regular languages are accepted [2, 14].

More recently, limited automata have been investigated from the descrip-
tional complexity point of view, by studying the relationships between the sizes
of their descriptions and those of other equivalent formal systems. In [11], it has
been proved that each 1-limited automaton M with n states can be simulated by
a one-way deterministic automaton with a number of states double exponential
in a polynomial in n. The upper bound reduces to a single exponential when M
is deterministic. Furthermore, these bounds are optimal, namely, they cannot
be reduced in the worst case. In [12], it has been shown how to transform each
given 2-limited automaton M into an equivalent pushdown automaton, having
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a description of exponential size with respect to the description of M . Even for
this simulation, the cost cannot be reduced in the worst case. On the other hand,
the converse simulation is polynomial in size. In [4], it is proved that the cost of
the simulation of d-limited automata by pushdown automata remains exponen-
tial even when d > 2. A subclass of 2-limited automata, which still characterizes
context-free languages but whose members are polynomially related in size with
pushdown automata, has been investigated in [10].

In all above mentioned results, lower bounds have been obtained by providing
witness languages defined over a binary alphabet. In the unary case, namely in
the case of languages defined over a one-letter alphabet, it is an open question if
these bounds remain valid. It is suitable to point out that in the unary case the
classes of regular and context-free languages collapse [1] and, hence, d-limited
automata are equivalent to finite automata for each d > 0. The existence of unary
1-limited automata which require a quadratic number of states to be simulated
by two-way nondeterministic finite automata has been proved in [11], while in [12]
it has been shown that the set of unary strings of length multiple of 2n, can be
recognized by a 2-limited automaton of size O(n), for any fixed n > 0. On the
other hand, each (even two-way nondeterministic) finite automaton requires a
number of states exponential in n to accept the same language. The investigation
of the size of unary limited automata has been deepened in [5], where the authors
stated several bounds for the costs of the simulations of different variants of unary
limited automata by different variants of finite automata. Among these results,
they proved the existence of languages accepted by 4n-states 1-limited automata

which require n ·e
√
n lnn states to be accepted by two-way nondeterministic finite

automata.

In this paper we improve these results, by obtaining an exponential gap be-
tween unary 1-limited automata and finite automata. We show that for each n>1
the singleton language {a2n} can be recognized by a deterministic 1-limited au-
tomaton having 2n+1 many states and a description of size O(n). Since the same
language requires 2n + 1 states to be accepted by a one-way nondeterministic
automaton, it turns out that the state gap between deterministic 1-limited au-
tomata and one-way nondeterministic automata in the unary case is the same as
in the binary case. We will also observe that the gap does not reduce if we want
to convert unary deterministic 1-limited automata into two-way nondeterminis-
tic automata. However, when converting finite automata into limited automata,
a size reduction corresponding to such a gap is not always achievable, even if we
convert a unary finite automaton into a nondeterministic d-limited automaton
for any arbitrarily large d.

In the second part of the paper, we consider unary context-free grammars.
The cost of the conversion of these grammars into finite automata has been
investigated in [9] by proving exponential gaps. Here, we study the conversion
of unary context-free grammars into limited automata. With the help of a re-
sult presented in [8], we prove that each unary context-free grammar G can be
converted into an equivalent 1-limited automaton whose description has a size
which is polynomial in the size of G.
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2 Preliminaries

In this section we recall some basic definitions useful in the paper. Given a
set S, #S denotes its cardinality and 2S the family of all its subsets. Given an
alphabet Σ and a string w ∈ Σ∗, let us denote by |w| the length of w and by ε
the empty string.

We assume the reader familiar with notions from formal languages and au-
tomata theory, in particular with the fundamental variants of finite automata
(1dfas, 1nfas, 2dfas, 2nfas, for short, where 1/2 mean one-way/two-way and
d/n mean deterministic/nondeterministic, respectively) and with context-free
grammars (cfgs, for short). For further details see, e.g., [3].

Given an integer d ≥ 0, a d-limited automaton (d-la, for short) is a tu-
ple A = (Q,Σ, Γ, δ, qI , F ), where Q is a finite set of states, Σ is a finite in-
put alphabet, Γ is a finite working alphabet such that Σ ∪ {B,C} ⊆ Γ , B,
C /∈ Σ are two special symbols, called the left and the right end-markers,
δ : Q × Γ → 2Q×(Γ\{B,C})×{−1,+1} is the transition function. At the be-
ginning of the computation, the input is stored onto the tape surrounded by
the two end-markers, the left end-marker being at the position zero. Hence, on
input w, the right end-marker is on the cell in position |w|+ 1. The head of the
automaton is on cell 1 and the state of the finite control is the initial state qI .
In one move, according to δ and to the current state, A reads a symbol from the
tape, changes its state, replaces the symbol just read from the tape by a new
symbol, and moves its head to one position forward or backward. In particular,
(q,X,m) ∈ δ(p, a) means that when the automaton in the state p is scanning
a cell containing the symbol a, it can enter the state q, rewrite the cell content
by X, and move the head to left, if m = −1, or to right, if m = +1. Furthermore,
the head cannot violate the end-markers, except at the end of computation, to
accept the input, as explained below. However, replacing symbols is allowed to
modify the content of each cell only during the first d visits, with the exception
of the cells containing the end-markers, which are never modified. For technical
details see [12].

An automaton A is said to be limited if it is d-limited for some d ≥ 0.
A accepts an input w if and only if there is a computation path which starts
from the initial state qI with the input tape containing w surrounded by the
two end-markers and the head on the first input cell, and which ends in a final
state q ∈ F after violating the right end-marker. The language accepted by A
is denoted by L(A). A is said to be deterministic (d-dla, for short) whenever
#δ(q, σ) ≤ 1, for any q ∈ Q and σ ∈ Γ .

In this paper we are interested to compare the size of the description of de-
vices and formal systems. As customary, to measure the size of a finite automaton
we consider the cardinality of the state set. For a context-free grammar we count
the total number of symbols which are used to write down its productions.

For d-limited automata, the size depends on the number q of states and on
the cardinality m of the working alphabet. In fact, given these two parameters,
the possible number of transitions is bounded by 2q2m2. Hence, if q and m
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are polynomial with respect to given parameters, also the size of the d-la is
polynomial.

The costs of the simulations of 1-las by finite automata have been investi-
gated in [11], proving the following result:

Theorem 1. Let M be an n-state 1-la. Then M can be simulated by a 1nfa

with n · 2n2

states and by a 1dfa with 2n·2
n2

states. Furthermore, if M is deter-
ministic then an equivalent 1dfa with no more than n · (n + 1)n states can be
obtained.

Using witness languages over a binary alphabet, it has been shown that
the exponential gaps and the double exponential gap in Theorem 1 cannot be
reduced [11].

3 On the Size of Unary Limited Automata

In this section we compare the sizes of unary limited automata with the sizes
of equivalent finite automata. Our main result is that unary 1-las can be ex-
ponentially more succinct than finite automata even while comparing unary
deterministic 1-las with two-way nondeterministic automata. However, there
are unary regular languages that do not have any d-limited automaton which is
significantly more succinct than finite automata, even for arbitrarily large d.

Let us start by showing that, for each n > 1, the language Ln = {a2n}, which
requires 2n + 1 states to be accepted by a 1nfa, can be accepted by a 1-dla of
size O(n). Let us proceed by steps. In order to illustrate the construction, first it
is useful to discuss how Ln can be accepted by a linear bounded automaton Mn

(i.e., a Turing machine that can use as storage the tape which initially contains
the input, by rewriting its cells an unbounded number of times).

Mn works in the following way:

i. Starting from the first input symbol, Mn scans the input tape from left to
right by counting the as until the right end-marker is reached. Each odd-
counted a is overwritten by X. A counter modulo 2 is enough to implement
this step.

ii. The previous step is repeated n times, after moving backward the head until
reaching the left end-marker. If in one of the first n−1 iterationsMn discovers
that the number of as at the end of the iterations was odd, then Mn rejects.
After the last iteration, Mn accepts if only one a is left on the tape.

It is possible to modify Mn, without any increasing of the number of the states,
introducing a different kind of writing at step i.: at the first iteration, the machine
uses the symbol 0 instead of X for rewriting, at the second one it uses the
symbol 1, and so on. During the last check, the symbol n is written on the
last cell of the input tape if it contains an a. If the original input is completely
overwritten, then the automaton accepts. For example, in the case n = 4, at the
end of computation, the content of the input tape will be 0102010301020104.
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Considering the last extension of Mn, we are now going to introduce a
1-la Nn, accepting the language Ln, based on the guessing of the final tape
content of Mn.

In the first phase, Nn scans the input tape, replacing each a with a nonde-
terministically chosen symbol in {0, . . . , n}. This requires one state. Next, the
machine, after moving backward the head to the left end-marker, makes a scan
from left to right for each i = 0, . . . , n− 1, where it checks if the symbol i occurs
in all odd positions, where positions are counted ignoring the cells containing
numbers less than i. This control phase needs three states for each value of i:
one for moving backward the head and two for counting modulo 2 the positions
containing symbols greater or equal to i. Finally, the automaton checks if only
the last input cell contains a n (two states), in such case the input is accepted.
The total number of states of Nn is 3(n+ 1), that, even in this case, is linear in
the parameter n. This gives us a 1-la of size O(n) accepting Ln.

We are now going to prove that we can do better. In fact, we will show
that switching to the deterministic case for the limited automata model, the size
of the resulting device does not increase. Actually, we will slightly reduce the
number of states, while using the same working alphabet.

Let us observe that the final tape content of Mn and of Nn, if the input is
accepted, corresponds to the first 2n elements of the binary carry sequence [13]
defined as follows:

– The first two elements of the sequence are 0 and 1.
– The next elements of the sequence are recursively obtained concatenating

the just constructed sequence to a copy of itself and by replacing the last
element by its successor.

For example, from 01, concatenating itself and adding 1 to the last element of
the obtained sequence, we get 0102, from which, iterating the last procedure it
is possible to obtain 01020103, and so on.

Remark 2. Each symbol 0 ≤ i < n of the binary carry sequence occurs 2n−i−1

times, starting in position 2i and at distance 2i+1, i.e., it occurs in positions
2i(2j − 1), for j = 1, . . . , 2n−i−1. Instead, the symbol i = n occurs in posi-
tion 2n only.

Remark 2 is a direct consequence of the recursive definition of the sequence.
Consider, as an example, the sequence x = 01020103: reading x from left to
the right, the symbol 0 appears for the first time in position 20 and then in
positions 3, 5, 7; 1 in positions 2, 6; 2 in position 4; and, finally, 3 in position 8.

We will show that this sequence can be generated by a 1-dla and written on
its tape, without counting large indices as 2i.

To this aim, we introduce the function BIS, that associates with a given
sequence of integers s = σ1σ2 · · ·σj , its backward increasing sequence, namely
the longest strictly increasing sequence obtained taking the elements of s start-
ing from the end, and using the greedy method. Formally, BIS(σ1σ2 · · ·σj) =
(i1, i2, . . . , ir), j, r > 0, if and only if i1 = σh1 , i2 = σh2 , . . . , in = σhr where h1 =
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j, ht = max{h′ < ht−1 | σh′ > σht−1
} for t = 2, . . . , r, and σh′ < σhr

for 0 < h′ < hr.
For example, for j = 11, BIS(01020103010) = (0, 1, 3). Notice that in the

binary representation of j, namely 1011, the bits set to 1 occur, respectively,
in position 0, 1, and 3. This fact is true for each j, as proved in the following
lemma, i.e., the value of BIS, applied to the first j elements of the binary carry
sequence, are the positions of bits equal to 1 in the binary representation of j,
from the less significative bit.

Lemma 3. Let σ1σ2 · · ·σj be the first j elements of the binary carry sequence,
j > 0. If BIS(σ1σ2 · · ·σj) = (i1, i2, . . . , ir) then j =

∑r
t=1 2it .

Proof. Considering the recursive definition of the binary carry sequence, we can
proceed by induction on j, where the basis j = 1, 2 is trivial from the definition.

– If j is a power of 2, namely j = 2k, for some k ≥ 0, then, considering
Remark 2 with n = k, k is the maximum number in the sequence and it
occurs in position j only. So, BIS(σ1σ2 · · ·σj) = (k).

– If j is not a power of 2, namely 2k < j < 2k+1, j = 2k + j′ for some k >
0, 0 < j′ < 2k, then, by construction, k is the maximum number which
occurs in the sequence, and the elements σ2k+1 · · ·σj are equal to the first j′

elements σ1σ2 · · ·σj′ . So, BIS(σ1σ2 · · ·σj) is obtained by appending k at the
end of BIS(σ1σ2 · · ·σj′).
Let BIS(σ1σ2 · · ·σj′) = (i1, . . . , ir′), r

′ = r − 1. Then BIS(σ1σ2 · · ·σj) =

(i1, . . . , ir′ , ir), ir = k. Furthermore, by induction hypothesis, j′ =
∑r′

t=1 2it .

Then j = 2k + j′ = 2k +
∑r′

t=1 2it =
∑r
t=1 2it . ut

We are going to define a 1-dla An = (Q,Σ, Γ, δ, q1, F ) accepting the lan-
guage Ln. The automaton An works by replacing the content of cell i, in the
first visit, by the symbol σi of the binary carry sequence.

Remark 4. Given the first i−1 elements of the binary carry sequence σ1σ2· · ·σi−1,
it is possible to deterministically determine the next element σi only looking at
the previous elements of the sequence. In particular, σi has to be determined
so that BIS(σ1σ2 · · ·σi) is the positions of bits equal to 1 in the binary repre-
sentation of i. This can be obtained computing from the binary representantion
of i− 1 the representation of i. Hence, σi is the smallest integer greater than or
equal to 0 not occurring in BIS(σ1σ2 · · ·σi−1).

The automaton An implements the procedure summarized in Algorithm 1 —
note that, for ease of presentation, the algorithm assumes that the machine
starts the computation with the head on the left end-marker — and it is defined
as follows: Q = {qI , qF , q1, . . . , qn, p1, . . . , pn−1}, Σ = {a}, Γ = {0, . . . , n}, qI is
the initial state and qF is the unique final one. The transitions in δ are defined
as follows (the remaining transitions are undefined):

i. δ(qI , a) = (p1, 0,−1)
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Algorithm 1: Recognition of the language Ln

1 start with the head on the left end-marker
2 while symbol under the head 6= n do
3 move the head to the right
4 write 0
5 j ← 0
6 repeat
7 while symbol under the head ≤ j and 6= B do
8 move the head to the left

9 j ← j + 1

10 until symbol under the head 6= j
11 repeat
12 move the head to the right

13 until symbol under the head = a
14 write j

15 move the head to the right
16 if symbol under the head = C then Accept
17 else Reject

ii. δ(pi, σ) = (pi, σ,−1), for i = 2, . . . , n− 1 and σ < i− 1
iii. δ(pi, i) = (pi+1, i,−1), for i = 1, . . . , n− 2
iv. δ(pi, σ) = (qi, σ,+1), for i = 1, . . . , n− 1 and (σ > i or σ = B)
v. δ(pn−1, n− 1) = (qn, n− 1,+1)
vi. δ(qi, σ) = (qi, σ,+1), for i = 1, . . . , n and σ < i

vii. δ(qi, a) = (qI , i,+1), for i = 1, . . . , n− 1
viii. δ(qn, a) = (qF , n,+1)

ix. δ(qF ,C) = (qF ,C,+1)

We finally observe that An has 2n+ 1 states, which is linear in the parame-
ter n.

The machine starts in the initial state qI . Since each symbol σ 6= 0 is preceded
by 0 (a 0 occurs in each odd position), the automaton moves the head to the
right and writes a 0 before of each symbol in Γ \ {0} (transition i. – lines 3
and 4). Everytime the head is in a odd position p, the automaton has to look
backward for the minimum integer j such that j is not in BIS(σ1, . . . , σp). This
is done with transitions from ii. to v. – lines from 6 to 10. After that, An moves
its head to the right until the first a is reached (transitions vi. – lines from 11
to 13) and writes the symbol j (transitions vii. – line 14). This is repeated until
the symbol n is written on the input tape. At this point is sufficient to verify
if the next symbol on the input tape is the right end-marker: in this case, the
automaton accepts (transitions viii. and ix. – lines from 15 to 17).

Hence we conclude that the language Ln is accepted by a 1-dla with O(n)
many states, while it is an easy observation that each 1nfa accepting it re-
quires 2n + 1 states. We can even obtain a stronger result by proving that be-
tween unary 1-dlas and 2nfas, there is the same gap. This gives the main result
of this section:
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Theorem 5. For each integer n > 1 there exists a unary language Kn such
that Kn is accepted by a deterministic 1-la with O(n) states and a working
alphabet of size O(n) while each 2nfa accepting it requires 2n states.

Proof. (outline) With some minor changes, the above presented automaton An
can accept Kn = {a2n}∗. From Theorem 9 in [7], each 2nfa requires at least 2n

many states to accept the same language. ut

We conclude this section, by proving that the exponential gap between unary
limited automata and finite automata is not always achievable.

Theorem 6. There exist constants c, n0 such that for all integers n ≥ n0 there
exists a unary 1dfa accepting a finite language L with at most n states, such
that for any d-la accepting L with d > 0, q states, and a working alphabet of m
symbols, it holds that qm ≥ cn1/2.

Proof. There are 2O(q2m2) different limited automata such that the cardinalities
of the set of states and of the working alphabet are bounded by q and m, respec-
tively. On the other hand, the number of different subsets of {a0, a1, . . . , an−1}
is 2n. Hence kq2m2 ≥ n for a constant k > 0 and each sufficiently large n, which
implies qm ≥ cn1/2, where c = 1/k1/2. Note that each subset of {a0, a1, . . . , an−1}
is accepted by a (possibly incomplete) 1dfa with at most n states. ut

Notice that the result in Theorem 6 does not depend on d, i.e., the lower
bound holds even taking an arbitrarily large d. In the case d = 1, the argument
in the proof can be refined to show that qm1/2 ≥ cn1/2.

4 Unary Grammars versus Limited Automata

In Section 3 we proved an exponential gap between unary 1-las and finite au-
tomata. A similar gap was obtained between unary cfgs and finite automata [9].
Hence, it is natural to study the size relationships between unary cfgs and 1-
las. Here, we prove that each context-free grammar specifying a unary language
can be converted into an equivalent 1-la which has a set of states and a work-
ing alphabet whose sizes are polynomial with respect to the description of the
grammar.

Let us start by presenting some notions and preliminary results useful to
reach our goal.

Definition 7. A bracket alphabet Ωb is a finite set containing an even number
of symbols, say 2k, with k > 0, where the first k symbols are interpreted as left
brackets of k different types, while the remaining symbols are interpreted as the
corresponding right brackets. The Dyck language DΩb

over Ωb is the set of all
sequences of balanced brackets from Ωb.

An extended bracket alphabet Ω is a nonempty finite set which is the union
of two, possibly empty, sets Ωb and Ωn, where Ωb, if not empty, is a bracket
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alphabet, and Ωn is a set of neutral symbols. The extended Dyck language D̂Ω

over Ω is the set of all the strings that can be obtained by arbitrarily inserting
symbols from Ωn in strings of DΩb

. Given an integer d > 0, the extended Dyck

language with nesting depth bounded by d over Ω, denoted as D̂
(d)
Ω is the subset

of D̂Ω consisting of all strings where the nesting depth of brackets is at most d.

Example 8. Let Ωb = { ( , [ , ) , ] }, Ωn = { | }, and Ω = Ωb ∪Ωn.

Then ( [ [ ] ] ) [ ] ∈ DΩb
⊂ D̂Ω , | ( | [ [ ] | ] ) [ | ] ∈ D̂(3)

Ω \ D̂
(2)
Ω .

It is well-known that Dyck languages, and so extended Dyck languages, are
context-free and nonregular. However, the subset obtained by bounding the nest-
ing depth by each fixed constant is regular. We are interested in the recognition
of such languages by “small” two-way automata:

Lemma 9. Given an extended bracket alphabet with k types of brackets and an

integer d > 0, the language D̂
(d)
Ω can be recognized by a 2dfa with O(k ·d) many

states.

Proof. We can define a 2dfa M which verifies the membership of its input w

to D̂
(d)
Ω by making use of a counter c. In a first scan M checks whether or

not the brackets are correctly nested, regardless their types. This is done as
follows. Starting with 0 in c, M scans the input from left to right, incrementing
the counter for each left bracket and decrementing it for each right bracket. If
during this process the counter exceeds d or becomes negative then M rejects.
M also rejects if at the end of this scan the value which is stored in the counter
is positive.

In the remaining part of the computation, M verifies that the corresponding
left and right brackets are of the same type. To this aim, starting from the left
end-marker, M moves its head to the right, to locate a left bracket. Then, it
moves to the right to locate the corresponding right bracket in order to check
if they are of the same type. To this aim, M uses the counter c, which initially
contains 0 and increments or decrements it for each left or right bracket to the
right of the one under consideration. When a cell containing a right bracket is
reached with 0 in c, M checks if it is matching with the left bracket. If this is not
the case, then M stops and rejects. Otherwise, M should move back its head to
the matched left bracket in order to continue the inspection. This can be done
by moving the head to the left and incrementing or decrementing the counter
for each right or left bracket, respectively, up to reach a cell containing a left
bracket when 0 is in c.

This process is stopped when the right end-marker is reached and all pairs
of brackets have been inspected. Notice that neutral symbols are completely
ignored.

In its finite control, M keeps the counter c, that can assume d + 1 different
values, and remembers the type of the left bracket, to verify the matching with
the corresponding right bracket and then to move back the head to the left
bracket. This gives O(k · d) many states. ut
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The following nonerasing variant of the Chomsky-Schützenberger represen-
tation theorem for context-free languages, proved by Okhotin [8], is crucial to
obtain our main result:

Theorem 10. A language L ⊆ Σ∗ is context-free if and only if there exist an
extended bracket alphabet ΩL, a regular language RL ⊆ Ω∗L and a letter-to-letter

homomorphism h : ΩL → Σ such that L = h(D̂ΩL
∩RL).

In [10], it was observed that the language RL of Theorem 10 is local1 and
the size of the alphabet Ω is polynomial with respect to the size of a context-
free grammar G generating L. This was used to prove that each context-free
grammar G can be transformed into an equivalent strongly limited automaton
(a special kind of 2-la) whose description has polynomial size with respect to
the description of G. In the following, when L is specified by a context-free
grammar G, i.e., L = L(G), we will write ΩG and RG instead of ΩL and RL,
respectively.

Our goal, here, is to build 1-las of polynomial size from unary context-free
grammars. To this aim, using the fact that factors in unary strings commute,
by adapting the argument used to obtain Theorem 10, we prove the following
result:

Theorem 11. Let L ⊆ {a}∗ be a unary regular language and G = (V, {a}, P, S)
be a context-free grammar of size s generating it. Then, there exist an extended

bracket alphabet ΩG and a regular language R̂G ⊆ Ω∗G such that L = h(D̂
(#V )
ΩG

∩
R̂G), where:

– D̂
(#V )
ΩG

is the extended Dyck language over ΩG with nesting depth bounded
by #V ,

– h is the letter-to-letter homomorphism from ΩG to {a}.

Furthermore, the size of ΩG is polynomial in the size s of the grammar G and
the language R̂G is recognized by a 2nfa with a number of states polynomial
in s.

Proof (outline). Given a context-free grammar G = (V, {a}, P, S) specifying a
unary language L, we first obtain the representation in Theorem 10. According
to Theorem 5.2 in [10], the size of the alphabet ΩG is polynomial with respect to
the size of the description of G. Each pair of brackets in ΩG represents the root
of a derivation tree of G, which starts from a certain variable of G and produces
a terminal string.

If a sequence w ∈ Ω∗G contains a pair of brackets corresponding to a variable A
which is nested, at some level, in another pair corresponding to the same variable,
then w can be replaced by a sequence w′, of the same length, which is obtained by
replacing the factor of w delimited by the outer pair of brackets corresponding

1 A language L is local if there exist sets A ⊆ Σ × Σ, I ⊆ Σ, and F ⊆ Σ such
that w ∈ L if and only if all factors of length 2 in w belong to A and the first and
the last symbols of w belong to I and F , respectively [6].
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to A, by the factor delimited by the inner pair, and by moving the removed
part at the end of w. For instance, w = (S (A (B )B (C (A (B )B )A )C )A )S can be
replaced by w′ = (S (A (B )B )A )S (A (B )B (C )C )A, where, for the sake of simplicity,
subscripts represent variables corresponding to brackets. In this way, each time
the nesting depth is greater than #V , it can be reduced by repeatedly moving
some part to the end. So, from each string in D̂ΩG

, we can obtain an “equivalent”

string of the same length in D̂
(#V )
ΩG

.
The regular language RG should be modified accordingly. While in the repre-

sentation in Theorem 10, the first and the last symbol of a string w ∈ D̂ΩG
∩RG

represent a matching pair corresponding to the variable S, after the above trans-
formation, valid strings should correspond to sequences of blocks of brackets
where the first block represents a derivation tree of a terminal string from S,
while each of the subsequent blocks represents a gap tree from a variable A,
namely a tree corresponding to a derivation of the form A

+⇒ aiAaj , with i+j >
0, where A already appeared in some of the previous blocks. This condition, to-
gether with the conditions on RG, can be verified by a 2nfa with a polynomial
number of states. ut

Notice that if we omit the state bound for the 2nfa accepting R̂G, the statement
of Theorem 11 becomes trivial: just take L = RG and Ω̂G = {a} where a is a
neutral symbol.

Using Theorem 11, we now prove the main result of this section:

Theorem 12. Each context-free grammar of size s generating a unary language
can be converted into an equivalent 1-la having a size which is polynomial in s.

Proof. Let G = (V, {a}, P, S) be the given grammar, L ⊆ {a}∗ be the unary

language generated by it, ΩG be the extended bracket alphabet and R̂G be the
regular language obtained from G according to Theorem 11.

We define a 1-la M which works in the following steps:

1. M makes a complete scan of the input tape from left to right, by rewriting
each input cell by a nondeterministically chosen symbol from ΩG. Let w ∈
Ω∗G be the string written on the tape at the end of this phase.

2. M checks whether or not w ∈ D̂(#V )
ΩG

.

3. M checks whether or not w ∈ R̂G.
4. M accepts if and only if the outcomes of steps 2 and 3 are both positive.

According to Lemma 9, step 2 can be done by simulating a 2dfa with O(#ΩG ·
#V ) many states, hence a number polynomial in s. Furthermore, by Theorem 11,
also step 3 can be performed by simulating a 2nfa with a number of states
polynomial in s. Hence M has a size which is polynomial in s. ut

We point out that from Theorem 12 and the exponential gap from unary cfgs
to 1nfas proved in [9], we can derive an exponential gap from unary nondeter-
ministic 1-las to 1nfas. In Section 3 we proved that the gap remains exponential
if we restrict to unary deterministic 1-las and consider equivalent 2nfas.
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5 Conclusion

In [11], using languages defined over a binary alphabet, exponential size gaps
have been proved for the conversion of 1-las into 2nfas and of 1-dlas into
1dfas. As a consequence of our results, these exponential gaps hold even if we
restrict to unary languages. On the other hand, the size gap between 1-las
and 1dfas is double exponential. Even in this case, the proof in [11] relies on
witness languages defined over a binary alphabet. We leave as an open question
to investigate whether or not a double exponential gap is possible between 1-las
and 1dfas even in the unary case.

Another question we leave open is whether or not 1-las and cfgs are poly-
nomially related in the unary case. While in Section 4 we proved that from each
unary cfg we can build a 1-la of polynomial size, at the moment we do not
know the converse relationship.
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