-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by AIR Universita degli studi di Milano

Towards Inverse Uncertainty Quantification in
Software Development (Short Paper)*

Matteo Camilli', Angelo Gargantini?, Patrizia Scandurra?, Carlo Bellettini'

! Dept. of Computer Science, Universita degli Studi di Milano, Milan, Italy
{camilli,bellettini}@di.unimi.it
2 Dept. of Management, Information and Production Engineering (DIGIP),
Universita degli Studi di Bergamo, Bergamo, Italy
{angelo.gargantini,patrizia.scandurra}@unibg.it

Abstract. With the purpose of delivering more robust systems, this
paper revisits the problem of Inverse Uncertainty Quantification that is
related to the discrepancy between the measured data at runtime (while
the system executes) and the formal specification (i.e., a mathematical
model) of the system under consideration, and the value calibration of
unknown parameters in the model. We foster an approach to quantify and
mitigate system uncertainty during the development cycle by combining
Bayesian reasoning and online Model-based testing.

1 Introduction

The problem of uncertainty quantification is recently gaining attention in the
software engineering community since it has a significant impact on the ability
of a software system to satisfy its objectives [1,2]. Preliminary works towards this
direction aim at establishing a common vocabulary and taxonomy of uncertainty
from the perspective of a software system (see works [2,3] to name a few).

Sources of uncertainty can occur either at requirements, design, or execu-
tion phase, and propagate throughout all phases [3]. At each of these phases,
uncertainty can be introduced into the system by the system itself (i.e., sys-
tem uncertainty) or its execution environment (i.e., environmental uncertainty).
Examples of sources of uncertainty include: parameter uncertainty (due to un-
certain input values given to the mathematical model), structural uncertainty
(due to approximations in the mathematical model), algorithmic uncertainty
(coming from numerical approximations per implementation of the computer
model), experimental uncertainty (due to the inherent variability of experimen-
tal measurements), etc. From a different perspective uncertainty can be classified
taking into account the nature [2]. The nature concerns the uncertainty due to
the lack of knowledge (i.e., epistemic) or because of inherent randomness of the
observed phenomenon (i.e., aleatory). Both kinds of uncertainties often come up
in practice, during the development of real world applications.

* This is a short paper accepted in the new ideas and work-in-progress section of
SEFM 2017.

https://core.ac.uk/display/187973049?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Uncertainty quantification, in this context, has two major problems: For-
ward Uncertainty Propagation (FUQ) and Inverse Uncertainty Quantification
(IUQ) [4]. The first problem focuses on studying the quantification of uncer-
tainties in system output(s) propagated from uncertain inputs. This is useful
in reliability engineering and to assess the complete probability distribution of
the outputs in order to calculate and optimize the utility function. The latter
one is essentially the inverse problem. Given some experimental measurements
of a system and some simulation outputs from its mathematical model, inverse
uncertainty quantification estimates the discrepancy between the measured data
at runtime and the mathematical model (i.e., bias correction) and estimates the
values of unknown parameters in the model if there are any (i.e., parameter
calibration). FUQ is easier and more studied [5], while TUQ is recently draw-
ing increasing attention in the engineering design community, since uncertainty
quantification of a model and its inference from the true system response(s) are
of great interest in designing robust systems.

In this paper, we revisit the IUQ problem in software development and pro-
pose an approach for quantifying system uncertainty [4] before the deployment
of a release build. We depart from the unrealistic assumption that the outputs
as well as specific properties are known for a given system before accounting for
evidence during the actual system’s execution. In fact, mathematical models are
often imperfect and measured data from a running system is subject to noise.
Therefore, it is of extreme importance to quantify and reduce the uncertainty
to determine how likely certain outcomes are if some aspects of the system are
not exactly known at design-time. To this purpose, we propose an exploration
methodology to quantify and mitigate uncertainty during system development
by combining Bayesian reasoning [6] and online Model-based testing (MBT) tech-
niques [7]. The intuition behind our envisioned approach is to leverage the ca-
pability of online MBT to explore the state space in a controlled way, while the
given system is up and running. At the same time, we gather information about
the uncertain aspects of the system to perform inference activity.

As specification formalisms, we adopt Markov models, such as Discrete/-
Continuous Time Markov Chains (D/CTMCs) [8], that are a widely accepted
stochastic formalisms able to support modeling of randomly changing systems
(or probabilistic systems), as well as quantitative verification of requirements
using probabilistic temporal logic (e.g., PCTL, or CSL) model checking [9].

This paper is organized as follows. In Section 2, we introduce our approach
to IUQ based on Bayesian reasoning applied through online MBT. We discuss
related work in Section 3, and conclude and discuss challenges ahead in Section 4.

2 Overview of the Approach

Our approach to IUQ aims at estimating the discrepancy between the measured
data y¢ at runtime and the model response y™(©) that depends on different un-
certain parameters © of the Markov model m. Starting from the approximation
y™(O) ~ y°, we perform a sequence of observations in order to infer a prob-

f] ' Posterior: ' [quiescence] [observable action]
1 . e : C)
Reaui § Markovm L p(E1Y) ' Inference
PR | model — MBT module | |
Hoo® B | i . ;
3 3 Prior: ’ 3
1 LY : ; ; :
' L i ' C Uncertainty- > (Hlstory—based) (Updating)
1 . - ' based sampling sampling rules
i | Model checker o) Running ; \
; i |software(} | program : [else]
' oX 0 ; i | product o : T
3 : Posterior [termination condition]
(i) modeling and verification (ii) online MBT and 1UQ O summarization

Fig. 1: ITUQ methodology. Fig.2: Online MBT activity diagram.

ability distribution of @* describing the best knowledge of the true parameter
values, such that y™(0*) = y°.

The Bayesian methodology [6] provides a viable technique to incrementally
update our prior uncertain knowledge (hypothesis) on a given phenomenon by
observing its own behavior. The general formula is: p(@ly®) x p(y°¢|O) - p(O),
where p(©) represents the set of prior distributions for parameter set © and
uses probability to express uncertainty about © before the data (i.e., the cur-
rent evidence) is observed, p(y¢|©) is the likelihood function that expresses the
compatibility of the evidence with the given hypothesis, and p(©|y¢) is the joint
posterior distribution of the parameters after taking both the prior and the evi-
dence into account. This formula basically links the degree of belief in the prior
knowledge before and after accounting for evidence.

The inherent uncertainty of the system is explicitly modelled by means of
Prior distributions of the parameters of interest of the Markov model. Obser-
vations to enable Bayesian reasoning are made at runtime during online MBT,
where test strategies are created dynamically as testing goes on, taking advantage
of the knowledge gained by exploring the model and by observing the evidence.
A high-level overview of our methodology is shown in Figure 1. It relies on the
iteration of two different phases, which are described below.

Design-time modeling and verification — This phase concerns the de-
velopment of the mathematical model of the system under development. The
model includes a formal representation of both the specification (S) and the
environment (E). This separation is explicitly represented by disjointly parti-
tioning the state transitions into controllable and observable ones. This choice
is motivated by our problem domain of MBT. Thus, we follow the notation in-
troduced in [7] to distinguish between full controllable behavior from the tester
(i.e., the environment, such as user requests) and only observable behavior from
the running software system (i.e., the specification, such as inter-components
interaction). Markov models allow both the controllable and the observable be-
havior of system under development to be described in probabilistic terms from
different perspectives, such as the architecture of the application, the response

time of the components, or even the energy consumption (using for instance
costs/rewards model extensions [10]).

Design-time model checking serves as a means to verify the desired require-
ments against the model of the system that contains our assumptions.

Online MBT and IUQ — This phase concerns the validation of the system and
the inverse uncertainty quantification during testing activity. Fig. 2 shows the
activity diagram of the main operations performed by our online MBT algorithm.
Besides the observation until termination paradigm [7], usually applied in MBT
and runtime verification, our approach relies on two additional steps: incremental
inference and test scenarios control based on the design-time uncertainty.

— Inference: Given the natural conjugate priors for the uncertain parame-
ters @ of the Markov model, inference following the Bayesian approach reduces
to the application of incremental updating rules [6,8] for the posterior dis-
tributions based on the evidence that can be efficiently computed while the
system is observed (i.e., foreach occurring observable action) at runtime. As
an example, consider a video streaming web application, accessed from clients
through HTTP requests via mobile application. Different components (e.g., data
manager, cache, payment system, etc.) interact to satisfy users requests under
different environmental conditions, such as workload (e.g., request rate) or user
profiles (e.g., unregistered /registered users). Typical design-time uncertain pa-
rameters may include failure rates, and launch/response time of different video
streaming servers that can be expressed for instance by means of independent
Dirichlet and Gamma prior distributions describing the hypothesis on the rates
and the probability matrix of a CTMC model, respectively [6, 8].

— Control: This step provides control over test scenarios by selecting actions
during the test run based on the model uncertainty. In our application example,
a wait condition (for user requests) can be controlled for instance by generat-
ing incoming requests at different rates, thus stressing the system in different
workload conditions. In particular, if the running system is in a state of qui-
escence [11], the MBT algorithm chooses a legal controllable action such that
the probability of this choice in the current state is governed by two weighted
sampling methods.

The uncertainty-based sampling method is related to the likelihood of explor-
ing uncertain regions of the model, choosing different controllable actions from
the current state. It is grounded on the computation of the mazimum likeli-
hood trajectories [12] connecting the current state to states containing uncertain
parameters of the Markov model.

The history-based sampling method takes advantage of the knowledge gained
by exploring the model, thus allows the strategy to be configured based on the
test run history. In particular decrementing weights [7] can be adopted to call
particular controllable actions a specific number of times in the test runs, in
favor of unexplored regions.

Once termination has been reached, each uncertain parameter of interest can
be described by summarizing the posterior distribution (i.e., the summarization
activity) through the posterior mode and the highest posterior density (HPD)

intervals [8]. Thus, the uncertainty can be numerically quantified by evaluating
the discrepancy between the initial design-time parameter values and the mode
values after accounting for evidence.

Estimated parameter values represent the basis of new verification phases
and the prior knowledge for future evolutions of the software system.

3 Related work

In the community of self-adaptive systems, there have been several efforts focus-
ing on studying the FUQ problem and on dealing with changing requirements
and unpredictable environment (see [2,3,13,14], to name a few), some by employ-
ing Markov models. Our approach revisits the IUQ problem and focus mainly
on the system uncertainty [4] in software development.

An interesting effort has been shown in [15]. It focuses primarily on design-
time verification aspects to assure quality-of-service (QoS) properties of systems
that exhibit stochastic behavior. The presented technique and toolchain aim at
establishing confidence intervals for the QoS properties of a software system
modeled as a Markov chain with uncertain transition probabilities.

Concerning testing techniques, a promising Active Learning query strategy
to black-box test generation has been proposed in [16]. It aims at overcoming the
problem of intractability in MBT and generating test cases which the inferred
model is “least certain” about. The usage of machine learning algorithms and
Bayesian reasoning represents an attractive approach to achieve reliable and ef-
ficient software testing and program analysis [17]. Despite the inherent potential
of these methods, their employment in software testing and program analysis,
to tackle the IUQ problem, is still in its early stages.

4 Conclusion

We proposed an approach to quantify and mitigate system uncertainty during
system development life cycle, by combining Bayesian reasoning [6,18] and online
Model-based testing (MBT) [7]. The key idea is to explicitly model the inherent
uncertainty and provide a means to stress and observe the software product in
order to quantify the design-time uncertainty before the deployment of a release
build. In order to validate our current prototypal implementation, we are going
to conduct several experiments with case studies of different size and complexity.
Our experience in this context has been very positive. A great advantage of the
underlying probabilistic representation and our incremental update scheme of
the posterior knowledge is the robustness to unreliable/spurious observations
(difficult to achieve with non-probabilistic techniques).

There are also challenges to be faced. A very critical issue, for example, is that
stochastic techniques and Bayesian reasoning are computationally expensive,
thus often unsuitable for use at run-time. However, in our approach, expensive
probabilistic model checking is used only at design-time, while very efficient
incremental inference steps are carried out at run-time during testing activity.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

D. Garlan, “Software engineering in an uncertain world,” in Proc. of the FSE/SDP
Workshop on Future of Software Engineering Research, 2010, pp. 125-128.

N. Esfahani and S. Malek, Uncertainty in Self-Adaptive Software Systems. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2013, pp. 214-238.

A. J. Ramirez, A. C. Jensen, and B. H. C. Cheng, “A taxonomy of uncertainty for
dynamically adaptive systems,” in Proc. of the 7th Int. Symposium on Software
Engineering for Adaptive and Self-Managing Systems (SEAMS), 2012, pp. 99-108.
P. D. Arendt, D. W. Apley, and W. Chen, “Quantification of model uncertainty:
Calibration, model discrepancy, and identifiability.” J. Mech. Des., vol. 134, no. 10,
2012.

S. H. Lee and W. Chen, “A comparative study of uncertainty propagation meth-
ods for black-box-type problems,” Structural and Multidisciplinary Optimization,
vol. 37, no. 3, p. 239, 2008.

J. Berger, Statistical Decision Theory and Bayesian Analysis, ser. Springer Series
in Statistics. Springer, 1985.

M. Broy, B. Jonsson, J.-P. Katoen, M. Leucker, and A. Pretschner, Model-Based
Testing of Reactive Systems: Advanced Lectures (Lecture Notes in Computer Sci-
ence). Secaucus, NJ, USA: Springer-Verlag New York, Inc., 2005.

D. Insua, F. Ruggeri, and M. Wiper, Bayesian Analysis of Stochastic Process Mod-
els, ser. Wiley Series in Probability and Statistics. Wiley, 2012.

M. Kwiatkowska, G. Norman, and D. Parker, “PRISM 4.0: Verification of prob-
abilistic real-time systems,” in Proc. 23rd Int. Conference on Computer Aided
Verification (CAV’11), ser. LNCS, vol. 6806. Springer, 2011, pp. 585-591.

M. Kwiatkowska, G. Norman, and A. Pacheco, “Model checking expected time and
expected reward formulae with random time bounds,” Computers € Mathematics
with Applications, vol. 51, no. 2, pp. 305-316, 2006.

J. Tretmans and A. Belinfante, “Automatic testing with formal methods,” in 7th
European Int. Conf. on Software Testing, Analysis & Review, 1999, pp. 8-12.

T. J. Perkins, “Maximum likelihood trajectories for continuous-time markov
chains,” in Proceedings of the 22Nd Int. Conf. on Neural Information Processing
Systems, 2009, pp. 1437-1445.

D. Perez-Palacin and R. Mirandola, “Uncertainties in the modeling of self-adaptive
systems: A taxonomy and an example of availability evaluation,” in Proceedings of
the 5th ACM/SPEC Int. Conference on Performance Engineering, 2014, pp. 3—14.
I. Epifani, C. Ghezzi, R. Mirandola, and G. Tamburrelli, “Model evolution by
run-time parameter adaptation,” in 2009 IEEE 31st International Conference on
Software Engineering, May 2009, pp. 111-121.

R. Calinescu, C. Ghezzi, K. Johnson, M. Pezze, Y. Rafiq, and G. Tamburrelli,
“Formal verification with confidence intervals to establish quality of service prop-
erties of software systems,” IEEE Trans. Reliability, vol. 65, no. 1, pp. 107-125,
2016.

N. Walkinshaw and G. Fraser, “Uncertainty-driven black-box test data genera-
tion,” in IEEE Int. Conf. on Software Testing, Verification and Validation, 2017.

A. S. Namin and M. Sridharan, “Bayesian reasoning for software testing,” in Proc.
of the FSE/SDP Workshop on Future of Soft. Eng. Research, 2010, pp. 349-354.

J. Bernardo and A. Smith, Bayesian Theory, ser. Wiley Series in Probability and
Statistics. John Wiley & Sons Canada, Limited, 2006.

	Towards Inverse Uncertainty Quantification in Software Development (Short Paper)

