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Abstract. In this paper we introduce and study a new feature-preserving nonlinear

anisotropic diffusion for denoising signals. The proposed partial differential equation

is based on a novel diffusivity coefficient that uses a nonlocal automatically detected
parameter related to the local bounded variation and the local oscillating pattern of

the noisy input signal. We provide a mathematical analysis of the existence of the
solution of our nonlinear and nonlocal diffusion equation in the two dimensional case

(images processing). Finally, we propose a numerical scheme with some numerical

experiments which demonstrate the effectiveness of the new method.

1. Introduction

Nonlinear partial differential equations (PDEs) can be used in the analysis and pro-
cessing of digital images or image sequences, for example to filter out the noise, to
produce higher quality image, to extract features and shapes (see e.g. [2, 4, 3, 17, 18]
and the References herein). Perhaps, the main application of PDEs based methods
in this field is smoothing and restoration of images. From the mathematical point of
view, the input (grayscale) image can be moelled by a real function u0(x), u0 : Ω→ R,
where Ω ⊂ Rd, represents the spatial domain. Typically this domain Ω is rectangular
and d = 1, 2, 3. The function u0 is considered as an initial data for a suitable evolu-
tion equation with some kind of boundary conditions (usually homogeneous Neumann
boundary conditions).

The simplest PDE method for smoothing images is to apply a linear diffusion process,
the starting point is the simple observation that the so called Gauss function, with σ > 0
and where | · | is the Euclidean norm,

Gσ(x) =
1

(2πσ2)d/2
e−|x|

2/(2σ2)

is related to the fundamental solution of the linear diffusion (heat) equation. Then, it
has been possible to reinterpret the classical smoothing operation of the convolution of
an image with Gσ, with a given standard deviation σ, by solving the linear diffusion
equation for a corresponding time t = σ2/2 with initial condition given by the original
image. For example, when d = 2, it is a classic result that for any bounded, continuous.
and integrable u0(x), x ∈ R2, the linear diffusion equation on the whole space (here 4
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denotes the Laplacian operator),

∂u

∂t
= 4u, u(x, 0) = u0(x)

possesses the following solution

u(x, t) =


u0(x), t = 0

(G√2t ∗ u0)(x), t > 0

where the convolution product (g ∗ f)(x) between the function f and g, is defined as

(g ∗ f)(x) =

∫
R2

g(x− y)f(y)dy.

We point out that for different time (variance) t we obtain different levels of smoothing:
this defines a scale-space for the image [12, 19]. That is, we get copies of the image
at different scales. Note, of course, that any scale t can be obtained from a scale
τ , where τ < t, as well as from the original images, this is usually denoted as the
causality criteria for scale-spaces [2]. The solution of the above linear diffusion equation
is unique, provided we restrict ourselves to functions satisfying some suitable grow
conditions. Moreover, it depends continuously on the initial image u0, and it fulfils the
maximum/minimum principle

inf
x∈R2

u0(x) ≤ u(x, t) ≤ sup
x∈R2

u0(x) on R2 × [0,∞).

For application in image processing we also need to consider appropriate boundary
conditions: usually homogeneous Neumann conditions are used.

The flow produced by the linear diffusion equation is also denoted as isotropic diffu-
sion, as it is diffusing the information equally in all directions. Then, the gray values
of the initial image will spread, and, in the end, a uniform image, equal to the average
of the initial gray values, is obtained. Although this property is good for local reducing
noise (averaging is optimal for additive noise), this filtering operation also destroys the
image content, that is, the boundaries of the objects and the subregions present in the
image (the edges). This means that the Gaussian smoothing does not only smooth noise,
but also blurs important features and it makes them harder to identify. Furthermore,
linear diffusion filtering dislocates edges when moving from finer to coarser scales (see
e.g. [19]). So structures which are identified at a coarse scale do not give the right
location and have to be traced back to the original image. Moreover, some smoothing
properties of Gaussian scale-space do not carry over from the one-dimensional case to
higher dimensions: it is generally not true that the number of local extrema, which
are related to edges, is non-increasing. As suggested by Hummel [9] the linear diffu-
sion is not the only PDE that can be used to enhance an image and that, in order to
keep the scale-space property, we need only to make sure that the corresponding flow
holds the maximum principle. Many approaches have been taken in the literature to
implement this idea replacing the linear equation with a nonlinear PDE that does not
diffuse the image in a uniform way: these flows are normally denoted as anisotropic
diffusion. In particular, the diffusion coefficient is locally adapted, becoming negligible
as object boundaries are approached. Noise is efficiently removed and object contours
are strongly enhanced [18]. There is a vast literature concerning nonlinear anisotropic
diffusions with application to image processing which date back to the seminal paper
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by Perona and Malik, who, in [15], consider a discrete version of the following equation
∂u
∂t −∇ · (g(|∇u|)∇u) = 0, in ΩT = (0, T )× Ω,

u(x, 0) = u0(x) on Ω

∂u
∂~n (x, t) = 0, on Γ× (0, T ),

where Γ = ∂Ω, the imaage domain Ω ⊂ R2 is an open regular set (typically a rectangle),
~n denotes the unit outer normal to its boundary Γ, and u(x, t) denotes the (scalar) image
analysed at time (scale) t and point x. The initial condition u0(x), u0 is, as in the linear
case, the original image. In order to reduce smoothing at edges, the diffusivity g is chosen
as a decreasing function of the “edge detector” |∇u| (for a vector V = (V1, V2) ∈ R2,
|V |2 = V 2

1 + V 2
2 ). A typical choice is,

g(s) =
1

1 + (s/λ)
2 , s ≥ 0, λ > 0.

Catté, Lions, Morel and Coll [6] showed that the continuous Perona-Malik model is
ill posed, then very close pictures can produce divergent solutions and therefore very
different edges. This is caused by the fact that the diffusivity g leads to flux s · g(s)
decreasing for some s and the scheme may work locally like the inverse heat equation
which is known to be ill posed. This possible misbehaviour surely represents a severe
drawback of the Perona-Malik model when applied to data effected by noise. However,
discrete implementations work as a regularization factor by introducing implicit diffusion
into the model, and the filter is usually observed to be stable (with staircasing effect
as the only observable instability). Then, in the continuous settings, a new model
has been proposed [6] with the only modification of replacing the gradient ∇u in the
diffusivity by its spatial regularizations (Gσ ∗ ∇u), which are obtained by smoothing
the argument by a convolution with a C∞ kernel Gσ. Typically Gσ is a Gaussian
function and σ determines the scale beyond which regularization occurs. The equation
will now diffuse if and only if the gradient is estimated to be small. We point out that
the spatial regularization lead to processes where the solution converges to a constant
steady state. Then, in order to get nontrivial results, we have to specify a stopping time
T . Sometimes it is attempted to circumvent this task by adding an additional reaction
term which keeps the steady state solution close to the original image u0, for example

∂u

∂t
−∇ · (g(|∇Gσ ∗ u|)∇u) = f(u0 − u),

where f is a Lipshitz continuous, non dereasing funtion, f(0) = 0. During the last years,
many other nonlinear parabolic equations have been proposed as an image analysis
model. The common theme in this proliferation of models is the following, one attempts
to fix one intrinsic diffusion direction and tunes the diffusion using the size of the
gradient or the value of an estimate of the gradient. A few of the proposed models are
even systems of PDEs, for example there exist reaction diffusion systems which have
been applied to image restoration and which are connected to Perona-Malik idea or
based on Turings pattern formation model [18].

In this paper we proposed a new anisotropic diffusion equation introducing a nonlocal
diffusive coefficient that takes into account of the “monotonicity” and the oscillating
pattern of the image. In other words, a high modulus of the gradient may lead to a
small diffusion if the function is, for instance, locally monotone.
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1.1. A motivating 1D model. At present, the best view of the activity of a neural
circuit is provided by multiple-electrode extracellular recording technologies, which allow
us to simultaneously measure spike trains from up to a few hundred neurons in one
or more brain areas during each trial. While the resulting data provide an extensive
picture of neural spiking, their use in characterizing the fine timescale dynamics of a
neural circuit is complicated by at least two factors. First, extracellularly captured
action potentials provide only an occasional view of the process from which they are
generated, forcing us to interpolate the evolution of the circuit between the spikes.
Second, the circuit activity may evolve quite differently on different trials that are
otherwise experimentally identical. Experimental measurements are noisy. For neural
recordings, the noise may arise from a multitude of sources, both intrinsic and extrinsic
to the nervous system. Operationally, supposing that recorded data are composed of two
parts, signal of interest and other processes unrelated to the experimental conditions.
it is a challenge to preserve the essential signal features, such as suitable structures
related to the neuronal activity, during the smoothing process. In Figure 1 we show an

Figure 1. 5s simulated membrane potential signals of a network of
20 neurons randomly connected (firing rate = 5Hz). In black, original
signal of a neuron. White gaussian noise was added to the signals
(gray). Blue: signal after denoising (Perona-Malik). Red: signal after
denoising (new algorithm). Note that the event occurred between t =
0.296 and t = 0.297 is completely removed after Perona-Malik smooth-
ing

example of a noised signal of a neuron, where a white gaussian noise has been superposed
to the original signal. The method proposed in this paper is compared with the classical
Perona-Malik algorithm. We point out that the diffusivity in the Perona-Malik model,
or similar approaches, depends locally on the modulus of the gradient of the function.
Instead, we introduce a nonlocal diffusive coefficient that takes into account of the
“monotonicity” of the signal. In other words, a high modulus of the gradient may
lead to a small diffusion if the function is also locally monotone. Motivated by this
fact, we have developed the new approach presented in this paper. More precisely, the
diffusion coefficient in a point x is based on the behavior of the function f in a interval
x+Q = (x− q, x+ q), where Q = (−q,+q), see Figure 2. Analytically, we compute the
ratio between the variation |f(x+q)−f(x−q)| and the total variation

∫
Q
|∇f(s+x)|ds

of the function in x+Q. A ratio close to 1 will imply a tiny noise in the signal, while a
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Figure 2. Example of a nonlocal signal. The signal and the noise have
the same total variation and the same modulus of the gradient. The
global increment observed on Q is instead very different

ratio close to 0 is related to a highly noised signal. As shown in Figure 2, a pure signal
and a noised one may have the same total variation and the same modulus of gradient.
Therefore, Perona-Malik like methods (and total variation based methods) treat the
signals in the same way.
More precisely, for the one dimensional spatial case, let u : [a, b] → R a real function
defined on a bounded interval [a, b], and a subinterval [c, d] ⊂ [a, b]. We define the local
variation LV[c,d](u) of u on the interval [c, d] the value

LV[c,d](u) = |u(d)− u(c)|.
We also define the total local variation TV[c,d](u) of u on the interval [c, d] as follows

TV[c,d](u) = sup
P

nP−1∑
i=0

|u(xi+1)− u(xi)|

where P = {P = {x0, . . . , xnP } |P is a partition of [a, b]} is the set of all possible finite
partition of the interval [c, d]. It is easly to prove that if the function u is a monotone
function on the interval [c, d], then LV[c,d](u) = TV[c,d](u). While, if the function u is
not monotone, LV[c,d](u) < TV[c,d](u). For the 1D signal, as the membrane potential of
a neuron, where the independent variable has the dimension of a time, it is convenient
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to select instead of a symmetric window Q an an asymmetric interval of a given length
δ. Let ε ∈ R+ “small” number, and let δ ∈ R+ a positive number, we define the ratio,

(1.1) Rδ,u =
LV[x,x+δ](u)

ε+ TV[x,x+δ](u)

If the parameter δ is chosen appropriately we can distinguish between oscillations caused
by noise and by electrophysiological stimuli (in the following EPSP) contained in a range
of amplitude δ. In the case of the membrane potential of a neuron the oscillations due
to the noise and to EPSP occur on different time scales: it is possible to choose a value δ
such that in a range of amplitude δ there is at least a full oscillation due to noise, but not
to a complete EPSP. Then, there is an oscillation, the signal is not monotone and it is
expected that the ratio Rδ,u is much less than one because LV[x,x+δ](u) << TV[x,x+δ](u).
While, if in the same time interval there is an EPSP, the ratio Rδ,u becomes close to
one.

As in the Perona-Malik model, we adapt the diffusive coefficient by using the above
ratio Rδ,u. For small values of the latter we have to reduce the noise, while for values
close to 1, the upper bound of Rδ,u, we have to preserve the signal variation (as the
edges in the image). The resulting non-local equation is the following,

(1.2)
∂u

∂t
− ∂

∂x

(
g

(
LV[x,x+δ](u)

ε+ TV[x,x+δ](u)

)
∂u

∂x

)
= 0,

where the function g has the same properties as in the Perona-Malik model and δ > 0.
If u is a differentiable function and u′ is integrable, the total variation cab be written
as,

TV[x,x+δ](u) =

∫ x+δ

x

|u′(s)|ds,

and the non linear diffusion equation (1.2) can be state as

∂u

∂t
− ∂

∂x

g


∣∣∣∫ x+δ

x
u′(s)ds

∣∣∣
ε+

∫ x+δ

x
|u′(s)| ds

 ∂u

∂x

 = 0.

for a function u(x, t), x ∈ (a, b), t > 0. As initial condition we take the original
signal u0 but with some regularization obtain with a standard smoothing filter, e.g. a
Gaussian filter, and we assume homogeneous Neumann condition at the boundary, that
is ∂u/∂x = 0 for x = a, b and t > 0.

1.2. The multidimensional case. In order to apply the new model to a multidimen-
sional signal, in particular in the two-dimensional case (a gray level digital image), we
have to generalize the ratio Rδ,u, see (1.1). Let A ⊆ Rd and u : Ω → R an inte-
grable function smooth function, the total variation TV (u) (or BV seminorm), can be
computed as [20]

TV (u) =

∫
A

|∇u| dx

where ∇u is the gradient of u. Here, we consider the anisotropic total variation,

TVa(u) =

∫
A

|∇u|1 dx

considering the l1 norm, |v|1 = |v1| + |v2| + . . . + |vd|, instead of the Eucledian norm.
The usual total variation TV (u) is invariant to rotation of the domain, but anisotropic
TVa is not. However, the latter allows for other approaches that do not apply with
the usual TV , for example the graph-cuts algorithm [7]. Moreover the TVa(u) has the



NONLOCAL DIFFUSION EQUATION FOR IMAGE DENOISING AND DATA ANALYSIS 7

advantage of making the total variation satisfies the coarea formula [8], which allows us
to interpret TVa(u) as the cumulated length of the level lines of the function u.
For the local variation term, the numerator of the ratio Rδ,u, we have to compute the
variation of the function u in a region A by taking into account the flux of u at the
boundary ∂A of the same set A. Following the definition of the BV−seminorm [20],
and the choice we propose the definition,

LVA(u) = sup{
∫
A

∇u(x)∇h(x) dx, |∇h|1 ≤ 1, h harmonic on A}.

In the above definition, due to the properties of the test function h, we have∫
A

∇u∇h dx =

∫
∂A

u∇h · ~nA ds−
∫
A

u div(∇h) dx

where div is the divergence operator, ~nA denotes the unit outer normal to ∂A, and the
last integral is equal to zero because h is harmonic. Then∫

A

∇u∇h dx =

∫
∂A

u∇h · ~nA ds,

and the supremum for the LVA(u) is taken considering all the possible orientations of
the vector ∇h with respect to ~nA. Returning to the one-dimensional case, for A = [c, d],
we obtain,

LVA(u) = sup{(u(c)− u(d)), (−u(c) + u(d))} = |u(d)− u(c)|.

The remainder of this paper is organized as follows. In Section 2, we provide the
mathematical analysis of the new non-linear and non-local diffusion equation in the two
dimensional spatial case. We show in particular the existence of a solution for the model
by using a suitable semidiscrete scheme under reasonable hypotheses for applications
in image processing. In Section 3, we build an explicit, in time, numerical scheme
for the new model coupling a finite element method based on bilinear element Q1, a
finite difference approximation for the numerical gradients, and a decomposition with
respect to a suitable set of eigenfunctions. In Section 3 we also show some numerical
experiments.

Notation. In the following, Ω ⊂ R2 denotes a open bounded domain with Lipschitz
continuous boundary Γ = ∂Ω, and ΩT = Ω× (0, T ), with T > 0. We denote by Hk(Ω),
k is a positive integer, the Sobolev space of all function u defined in Ω such that u and
its distributional derivatives of order k all belong to L2(Ω). Let Ds the distributional
derivatives, Hk is a Hilbert space for the norm,

‖u‖k = ‖u‖Hk =

∑
|s|≤k

∫
Ω

|Dsu(x)|2 dx

1/2

, ‖u‖0 = ‖u‖L2 .

Let V = H1, V ∗ stands for its dual space. We denote by Lp(0, T ;Hk(Ω)) the set
of all functions u, such that, for almost every t in (0, T ), u(t) belong to Hk(Ω),
Lp(0, T ;Hk(Ω)) is a normed space for the norm

‖u‖Lp(0,T ;Hk(Ω)) =

(∫ T

0

‖u‖pkdt

)1/p

p ≥ 1 and k a positive integer. We denote by (·, ·), the scalar product in L2(Ω).
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2. Analysis of the new nonlocal and nonlinear equation, 2D case

In this section we will consider the two-dimensional spatial case and we will prove
the existence of a variational solution of the corresponding non-local diffusion equation.
From the discussion in the subsections (1.1)-(1.2), given U ∈ L2(0, T ;V ) and Q =
(−q1,+q1)× (−q2,+q2) (the local window), we can define the ratio coefficient R as the
function

RQ,U (x, t) =


sup{

∫
Q∇U(x+y,t)∇h(y) dy, |∇h|1≤1,h harmonic on Q}∫

x+Q |∇U(y,t)|1dy
, if

∫
x+Q

|∇U(y, t)|1dy > 0;

0, otherwise;

where | · |1 is the l1 norm in R2. It is easy to verify that the function RQ,U (x, t) is
measurable, and 0 ≤ RQ,U ≤ 1. Moreover, note that

∫
x+Q
|∇U(y, t)|1dy is continuous

in x since U ∈ L2(0, T ;V ).
Let g : [0,+∞) −→ R be a Lipschitz continuous nonincreasing function such that

g(0) = 1, g(s) > 0, ∀s ≥ 0, g(1) = ε > 0. It follows that 1 ≥ g(RQ,U (x, t)) ≥ ε.
Let Q be the window that is used in the definition of the diffusive coefficient RQ,u.

We assume that

(Assumption 1) inf
x∈Ω

|Ω ∩ {x+Q/3}|
|{x+Q/3}|

= qΩ > 0,

where if A is a measurable set, let |A| be the Lebesque measure of A.
The smoothing process of the image uI is obtained by the solution u(x, t) of the

following non-linear, non-local diffusion equation,

(2.3)

∂u

∂t
− div (g(RQ,u(x, t))∇u) = 0, in ΩT ;

∂u

∂~n
= 0, on Γ× (0, T );

u(x, 0) = u0(x) ∈ V ;

with homogeneous Neumann boundary conditions for the normal derivative ∂u
∂~n , and

initial data u0 ∈ V which is a smoother version of the original image uI .

Remark 2.1. We point out that the initial data is more regular with respect to classical
parabolic theory but we need to ensure the well-posedness of the diffusion coefficients
RQ,u. In the numerical approximation of the equation (2.3) we obtain a suitable initial
data from the original signal uI by using a convolutional operator with a Gaussian filter.

2.1. Rothe method and a priori estimates. In order to prove the existence of a
solution u ∈ L2(0, T ;V )

⋂
C0(0, T ;L2) we consider the so called Rothe-type approxima-

tion [10] of (2.3) which consists in using time discretization to approximate the evolution
problem by a sequence of an elliptic one. To show the convergence of such a process, a
common approach is to follow the following steps:

(1) for each approximate problem, prove the existence of a solution, and derive
a-priori estimates satisfied by any solution;

(2) then use compactness arguments to show (up to the extraction of a subsequence)
the existence of a limit;

(3) Finally, prove that the previous limit satisfies the original problem.

Let 0 = t0 < t1 < . . . < tN = T denote the time discretization with ti+1 = ti + τ , where
τ is the time step. Let ui be the solution of linear equation,

(2.4)
ui − ui−1

τ
− div

(
g(RQ,ui−1

(x, t))∇ui
)

= 0,
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with u0 = u(x, 0), and homogeneous Neumann boundary conditions. Let δui = (ui −
ui−1)/τ the backward difference at time ti, we understand the solution of (2.4) in the
variational sense, i.e., we look for ui ∈ V , for i = 1, . . . , N satisfies the identity

(2.5) (δui, v) +
(
g(RQ,ui−1

)∇ui,∇v
)

= 0, ∀v ∈ V,
where u0 ∈ V is given. By introducing the bilinear form aτ,w, on V × V ,

aτ,w = (u, v) + τaw(u, v), aw(u, v) = (g(RQ,w)∇u,∇v),

for a given w ∈ V , we can rewrite the previous identy as,

(2.6) aτ,ui−1
(ui, v) = (ui−1, v), ∀v ∈ V.

The term aw(u, v) in (Referencesatau-form) is weakly coercive, i.e., there exist two
constants c1 > 0 and c2 > 0 such that

(2.7) aw(u, u) + c2‖u‖20 ≥ c1‖u‖21, ∀u ∈ V.
Furthermore, the form aτ,w is continuous and it verifies

aτ,w(u, u) ≥ τc1‖u‖21 + (1− τc2)‖u‖20,
then it is V−elliptic if τc2 ≤ 1. Under this coercivity condition, the existence and
the uniqueness of ui ∈ V , i = 1, . . . , N from (2.5) is guaranteed by the Lax-Milgram
Theorem [16]. Now, we introduce the so-called Rothe function

u(N)(t) = ui−1 + (t− ti−1)δui, for ti−1 ≤ t ≤ ti, i = 1, . . . , N

which we consider as a linear piecewise approximation of the problem (2.3). Together
with u(N) we consider the step function

ū(N)(t) = ui, for ti−1 ≤ t ≤ ti, i = 1, . . . , N

with ū(N)(0) = u0. In the following C denotes the generic positive constant.

Lemma 2.2. Let ui, i = 1, . . . , N , be the solution of problem (2.6), then

(2.8) max
1≤i≤N

‖ui‖0 ≤ C,

hold uniformly for N , and ū(N)(t), u(N)(t) ∈ L∞(0, T ;L2).

Proof. First we test (2.5) at time tk+1 by v = τuk+1 and sum over k = 0, . . . , p ≥ 1, we
obtain (let us define auk(u, v) = ak(u, v)),

p∑
k=0

(uk+1 − uk, uk+1) + τ

p∑
k=0

ak(uk+1, uk+1) = 0, p = 1, . . . (n− 1).

By using the identity 2(u− v, u) = (u− v, u− v) + (u, u)− (v, v), we have
p∑
k=0

‖uk+1 − uk‖20 + ‖up+1‖20 − ‖u0‖20 + 2τ

p∑
k=0

ak(uk+1, uk+1) = 0,

Then, from (2.7),
p∑
k=0

‖uk+1 − uk‖20 + ‖up+1‖20 − ‖u0‖20 + 2τc1

p∑
k=0

‖uk+1‖21 − 2τc2

p∑
k=0

‖uk+1‖20 ≤ 0,

which can be rewritten as follows
p∑
k=0

‖uk+1 − uk‖20 + ‖up+1‖20 + 2τc1

p∑
k=0

‖uk+1‖21 ≤ 2τc2

p∑
k=0

‖uk+1‖20 + ‖u0‖20.
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Let us define

sp =

p−1∑
k=0

‖uk+1 − uk‖20 +
1

2
‖up+1‖20 + 2τc1

p−1∑
k=0

‖uk+1‖21,

It is easy to verify that

sp+1 ≤ C0 + 2τc1

p∑
k=0

‖uk‖21,

where the constant C0 depends only on the initial datum u0. By the inequality 2sp ≥
‖up‖20, we obtain

sp+1 ≤ C0 + 4τc1

p∑
k=0

sk.

Applying the discrete Gronwall lemma we have the following inequalities,

sp ≤ C0 (1 + 4τc1)
p−1 ≤ C0 (1 + 4τc1)

N
.

The function τ → (1 + 4τc1)
T/τ

is bounded for τ ∈ (0,+∞), then, for a suitable
constant C̄,

(2.9) max
p

‖up‖20
2
≤ max

p
sp ≤ C0C̄ = C,

which leads to the a-priori estimates in (2.8). �

Lemma 2.3. The estimates

(2.10) τ

N∑
k=1

‖∇uk‖20 ≤ C,
N∑
k=1

‖uk − uk−1‖20 ≤ C

hold uniformly with respect to N .

Proof. The estimates followed by the upper bound obtained in the Lemma 2.2, see (2.9),

p∑
k=0

‖uk+1 − uk‖20 +
1

2
‖up+1‖20 + 2τc1

p∑
k=0

‖uk+1‖21 ≤ C,

and from the properties of the bilinear form ak(u, v). �

2.2. Compactness and passage to the limit. We remember that ΩT = Ω× (0, T ),
the estimates (2.8,2.10) will lead the equicontinuity of the Rothe approximation u(N),
together the step function u(N).

Lemma 2.4. There exists u ∈ L2(0, T ;V ) with ∂u/∂t ∈ L2(0, T ;V ∗) such that (in the
sense of subsequences)

u(N) → u, u(N) → u in L2(ΩT );

u(N) ⇀ u in L2(0, T ;V );

∂u(N)

∂t
⇀

∂u

∂t
in L2(0, T ;V ∗).

Proof. Let s ∈ (0, T ), we consider the time translate variation of the approximation

u(N)(t),

Js =

∫ T−s

0

‖u(N)(t+ s)− u(N)(t)‖20dt.
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There exists an integer k such that kτ ≤ s ≤ (k + 1)τ , then, by the definition of the

step function u(N),

Js = τ

N−k∑
l=0

‖ul+k − ul‖20.

From the Lemma 2.2 and 2.3 it follows that

Js ≤ Ckτ,

for a suitable constant C, and the time translate estimate,

(2.11)

∫ T−s

0

‖u(N)(t+ s)− u(N)(t)‖20dt ≤ C(s+ τ).

By using again the estimates (2.8), (2.10), and the definition of the step approximation

u(N), it is easy to show that

(2.12)

∫ T

0

‖u(N)(t)‖21dt ≤ Cu.

Given a vector ξ ∈ R2, let Ωξ = {x ∈ Ω: x+ ξ ∈ Ω} and Ωξ,T = Ωξ × (0, T ). From the
inequality (2.12) we have the following space translate estimate,

(2.13)

∫
Ωξ,T

‖u(N)(x+ ξ, t)− u(N)(x, t)‖20 dxdt ≤ Cξ|ξ|2, for |ξ| sufficiently small.

Due to the time and translate estimates, respectively (2.11) and (2.13), the set {u(N)}N
is compact in L2(ΩT ) because of Kolmogorov’s relative compactness criterion [5, 13].

The, we can conclude u(N) −→ u in L2(ΩT ) (and also pointwise in ΩT ),and u ∈
L2(0, T ;V ). From the definition of u(N) and u(N), and from Lemma 2.3 it follows
the estimate ∫ T

0

‖u(N)(t)− u(N)(t)‖20dt ≤
Cd
N
,

which holds uniformly with respect to N . Then u(N) −→ u in L2(ΩT ).
Observing that ∂u(N)/∂t = (ui − ui−1)/τ , for t ∈ (ti−1, ti), we can compute∥∥∥∂u(N)

∂t

∥∥∥
∗

= sup
v∈V, ‖v‖≤1

|((ui − ui−1)/τ, v)| .

Then, the following estimate holds uniformly for N ,∫ T

0

∥∥∥∂u(N)

∂t

∥∥∥2

∗
dt ≤ C∗,

and we can deduce the weak convergence of the time derivative of the Rothe approxi-
mations u(N). �

Lemma 2.5. With the notation of Lemma 2.4,

u(N) → u, u(N) → u in L2(0, T ;V );

Proof. Now we shall prove the L2(0, T ;V ) convergence of u(N) to u (which belongs to

the space L2(0, T ;V )). So, let us test (2.5) by v = u(N) − u and integrate it over the
time interval (0, T ) by using the partition from the subinterval (ti−1, ti),

(2.14)

N∑
i

∫ ti

ti−1

[
((ui − ui−1)/τ, ui − u) +

(
g(RQ,ui−1

)∇ui,∇ui −∇u
)]
dt = 0.
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We recall that 1 ≥ g(RQ,ui−1) ≥ g(1) = ε, then we obtain

ε

∫ T

0

‖∇u(N) −∇u‖20dt ≤
N∑
i

∫ ti

ti−1

(
g(RQ,ui−1

)∇ui −∇u,∇ui −∇u
)
dt.

From (2.14), and the above inequality, we have

ε

∫ T

0

‖∇u(N) −∇u‖20 dt+

N∑
i

∫ ti

ti−1

(
g(RQ,ui−1

)∇ui,∇ui −∇u
)
dt

≤
N∑
i

∫ ti

ti−1

((ui − ui−1)/τ, u− ui) dt.

Now, from the Lemma 2.2 and the Lemma 2.3, and the convergence u(N) −→ u in
L2(ΩT ), and the weak convergence ∂u(N)/∂t ⇀ ∂u/∂t in the space L2(0, T ;V ∗), we
deduce that exists a vanishing sequence {CN}, CN ∈ R, limN→∞ CN = 0 such that

ε

∫ T

0

|∇u(N) −∇u|2dt ≤ CN ,

which implies u(N) → u in L2(0, T ;V ). To prove the convergence u(N) → u in
L2(0, T ;V ) it is possible to consider a time average approximation starting from the
values ui and proceeding as in [11]. �

2.3. Existence of a variational solution. In order to prove that the limit u is a
variational solution of (2.3) we have to consider the property of the stability of the
kernel g(RQ,u) with respect a variation in the space V . First, we introduce some results
from the measure theory.

Lemma 2.6 (Vitali covering). Let ∪ni=1xi+Q/3 be a finite cover of a set Ω̃ ⊆ Ω. Then
there exists a finite sub-cover ∪mj=1{xj + Q} such that {xj + Q/3, j = 1, . . . ,m} are
disjoint.

Corollary 2.7. Let Ω̃ ⊆ Ω. Then there exists x0, . . . , xN0
∈ Ω̃ such that Ω̃ ⊆ ∪N0

j=1{xj+

Q} and N0 ≤ 32|Ω|
|Q|qΩ .

Proof. Denote by Ω̂ the closure of Ω̃ in Ω. Take the open cover of Ω̂ made by C =
{x + Q/3, x ∈ Ω̃}. Since Ω is compact, then Ω̂ is compact and hence there exists a

finite cover of Ω̂ made by {∪ni=1{xi + Q/3}}. By the Vitali covering Lemma, there

exists a finite sub-cover ∪N0
j=1{xj +Q} such that {xj +Q/3, j = 1, . . . , N0} are disjoint.

Moreover,

|Ω| ≥ |Ω ∩ (∪N0
j=1{xj +Q/3})| =

N0∑
j=1

|Ω ∩ {xj +Q/3})| ≥ qΩN0
|Q|
32
,

the last inequality being a consequence of (Assumption 1), and since |{xj + Q/3}| =
|Q/3| = |Q|/32. �

The following result shows the stability of the kernel g(RQ,u) when the limiting
function is not locally constant.

Lemma 2.8. The function RQ,U (x, t) is continuous at U ∈ V on the set{
(x, t) :

∫
x+Q

|∇U(y, t)|1dy > 0
}
.
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Proof. Denote by

NU (x, t) = sup
{∫

Q

∇U(x+ y, t)∇h(y) dy, |∇h|1 ≤ 1, h harmonic in Q
}
,

DU (x, t) =

∫
x+Q

|∇U(y, t)|1dy,

and by

|∇u|1 =
∣∣∣ ∂u
∂x1

∣∣∣+
∣∣∣ ∂u
∂x2

∣∣∣, |∇u|2 =

√( ∂u
∂x1

)2

+
( ∂u
∂x2

)2

,

the seminorm | · |1 and, respectively, | · |2, then |∇u|1√
2
≤ |∇u|2 ≤ |∇u|1. Let Un → U in

L2(0, T ;V ). By definition, for a.e. t ∈ (0, T ),∫
Ω

|∇U −∇Un|22 dy → 0,

and hence
(2.15)

1

2 · |Ω|

(∫
Ω

|∇U −∇Un|1 dy
)2

≤
∫

Ω

( |∇U −∇Un|1√
2

)2

dy ≤
∫

Ω

|∇U −∇Un|22 dy → 0.

As a direct consequence,

(2.16) DUn(x, t)→ DU (x, t) > 0, for a.e. (x, t) :

∫
x+Q

|∇U(y, t)|1dy > 0.

For what concerns NU , if |∇h|1 ≤ 1 then we get |∇h|∞ ≤ 1. Then∣∣∣ ∫
Q

∇U1(x+ y, t)∇h(y) dy −
∫
Q

∇U2(x+ y, t)∇h(y) dy
∣∣∣

≤
∫
Q

|∇U1(x+ y, t)−∇U2(x+ y, t)∇h(y)| dy

≤ ‖∇U1(x+ ·, t)−∇U2(x+ ·, t)‖1 ‖∇h‖∞

≤
∫
x+Q

|∇U1(y, t)−∇U2(y, t)|1 dy

By (2.15), NUn(x, t)→ NU (x, t), which concludes the proof together with (2.16). �

Lemma 2.9. Let un → u in V . For any w ∈ C1(Ω;R) and t ∈ (0, T ),

lim
n→∞

(∫
Ω

g(RQ,un)∇un∇w dx−
∫

Ω

g(RQ,u)∇u∇w dx
)

= 0.

Proof. Note that

(2.17)
∣∣∣ ∫

Ω

g(RQ,un)∇un∇w dx−
∫

Ω

g(RQ,u)∇u∇w dx
∣∣∣

≤
∫

Ω

|g(RQ,un)| |(∇un −∇u)∇w| dx

+

∫
Ω

|g(RQ,un)− g(RQ,u)| |∇u∇w| dx.
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For what concerns the RHS of (2.17), the first term vanishes as n goes to infinity since
g is bounded. For the second term of the RHS of (2.17), we get

(2.18)

∫
Ω

|g(RQ,un)− g(RQ,u)| |∇u∇w| dx =

∫
Ω̃ε
|g(RQ,un)− g(RQ,u)| |∇u∇w| dx

+

∫
Ω\Ω̃ε

|g(RQ,un)− g(RQ,u)| |∇u∇w| dx

where,

Ω̃ε =
{
x :

∫
x+Q

|∇u|1dy <
ε|Q|qΩ

g(0)K32|Ω|
≤ ε

g(0)KN0

}
,

K is such that max(|∂wx1
|, |∂wx2

|) ≤ K, and N0 is defined in Corollary 2.7. The first term

of the RHS of (2.18) is uniformly bounded (in n) by ε: by Corollary 2.7∫
Ω̃ε
|g(RQ,un)− g(RQ,u)| |∇u∇w| dy ≤ g(0)K

∫
Ω̃ε
|∇u|1 dy

≤ g(0)K

∫
∪N0
j=1{xj+Q}

|∇u|1 dy

≤ g(0)K

N0∑
j=1

∫
xj+Q

|∇u|1 dy

≤ g(0)KN0

∫
xj+Q

|∇u|1 dy

≤ ε.

The second term of the RHS of (2.18) vanishes as a consequence of the Dominated
Convergence Theorem. In fact, |g(RQ,un) − g(RQ,u)∇u∇w| ≤ g(0)|∇u∇w| ∈ L1; and

g(RQ,un)→ g(RQ,u) on Ω \ Ω̃ε by Lemma 2.8. �

Now we prove that the limit u is a variational solution of (2.3).

Lemma 2.10 (Existence). For any u0 ∈ V , there exists u ∈ L2(0, T ;V ) with ∂u
∂t ∈

L2(0, T ;V ∗) such that u(x, 0) = u0(x) on Ω, ∂u
∂~n = 0 on Γ× (0, T ) and∫

Ω

∂u

∂t
w dx =

∫
Ω

div(g(RQ,u)∇u)w dx, ∀w ∈ C1
0 (Ω).

Proof. By Lemma 2.4 and Lemma 2.5, there exists a sequence u(N) such that

u(N) → u in L2(0, T ;V ),
∂u(N)

∂t
⇀

∂u

∂t
in L2(0, T ;V ∗).

Let φ ∈ C∞c (0, T ) be a real-valued test function and w ∈ C1
0 (Ω). Taking v(x, t) =

φ(t)w(x) as a test function and integrating the result with respect to t, we find that∫ T

0

(∫
Ω

∂u(N)

∂t
v(x, t) dx+

∫
Ω

g(RQ,uN )∇u(N)∇v(x, t) dx
)
dt = 0.

We take the limit of this equation as N →∞. Since the function t→ φ(t)w belongs to
L2(0, T ;V ), we have∫ T

0

∫
Ω

∂u(N)

∂t
v(x, t) dx dt −→

∫ T

0

∫
Ω

∂u

∂t
v(x, t) dx dt.
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Moreover, Lemma 2.9 shows that

∫ T

0

(∫
Ω

g(RQ,uN )∇u(N)∇w dx
)
φ(t) dt→

∫ T

0

(∫
Ω

g(RQ,u)∇u∇w dx
)
φ(t) dt

It therefore follows that u satisfies

∫ T

0

φ(t)
(∫

Ω

∂u(N)

∂t
w dx+

∫
Ω

g(RQ,u)∇u∇w dx
)
dt = 0, ∀φ ∈ C∞c (0, T ),

and hence, for almost every t ∈ (0, T ),

∫
Ω

∂u

∂t
w dx =

∫
Ω

div(g(RQ,u)∇u)w dx, ∀w ∈ C1
0 (Ω).

�

3. Numerical approximation

We introduce here a numerical scheme for the one-dimensional and the two-dimensional
case, that is for 1D signal and for the gray level images. We point out that a digital
signal/image is usually defined on a uniform subdivision of an interval or a rectangular
domain. While for the one-dimensional case we consider a finite differences approach,
for the 2D spatial problem we have to couple different numerical approaches in order
to estimates the function RQ,u and the corresponding diffusive coefficient.

3.1. 1D problem. We approximate the 1D non linear diffusion equation (1.2), for
x ∈ [0, L], t ∈ [0, T ], coupled with homogeneous Neumann conditions for x = 0, x = L,
using a finite difference scheme. For convenience, we will use a uniform grid, with grid
spacing h = L/N , N > 1 integer. If we wish to refer to one of the points in the
spatial grid, we shall call the points xi, i = 0, . . . , N , where xi = ih, obtaining the
corresponding partition 0 = x0 < x1 < . . . < xN = L. Likewise, we discretize the time
domain [0, T ] similarly by place a grid on the temporal axis with grid spacing τ = T/M
and time points tk = kτ , k = 0, . . . ,M . We will define uki to be a function defined
at the point (ih, kτ), the function uki will be our approximation to the solution of the
diffusion problem at the same point (ih, kτ).
For simplicity we choose the parameter δ (the length of the window for the non local
term) as δ = lh, where l ∈ N. We approximate the local variation LV[xi,xi+δ] (u) by

LVi = |ui+l − ui|, and we define TVi =
∑l−1
j=0|ui+j+1 − ui+j | as a discretization of the

total variation TV[xi,xi+δ] (u). We also define the following quantities where the function



16 G. ALETTI, M. MORONI, AND G. NALDI

g (s) is the edge-stopping,

gki = g

(
LVi

ε+ TVi

)

gki+ 1
2

=
gki + gki+1

2

∂xu
k+1
i =

uk+1
i+1 − u

k+1
i

h

φki+ 1
2

= gki+ 1
2
∂xu

k+1
i

[∂x (g∂xu)]
k
i =

φk
i+ 1

2

− φk
i− 1

2

h
=

=
gki−1 + gki

2h2
uk+1
i−1 −

gki−1 + 2gki + gki+1

2h2
uk+1
i +

gki + gki+1

2h2
uk+1
i+1 =

= βki u
k+1
i−1 − α

k
i u

k+1
i + γki u

k+1
i+1

Then we can state our semi-implicit numerical scheme

Uk+1 − Uk

τ
= A

(
Uk
)
Uk+1

where Uk is the vector of the values uki , and the matrix A
(
Uk
)

is defined as

A(Uk) =


αk1 γk1
βk2 αk2 γk2

. . .
. . .

. . .

βkN−1 αkN−1 γkN−1

βkN αkN


Then at each time step we have to numerically solve the following linear system,(

I − τA
(
Uk
))
Uk+1 = Uk

Let B
(
Uk
)

the matrix
(
I − τA

(
uk
))

, it is easy to show that B is a strictly diagonally
dominant matrix, then it is non singular.

3.2. 1D Test. In this numerical experiment we consider a recorded calcium imaging
data from a 3D cultures of cortical neurons. The sampling rate was 65Hz and the
sampling time interval was about 8 seconds. The data was collected in the Department
of Neuroscience and Brain Technologies of the Fondazione Istituto Italiano di Tecnologia.
In Figure 3 we show a typical trace of the calcium signal together with different smoothed
signals at different time T . In the test we used τ = 0.1, δ = 20, and h = 1/65, the initial
data U0 is obtained by the convolution of the original signal with a Gaussian filter with
σ = 0.01.

3.3. 2D problem. Without loss of generality we can choose a square domain (x, y) ∈
[1, L] × [1, L], with L a positive integer which is the number of pixels for each row (or
column) of the image. Moreover, we can fix the grid spacing hx = hy = 1 because it
represents the distance between two adjacent pixels. Also for the time interval [0, T ]
we use an uniform grid with time spacing τ , let j = (j1, j2), the node (i, j) corresponds
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Figure 3. Reconstruction with the non linear, non local diffusion
equation (1.2) of a Calcium trace. The original signal was obtained
in the IIT lab based in Genova (Italy). First line, on the left the orig-
inal signal, on the right the solution for T = 300. Second line, on the
left the solution for T = 400, on the right the solution for T = 500. In
all numerical experiments, δ = 20, τ = 0.1.

to the point (iτ, j1hx, j2hy) = (iτ, j1, j2). We denote by ui,(j1+1,j2) the approximation
of the solution u in the node (i, j). Each component of the gradient vector and the
divergence of a vector will be approximated with central differences formula,

∇ui,j =

(
(ui,(j1+1,j2) − ui,(j1−1,j2))/2
(ui,(j1,j2+1) − ui,(j1,j2−1))/2

)
,

div(vi,j, wi,j) =
vi,(j1+1,j2) − vi,(j1−1,j2)

2
+
wi,(j1,j2+1) − wi,(j1,j2−1)

2
.

The main effort, given a symmetric rectangular Q = (−q1,+q1) × (−q2,+q2), is the
computation of

RQ,ui−1,j
=

sup{
∫
x+Q
∇u(y, t)∇h dy, |∇h|1 ≤ 1, h harmonic on Q}

ε+
∫
x+Q
|∇u(y, t)|1dy

.

Step 1: computation of
∫
x+Q
|∇u(y, t)|1dy.

• We compute the total variation TVi,(j1+0.5,j2+0.5) in each square by taking the
Q1 finite element approximation P (x1, x2) defined by its values at the corner
nodes ui,(j1,j2), ui,(j1+1,j2), ui,(j1+1,j2+1), ui,(j1,j2+1). We may then exactly com-
pute

TVi,(j1+0.5,j2+0.5) =

∫ 1

0

∫ 1

0

|∇P (x1, x2)|1dx1 dx2

as a function of the corner values;
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• with a pre-computed filter, we sum values of the vertices of each of the 4q1q2

squares in the neighborhood Q of j:

TVQ,i,j =

q1−1∑
k1=j1−q1

q2−1∑
k2=j2−q2

TVi,(k1+0.5,k2+0.5).

Step 2: computation of

(3.19) sup{
∫
x+Q

∇u(y, t)∇h dy, |∇h|1 ≤ 1, h harmonic on Q}.

Since div(∇h) = 0, in this case we have∫
x+Q

∇u(y, t)∇h dy =

∫
x+∂Q

u(y, t)(∇h · ~n) ds,

and hence (3.19) depends on u only through its values at x+∂Q (as in 1D). To compute

sup{
∫
x+∂Q

u(s, t)(∇h · ~n) ds, |∇h|1 ≤ 1, h harmonic on Q},

we approximate the set {h harmonic on Q, |∇h|1 ≤ 1} with a spectral decomposition
using suitable eigenfunctions in the following way:

• we map Q on the square S = [0, 1] × [0, 1]; up to a constant, the following
functions form a base for {h harmonic on S}

x, y, xy,

sin(kπx) sinh(kπ(1− y))

cosh(πk)
,

sin(kπy) sinh(kπx)

cosh(πk)
,

sin(kπx) sinh(kπy)

cosh(πk)
,

sin(kπy) sinh(kπ(1− x))

cosh(πk)
;

• we choose M and we approximate the base by taking k ≤M , the first M modes
and x, y, xy;

• we compute the approximate base H = {fh, h = 1, . . . 4M + 3} on Q, with a
linear transformation of x e y that preserves harmonicity;

• we compute the gradient ∇fh of each element of H;
• we solve the linear problem

max
a1,...a4M+3

4M+3∑
h=1

ah

∫
x+∂Q

u(s, t)(∇fh · ~n) ds

subject to
∣∣∣ 4M+3∑
h=1

ah∇fh
∣∣∣
1
≤ 1, uniformly on Q,

by noticing that each component of
∑4M+3
h=1 ah∇fh is still an harmonic function,

and hence it attains its maximum on ∂Q. With a very fine mesh {y1, . . . , yL} on
the boundary ∂Q, the problem (3.19) is hence well approximated by the linear
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problem

max
a1,...a4M+3

4M+3∑
h=1

ah

∫
x+∂Q

u(s, t)(∇fh · ~n) ds

subject to

4M+3∑
h=1

ah
(
± ∂fh(yl)

∂x ± ∂fh(yl)
∂y

)
≤ 1,

for any l = 1, . . . , L.

This linear problem has 4M + 3 unknown and 4L constrains and it is solved
independently for each node (i, j). We have parallelized this operation, once we
have preallocated the quantities involving ∇fh(yl);

• furthermore, u(s, t) is evaluated with a linear interpolation on the values ui,j of
the nodes j ∈ ∂Q, since the integral is made on the boundary of an element of
Q1. Therefore, there exist suitable constants such that∫

x+∂Q

u(y, t)(∇fh · ~n) ds =
∑
j∈∂Q

ui,jHh,j.

Again, we have calculated the quantities Hh,j at the beginning of the code.

Figure 4. Numerical solutions of equation (2.4): the left plot refers to
initial value, the right one is obtained after 300 iterations. Resolution:
top 126× 126 pixels, bottom 512× 512 pixels. Q = (−2,+2)2.

In Figure 4 two numerical simulations are performed. In order to avoid the solution of a
linear system, as in the 1D case, we used to advance in time the classical forward Euler
scheme. We have therefore experimentally found a condition of stability by selecting an
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appropriate value for the time spacing τ . In both the cases, we have used q1 = q2 = 2,
M = 3, L = 400 with Dual-Simplex Algorithm. The details under the magnitude of Q
are treated as noise, and smoothed, while the edges are clearly magnified.

4. Conclusion

Image denoising/smoothing is one of basic issues in image processing. It plays a key
preliminary step in many computer based vision systems, but also it is a starting point
towards more complex tasks. Since image noise removal represents a relevant issue in
various image analysis and computer vision problems, it is a challenge to preserve the
essential image features, such as edges and other sharp structures during the smoothing
process. The feature preserving image noise reduction still represents a challenging
image processing task. In this paper we propose a new method based on a non linear and
non local diffusion equation. The new approach has already been successfully applied
in the analysis of membrane potentials in a neural network [1], and for data analysis of
recorded calcium signals in a 3D culture cells [14]: these denoising experiments provided
very encouraging results. Here we focused on the mathematical analysis of the model
and its numerical approximation. In particular, we provided an existence theorem for
the variational solution and a numerical scheme both for the 1D and 2D case.
We observe that the uniqueness of the solution of the novel equation remains an open
problem. Also the analysis of the stability and convergence of proposed numerical
schemes should be completed. We have already developed some preliminary results
that will be reported in a forthcoming paper. In particular, it is possible to show that
the semi-implicit numerical scheme satisfies the same discrete scale-space properties as
for the Perona-Malik method. Finally, a more complete comparison with other methods
has to be done, but this goes beyond the aims of this paper.
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