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As potential treatments for C9ORF72-associated amyo-
trophic lateral sclerosis (c9ALS) approach clinical trials,
the identification of prognostic biomarkers for c9ALS
becomes a priority. We show that levels of phosphory-
lated neurofilament heavy chain (pNFH) in cerebrospinal
fluid (CSF) predict disease status and survival in c9ALS
patients, and are largely stable over time. Moreover,
c9ALS patients exhibit higher pNFH levels, more rapid
disease progression, and shorter survival after disease
onset than ALS patients without C9ORF72 expansions.
These data support the use of CSF pNFH as a prognos-
tic biomarker for clinical trials, which will increase the
likelihood of successfully developing a treatment for
c9ALS.
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Despite more than 50 large clinical trials in the past

half-century, there is only 1 minimally effective

treatment for amyotrophic lateral sclerosis (ALS), a dev-

astating motor neuron disease. Nevertheless, since the

discovery of C9ORF72 G4C2 repeat expansions as the

most common genetic cause of ALS,1,2 significant advan-

ces have been made toward elucidating the mechanisms

by which this mutation causes C9ORF72-associated ALS

(c9ALS), and devising therapeutic strategies to combat

them. Multiple lines of evidence place G4C2 repeat RNA

and dipeptide repeat (DPR) proteins synthesized from

these transcripts at the crux of c9ALS. Therapeutic strate-

gies that target G4C2 RNA, such as antisense oligonu-

cleotides (ASOs) and small molecules, reduce DPR pro-

tein levels, and mitigate other abnormalities caused by

G4C2 transcripts in c9ALS models.3–6

As therapeutics for c9ALS are sought, we must

address barriers in moving a treatment from bench to

bedside, such as the lack of biomarkers to forecast disease

progression and confirm target engagement in clinical tri-

als. We recently established poly(GP) DPR proteins as a

promising pharmacodynamic biomarker for G4C2 RNA-
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targeting ASOs (c9ASOs),6 but forthcoming clinical trials

for c9ASOs will also benefit from biomarkers that pre-

dict disease course. Phosphorylated neurofilament heavy

chain (pNFH) and neurofilament light chain, which are

released into the interstitial fluid during axonal injury

and neurodegeneration, have emerged as putative prog-

nostic biomarkers.7 Levels of pNFH are elevated in cere-

brospinal fluid (CSF) and blood from patients with

ALS,8–14 and some studies show that pNFH levels are

associated with survival and/or indicators of disease pro-

gression.8,9,11–13,15 The prognostic potential of pNFH,

however, has yet to be specifically evaluated in c9ALS

patients, a population that differs clinically and patho-

physiologically from ALS patients without a C9ORF72
repeat expansion.16–19 We thus investigated pNFH as an

urgently needed prognostic biomarker for c9ALS.

Subjects and Methods

Participants
An international sampling of CSF from C9ORF72 expansion car-

riers (n 5 135) and noncarriers with no known ALS- or fronto-

temporal dementia (FTD)-linked mutation (n 5 107) was used.

Samples were obtained from asymptomatic C9ORF72 expansion

carriers, healthy individuals, and clinically symptomatic patients

diagnosed with ALS, ALS with comorbid FTD (ALS-FTD), or

FTD (Table). ALS patients met El Escorial criteria for this diag-

nosis.20 Diagnosis of FTD was obtained through established

guidelines21–24 and supported by neuropsychological testing and,

in autopsied patients, by pathologically verified frontotemporal

lobar degeneration. Our cohort comprised a collection of existing

samples from multiple biobanks and included samples collected

specifically for studies on neurofilaments. Longitudinally col-

lected CSF was available from 37 C9ORF72 expansion carriers

and 17 noncarriers. Written informed consent was obtained from

all participants or their legal next of kin if they were unable to

give written consent, and biological samples were obtained with

ethics committee approval.

Sample Collection
The standard operating procedures for the collection, process-

ing, and storage of CSF were generally consistent among sites.

In brief, CSF was collected in polypropylene tubes by lumbar

puncture (LP) and immediately placed on ice. With the excep-

tion of samples from 3 groups, the CSF was spun at low speed

at 48C within 30 minutes of collection to pellet any cellular

debris. Samples were aliquoted before storing at 2808C.

pNFH Analysis
The previously described Meso Scale Discovery immunoassay

used for this study employs a mouse antihuman pNFH anti-

body and a sulfo-tagged polyclonal anti-pNFH antibody as the

capture and detection antibodies, respectively, and a purified

bovine pNFH calibrator.25 The assay has been analytically

validated as a laboratory-developed test in the Iron Horse Clini-

cal Laboratory Improvement Amendments–certified laboratory.

Samples tested in duplicate have a coefficient of var-

iation< 10%. The intra- and interday precision of the assay is

also <10%. Reagents and quality control samples were trans-

ferred to Mayo Clinic Jacksonville, where all CSF samples were

tested at an 8-fold dilution, to establish commutability between

the two sites.

Statistical Analysis
ALS patient functional status was determined using the Amyo-

trophic Lateral Sclerosis Functional Rating Scale–Revised

(ALSFRS-R). For cross-sectional studies, the disease progression

score was calculated using the equation: (48 2 ALSFRS-R score

at baseline)/disease duration in months from disease onset to

baseline LP.8 For longitudinal studies, we used: (48 2

ALSFRS-R score at last LP)/disease duration in months from

disease onset to last LP.

Comparisons of pNFH levels across disease groups, and

associations of pNFH with disease progression score or survival

since disease onset, were conducted separately for C9ORF72

expansion carriers and noncarriers, as described below. Our pri-

mary analyses also included comparing pNFH levels, disease

progression scores, and survival after disease onset between

C9ORF72 expansion carriers and noncarriers. Given our 9 pri-

mary analyses, a Bonferroni adjustment was made and

p� 0.0056 was considered statistically significant.

For regression analyses, pNFH values were log-scaled,

and a square root transformation was applied to the disease

progression scores due to their skewed distributions.

pNFH levels were compared among disease groups

(asymptomatic/healthy, ALS/ALS-FTD, FTD) using multivari-

ate linear regression (MLR) models adjusted for age at LP and

gender. Given a statistically significant (p� 0.0056) difference

among groups, post hoc pairwise comparisons were made, with

p� 0.0167 considered significant after Bonferroni correction.

The ability of pNFH to discriminate between disease groups

was examined by estimating the area under the receiver operat-

ing characteristic (ROC) curve.

Associations of pNFH levels in ALS/ALS-FTD patients

with disease progression scores were evaluated using MLR mod-

els adjusted for age at disease onset, gender, and onset site.

Additional adjustment for disease group (ALS or ALS-FTD)

was made only in C9ORF72 mutation carriers, as only 2 non-

carriers had ALS-FTD.

Associations of pNFH levels in ALS/ALS-FTD patients

with survival after disease onset were examined using multivariate

Cox proportional hazards regression models. Hazard ratios (HRs)

and 95% confidence intervals (CIs) were estimated, and censor-

ing occurred at the date of last follow-up. The multivariate model

for C9ORF72 mutation carriers was adjusted for age at disease

onset, gender, disease group, and onset site. For non–mutation

carriers, we adjusted only for age at disease onset and onset site

due to the smaller number of deaths in this subgroup.26 We addi-

tionally estimated the concordance index (c-index) with and with-

out pNFH in a given Cox model to provide an alternative mea-

sure of the predictive ability of pNFH; a c-index of 0.5 indicates
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predictive ability equal to that obtained by chance, and a c-index

of 1.0 indicates perfect predictive ability.

Comparisons of pNFH between ALS patients with a

C9ORF72 mutation and those without were made using MLR

models adjusted for age at LP, gender, onset to LP, and onset

site. Disease progression scores were compared using MLR

models adjusted for age at disease onset, gender, and onset site.

Comparisons of survival after disease onset were made using

multivariate Cox regression models adjusted for age at disease

onset, gender, and onset site.

For our secondary analyses, p� 0.05 was considered sta-

tistically significant. The association of pNFH with poly(GP)

levels in C9ORF72 repeat expansion carriers, the latter mea-

sured as part of a recently published study,6 was examined using

a linear regression model. We also evaluated whether pNFH

levels change over time in subjects with longitudinally collected

CSF. The slope from a linear regression model (where pNFH

was the response and time after the baseline pNFH measure

was the predictor variable) was calculated separately for each

patient, and these slopes were tested for difference from a value

of zero (indicating no change in pNFH levels over time) using

a 1-sample t test.

All statistical tests were 2-sided, and analyses were per-

formed using SAS (v9.2; SAS Institute, Cary, NC) and R Statis-

tical Software (v2.14.0; R Foundation for Statistical Comput-

ing, Vienna, Austria).

Results

Evaluating CSF pNFH in C9ORF72
Mutation Carriers
To investigate the prognostic utility of pNFH in c9ALS

patients with or without comorbid FTD, the prevalence

of which is increased in C9ORF72 expansion car-

riers,16,17 we evaluated associations between pNFH levels

and disease status, progression, and survival after disease

onset using CSF from 86 c9ALS patients (14 with

comorbid FTD [c9ALS-FTD]) and 28 asymptomatic

individuals. Included for comparison was CSF from 21

c9FTD patients (see Table).

Compared to asymptomatic C9ORF72 expansion

carriers, CSF pNFH levels were higher in patients with

c9ALS/c9ALS-FTD (p< 0.0001) or c9FTD (p 5 0.0004;

see Fig 1A). pNFH levels discriminated between c9ALS/

c9ALS-FTD patients and asymptomatic individuals with

an almost perfect area under the ROC curve of 0.996

(95% CI 5 0.989–1.000). A cutoff value of 176pg/ml pro-

duced a sensitivity of 98.8% and a specificity of 96.4%

(see Fig 1B). In addition, pNFH levels were higher in

c9ALS/c9ALS-FTD compared to c9FTD (p< 0.0001),

with pNFH levels discriminating between c9ALS/c9ALS-

FTD patients and c9FTD patients with an area under the

ROC curve of 0.899 (95% CI 5 0.808–0.990).

In c9ALS/c9ALS-FTD patients, there was a positive

correlation between pNFH levels and disease progression

score calculated using the ALSFRS-R (p 5 0.012, n 5 63;

see Fig 1C), but this did not reach statistical significance

(set at p� 0.0056) after correction for multiple testing.

Survival data were available for 81 of the 86 c9ALS/

c9ALS-FTD patients; the median length of follow-up after

disease onset was 3.3 years (range 5 1.0–11.7 years), and

59 patients (72.8%) died. A strong association was

observed between higher pNFH levels and shorter survival

after disease onset (HR [per each doubling of

pNFH] 5 2.16, 95% CI 5 1.47–3.16, p< 0.0001; see Fig

1D). Further illustrating the ability of pNFH levels to pre-

dict survival after disease onset, the model c-index was

0.66 when adjusting for age at disease onset, gender, dis-

ease group, and onset site; it improved to 0.72 when

pNFH was additionally included in the model.

Evaluating CSF pNFH in Non–C9ORF72
Mutation Carriers
We examined the same associations as above in individu-

als without a C9ORF72 mutation: 37 healthy subjects,

45 ALS patients (2 with comorbid FTD), and 25 FTD

patients (see Table).

CSF pNFH levels were significantly higher in ALS/

ALS-FTD patients compared to healthy individuals or

FTD patients (p< 0.0001; see Fig 1E), but not signifi-

cantly different between FTD patients and controls

(p 5 0.054). pNFH levels discriminated between ALS/

ALS-FTD patients and healthy individuals with an area

under the ROC curve of 0.926 (95% CI 5 0.861–

0.991); a cutoff value of 245pg/ml produced a sensitivity

of 89.0% and a specificity of 100.0% (see Fig 1F).

pNFH levels discriminated between ALS/ALS-FTD

patients and FTD patients with an area under the ROC

curve of 0.867 (95% CI 5 0.776–0.957).

pNFH levels in ALS/ALS-FTD patients did not

associate with disease progression score (p 5 0.12,

n 5 36; see Fig 1G).

Survival data were available for 40 of the 45 ALS/

ALS-FTD patients; the median length of follow-up after

disease onset was 5.0 years (range 5 1.4–20.0 years), and

18 patients (45.0%) died. A strong association was

observed between higher pNFH levels and shorter sur-

vival after disease onset (HR [per each doubling in

pNFH] 5 3.04, 95% CI 5 1.58–6.59, p 5 0.002; see Fig

1H). Again demonstrating the ability of pNFH to pre-

dict survival after disease onset, the model that was

adjusted for only age at disease onset and onset site had

a c-index of 0.61, which increased to 0.77 when pNFH

was also included in the model.
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c9ALS Patients Exhibit Higher pNFH Levels
and Disease Progression Scores, and Shorter
Survival, Compared to ALS Patients without
a C9ORF72 Expansion

We next compared indicators of disease progression between

ALS patients with and without C9ORF72 expansions (see

Fig 1I, J and K). Given the increased prevalence of FTD in

ALS patients with a C9ORF72 expansion (14 of 86 patients

[16.3%]) versus those without (2 of 45 patients [4.4%]),

ALS-FTD patients were omitted from these analyses.

CSF pNFH levels (p< 0.0001) and disease pro-

gression scores (p 5 0.003) were significantly higher in

FIGURE 1
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c9ALS patients compared to patients without the expan-

sion. Similarly, there was strong evidence of shorter sur-

vival after disease onset for patients with c9ALS com-

pared to those without the expansion (HR 5 4.08, 95%

CI 5 2.24–7.43, p< 0.0001).

We recently reported that CSF poly(GP) levels,

although a promising pharmacodynamic biomarker, do

not associate with survival after disease onset in c9ALS/

c9ALS-FTD.6 Consistent with these findings, poly(GP)

levels did not associate with pNFH levels (p 5 0.21; see

Fig 1L).

Longitudinal pNFH Measurements
Longitudinally collected CSF was available from 37

C9ORF72 expansion carriers and 17 noncarriers. The

median length of time between the first and last pNFH

measurement was 12.9 months (range 5 4.4–22.6 months)

and 5.8 months (range 5 3.0–6.7 months) for C9ORF72

expansion carriers and noncarriers, respectively. There was

no evidence of a change in CSF pNFH levels over time in

C9ORF72 expansion carriers (p 5 0.75), and the rate of

change in CSF pNFH did not differ between asymptom-

atic individuals and patients with c9ALS or c9ALS-FTD

(p 5 0.83; Fig 2A). A similar lack of change in CSF pNFH

over time was observed in ALS patients without a

C9ORF72 expansion (p 5 0.80; see Fig 2B). There was no

significant difference in the rate of change in CSF pNFH

between faster and slower progressors in patients with a

C9ORF72 expansion (p 5 0.33), without an expansion

(p 5 0.16), or combined (p 5 0.094).

Discussion

Clinical trials for ALS are hampered by the lack of bio-

markers to monitor target engagement and predict dis-

ease course. The latter frequently results in clinical trial

treatment groups with significantly different proportions

of fast and slow progressors, thereby greatly increasing

the number of patients needed to detect a treatment

effect. With therapeutics for c9ALS being intensely inves-

tigated, and clinical trials for c9ASOs approaching, we

evaluated pNFH as a prognostic biomarker for c9ALS to

overcome this barrier.

Our study revealed a strong association between

higher CSF pNFH levels and shorter survival in ALS

patients with or without a C9ORF72 expansion, which is

consistent with previous reports.9,13 Given that the clini-

cal course of disease can vary substantially—one study

reports survival ranges of 0 to 7 years for c9ALS, and 3

to 38 years for ALS16—the ability of pNFH levels to

predict survival could facilitate the assessment of treat-

ment on prolonging life, and be used to stratify patients

into more homogenous groups to improve clinical trial

efficiency and the estimation of treatment outcomes.

We also noted a positive correlation between

pNFH levels and disease progression score in c9ALS and

c9ALS-FTD patients, but this was not significant after

adjustment for multiple testing, perhaps because of lower

power due to missing data for some patients, or a lack of

precision in the disease progression score, which depends

on a functional rating that is subject to bias.

That ALS patients with C9ORF72 expansions had

significantly higher pNFH levels than patients without

FIGURE 1: Evaluation of cerebrospinal fluid (CSF) phosphorylated neurofilament heavy chain (pNFH) in C9ORF72 repeat expan-
sion carriers and noncarriers. (A–H) pNFH levels were measured in CSF from individuals with a C9ORF72 repeat expansion (A–
D) and those without an expansion (E–H). (A) Scatter plot showing that CSF pNFH levels were higher in patients with
C9ORF72-associated amyotrophic lateral sclerosis with or without comorbid frontotemporal dementia (c9ALS 6 FTD, n 5 86),
or patients with c9FTD (n 5 21), compared to asymptomatic C9ORF72 repeat expansion carriers (c9ASX, n 5 28). Patients with
c9ALS-FTD are represented by green circles. (B) Receiver operating characteristic (ROC) curves showing the ability of CSF
pNFH levels to discriminate between patients with c9ALS or c9ALS-FTD (n 5 86) and either asymptomatic C9ORF72 repeat
expansion carriers (n 5 28) or patients with c9FTD (n 5 21). AUC 5 area under the curve. (C) Association of CSF pNFH levels
and disease progression scores in patients with c9ALS or c9ALS-FTD (n 5 63). (D) Survival after disease onset according to CSF
pNFH levels for c9ALS and c9ALS-FTD patients (n 5 81). For ease of presentation, pNFH levels were divided into a 3-level cate-
gorical variable based on sample tertiles (Low £ 1.0980ng/ml, Moderate 5 1.0981–1.6860ng/ml, High > 1.6860ng/ml). (E) Scat-
ter plot showing that CSF pNFH levels among individuals without a C9ORF72 repeat expansion were higher in ALS patients
with or without comorbid FTD (n 5 45) compared to healthy individuals (n 5 37) or patients with FTD (n 5 25). Patients with
ALS-FTD are represented by green circles. (F) ROC curves showing the ability of CSF pNFH levels to discriminate between
patients with ALS or ALS-FTD (n 5 45) and either healthy individuals (n 5 37) or patients with FTD (n 5 25) without a C9ORF72
expansion. (G) CSF pNFH levels did not associate with disease progression scores in patients with C9ORF72-negative ALS or
ALS-FTD (n 5 36). (H) Survival after disease onset according to CSF pNFH levels for ALS and ALS-FTD patients without a
C9ORF72 expansion (n 5 40). For presentation purposes, pNFH levels were divided into a 3-level categorical variable based on
sample tertiles (Low £ 0.4660ng/ml, Moderate 5 0.4661–1.0540ng/ml, High > 1.0540ng/ml). (I) Comparison of CSF pNFH levels
between patients with c9ALS (n 5 72) and C9ORF72-negative ALS (n 5 43). (J) Comparison of disease progression scores
between patients with c9ALS (n 5 54) and C9ORF72-negative ALS (n 5 36). (K) Comparison of survival after disease onset
between patients with c9ALS (n 5 68) and C9ORF72-negative ALS (n 5 38). (L) CSF pNFH levels did not associate with CSF
poly(GP) levels in patients with c9ALS or c9ALS-FTD (n 5 86). Straight lines in panels A, E, I, and J represent the median.
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this mutation presumably reflects increased neuronal

injury. c9ALS patients develop greater brain atrophy, par-

ticularly in extramotor regions, compared to ALS patients

without a C9ORF72 expansion.17,18 This diffuse spread

of degeneration may account for the more rapid disease

progression and shorter survival of c9ALS patients, as

observed herein and by others.16–19

We show that CSF pNFH levels are largely stable

over time. These findings from our relatively large cohort

of ALS patients are consistent with those from a study

examining 11 ALS patients longitudinally.9 This stability

of pNFH could facilitate its use as a pharmacodynamic

biomarker for drugs that mitigate axonal injury and neu-

rodegeneration. Additional longitudinal studies spanning

FIGURE 2: Longitudinal evaluation of cerebrospinal fluid (CSF) phosphorylated neurofilament heavy chain (pNFH) in C9ORF72
repeat expansion carriers and noncarriers. pNFH levels were measured in CSF collected longitudinally from C9ORF72 repeat
expansion carriers and noncarriers. Subjects are color-coded based on their disease progression score, with patients having a
score higher than the median (0.54 and 0.45 for C9ORF72 expansion carriers and noncarriers, respectively) considered faster
progressors, whereas those with a score equal to or lower than the median are considered slower progressors. (A) Among the
expansion carriers, 10 were asymptomatic, 20 were patients with C9ORF72-associated amyotrophic lateral sclerosis (c9ALS),
and 7 were patients with c9ALS and comorbid frontotemporal dementia. For these 37 subjects, the median length of time
between the first and last pNFH measurement was 12.9 months (range 5 4.4–22.6 months); 25 subjects had 2 measurements,
9 subjects had 3 measurements, 2 subjects had 4 measurements, and 1 subject had 5 measurements. (B) For the 17 ALS
patients without a C9ORF72 expansion, the median length of time between the first and last pNFH measurement was 5.8
months (range 5 3.0–6.7 months), and CSF pNFH was measured either 2 times (n 5 2) or 3 times (n 5 15).
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asymptomatic and symptomatic phases of disease would

be useful in determining at what point pNFH levels

begin to rise—information that could inform when best

to initiate treatment.

Overall, we established the prognostic potential of

CSF pNFH for c9ALS. These findings, together with

our discovery of a pharmacodynamic biomarker for

G4C2 RNA-targeting therapies,6 will increase the likeli-

hood of successfully developing a treatment for c9ALS.
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TABLE Patient Characteristics according to C9ORF72 Repeat Expansion Status and Disease Group

C9ORF72 Repeat Expansion Carriers Non-C9ORF72 Repeat Expansion Carriers

Characteristic Asymptomatic,

n 5 28

c9ALS or

c9ALS-FTD,

n 5 86

c9FTD,

n 5 21

Healthy,

n 5 37

ALS or

ALS-FTD,

n 5 45

FTD,

n 5 25

Age at LP, yr 43 (28, 63) 59 (36, 76) 63 (45, 77) 60 (23, 85) 60 (26, 90) 67 (59, 84)

Age at disease onset, yr N/A 57 (34, 74) 61 (44, 76) N/A 57 (25, 87) 65 (39, 80)

Gender, male 8 [28.6%] 53 [61.6%] 11 [52.4%] 13 [35.1%] 30 [66.7%] 17 [68.0%]

Disease onset to LP, mo N/A 23 (0, 132) 47 (0, 103) N/A 27 (6, 204) 51 (6, 243)

Onset site

Bulbar N/A 28 [33.7%] N/A N/A 10 [23.3%] N/A

Limb N/A 51 [61.4%] N/A N/A 31 [72.1%] N/A

Other N/A 4 [4.8%] N/A N/A 2 [4.7%] N/A

ALSFRS-R score N/A 36 (7, 46) N/A N/A 37 (19, 45) N/A

Disease progression score N/A 0.5 (0.0, 2.8) N/A N/A 0.3 (0.1, 1.5) N/A

pNFH level, pg/ml 89 (35, 459) 1,406 (117, 4,671) 238 (86, 2,848) 100 (45, 209) 621 (50, 3,119) 181 (61, 502)

The sample median (minimum, maximum) is given for continuous variables. Information was unavailable for some subjects regarding age at LP

(n 5 1 c9ALS, n 5 1 ALS, n 5 1 FTD), age at disease onset (n 5 1 c9FTD), disease onset to LP (n 5 1 c9FTD, n 5 1 FTD), onset site (n 5 1

c9ALS, n 5 2 c9ALS-FTD, n 5 2 ALS-FTD), ALSFRS-R score (n 5 17 c9ALS, n 5 5 c9ALS-FTD, n 5 7 ALS, n 5 2 ALS-FTD), and disease pro-

gression score (n 5 18 c9ALS, n 5 5 c9ALS-FTD, n 5 7 ALS, n 5 2 ALS-FTD). CSF samples were collected at the following institutions: Emory

University School of Medicine, National Institutes of Health, Mayo Clinic Jacksonville, University of Miami, IRCCS Istituto Auxologico Italiano,

University of Milan, Maggiore Hospital (Crema), Massachusetts General Hospital, University of Massachusetts Medical School, Barrow Neurologi-

cal Institute, University of Pittsburgh Medical Center, University of Pennsylvania, Washington University School of Medicine, and University Hos-

pital M�utua de Terrassa.

ALS 5 amyotrophic lateral sclerosis; ALSFRS-R 5 Amyotrophic Lateral Sclerosis Functional Rating Scale–Revised; c9 5 C9ORF72-associated;

FTD 5 frontotemporal dementia; LP 5 lumbar puncture; N/A 5 not applicable; pNFH 5 phosphorylated neurofilament heavy chain.
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