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STRICT COHERENCE ON MANY-VALUED EVENTS

TOMMASO FLAMINIO, HYKEL HOSNI AND FRANCO MONTAGNA

Abstract. We investigate the property of strict coherence in the setting of many-

valued logics. Our main results read as follows: (i) a map from an MV-algebra to [0, 1]

is strictly coherent if and only if it satisfies Carnap’s regularity condition and, (ii) a

[0, 1]-valued book on a finite set of many-valued events is strictly coherent if and only

if it extends to a faithful state of an MV-algebra that contains them. Remarkably this

latter result allows us to relax the rather demanding conditions for the Shimony-Kemeny

characterisation of strict coherence put forward in the mid 1950s in this Journal.

§1. Introduction and motivation. This paper contributes to the logi-
cal foundations of probability by investigating strict coherence on many-valued
events. The notion of strict coherence was introduced in this Journal by Ab-
ner Shimony and John Kemeny as a logically inspired refinement of the notion
of coherence used by Bruno de Finetti to ground his subjective interpretation
of probability. Informally, coherence demands that a rational agent avoids the
logical possibility of “sure loss” in suitably specified betting situations. Its strict
counterpart, in addition, demands that each prospect of losing should be bal-
anced by a prospect of gaining.

Interest in the condition of strict coherence was prompted by Carnap’s analy-
sis of what he termed “regular” probability functions in [4] (see also [37, Chapter
10 ]). Informally those functions arise by strengthening the usual normalisation
axiom of probability in the right-to-left direction. That is to say that 1 (re-
spectively, 0) is assigned only to tautologies (respectively, contradictions). The
rationale for Carnap-regular functions is that, however unlikely, possible events
may happen.

In [38] Shimony proved that imposing strict coherence to a map from finite
boolean algebras to [0, 1] was sufficient to single out Carnap-regular functions.
Shortly after, the converse was established by Kemeny in [21], a result proved
independently in [24]. The Shimony-Kemeny characterisation is obtained under
far more restrictive conditions than those yielding de Finetti’s theorem, which
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holds for books on arbitrary sets of events (see Section 2 below for precise details).
This may suggest that the refinement of coherence to its strict counterpart is
obtained at the price of giving up the full generality of de Finetti’s foundation.

By investigating the problem of strict coherence for many-valued events we
conclude, as a welcome side effect, that this is not the case. More centrally, this
paper shows that taking many-valued events as elements of MV-algebras [5, 6]
allows us to investigate the notion of coherence in a framework which is both
general and methodologically perspicuous. In this respect the present paper
complements the groundbreaking contributions of [35, 31, 23].

Our main results read as follows. Theorem 5.2 shows that a map from an
MV-algebra to [0, 1] is strictly coherent if and only if it satisfies Carnap’s regu-
larity condition. Theorem 6.4 establishes an extension result for strictly coher-
ent books on many-valued events. This result is obtained for finite-dimensional
MV-algebras (see Section 3 below). Despite being a particular case, Corollary
6.5 shows that finite-dimensional MV-algebras are general enough to provide de
Finetti-like extensions for all boolean events. In other words, the refinement to
strict coherence does not come at the expense of generality.

The next Section collects the basic concepts and results on (strict) coherence.
Readers who are familiar with this material may still wish to flip through it to
get acquainted with the notation and terminology used in the paper.

§2. Coherence and strict coherence. In a series of seminal contributions,
starting with [8] and culminating in [9], Bruno de Finetti provided a rather
general justification for the probabilistic representation of rational beliefs. To
this end he identifies degrees of belief with the price of gambles in a suitably
defined betting situation. In this setting incoherent behaviour is defined as the
disposition to choose prices in a way which may lead to sure loss. (See [13] for
a logical account of the topic in the notation and spirit of the preset paper.)

Let a1, . . . , an denote events and suppose a bookmaker B publishes a book
Φ : a1 7→ α1, . . . , an 7→ α1, where α1, . . . , αn are real numbers in [0, 1]. A
gambler G then chooses real-valued stakes ρ1, . . . , ρn and for i = 1, . . . , n, pays
ρiαi to B. When a (classical propositional) valuation v determines ai, B gains
ρi, if v(ai) = 1 and 0 otherwise. Note that ρi may be negative, in which case,
paying ρiαi means receiving −ρiαi and receiving ρiai means paying −ρiαi. The
book Φ is said to be coherent if there is no choice of stakes ρ1, . . . , ρn such that
for every valuation v,

n∑
i=1

ρi(αi − v(ai)) < 0.(1)

The left hand side of (1) captures the bookmaker’s payoff, or balance, relative
to book Φ under valuation v. De Finetti’s theorem then reads as follows.

Theorem 2.1 ([8]). Let a1, . . . , an be an arbitrary set of events of a boolean
algebra B and let Φ : ai 7→ αi, i = 1, . . . , n be a book. The following are
equivalent:

(1) Φ is coherent.
(2) Φ is extended by a finitely additive and normalised measure on B.



STRICT COHERENCE ON MANY-VALUED EVENTS 3

This result, which de Finetti had no inclination to express logically, turns
out to be remarkably robust to the variation of the underlying logic of events.
This was first illustrated by the generalisation of the “Dutch Book Method”
obtained by Paris [35], and reinforced by the further developments in the MV-
algebraic domain initiated by Mundici [31, 23]. In the latter papers, events
are regarded as elements of an MV-algebra A, and valuations are regarded as
MV-homomorphisms v from A to the MV-algebra whose carrier is the real unit
interval [0, 1]. Except for the fact that valuations range on [0, 1] (rather than
on {0, 1}) the notion of coherence which underpins this research thread does not
differ from the condition captured by inequality (1) above. Indeed this literature
led to the generalisation of de Finetti’s theorem to states of MV-algebras, which
will be introduced in Section 4.

De Finetti’s coherence guards bookmakers against the possibility of sure loss by
simultaneously barring them from what they should reasonably aim to, namely
making profit. The condition of strict coherence has been put forward as a natu-
ral reaction to this rather odd feature. As a terminological aside, [18] pointed out
that Shimony termed his refinement of de Finetti’s notion simply “coherence”,
whilst Kemeny dubbed his own “strict fairness”, but the term “strict coherence”
quickly stuck, and so we conform to this usage.

Shimony’s intuitive rendering of his criterion is the following. A book is strictly
incoherent when

there exists a choice of stakes [. . . ] such that [. . . ] no matter what the
actual truth values of [of the events] may be, [the bookmaker] can at
best lose nothing and in at least one possible eventuality will suffer a
positive loss. [38]

Hence a bookmaker’s book is strictly coherent if every possibility of loss is
paired with a possibility of gain. This intuition motivates the following definition.

Definition 2.2. Let Φ : a1 7→ α1, . . . , an 7→ αn be a book (either boolean or
MV). We say that Φ is strictly coherent if for every choice of real-valued stakes
ρ1, . . . , ρn, the existence of a valuation v such that

n∑
i=1

ρi (αi − v(ai)) < 0

implies the existence of a valuation w such that
n∑
i=1

ρi(αi − w(ai)) > 0.

To illustrate the idea, suppose a book contains a 7→ 0 for some non-contradictory
event a. Then the book is not strictly coherent. For, if the gambler bets 1 on
a, then her balance is as follows: she pays 1 · 0 = 0 and gets back 0 if v(a) = 0
and 1 if v(a) = 1. Hence, the bookmaker never wins and possibly loses, i.e, she
violates strict coherence.

In spite of its intuitive appeal, the notion of strict coherence has attracted a
number of criticisms over the decades. De Finetti himself was not persuaded the
strengthening of his coherence condition for reasons analogous to those which
led him to argue against countable additivity [9, Section 3.11, Appendix 18.2].
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As recently pointed out in [33], the Kroupa-Panti theorem ([22, Corollary 29],
[34, Proposition 1.1]) shows that de Finetti goes to great lengths for no reason of
substance. Finite additivity on the boolean algebra of events is in fact sufficient
for σ-additivity on the dual Stone space. In light of this we can avoid potential
terminological confusion by referring to finitely additive and normalised measure
which satisfy Carnap’s condition as Carnap-regular measures. The Shimony-
Kemeny characterisation then reads as follows.

Theorem 2.3 (Shimony, Kemeny). Let Φ be a [0, 1]-valued map on a finite
boolean algebra. The following are equivalent:

(1) Φ is strictly coherent.
(2) Φ is a Carnap-regular measure.

We end this Section by pointing out explicitly the relation between the setting
of Theorem 2.3 and that of Theorem 2.1, a comparison which will be clarified
significantly by our main results.

Remark 2.4. The algebraic setting of de Finetti’s theorem is more general
than the one used by Shimony and Kemeny. Logically speaking, the conditions
of de Finetti’s theorem apply to events expressed in a possibly infinite language,
whereas Theorem 2.3 effectively requires events to be expressed in a finite lan-
guage. Even more restrictive is this theorem’s hypothesis that the map Φ is
defined over the algebra of events. No such assumption is required for Theorem
2.1.

§3. MV-algebras, abelian `-groups and Riesz spaces. This section in-
troduces the algebraic framework for many-valued events, namely MV-algebras
[5, 6]. After recalling their definition and key properties, we focus on how those
structures relate Riesz MV-algebras [10], lattice-ordered abelian groups [17] and
Riesz spaces [26]. Section 5 will illustrate their central role in the characterisation
of strict coherence for many-valued events.

Definition 3.1 ([5, 6]). An MV-algebra is an algebra A = (A,⊕,′ , 0) where:

(a) (A,⊕, 0) is a commutative monoid,
(b) the equations x′′ = x, x⊕ 0′ = 0′ and y ⊕ (x′ ⊕ y)′ = x⊕ (y′ ⊕ x)′ hold.

In any MV-algebra, we set x � y = (x′ ⊕ y′)′ and 1 = 0′. Obviously, MV-
algebras form a variety.

Definition 3.2 ([17]). A lattice ordered abelian group (`-group for short) is
an algebra G = (G,+,−,∨,∧, 0) such that:

(a) (G,+,−, 0) is an abelian group.
(b) (G,∨,∧) is a lattice.
(c) The equations x+(y∨z) = (x+y)∨(x+z) and x+(y∧z) = (x+y)∧(x+z)

hold.

A unital `-group is an algebra (G, u) where G is an `-group and u ∈ G is
a constant such that for every x ∈ G there is a natural number n such that
x ≤ nu.
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Without risk of confusion, we shall denote unital `-groups by (G,≤, u), em-
phasizing, in this way, the lattice order ≤.

Let us denote by Gu the category whose objects are unital `-groups and whose
morphisms are `-group homomorphisms preserving the strong unit, and letMV
be the algebraic category whose objects are MV-algebras. Given a unital `-group
(G,≤, u), the structure

Γ(G,≤, u) = (A,⊕,′ , 0),(2)

where A = {x ∈ G | 0 ≤ x ≤ u}, x′ = u − x and x ⊕ y = (x + y) ∧ u is an
MV-algebra. For every morphism h of unital `-groups, say from (G,≤, u) to
(G′,≤′, u′), the map Γ(h) obtained by restricting the domain of h to Γ(G, u), is
an MV-homomorphism. Indeed, Γ is a functor from Gu to MV. By a famous
result by Mundici [29], Γ has an adjoint, Γ−1, and the pair (Γ,Γ−1) constitutes
a categorical equivalence between Gu and MV.

Example 3.3. (1) Every boolean algebra is an MV-algebra. Moreover, for
every MV-algebra A, the set of its idempotent elements B(A) = {x | x⊕x = x}
is the domain of the largest boolean subalgebra of A: its boolean skeleton.

(2) (R, 1) (the additive group of reals with the constants 1) is a unital `-group
and Γ(R, 1) is an MV-algebra, denoted by [0, 1] in the sequel. The MV-algebra
[0, 1] stands to the variety of MV-algebras as the two-elements boolean algebra
stands to the variety of boolean algebras. In particular, the variety of MV-
algebras is generated by [0, 1] (see [5]).

(3) Let X be a compact Hausdorff space and let CX = C(X,R) be the `-group
of all continuous functions from X into R, with the operations defined pointwise.
Let 1 denote the constantly 1 function from X into R. Then (CX ,≤,1) is a
unital `-group, and Γ(CX ,≤,1) is an MV-algebra which is a subalgebra of [0, 1]X .
When X is finite, say |X| = k, we will denote by [0, 1]k the MV-algebra of all
functions form X to [0, 1] and we shall call it a finite-dimensional MV-algebra.
We anticipate that these structure will play a key role in Section 6 below.

We will henceforth denote by CX the `-group of all continuous functions from
a compact Hausdorff space X into R. We write H(A) for the set of MV-
homomorphisms of an MV-algebra A in [0, 1]. For every MV-algebra A, H(A) is
a closed subset of the product space [0, 1]A equipped with the Tychonoff topol-
ogy. It can be shown that H(A) is a compact Hausdorff space (cf. [30, Theorem
2.5]).

An MV-algebra A is said to be semisimple if it is so in the usual universal al-
gebraic sense, i.e., A is isomorphic to a subdirect product of simple MV-algebras
(see [3, Definition 12.1]).

Proposition 3.4. For an MV-algebra A, the following are equivalent:

(i) A is semisimple,

(ii) A is isomorphic to an algebra Â of separating and continuous [0, 1]-valued
functions over the compact Hausdorff space H(A),

(iii) for every a ∈ A, if a > 0, then there is v ∈ H(A) such that v(a) > 0.

Proof. (i) ⇔ (ii) is proved in [5], while the equivalence between (ii) and
(iii) is immediate. a
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Definition 3.5 ([10]). A Riesz MV-algebra is an MV-algebra A equipped
with a family {α(·)}α∈[0,1] of unary operations on A so that the following condi-
tions hold for every α, β ∈ [0, 1] and every x, y ∈ A:

(i) If α+ β ≤ 1, then α(x)⊕ β(x) = (α+ β)(x).
(ii) If x� y = 0, then α(x⊕ y) = α(x)⊕ α(y).

(iii) α(β(x)) = αβ(x).
(iv) 1(x) = x.
(v) α(x) = 0 iff either α = 0 or x = 0.

For the sake of a lighter notation, in the sequel, we shall write αa instead of
α(a), for every α ∈ [0, 1] and every element a of a Riesz MV-algebra A.

Definition 3.6 ([26, 10]). A unital Riesz space is an algebra (V,≤, u) where
V is a vector space over the real field, ≤ is a lattice order and u is a constant
such that, denoting by V− the group reduct of V, (V−,≤, u) is a unital `-group.

The equivalence between the categories of MV-algebras and unital `-groups ex-
tends in the same fashion to Riesz MV-algebras and unital Riesz spaces. Indeed,
given a unital Riesz space (V,≤, u), let

ΓR(V,≤, u) = (A, {α(·)})
where, denoting by V− the group reduct of V, A = Γ(V−,≤, u) as in (2) and,
for every α ∈ [0, 1], α(·) : A→ A is the scalar product of V restricted to scalars
in [0, 1]. Now, if we denote by RSu the category of unital Riesz spaces whose
morphisms are vector-lattices homomorphisms preserving the unit, and byRMV
the algebraic category of Riesz MV-algebras, ΓR is a functor between RSu and
RMV. Furthermore, ΓR has an adjoint Γ−1

R and the pair (ΓR,Γ
−1
R ) establishes

a categorical equivalence between RSu and RMV (cf. [10]).
For any unital Riesz space (V,≤, u), we shall henceforth denote by H(V) the

set of all morphisms of (V,≤, u) in (R,≤, 1).

Lemma 3.7. Let (V,≤, u) be a unital Riesz space. Then every element x ∈ V
may be represented as x = ma + ku for some integer k ≤ 0, for some natural
number m > 0 and for some a ∈ ΓR(V,≤, u). Moreover, the restriction to
ΓR(V,≤, u) of a morphism w ∈ H(V) is a morphism in H(ΓR(V,≤, u)), and
a morphism v in H(ΓR(V,≤, u)) has a unique extension to a morphism w in
H(V), defined by w(ma+ ku) = mv(a) + k.

Proof. Since (V,≤, u) is unital, we can find a natural number n such that
−x ≤ nu. Hence, 0 ≤ x+ nu. Moreover, there is a natural number m > 0 such
that x+nu ≤ mu. Now let a = 1

m (x+nu). Then 0 ≤ a ≤ u and a ∈ ΓR(V,≤, u).
Finally x = ma− nu and letting k = −n we get the result.

The other claims are a direct consequence of the categorical equivalence be-
tween RSu and RMV, see [10, Theorem 4.2]. a

Notation 3.8. Let A is a semisimple MV-algebra and let Â be as in Propo-
sition 3.4 (ii). In what follows we shall adopt the following notations:

- R(A) stands for the Riesz MV-subalgebra of [0, 1]H(A) generated by Â.
- (VL(A),≤,1) denotes the unital Riesz subspace of (RH(A),≤,1) generated

by Â.
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As usual, we shall denote byR(A) and V L(A) the carriers of R(A) and (VL(A),≤
,1) respectively.

Let A be a semisimple MV-algebra, let (G,≤, u) = Γ−1(A) and let

H =
{ g

2n
| g ∈ G,n ∈ N

}
.(3)

As proved in [12, Corollary 3.7], H is the domain of a dense unital `-subgroup of
(the unital `-group reduct of) (CH(A),≤,1). Hence, any element of (VL(A),≤,1)
can be approximated by the elements of H. The next lemma provides a slightly
stronger statement.

Lemma 3.9. For every semisimple MV-algebra A, for every z ∈ V L(A) and
for every real number ε > 0, there are z+

ε , z
−
ε ∈ H such that z−ε ≤ z ≤ z+

ε and
for every v ∈ H(A), z(v)− z−ε (v) < ε and z+

ε (v)− z(v) < ε.

Proof. We shall prove the claim by induction on the structural complexity
of z ∈ V L(A). To this end, let us recall that (VL(A),≤,1) is generated by Â,

and every a ∈ Â is a separating and continuous function from H(A) in [0, 1],
Proposition 3.4 (ii).

Clearly, if z ∈ Â, then we take z+
ε = z−ε = z and we are done.

Let us assume that z = z1 + z2. Then, by the inductive hypothesis, for
i = 1, 2, there are z+

i ε2
, z−i ε2

∈ H such that z−i ε2
≤ zi ≤ z+

i ε2
and for every v ∈ H(A),

zi(v)−z−i ε2 (v) < ε
2 and z+

i ε2
(v)−zi(v) < ε

2 . Then it suffices to take z+ = z+
1 ε

2
+z+

2 ε
2

and z− = z−1 ε
2

+ z−2 ε
2
.

If z = z1 ◦ z2, where ◦ ∈ {∨,∧}, then, the inductive hypothesis ensures that
for i = 1, 2 we have z+

iε, z
−
iε ∈ H such that z−iε ≤ zi ≤ z

+
iε and for every v ∈ H(A),

zi(v)− z−iε(v) < ε and z+
iε(v)− zi(v) < ε. Then it suffices to take z+ = z+

1ε + z+
2ε

and z− = z−1ε + z−2ε.
If z = −u, then by the inductive hypothesis for i = 1, 2 there are u+

ε , u
−
ε ∈

H such that u−ε ≤ u ≤ u+
ε and for every v ∈ H(A), z(v) − u−ε (v) < ε and

u+
ε (v)− z(v) < ε. Hence, it suffices to define z+

ε = −u−ε and z−ε = −u+
ε .

Finally, suppose z = αu, α a real number. Since we have already treated the
case z = −u, we can assume without loss of generality that α ≥ 0. Let M be
a natural number such that M ≥ α + 1 and, for every v ∈ H(A), −M + ε ≤
u(v) ≤ M − ε. By the inductive hypothesis, there are u+, u− ∈ H such that
u− ≤ u ≤ u+ and, for every v ∈ H(A),

u(v)− u−(v) < ε
2M and u+(v)− u(v) < ε

2M .

Moreover, −M ≤ u−(v) ≤ u+(v) ≤ M , and u+(v) − u−(v) < ε
M . Let n be

such that 1
2n < ε

2M and let k be the maximum integer such that k
2n ≤ α. Then

k+1
2n > α. Let us consider

r = k
2n and t = k+1

2n .

Now let

z+ = t(u+ ∨ 0) + r(u+ ∧ 0) and z− = r(u− ∨ 0) + t(u− ∧ 0).

We verify that z− ≤ z ≤ z+. Let v ∈ H(A) and let us consider the following
cases:
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(i) If u−(v) ≥ 0, then u+(v) ≥ 0 as well, whence

z+(v) = tu+(v) ≥ αu(v) ≥ ru−(v) = z−(v).

(ii) If u+(v) ≤ 0, then also u−(v) ≤ 0 and hence

z+(v) = ru+(v) ≥ αu(v) ≥ tu−(v) = z−(v).

(iii) If u+(v) ≥ 0 and u−(v) ≤ 0, then

z+(v) = tu+(v) ≥ αu(v) ≥ tu−(v) = z−(v).

This settles the claim. a

§4. States and faithful states of MV-algebras. The purpose of this sec-
tion is to present states of an MV-algebra, a notion which was introduced in [30]
and further investigated in [34, 22, 31, 23].

Definition 4.1 ([30]). A state of an MV-algebra A is a [0, 1]-valued map s
on A such that s(1) = 1 and s(x⊕ y) = s(x) + s(y), whenever x� y = 0.

A state s of A is said to be faithful, if s(x) = 0 implies x = 0.

If A is a Riesz MV-algebra, a (faithful) state of A is a (faithful) state of its
MV-algebraic reduct [10].

Definition 4.2 ([17]). A state of a unital `-group (G,≤, u) is a map σ from
G to R which is additive (i.e., for all x, y, σ(x + y) = σ(x) + σ(y)), monotonic
(i.e., x ≥ 0 implies σ(x) ≥ 0) and normalized (i.e., σ(u) = 1).

A state σ on a unital `-group is said to be faithful if for all x > 0, σ(x) > 0.

A (faithful) state of a unital Riesz space (V,≤, u) is a (faithful) state of its
unital `-group reduct. From [10, Lemma 11], it is clear that every state of a
unital Riesz space (V,≤, u) is a linear functional, that is, for every z ∈ V and
every α ∈ R, σ(αz) = ασ(z).

The following result has been proved in [12, Theorem 3.2].

Lemma 4.3. Every state on a semisimple MV-algebra A has a unique exten-
sion to a state on (CH(A),≤,1), and hence to a state on Γ(CH(A),≤,1). Hence,
any state on a semisimple MV-algebra A has a unique extension to a state of
R(A).

The problem of extending a faithful state of an MV-algebra A to a Riesz MV-
algebra that contains A was studied in [25]. There, the author shows that every
faithful state s of A can be extended, in a unique way, to a faithful state of what
was called the Riesz completion of A (see [25, Theorem 4.2]). The following
theorem establishes a slightly stronger result with an alternative technique.

Theorem 4.4. Every faithful state of an MV-algebra A can be extended to a
unique faithful state of (VL(A),≤,1), and hence, to a unique faithful state on
R(A).

Proof. Let s be a faithful state of A, and let σ be its unique extension to the
(unique up to isomorphism) unital `-group (G,≤, u) such that A = Γ(G,≤, u)
(cf. [30, Theorem 2.4]). Then σ is a faithful state on (G,≤, u), because every
positive element g ∈ G is the sum of elements ai of A, g =

∑n
i=1 ai (see [6, §7]
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for details), and σ(g) =
∑n
i=1 s(ai) > 0. Let H be as in (3). Then σ has a

unique extension σ′ to H, defined by σ′( g
2n ) = σ(g)

2n . Moreover, by Lemma 4.3,
s has a unique extension to (CH(A),≤,1) and hence, a unique extension σ′′ to a
state on (VL(A),≤,1).

We conclude by proving that σ′′ is faithful. Let z ∈ V L(A), z > 0. By

the very definition of (VL(A),≤,1) and since Â is an algebra of [0, 1]-valued
continuous functions, z is a continuous function on the compact space H(A),
whence it admits a maximum point v0. Let M = z(v0) > 0. Now let, by Lemma
3.9, z− = g

2n (with g ∈ G) be such that for every valuation v, z−(v) ≤ z(v) and

z(v) − z−(v) < M
2 . After replacing g by g ∨ 0, we may assume without loss of

generality that z− = g
2n ≥ 0. Moreover the conditions z(v0)− z−(v0) < M

2 and
z(v0) = M imply z− > 0 and g > 0. Since σ is faithful, then σ(g) > 0 and

σ′(z−) = σ(g)
2n > 0. Finally, σ′′(z) ≥ σ′( g

2n ) > 0, whence σ′′ is faithful. a

§5. Strictly coherent maps. We are now in a position to address the main
question of this paper, namely the investigation of strict coherence on many-
valued events. In what follows, we will say that a [0, 1]-valued map Φ defined on
a semisimple MV-algebra A is (strictly) coherent, if for every finite subset A′ of
A, the book obtained by restricting Φ to A′ is (strictly) coherent according to
Definition 2.2.

We begin by extending to the general case of MV-algebras a result [31, Theo-
rem 5.6] which was proved in the framework of free MV-algebras over arbitrary
sets of generators.

Lemma 5.1. Let A be an MV-algebra and let Φ be a [0, 1]-valued map defined
on A. Then Φ is coherent iff it is a state.

Proof. The right-to-left direction is trivial. Indeed, if Φ is a state, its re-
striction to any finite subset of A extends to a state, namely to Φ. Thus Φ is
coherent from [23, Theorem 3.2]

In order to prove the left-to-right direction, suppose Φ is not a state. Then
either Φ(1) < 1 or there are x, y such that x�y = 0 and Φ(x⊕y) 6= Φ(x)+Φ(y).
In the former case, betting 1 on the certain event clearly causes a sure loss for the
bookmaker. In the latter case, we need to consider the two possible inequalities.
If Φ(x⊕ y) < Φ(x) + Φ(y), we can cause a sure loss to the bookmaker by betting
1 on x⊕ y and −1 on both x and y. Finally, if Φ(x⊕ y) > Φ(x) + Φ(y), a sure
loss to the bookmaker is caused by betting −1 on x⊕ y and 1 on both x and y.
Thus, Φ is not coherent. a
We can now characterise strictly coherent maps.

Theorem 5.2. Let A be a semisimple MV-algebra and Φ a [0, 1]-valued map
defined on A. Then Φ is strictly coherent iff it is a faithful state.

Proof. (Left-to-right). By contraposition, let us suppose that Φ is not a
faithful state. By Lemma 5.1 it suffices to assume it is not faithful, i.e. Φ(x) = 0
for some x > 0. Since A is semisimple, by Proposition 3.4 (iii), there exists
v ∈ H(A) such that v(x) > 0. Hence, a bet of 1 on x shows that Φ is not strictly
coherent.
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(Right-to-left). Suppose that Φ is a faithful state of A and let Φ′ be its unique
extenstion to (VL(A),≤,1) as ensured by Theorem 4.4. Assume, by way of
contradiction, that Φ is not strictly coherent. Thus, there are a finite subset A′ =
{a1, . . . , an} of A and real numbers ρ1, . . . , ρn such that for every v ∈ H(A),∑n
i=1 ρi(αi − v(ai)) ≤ 0 and for some w ∈ H(A),

∑n
i=1 ρi(αi − w(ai)) < 0.

Now, let us define

z =

n∑
i=1

ρi(αi1− ai)

and let, for every v ∈ H(A), v+ be its unique extension in H(V) as ensured
by Lemma 3.7. Clearly z ∈ V L(A). In addition, the assumption that Φ is not
strictly coherent implies that for every v ∈ H(A), v+(z) ≤ 0 and there is at least
a w ∈ H(A) such that w+(z) < 0. So z < 0, hence −z > 0. However,

Φ′(−z) =

n∑
i=1

ρi(Φ(ai)− αi) = 0,

so Φ′ is not faithful: a contradiction. a
It is well known that any boolean algebra is a semisimple MV-algebra (this

holds as a consequence of Example 3.3(1) plus the fact that any boolean algebra
is semisimple [3]). Hence Theorem 5.2 yields immediately the following.

Corollary 5.3. A [0, 1]-valued map Φ on a boolean algebra A is strictly co-
herent iff it is a Carnap-regular measure.

In other words, the restriction concerning the finiteness of the boolean algebra
of events assumed in the Shimony-Kemeny characterisation can be dispensed
with. This addresses the first problem raised in Remark 2.4.

§6. Strictly coherent books. The main result of the previous section nat-
urally prompts the question as to whether an extension result à la de Finetti
(see Theorem 2.1 above) can be obtained for strict coherence. As a consequence
of seminal results by Mundici [30, 3.2], Kelley [20] and Gaifman [16], an MV-
algebra A may not have a faithful state. This implies that our desired result
cannot be formulated, in general, as an equivalence between strict coherence
and extensibility to a faithful state of A. The main result of this section shows
that such a characterisation can be obtained for the class of finite-dimensional
MV-algebras. Corollary 6.5 shows that this restriction does not prevent us from
encompassing the most general case of boolean algebras.

Our argument is geometric and draws heavily on the following presumably
known Lemma, which is proved in the Appendix for the sake of clarity. Readers
who are not familiar with elementary convex geometry may wish to consult
[11, 27]. For C a closed convex subset of Rn, we will denote by ext(C) the set
of its extremal points, by relint(C) its relative interior and by ∂r(C) its relative
boundary. In this notation a polytope C is a closed and convex subset of Rn such
that ext(C) is finite.

Lemma 6.1. Let C ⊆ Rn be a polytope. Then the following hold:



STRICT COHERENCE ON MANY-VALUED EVENTS 11

(1) If ext(C) ⊆ {x1, . . . , xt}, then

relint(C) =

{
t∑
i=1

λixi | λi > 0,

t∑
i=1

λi = 1

}
.

(2) Let x ∈ C. Then x /∈ relint(C) iff there is a p ∈ Rn properly supporting C
at x, i.e., p · x− p · z ≤ 0 for all z ∈ C and p · x− p · y < 0 for some y ∈ C.

(3) Let x ∈ ∂r(C). Then there is a r ∈ Rn such that r · z − r · x ≤ 0 for all
z ∈ C and r · x− r · y < 0 for all y ∈ relint(C).

Proof. See Appendix. a
Let H([0, 1]k) denote, as usual, the set of homomorphisms from [0, 1]k to [0, 1].

In the terminology of [7], the MV-algebra [0, 1]k is weakly finite and hence [7,
Lemma 2.7] shows that H([0, 1]k) is finite and its elements are the k projections
πi : [0, 1]k → [0, 1].

Fix a1, . . . , an ∈ [0, 1]k and identify a book Φ : ai 7→ αi with the n-tuple
(α1, . . . , αn) ∈ [0, 1]n. Let us denote

C(a1, . . . , an) = {(α1, . . . , αn) | Φ : ai 7→ αi is coherent}
Q(a1, . . . , an) = {(πi(a1), . . . , πi(an)) | πi ∈ H([0, 1]k)}.

It is well-known that C(a1, . . . , an) is a polytope (see for instance [23, Propo-
sition 2.4] and [35, Theorem 2]). In addition, Q(a1, . . . , an) is finite and we will
denote its elements by q1, . . . , qk.

Furthermore, [30, Theorem 2.5] and the fact that every πi ∈ H([0, 1]k) is a
state of [0, 1]k, show the following inclusions:

ext(C(a1, . . . , an)) ⊆ Q(a1, . . . , an) ⊆ C(a1, . . . , an)(4)

Lemma 6.2. Let a1, . . . , an ∈ [0, 1]k and let Φ ∈ C(a1, . . . , an). Then the
following are equivalent:

(1) Φ is strictly coherent,
(2) Φ ∈ relint(C(a1, . . . , an)).

Proof. (1) ⇒ (2). Suppose Φ /∈ relint(C(a1, . . . , an)), and let us prove that
Φ is not strictly coherent. Since Φ is coherent and Φ /∈ relint(C(a1, . . . , an)),
then Φ ∈ ∂rC(a1, . . . , an), and by Lemma 6.1 (3), there exists a ρ ∈ Rn such
that, for all γ ∈ C(a1, . . . , an), ρ ·Φ ≤ ρ · γ and for all σ ∈ relint(C(a1, . . . , an)),
ρ · Φ < ρ · σ.

Since C(a1, . . . , an) is closed and convex, by the Krein-Milman theorem for
finite dimensional spaces [17, Theorem 5.17] and (4), its elements are convex
combinations of the elements q1, . . . , qk of Q(a1, . . . , an). Take λ1, . . . , λk > 0

such that
∑k
i=1 λi = 1 and let

b =

k∑
i=1

λiqi.

Then, Lemma 6.1 (1) implies that b ∈ relint(C(a1, . . . , an)) and hence, by Lemma
6.1 (3), there is ρ = (ρ1, . . . , ρn) ∈ Rn such that ρ · Φ ≤ ρ · qi and ρ · Φ < ρ · b.
It follows that for at least a qi0 ∈ Q(a1, . . . , an) one has ρ · Φ < ρ · qi0 . For
otherwise, if ρ · Φ = ρ · qi for every qi, we would have ρ · Φ = ρ · b. Thus,
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n∑
j=1

ρj(αj − πi(aj)) ≤ 0 and

n∑
j=1

ρj(αj − πi0(aj)) < 0.

Hence, Φ is not strictly coherent.
(2) ⇒ (1). Suppose Φ = (α1, . . . , αn) is not strictly coherent. Then, there

exist ρ = (ρ1, . . . , ρn) ∈ Rn such that for every πi ∈ H([0, 1]k),

n∑
j=1

ρj(αj − πi(aj)) = ρ · Φ− ρ · qi ≤ 0,(5)

and for some πh ∈ H([0, 1]k),

n∑
j=1

ρj(αj − πh(aj)) = ρ · Φ− ρ · qh < 0.(6)

Again by the Krein-Milman theorem for the finite dimensional case and (4),

every element of C(a1, . . . , an) has the form x =
∑k
i=1 λiqi for some non-negative

real numbers λ1, . . . , λk such that
∑k
i=1 λi = 1. From (5-6), ρ · Φ − ρ · x ≤ 0

for all x ∈ C(a1, . . . , an) and ρ · Φ − ρ · y < 0 for some y ∈ C(a1, . . . , an).
Therefore, ρ properly supports C(a1, . . . , an) at Φ and by Lemma 6.1 (2), Φ /∈
relint(C(a1, . . . , an)). a

Remark 6.3. As an immediate consequence of [32, Theorem 10.5], the set of
states of [0, 1]k is affinely isomorphic to the simplex, ∆k = {(λ1, . . . , λk) ∈ Rk |∑k
i=1 λi = 1} via the map λ 7→ sλ which associates, to every λ = (λ1, . . . , λk) ∈

∆k, the state sλ defined as follows: for every a ∈ [0, 1]k,

sλ(a) =

k∑
i=1

λiπi(a)(7)

(cf. [14, Corollary 4.1.2]).
Now, the restriction of the above map λ 7→ sλ to the relative interior of ∆k

determines an affine isomorphism between relint(∆k) and the set of faithful states
of [0, 1]k. As a matter of fact, λ ∈ relint(∆k) iff λi > 0 for every i = 1, . . . , k
(Lemma 6.1 (1)) whence, if a ∈ [0, 1]k is strictly positive, a straightforward
computation shows that (7) implies sλ(a) > 0.

Theorem 6.4. Let a1, . . . , an ∈ [0, 1]k and let Φ : ai 7→ αi, i = 1, . . . , n be a
book. Then Φ is strictly coherent iff Φ extends to a faithful state of [0, 1]k.

Proof. (Right-to-left). If s is a faithful state that extends Φ, then Φ is strictly
coherent by Theorem 5.2.

(Left-to-right). By Lemma 6.2, Φ is strictly coherent iff Φ ∈ relint(C(a1, . . . , an))

iff, by Lemma 6.1 (1), there is λ = (λ1, . . . , λk) ∈ (0, 1]k such that
∑k
i=1 λi = 1

and Φ =
∑k
i=1 λiqi. Thus, the state sλ defined as in (7) is faithful (Remark 6.3)

and

(sλ(a1), . . . , sλ(an)) =

n∑
i=1

λiqi = Φ.

It follows that Φ is extended by a faithful state, and the claim is settled. a
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We conclude this section by presenting a remarkable corollary of Theorem 6.4,
which depends on the observation that boolean algebras form a locally finite
variety (see for instance [1]).

Recall that by the above-mentioned results of Kelley and Gaifman, Carnap-
regular measures may not exist for boolean algebras. As a consequence, the
following is the most general de Finetti-like result for strict coherence on boolean
events.

Corollary 6.5. Let A be any boolean algebra, let {a1, . . . , an} be a finite
subset of A and let A[a1, . . . , an] be the subalgebra of A generated by a1, . . . , an.
Then a book Φ on {a1, . . . , an} is strictly coherent iff it extends to a Carnap-
regular measure of A[a1, . . . , an].

§7. Conclusion. Our last corollary adds to a series of recent results which
clearly give MV-algebras a twofold prominent role in the foundations of prob-
ability. First the MV-algebraic setting allows naturally for greater generality
compared to its boolean counterpart [35, 31, 23]. Second MV-algebras provide
a rich framework capable of shedding new light on standard probability, i.e. on
boolean valued events. As pointed out in [33] the Kroupa-Panti theorem paved
the way to this, and recent results obtained by the authors in [15] point out
the wide applicability of the method. Given that generality and applicability
usually pull in opposite directions, this twofold role of MV-algebras is all the
more remarkable.

Theorem 5.2 immediately implies that if a book on a semisimple MV-algebra
is extensible to a faithful state then it is strictly coherent. Whether the converse
holds as well remains an open question which is currently under investigation.
The motivation for pursuing this goal is the fact that, in the setting of our paper,
it would yield the most general characterisation of strict coherence.

As a consequence of results of [36, 2], NP constitutes the lower bound on the
computational complexity of deciding strict coherence. Ongoing research by the
authors is investigating the upper bound for this problem.

Finally, further work will also tell us whether the characterisation of strict co-
herence for many-valued events provided in this paper has an interesting counter-
part when probabilities are extended to the hyperreals along the lines of [28, 19].
As implied by [28, Theorem 4.2] this setting is immune to the limitations arising
from the potential lack, in general, of faithful states of MV-algebras.

Acknowledgments. This paper has benefitted enormously from the unre-
strained criticisms of an anonymous Reviewer to whom we are particularly grate-
ful.
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Appendix A. Proof of Lemma 6.1. For the sake of keeping the paper
self-contained we provide a proof of Lemma 6.1.

Proof. (1). If ext(C) = {x1, . . . , xt} the claim is known to be true by [27,
Theorem 6]. Thus, assume ext(C) ⊂ {x1, . . . , xt} and suppose, without loss of
generality, that s < t and ext(C) = {x1, . . . , xs} so that, by [27, Theorem 6] for
every z ∈ relint(C) there are λ1, . . . , λs ∈ (0, 1] such that z =

∑s
i=1 λixi. We

prove by induction on m that for all s ≤ m ≤ t, there are λm1 , . . . , λ
m
m ∈ (0, 1]

with
∑m
i=1 λ

m
i = 1 such that z =

∑m
i=1 λ

m
i xi. The claim clearly holds for m = s.

Suppose, by the induction hypothesis that the claim holds for some m with
s ≤ m < t, and let us prove that it holds for m+ 1. Then z =

∑m
i=1 λ

m
i xi with

λmi > 0 and
∑m
i=1 λ

m
i = 1. Moreover, since xm+1 ∈ C, it can be written as

xm+1 =
∑s
i=1 τixi where τi ≥ 0 and

∑s
i=1 τi = 1. Let M > 0 be such that for

i = 1, . . . , s, τi
M < λi. Define

λm+1
i =

 λi − τi
M if i ≤ s

λi if s < i ≤ m
1
M if i = m+ 1.

Then
m+1∑
i=1

λm+1
i xi =

m∑
i=1

λixi −
s∑
i=1

τi
M
xi +

xm+1

M
= z − xm+1

M
+
xm+1

M
= z.

Moreover λm+1
i > 0 for all i ≤ m+ 1 and

m+1∑
i=1

λm+1
i =

m∑
i=1

λi −
s∑
i=1

τi
M

+
1

M
= 1.

(2). This is the usual Supporting Hyperplane Theorem, see [27, Theorem 14].

(3). Let x ∈ ∂r(C). By part (2), there is a r ∈ Rn that properly supports C
at x, that is, r · z ≤ r · x for all z ∈ C. In particular, there is a t ∈ C such
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that r · t < r · x. Let y ∈ relint(C) and assume by way of contradiction, that
r · y = r · x. Since y ∈ relint(C), y + ε(y − t) ∈ C for a sufficiently small ε > 0.
Then,

r · (y + ε(y − t)) = r · y + ε(r · y − r · t)
= r · x+ ε(r · x− r · t)
= r · x+ εr · (x− t)
> r · x.

and a contradiction is reached since (y + ε(y − t)) ∈ C, but r · z ≤ r · x for all
z ∈ C. a
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