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Abstract: In recent years the role of microorganisms inhabiting rice rhizosphere in promoting
arsenic contamination has emerged. However, little is known concerning the species
and metabolic properties involved in this phenomenon. In this study, the influence of
water management on the rhizosphere microbiota in relation to arsenic dissolution in
soil solution was tested.
Rice plants were cultivated in macrocosms under different water regimes: continuous
flooding, continuous flooding with a 2 weeks-period drainage before flowering and dry
soil watered every 10 days. The active bacterial communities in rhizosphere soil and in
rhizoplane were characterized by 16S rRNA pyrosequencing. An in-depth analysis of
microbial taxa with direct or indirect effects on arsenic speciation was performed and
related contribution was evaluated.
Continuous flooding promoted high diversity in the rhizosphere, with the plant strongly
determining species richness and evenness. On the contrary, under watering the
communities were uniform, with little differences between rhizosphere soil and
rhizoplane. Arsenic-releasing and arsenite-methylating bacteria were selected by
continuous flooding, where they represented 8 % of the total. On the contrary, bacteria
decreasing arsenic solubility were more abundant under watering, with relative
abundance of 10 %. These values reflected arsenic concentrations in soil solution,
respectively 135 µg L-1 and negligible in continuous flooding and under watering.
When short-term drainage was applied before flowering, intermediate conditions were
achieved.
This evidence strongly indicates an active role of the rhizosphere microbiota in driving
arsenic biogeochemistry in rice paddies, influenced by water management, explaining
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Abstract 36 

 37 

In recent years, the role of microorganisms inhabiting rice rhizosphere in promoting arsenic 38 

contamination has emerged. However, little is known concerning the species and metabolic 39 

properties involved in this phenomenon. In this study, the influence of water management on the 40 

rhizosphere microbiota in relation to arsenic dissolution in soil solution was tested. 41 

Rice plants were cultivated in macrocosms under different water regimes: continuous flooding, 42 

continuous flooding with a 2 weeks-period drainage before flowering and dry soil watered every 10 43 

days. The active bacterial communities in rhizosphere soil and in rhizoplane were characterized by 44 

16S rRNA pyrosequencing. An in-depth analysis of microbial taxa with direct or indirect effects on 45 

arsenic speciation was performed and related contribution was evaluated. 46 

Continuous flooding promoted high diversity in the rhizosphere, with the plant strongly determining 47 

species richness and evenness. On the contrary, under watering the communities were uniform, with 48 

little differences between rhizosphere soil and rhizoplane. Arsenic-releasing and arsenite-49 

methylating bacteria were selected by continuous flooding, where they represented 8 % of the total. 50 

On the contrary, bacteria decreasing arsenic solubility were more abundant under watering, with 51 

relative abundance of 10 %. These values reflected arsenic concentrations in soil solution, 52 

respectively 135 µg L-1 and negligible in continuous flooding and under watering. When short-term 53 

drainage was applied before flowering, intermediate conditions were achieved. 54 

This evidence strongly indicates an active role of the rhizosphere microbiota in driving arsenic 55 

biogeochemistry in rice paddies, influenced by water management, explaining amounts and 56 

speciation of arsenic often found in rice grains. 57 

 58 

 59 

 60 

 61 
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Introduction 71 

 72 

Arsenic contamination of groundwater resources and soils represents an issue in many areas of the 73 

world (Singh et al. 2015; Heikens 2006). However, arsenic (As) speciation and the physicochemical 74 

characteristics of the environment determine its bioavailability more than its concentrations. In rice 75 

fields the prolonged flooding usually adopted for cultivation leads to As release from soil minerals 76 

with the consequent accumulation of the metalloid in the grains (Zhu et al. 2014; Sun et al. 2014; 77 

Ma et al. 2014). Recent studies revealed that, on average, As content in rice from different countries 78 

exceeds the law limits established by the Commission regulation (EU) 2015/1006 (Ma et al. 2014; 79 

EFSA 2009, 2014). 80 

The two inorganic As species mainly present in rice field soil, arsenate [As(V)] and arsenite 81 

[As(III)], have different biogeochemical properties. Nevertheless, both As species show high 82 

affinity for iron oxides/hydroxides (Meharg 2012; Martin et al. 2014).  83 

Continuous flooding in paddy soils leads to strongly reduced conditions, with the consequent rapid 84 

dissolution of these minerals and the release of As into the pore water (Zhu et al. 2014; Meharg 85 

2012). Furthermore, As(V) is reduced to As(III) abiotically by sulfide, ferrous iron [Fe(II)], H2 or 86 

reduced organic acids, or by As(V)-reducing bacteria (Cavalca et al. 2013; Meharg et al. 2012). 87 

Several studies reported that As(III) in flooded rice fields is the predominant As species (Zhu et al. 88 

2014; Takahashi et al. 2004). At very low redox potentials, where microbial sulfate reduction is 89 

favored, sulfide produced by this activity can co-precipitate with As(III) forming a variety of 90 

minerals, such as orpiment (As2S3) (Zhu et al. 2014; Kocar and Fendorf 2009). If soil is aerated, for 91 

example after a drainage period, As(III) can be oxidized to As(V) by oxygen, manganese oxides 92 

and H2O2 as well as by microbial As(III) oxidation (Meharg 2012). 93 

The genetic properties and the encoded enzymatic systems that allow several groups of 94 

microorganisms to resist to high As concentrations or to use As for metabolic purposes have been 95 

recently reviewed by various authors (Andres et al. 2016; Zhu et al. 2014; Yamamura et al. 2014; 96 

Cavalca et al. 2013; Zheng et al. 2012; Slyemi and Bonnefoy 2012). Interestingly, in rice paddy 97 

soils with low As concentration a high diversity of microbial genes for As processing has been 98 

detected (Xiao et al. 2016), indicating the potential role of native communities on As 99 

transformations beyond abiotic factors. Among these processes, the microbial methylation of 100 

As(III) in rice rhizosphere is receiving great attention in the last few years. Recent studies indicated 101 

that rice roots microbiome is entirely responsible for the production of methylated As present in rice 102 

grains, which accounts for 50 % of total As content (Lomax et al. 2012; Arao et al. 2011; Zhao et al. 103 

2013). Furthermore, continuous flooding of rice fields has been demonstrated to increase the 104 

concentration of methylated As in rice grains (Ma et al. 2014; Li et al. 2009). 105 
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 4 

In addition to direct As transformations, several metabolic activities of microorganisms could 106 

indirectly influence As speciation and bioavailability in the environment. Given the above 107 

mentioned affinity of As for iron and sulfide minerals, microorganisms involved in iron and sulfur 108 

cycles could promote either the release or the sequestration of As from the pore water of rice 109 

paddies. Dissimilatory iron-reducing bacteria (DFeRB) use ferric iron [Fe(III)] as electron acceptor 110 

for anaerobic respiration, contributing to the release of As from iron minerals (Lee 2013). 111 

Conversely, iron-oxidizing bacteria (FeOB) are chemolithoautotrophic bacteria that couple the 112 

oxidation of Fe(II) to the reduction of a variety of electron acceptors (Emerson 2012; Hedrich et al. 113 

2011; Emerson et al. 2010). With their activity these bacteria promote the co-precipitation of As 114 

with iron minerals. As already stated, dissimilatory sulfate-reducing bacteria (DSRB) are strict 115 

anaerobes that reduce sulfate (SO4
2-) to sulfide (HS-) for their energy metabolism (Rabus et al. 116 

2015; Ramel et al. 2015; Pester et al. 2012; Pereira et al. 2011), potentially contributing to the 117 

formation of As2S3 in anoxic compartments of rice fields soils. On the other hand, a variety of 118 

sulfur-oxidizing bacteria (SOB) can oxidize HS- to SO3
2-, and/or the latter to SO4

2-, leading to the 119 

release of As into the pore water in rice paddies (Stubner 1998; Friedrich et al. 2005; Hamilton et al. 120 

2015; Dahl et al. 2008). 121 

The recent instructions established by the Commission regulation (EU) 2015/1006 concerning rice 122 

consumption in relation to As exposure have arisen great concern in the most important European 123 

rice producing countries like Italy. Although the scientific community has often focused the 124 

attention on As contamination of rice, especially in Asia, very little is known about the role of 125 

different rhizospheric microbial populations and the microbial metabolic processes that drive As 126 

biogeochemistry. In this study, the bacterial community inhabiting the rhizosphere of rice plants 127 

cultivated with different water regimes in an unpolluted soil has been investigated in order to 128 

identify specific populations responsible for As contamination of rice grains. 129 

  130 

Materials and methods 131 

 132 

Experimental setup 133 

Nine rice paddy macrocosms containing 10-15 rice plants (Oryza sativa subsp. japonica, variety 134 

Loto) each were set up in tanks filled with rice field soil (sandy-loam texture; pH 6.0; 11.4 mg kg-1 135 

of total As content and 33.1 g kg-1 of aqua regia extractable Fe). Three replicates for each 136 

macrocosm were managed either under continuous flooding (CF), under continuous flooding with a 137 

2-weeks period of drainage before flowering (CF-D) or in dry soil with watering nearly every 7-10 138 

days, or when the soil was excessively dry, always taking care to maintain aerobic conditions in soil 139 

all over the cropping season (D) (Fig. 1). After 12 days from germination CF and CF-D 140 
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 5 

macrocosms were flooded and D were watered. CF-D treatments were drained 47 days after 141 

germination for 14 days, followed by re-flooding. Then, they were re-flooded until sampling. All 142 

samplings were performed at the flowering stage. At this time point, the CF macrocosms were still 143 

flooded, whereas the CF-D and the D macrocosms were re-flooded the previous day. Before re-144 

flooding, CF-D macrocosms underwent the 14-day period of drainage. 145 

 146 

Chemical analyses of pore water 147 

Three replicates of pore water samples were obtained from each macrocosm using Rhizon soil 148 

moisture samplers (Rhizosphere®, Rhizosphere Research Products, Wageningen, NL). In D 149 

macrocosms, pore water was sampled the day after watering, in order to allow the restoration of 150 

soil-solution equilibria and, at the same time, to have the possibility to obtain a solution sample. 151 

The Eh was measured in the soil right before sampling (portable pH/mV Measuring Instrument 152 

pH197i, WTW, Weinheim, Germany; equipped with a WTW SenTix® ORP electrode). The 153 

concentration of total As in the pore water samples was quantified with HG-AAS (Perkin-Elmer 154 

4100 equipped with a FIAS 400 hydride generator; Perkin-Elmer Inc., Waltham, Massachusetts). 155 

For As speciation in pore water and in rice grain, refer to the treatments labelled as CF, 2IED and 156 

AR in Zecchin et al. (2017), corresponding to CF, CF-D and D respectively. Fe(II) was determined 157 

with the orthophenantroline method (Loeppert and Inskeep 1996); N-nitrate, P-phosphate and S-158 

sulfate were determined with ion chromatography [Dionex DX-500 system, AS9 analytical column, 159 

with AG9 pre-column (Dionex, Sunnyvale, CA, USA)].   160 

 161 

 162 

Rhizosphere soil and rhizoplane separation 163 

Three plants from each macrocosm replicate, for a total of nine plants for each water management, 164 

were sampled after 60 days from germination, at flowering stage. This stage was chosen because 165 

previous studies indicated that, in rice, As is mainly translocated during flowering (Zheng et al. 166 

2011). 167 

Immediately after sampling, samples were pooled in one composite sample for each treatment, 168 

according to Somenahally et al. (2011) and rhizosphere soil and rhizoplane were collected 169 

according to Cavalca et al. (2010). Rhizosphere soil was defined as the soil removed from roots 170 

after shaking (180 rpm) in tetrasodium pyrophosphate buffer (0.2%, pH 8.0) for 1 h at 30 °C. The 171 

rhizoplane fraction was the biomass suspension resulting after 3 cycles of sonication (30 s each) of 172 

roots, previously washed thoroughly with sterile distilled water and submerged in 1:2 ratio (w/v) in 173 

1x phosphate buffer saline (PBS) solution. Immediately after separation, samples were stored at -80 174 

°C. An aliquot of the original soil used for the experiment was also sampled as the time zero control 175 
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 6 

(T0). 176 

 177 

RNA isolation 178 

Total RNA was isolated using the RNA PowerSoil® Total RNA Isolation Kit (MO BIO, Carlsbad, 179 

USA), according to manufacturer’s instructions. To remove residual genomic DNA from isolated 180 

RNA, 1 U of DNaseI (Thermo Fisher Scientific, Waltham, Massachusetts, USA) was added to 1 µg 181 

of RNA and each reaction was incubated according to manufacturer’s instructions. The purity of 182 

RNA was tested both via agarose gel electrophoresis and with PCR amplification of bacterial 16S 183 

rRNA genes (see details in the following sub section). The purified RNA was reverse transcribed 184 

with iScriptTM cDNA Synthesis Kit (BIO-RAD, Hercules, California, USA) according to 185 

manufacturer’s instructions. 186 

 187 

Barcoded pyrosequencing of 16S rRNA 188 

Pyrosequencing of 16S rRNA was performed from reverse-transcribed RNA isolated from the T0 189 

soil and from rhizosphere soil and rhizoplane sampled during the reproductive phase. Bacterial 16S 190 

rRNA was amplified with the universal bacterial primers 27F (5’ - GAG AGT TTG ATC CTG 191 

GCT CAG - 3’) and 1495R (5’ - CTA CGG CTA CCT TGT TAC GA - 3’) from each sample in 192 

triplicate in a 25 µL reaction volume containing 10 ng of cDNA, 0.3 µM primers and 1x Taq PCR 193 

Mastermix kit (QIAGEN, Hilden, Germany). The thermal incubation included a first denaturation at 194 

95 °C for 5 min followed by 35 cycles of denaturation at 95 °C for 1 min, annealing at 55 °C for 40 195 

sec and elongation at 72 °C for 1 min and 40 sec; the final elongation was performed at 72 °C for 10 196 

min. Replicated amplicons were pooled and purified with MinElute PCR Purification kit 197 

(QIAGEN) to a final concentration of 20 ng µL-1. Pyrosequencing was performed at Molecular 198 

Research LP (MRDNA, Shallowater, Texas, USA) by bacterial Tag-Encoded FLX Amplicon 199 

Pyrosequencing (bTEFAP), using the primer 27F. The sequences were processed and analyzed with 200 

the QIIME tools (Caporaso et al. 2010a). Sequences with less than 200 bases of with barcodes or 201 

primer biases, homopolymers and chimeras were removed from the analysis. According to the 202 

quality scores, all sequences were trimmed at 400 bp. Operational Taxonomic Units (OTUs) were 203 

defined with a 97 % similarity cut-off with the uclust method (Edgar 2010) using the last SILVA 204 

SSU Ref dataset (Quast et al. 2013) as reference database. Representative sequences for each OTU 205 

were aligned using the PyNAST method (Caporaso et al. 2010b). After taxonomic assignment, 206 

sequences belonging to chloroplasts were removed and OTU tables were generated for each sample. 207 

Phylogenetic analysis was performed using the FastTree method (Price et al. 2009). To measure the 208 

bacterial diversity within the samples, the OTU tables were rarefied and different indices of alpha 209 

diversity were calculated assuming a sample size of 2000. The OTU richness and the diversity 210 
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 7 

within each sample was evaluated with different alpha diversity indices (observed species, Fisher’s 211 

alpha, ACE, Simpson evenness). To compare the bacterial diversity between the samples, principal 212 

coordinates analysis (PCoA) of the rarefied OTU tables was performed calculating unweighted and 213 

weighted UniFrac distances (Hamady and Knight 2009). The significance of the differences 214 

emerged with the beta diversity was tested with the multi-response permutation procedure (MRPP; 215 

Mielke et al. 1976). To distinguish between core and rare taxa, the rank abundance was plotted. 216 

Statistically significant differences of single OTUs among different water managements were 217 

evaluated with one-way analysis of variance (ANOVA) at p < 0.05 with Bonferroni's correction. 218 

 219 

Predictive microbial arsenic, iron and sulfur processing profiling 220 

In order to point out the bacterial populations involved in arsenic, iron and sulfur cycles, a reference 221 

database was specifically constructed on the bases of information available in the literature on 222 

bacterial strains with experimentally-demonstrated metabolisms related to these elements. For taxa 223 

included in the database, the presence of genes related to arsenic, iron and sulfur metabolisms was 224 

checked in the NCBI database. Genera were selected for their documented capacity to reduce As(V) 225 

as an electron acceptor [dissimilatory As(V)-reducing bacteria, DAsRB], to resist to arsenic with 226 

different mechanisms (arsenic resistant bacteria, AsRB), to oxidize As(III) [As(III)-oxidizing 227 

bacteria, AsOB] or to methylate As(III) [As(III)-methylating bacteria, AsMB]. The metabolisms 228 

that indirectly influence arsenic dynamics considered in this analysis were dissimilatory Fe(III)-229 

reduction (DFeRB), Fe(II)-oxidation (FeOB), dissimilatory SO4
2- reduction (DSRB) and sulfur-230 

oxidation (SOB). 231 

 232 

Accession numbers 233 

All the 16S rRNA sequences retrieved in this study are deposited in the NCBI Bioproject 234 

(https://www.ncbi.nlm.nih.gov/bioproject/) PRJNA353766. 235 

 236 

Results 237 

 238 

Effect of agronomic management on pore water chemistry and rice grain contamination 239 

At the flowering stage, relatively high concentrations of As and Fe(II) were dissolved in the pore 240 

water in the CF macrocosms (Table 1), indicating reduced conditions induced by continuous 241 

flooding. The prevalent As form was As(V) comprising 88% of the total As in pore water. Organic 242 

arsenic forms were not detected (Zecchin et al. 2017). In CF-D and D both dissolved As and Fe(II) 243 

were almost negligible at the considered sampling date, proving that the recent drainage of the CF-244 

D macrocosms had been effective in restoring an oxidative environment in soil and that the 245 
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watering of the D macrocosms the day before sampling did not induce any appreciable reductive 246 

dissolution of Fe and As. In the CF macrocosms, the average redox potential measured in the three 247 

replicates was below -200 mV, whereas in the CF-D and D macrocosms the values were above zero 248 

(data not shown). Nitrate and sulfate, which are reducible species, showed different patterns, being 249 

more abundant in the aerobic rice test D and in the just drained macrocosm CF-D, compared with 250 

the flooded ones. The concentration of dissolved phosphate, as expected, remained comparable in 251 

the different treatments. Total arsenic content in rice grains varied significantly according to the 252 

water regime: 237 ± 38 Pg kg-1 in CF, 68 ± 4 Pg kg-1 in CF-D and 5 ± 3 Pg kg-1 in D. Methylated 253 

As forms represented 46% of total As in CF, and 18% in CF-D and they were negligible in D 254 

(Zecchin et al. 2017). 255 

 256 

Ecology of active microbiota in rice rhizosphere 257 

Sequencing of 16S rRNA produced 230,791 reads. The average length of reads with quality score 258 

above 25 was 408 bp, therefore the sequence region beyond the nucleotide position 400 was 259 

removed in all reads. The total number of sequences that passed the quality control for each sample 260 

and the related number of OTUs are listed in Table 2.  261 

Different indexes for alpha diversity (ACE, Simpson evenness, observed species) were calculated 262 

and compared (Fig.1). The expected number of species in all rhizosphere soil samples was similar 263 

to the T0 soil. The rhizoplane samples of CF and CF-D plants showed the highest species richness 264 

(Fig. 2a), whereas the rhizoplane of D was the sample with the lowest species richness, evidencing 265 

a plant effect induced by flooding. Simpson’s evenness in all samples was below 0.5, indicating the 266 

predominance of specific groups among the whole community. In the rhizoplane of CF plants, 267 

species were more evenly distributed with respect to all the other samples. In the rhizoplane of CF-268 

D plants, although species richness was similar to CF plants, evenness was lower. The bacterial 269 

community of the rhizosphere soil of CF plants was the most heterogeneous. The rarefaction 270 

analysis performed on the observed species confirmed the ACE trend, with the diversity within the 271 

samples decreasing as follows: CF rhizoplane < CF-D rhizoplane < CF rhizosphere soil < T0 < D 272 

rhizosphere soil < CF-D rhizosphere soil < D rhizoplane (Fig. 2b). 273 

 274 

Driving forces of microbial community differentiation 275 

According to the PCoA analysis, the bacterial communities developed in both compartments of D 276 

were similar to each other, clustering in groups III and V according to unweighted and weighted 277 

UniFrac, respectively (Fig. 3a and 3d). On the contrary, the CF and CF-D treatments led to a 278 

significant differentiation between rhizosphere soil and the rhizoplane. Interestingly, the 279 

communities selected in CF and CF-D rhizoplanes were similar, clustering in groups I and IV 280 
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 9 

according to unweighted and weighted UniFrac, respectively (Fig. 3a and 3d). The CF rhizosphere 281 

soil community was similar to the T0 soil. In CF-D rhizosphere soil the phylogenetic composition 282 

of the community was similar to the community in T0 (Fig. 3a and 3d). However, when considering 283 

the relative abundances of the taxa, these samples were more similar to CF and CF-D rhizoplanes 284 

(Fig. 3d). The water regime and the compartment by themselves did not influence significantly the 285 

bacterial communities developed in the different samples (Fig. 3b, 3c, 3e and 3f, A: 0.08, 0.03, 0.26 286 

and 0.11, respectively). More likely, a combination of factors drove the differentiation of the 287 

communities, which was best reflected by groups IV, V and VI (A: 0.38, p < 0.001). 288 

 289 

Phylogenetic composition of the different communities 290 

In total 40193 OTUs at genus level were found in all samples. Two opposite trends were observed 291 

concerning the number of OTUs exclusively present after each treatment in rhizosphere soil and in 292 

the rhizoplane (Fig. 4). In rhizosphere soil, 25.8 %, 30.5 % and 30.9 % of the total number of OTUs 293 

were exclusively present in CF, CF-D and D, respectively (Fig. 4a). On the contrary, in rhizoplane 294 

they were 33.6 %, 30.6% and 22.6 %, respectively (Fig. 4b). In rhizosphere soil, CF-D shared 4.6 % 295 

of OTUs with D treatments, with respect to 3% with CF. In the rhizoplane, CF-D shared 7.2% of 296 

the OTUs with CF treatments, compared to 1.7% in common with D. 297 

A total of 33 phyla were detected in the samples. The number of phyla in the T0 soil was higher 298 

with respect to all rhizosphere compartments of rice cultivated with different water regimes (Table 299 

2). In both compartments the number of phyla decreased from CF to CF-D to D. On the basis of the 300 

rank abundance plot, taxa with relative abundance below 0.01 % were considered as part of the rare 301 

biosphere (Online Resource, Fig. S1a). According to this definition, the fraction of rare phyla was 302 

higher in the T0 soil, followed by both compartments of CF plants, both compartments of CF-D 303 

plants and both compartments of D plants (Online Resource, Fig. S1b).  304 

The percentage of sequences that could not be assigned to any known phylum ranged between 2.3 305 

% and 6.9 % (Fig. 5). In the T0 soil, the phyla Acidobacteria, Actinobacteria and Proteobacteria 306 

were the most abundant, accounting for 9.13%, 30.69% and 36.72% of the bacterial community 307 

respectively (Fig. 5a). In CF rhizosphere soil, the abundance of Proteobacteria decreased to 25.10 308 

%, with the concomitant increase of Acidobacteria and Actinobacteria, which accounted for 12.61 309 

% and 37.14 % of the total, respectively. In the rhizoplane under CF, Actinobacteria represented 310 

only 2.52 %, whereas Proteobacteria and Acidobacteria accounted for 54.43 % and 20.83 % 311 

respectively.  In CF rhizosphere soil Actinobacteria belonging to an uncultured genus of the order 312 

Gaiellales were significantly more abundant (p < 0.05) with respect to the other treatments, whereas 313 

in the rhizoplane the same microorganisms were more abundant in D (Fig. 5b, Online Resource, 314 

Table S3). The genera Marmoricola and Nocardioides also contributed with 3.8 % and 1.9 % 315 
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respectively. In CF rhizoplane Acidobacteria of the order DA023 and Candidatus 316 

Chloracidobacterium were represented by 7.81 % and 4.21 % of the sequencing library respectively 317 

(Fig. 5b). Bacteria belonging to the class Deltaproteobacteria were selected by CF, accounting for 318 

4.5 % and 6% of the total community in CF rhizosphere soil and rhizoplane (Fig. 5a). Iron-reducing 319 

Deltaproteobacteria belonging to the genera Anaeromyxobacter and Geobacter were the most 320 

contributors for this class in CF rhizosphere soil and rhizoplane respectively (Online Resource, 321 

Table S2). 322 

In the rhizosphere soil and in the rhizoplane under CF-D, the phylum Proteobacteria accounted 323 

respectively for 82.34 % and 68.10 % of all bacterial phyla (Fig. 5a). In CF-D rhizosphere soil, this 324 

phylum was the only one with abundance above 10 %, whereas in CF-D rhizoplane the phylum 325 

Acidobacteria contributed with 17.78 %. The classes Alphaproteobacteria and Betaproteobacteria 326 

were mainly responsible for the dominance of the phylum Proteobacteria in both compartments. In 327 

CF-D rhizosphere soil, members of the class Betaproteobacteria accounted for more than 45%, 328 

with the Comamonadaceae family accounting for 38% of the total bacterial community (Fig. 5b, 329 

Online Resource, Table S2). Within this family, Ramlibacter, Piscinibacter and other unknown 330 

genera represented 11 %, 3.3 % and 21 % of the whole community respectively. In CF-D 331 

rhizoplane, on the other hand, several members of the class Alphaproteobacteria made up almost 50 332 

% of the total community (Fig. 5a). Within these members, the genus Sphingomonas accounted for 333 

17 % in both compartment. 334 

In both compartments of D the two most abundant phyla were Proteobacteria and Actinobacteria, 335 

respectively accounting for 53.68 % and 31.31% in D rhizosphere soil and 60.56 % and 25.25 % in 336 

D rhizoplane (Fig. 5a).  Within Proteobacteria, the classes Alphaproteobacteria, 337 

Betaproteobacteria and Gammaproteobacteria were the most abundant. In D rhizosphere soil they 338 

accounted for 30.3 %, 6.8 % and 15.6 % respectively, with Sphingomonas responsible for 15.2 % of 339 

the total community. In the D rhizoplane, the three above mentioned classes accounted for 39.2 %, 340 

11.2 % and 9.5 %. In this compartment Sphingomonas and Variovorax represented 28 % and 6.8 % 341 

of the total community respectively. Within the phylum Actinobacteria, the genus Arthrobacter 342 

accounted for 14.3 % and 5.9 % in D rhizosphere soil and D rhizoplane respectively. Different 343 

OTUs belonging to this genus were significantly more abundant (p < 0.05) in D with respect to the 344 

other water regimes (Online Resource, Table S3). In D rhizoplane, the genera Marmoricola and 345 

Nocardioides also contributed with 2.1 % and 2.9 % respectively.  346 

 347 

Bacterial populations potentially involved in arsenic, iron and sulfur cycles 348 

In order to predict the bacterial community functional profiles, although potential, related to As, Fe 349 

and S processing, a survey was conducted in the literature to search for taxa that were 350 
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experimentally demonstrated to be involved in those biogeochemical cycles or in whose genomes 351 

the presence of genetic markers was displayed (Online Resource, Table S1).  352 

In the T0 soil, bacteria able to resist or to process As, either by reduction, oxidation or methylation, 353 

accounted for 6.39 % of the bacterial community (Online Resource, Fig. S2a). Within these, 58.96 354 

% were putative AsMB, 23.83 % were AsOB, 12.35 % were putatively ars/ACR operons-carrying 355 

species (AsRB) and 4.85 % DAsRB. Bacteria involved in iron and sulfur cycle represented 1.4 % of 356 

the total: within these, 22.34% were DFeRB, 35.55 % were FeOB, 3.61 % were DSRB and 38.5 % 357 

were SOB (Online Resource, Fig. S2b). 358 

DAsRB, DFeRB and DSRB were significantly more abundant in rhizosphere soil and in the 359 

rhizoplane of plants cultivated under CF with respect to CF-D and D (Fig. 6). In the rhizoplane, 360 

DAsRB and DFeRB accounted for more than 2 % of the total community, whereas DSRB 361 

represented 0.1 % of the community. Among DAsRB and DFeRB, Geobacter and Bacillus genera 362 

were significantly higher in CF and CF-D water regimes. The same trend was observed for DFeRB 363 

of the genus Anaeromyxobacter. Among DSRB, Desulfobacteraceae varied significantly being 364 

more abundant in the rhizosphere soil of CF plants (Table 3). 365 

AsOB were significantly more abundant in D plants of both root compartments (Fig 5). AOB 366 

accounted for 10% of the total community in D plants, whereas in CF and CF-D plants they were 367 

always overall below 3%. Rhizobium, Variovorax, Pseudomonas and Stenotrophomonas 368 

significantly contributed to this variation. FeOB mirrored this trend in rhizospheric soil, whereas in 369 

the rhizoplane they were not affected by the agronomic managements and they were always below 370 

1%. FeOB as Thermomonas and Pseudomonas were more abundant in D, whereas Leptothrix, 371 

Rhodobacter and Aquabacterium were more abundant in CF (Table 3). Differently from As- and 372 

Fe-oxidising bacteria, sulfur-oxidizing bacteria (SOB) as Rhodovolum and Anaeromyxibacter were 373 

significantly more abundant in CF plants in both root compartments, doubling from 1.49 % in 374 

rhizosphere soil to 2.88% in the rhizoplane (Fig. 6), while Aurantimonas was the only SOB genus 375 

significantly higher in D (Table 3). 376 

The abundance of AsRB in rhizosphere soil was included between 2.6% and 3.4%, without 377 

significant variations due to the water regimes (Fig. 6). This was reflected by the opposite trends of 378 

relative abundance of different genera, like Pseudomonas (stimulated in D) and Anaeromyxibacter 379 

(higher in CF) (Table 3). In the rhizoplane, on the contrary, AsRB accounted for 3.91 % of the total 380 

in CF plants, with respect to 1.14 % and 0.72 % in CF-D and D plants.  381 

Similarly, AsMB were present in rhizosphere soil with abundances between 1.93 % and 4.97 %, 382 

with no significant variations among the three water managements. In the rhizoplane, AsMB were 383 

significantly more abundant in CF plants (4.64 %) than in CF-D (2.66 %) and D (1.11 %) plants 384 

(Fig. 6). 385 
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 386 

Discussion 387 

 388 

Continuous flooding lead to the dissolution of As and Fe in the CF macrocosms, as expected 389 

according to previous studies (Yamaguchi et al. 2011; Borch et al. 2010; Takahashi et al. 2004), 390 

following the well assessed reductive dissolution of Fe and Mn oxides and the reduction of As(V) 391 

to the more soluble As(III). The temporary establishment of an oxic environment in the CF-D soils 392 

was followed by very low As and Fe concentrations in solution, comparable to those encountered in 393 

the D ones, assessing a fast chemical response of the system to the water management. The 394 

mobilization of As in pore water in CF agronomic schemes has been recently proven to lead to As 395 

enrichment of rice grains, if compared to the CF-D and D ones (Zecchin et al. 2017; Spanu et al. 396 

2012). 397 

The species richness and evenness of the samples, the PCoA analysis and the core microbiome 398 

analysis reflected the chemical characteristics determined by the different water regimes and 399 

indicated a strong influence of the presence of the plant in CF and CF-D agronomic conditions. The 400 

rhizosphere of CF and CF-D plants reflected an anoxic environment, where strictly anaerobic 401 

species were selected. By contrast, in the rhizoplane of these plants, the release of organic matter 402 

and oxygen by the roots likely promoted a higher diversity. In D rhizosphere the proximity to the 403 

plant did not lead to a sharp differentiation in the bacterial community, possibly linking the lower 404 

development of the roots and the aerenchyma in such condition to a lower turn-over of oxygen and 405 

carbon sources, and consequently the lack of a chemical gradient (Suralta and Yamauchi 2008). In 406 

rhizosphere soil of CF and CF-D treatments, populations with similar phylogenetic affiliation were 407 

selected during the vegetative phase, whereas the two-weeks drainage period led to a differentiation 408 

in the abundances but not in the phylogenetic structure of the community (Fig. 3). In rhizosphere 409 

soil of CF-D plants, the stress induced by sharp short-term changes in the redox conditions could 410 

have selected for more versatile species in common with D. In the rhizosphere of D less species 411 

where stimulated, probably indicating a lower degree of electron acceptors restoration given by 412 

either the absence of a redox interface or by the fact that these plants do not grow under optimal 413 

conditions (i.e. continuous flooding). 414 

The three dominant phyla found in all the samples, i.e. Actinobacteria, Acidobacteria and 415 

Proteobacteria, resembled what commonly found in plants rhizosphere (Bulgarelli et al. 2013). 416 

Actinobacteria represented a significant part of the original community of the rice paddy soil used 417 

for this experiment, contrary to what seen in previous studies carried out on rice paddy soils from 418 

different locations (Edwards et al. 2015; Wörner et al. 2016). These microorganisms are common 419 

soil inhabitants and plant commensals (Ventura et al. 2007). Most of them, including members of 420 
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the genera Marmoricola and Nocardioides and of the order Gaiellales, are aerobic and degrade a 421 

variety of complex polysaccharides deriving from the plant (Barka et al. 2016; Kügler et al. 2015; 422 

Urzì et al. 2000; Lee 2007; Dastager et al. 2008; Lee and Lee 2010; Lee et al. 2011; Yoon and Park 423 

2006; Albuquerque et al. 2011). The genus Arthrobacter, quite abundant in rhizosphere soil of D 424 

plants, is commonly found in soils with neutral pH. Members of this genus are versatile concerning 425 

carbon source and highly resistant to environmental stress like aridity (Jones and Keddie 2006). The 426 

high abundance of members of the order Gaiellales together with Fe(III)- and SO4
2--reducing 427 

genera in the rhizosphere of CF plants indicates the presence of microhabitats with different levels 428 

of oxygen and electron acceptors. Members of the phylum Acidobacteria are commonly found in 429 

soils as well as in rhizosphere soil (Bulgarelli et al. 2013; Ward et al. 2009). As a confirmation of 430 

these outcomes, in previous studies these organisms were found to be more abundant in bulk and 431 

rhizosphere soil with respect to the rhizoplane (Edwards et al. 2015). They are usually aerobic, 432 

capable of nitrate and nitrite reduction, heterotrophs, able to degrade complex substrates and 433 

tolerant to variation of soil humidity (Ward et al. 2009). 434 

Member of the Proteobacteria phylum were favored by the proximity to the plant, where the release 435 

of C compounds is higher and determines the prevalence of r-strategist bacteria (Edwards et al. 436 

2015). These microorganisms have often been found more abundant in the rhizoplane and in the 437 

endosphere (Edwards et al. 2015) with respect to the bulk of rice field soil. The high abundance 438 

observed in CF-D for Alphaproteobacteria and Betaproteobacteria might be due to the decrease of 439 

members of the other taxa, less resistant to the alternation of wet/dry periods. Shrestha and 440 

colleagues (2009) also observed that members belonging to these two classes were more active in 441 

oxic paddy soil. The genus Ramlibacter sp., including aerobic heterotrophs, often isolated from 442 

soils, has been demonstrated to be resistant to dryness stress (Lee et al. 2014). The genus 443 

Sphingomonas, strictly aerobic and facultative photoorganotroph (Yabuuchi and Kosako 2005), 444 

found its ideal habitat in the rhizoplane of D. Piscinibacter are described as chemoheterotrophs and 445 

facultative aerobic (Song and Cho 2007; Stackebrandt et al. 2009). Deltaproteobacteria are more 446 

frequently detected in anoxic rice paddies (Shrestha et al. 2009; Pester et al. 2012; Lu et al. 2006). 447 

According to these observations, in this study members of this class were more abundant in CF 448 

rhizosphere compartments. 449 

Most of the above mentioned genera, with high relative abundance in the different treatments, are 450 

not known to have arsenic-processing capacities. This aspect probably reflects the fact that the soil 451 

used for this experiment did not contain high As concentration. Therefore, As was not the main 452 

factor shaping the bacterial communities in this environment. 453 

Nowadays, apart from metagenomic analysis, tools to predict functional profiling of microbial 454 

systems relay on 16S rRNA data associated to databases using marker gene data and reference 455 
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genomes (Langille et al. 2013). The central idea is that despite various important forms of microbial 456 

genome plasticity (gene loss, duplication, or gene transfer), the genes present in microbial genomes 457 

are much more similar amongst related bacteria or archaea than distant relatives.  In line with this 458 

approach, the database built in the presence study was used to assess potential functionalities related 459 

to arsenic/iron/sulfur biogeochemical cycles. Such data might be useful in future studies to focus 460 

the attention on specific microbial taxa when considering metagenomic libraries. Although this 461 

approach can indicate only potential functions in a microbial community, the trends observed were 462 

consistent with the soil physical-chemical conditions in the different water managements and with 463 

previous data based on marker gene quantification (Zecchin et al. 2017). 464 

In this study, we observed that DSRB were more abundant in rhizosphere soil of CF if compared to 465 

rhizoplane, whereas DAsRB and DFeRB in the same treatment were closer to the roots. The 466 

observed pattern, with DFeRB more abundant than DAsRB, probably reflects the redox scale 467 

predicted by Kocar and Fendorf (2009), who demonstrated that at pH < 6.5 Fe(III)-reduction is 468 

favored over dissimilatory As(V)-reduction. Members of the genera Geobacter and 469 

Anaeromyxobacter were confirmed to be common Fe(III)-reducing inhabitants of anoxic paddy 470 

fields, promoted by a CF water regime (Hori et al. 2010; Shrestha et al. 2009; Treude et al. 2003). 471 

The best habitat for FeOB was the rhizosphere of D plants. This could be due to a sharp redox 472 

interface in CF and CF-D, with only little areas with the optimal concentration of Fe(II) and O2, and 473 

a wider microoxic area in D rhizosphere. Similarly, populations of AsOB were more abundant in D 474 

rhizosphere, confirming what observed in previous studies (Das et al. 2016). The presence of both 475 

FeOB and AsOB might contribute to the conversion of As(III) to As(V) and its co-precipitaion with 476 

Fe oxides. Conversely, in CF DFeRB predominate over FeOB. Therefore, the process of dissolution 477 

of Fe oxides and consequent release of As is promoted over its precipitation.  478 

Genera of SOB were more abundant in the rhizoplane of CF plants, in contrast with what observed 479 

by Das et al. 2016. The rhizoplane of CF plants could be an optimal habitat for SOB since reduced 480 

sulfur compounds are produced by DSRB but, at the same time, little amounts of oxygen needed by 481 

these organisms are released by the roots. It has often been reported that SOB are related to 482 

ecosystems characterized by sharp opposing gradients of O2 and reduced sulfur compound (Dahl et 483 

al. 2008). Considering that SOB potentially promote sulfide minerals dissolution, their presence in 484 

CF rhizosphere might contribute to As release from sulfide minerals. Microbial mineral weathering 485 

for nutrient acquisition has already been reported as a cause of As release to soil solution from 486 

apatite (Mailloux et al. 2009). These evidences strongly suggest that these microorganism-mediated 487 

processes affect As translocation to rice grains in accordance with previous studies (Zecchin et al. 488 

2017; Somenahally et al. 2011), thus posing a health issue. 489 

Although in the rhizosphere soil of all the treatments AsRB were equally represented, in the 490 
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rhizoplane these organisms were more abundant in CF plants. This was probably a consequence of 491 

the fact that arsenic was strongly released in that region, where iron oxides and sulfide minerals are 492 

present and probably dissolved by DFeRB and SOB. In the rhizoplane, the bacterial diversity was 493 

generally lower than in the rhizosphere soil. In the latter, the higher diversity included 494 

microorganisms generally present in soil characterized by an average distribution of As resistance. 495 

Arsenic-methylating bacteria were present in rice rhizosphere. Particularly, in CF plants this activity 496 

was selected and probably enhanced by the presence of As(III) and organic matter, which are the 497 

substrates for this reaction. This is in accordance with recent evidence that under CF more organic 498 

As is produced with respect to sprinkler irrigation and aerobic rice (Moreno-Jiménez et al. 2014; Li 499 

et al. 2009). Organic As constituted almost 50 % of total As in rice grains in CF condition in the 500 

same experimental set up (Zecchin et al. 2017). Furthermore, recent evidence indicates that organic 501 

As accumulated in rice grains derives from microbial methylation carried out in the rhizosphere 502 

(Lomax et al. 2012). Among versatile bacteria related to arsenic reduction or methylation and to Fe 503 

dissimilative reduction, Geobacter, rare in the T0 soil according to rank abundance analysis (Online 504 

Resource, Fig. S1), significantly increased in CF and CF-D rhizosphere soils and rhizoplanes, but 505 

not in D water regime. Previous data of Geobacter-specific gene quantification (Zecchin et al. 506 

2017) are in accordance with the bar-coded sequence data obtained in the present work, thus 507 

evidencing a putative role of Geobacter in As release from soil mineral to pore water and in As 508 

methylation. In accordance with the increase of DAsRB and AsMB in CF and CF-D water regimes, 509 

higher As(III) concentrations were detected in the corresponding soil pore water and higher 510 

methylated As was detected in the corresponding rice grains. 511 

Together, these outcomes indicate a dramatic effect of water management of rice paddies in shaping 512 

the rhizosphere microbiota. Continuous flooding promotes the proliferation of As-releasing 513 

bacterial taxa, whereas in aerobic rice microorganisms that reduce the solubility of As in the soil 514 

solution are favored. Introducing a 2 weeks-drainage period before the flowering stage within a 515 

continuous flooding regime leads to intermediate relative abundances of As-affecting bacteria. A 516 

decrease in the flooding intensity might be helpful for the selection of an As-stabilizing microbial 517 

community with the reduction of bioavailable As concentration in the soil solution, thus decreasing 518 

As contamination in rice grains. 519 
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Figure captions 797 

 798 

Fig. 1 Scheme of the water regimes used in the experimental setup. Red arrows indicate sampling 799 

points 800 

 801 

Fig. 2 Alpha diversity evaluated with ACE index and Simpson’s evenness measure, assuming a 802 

sample size of 2000 reads (a) and by observed species on rarefied samples (b). Values are shown for 803 

the original soil (T0), rhizosphere soil and rhizoplane treated under continuous flooding (CF RS and 804 

CF RP), under CF with 14 days of drainage before flowering (CF-D RS and CF-D RP) and under 805 

watering every 10 days (D RS and D RP) 806 

 807 

Fig. 3 Beta diversity analysis of all treatments, included original soil (T0), rhizosphere soil and 808 

rhizoplane treated with continuous flooding (CF RS and CF RP), with 14 days of drainage before 809 

flowering (CF-D RS and CF-D RP) and with watering every 10 days (D RS and D RP). The 810 

principal coordinate analysis was performed calculating unweighted (a, b, c) and weighted UniFrac 811 

distances (d, e, f) according to Hamady and Knight (2009). The significance of the groups 812 
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 23 

determined by the sample identity (a, d), the water regime (b, e) and the root-soil compartment (c, f) 813 

was tested with multi-response permutation procedure (MRPP) 814 

 815 

Fig. 4 Shared and exclusive OTUs at 97% similarity retrieved under continuous flooding (CF), 816 

under continuous flooding with drainage before flowering (CF-D) and with watering (D) in 817 

rhizosphere soil (a) and in the rhizoplane (b) 818 

 819 

Fig. 5 Relative abundance (%) of phyla and proteobacterial classes (a) and genera above 1 % of 820 

relative abundance (b) retrieved in the treatments: initial soil (T0), continuously flooded rhizosphere 821 

soil and rhizoplane (CF RS and CF RP), with 14 days of drainage before flowering (CF-D RS and 822 

CF-D RP) and with watering every 10 days (D RS and D RP) 823 

 824 

Fig. 6 Relative abundance (% ± SD) of species potentially able to process arsenic directly (a) or 825 

indirectly as a consequence of their metabolism (b) in rhizosphere soil and rhizoplane of plants 826 

cultivated under continuous flooding (CF RS and CF RP), under continuous flooding with 14 days 827 

drainage before flowering (CF-D RS and CF-D RP) or with watering every 10 days (D RS and D 828 

RP). The metabolic groups considered in this analysis were dissimilatory As(V)-reducing bacteria 829 

(DAsRB), As-resistant bacteria (AsRB), As(III)-oxidizing bacteria and As(III)-methylating bacteria 830 

(AsMB), dissimilatory Fe(III)-reducing bacteria (DFeRB), Fe(II)-oxidizing bacteria (FeOB), 831 

dissimilatory SO4
2--reducing bacteria (DSRB) and sulfur-oxidizing bacteria (SOB) 832 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Table 1 Chemical analyses of the soil solution in the macrocosms. 

Chemical Parameter CF1 CF-D2 D3 

Tot As (μg L-1) 125.3±5.2 1.82±0.41 Bdl4 

Fe(II) (mg L-1) 51.1±1.75 0.05±0.01 0.21±0.05 

S-SO4
2- (mg L-1) 0.06±0.01 4.09±0.27 1.69±0.52 

N-NO3
2- (mg L-1) 0.04±0.01 0.27±0.05 2.31±0.91 

P-PO4
2- (mg L-1) 0.33±0.18 0.19±0.001 0.23±0.03 

pH 6.2±0.25 5.9±0.25 6.0±0.34 

1Continuous flooding. 

2Continuous flooding with 14 days drainage before flowering. 
3Watering every 7-10 days. 
4Below detection limit. 
 

Table 2 Number of reads produced with 16S rRNA amplicon pyrosequencing that passed the 

quality check, with related diversity information. 

Compartment Sample ID N. of reads 
Seq. length 

(bp) 
N. of OTUs1 

Standardized2 

N. of OTUs 
N. of phyla 

Soil T03 18428 365 r 26 5598 898 r 55 32 

Rhizosphere 

soil 

CF4 16497 365 r 27 5934 984 r 28 28 

CF-D5 28005 364 r 28 7108 777 r 31 24 

D6 26309 365 r 26 7097 836 r 33 18 

Rhizoplane CF 20370 364 r 28 8088 1158 r 51 25 

CF-D 19346 364 r 27 7579 1062 r 67 19 

D 21424 364 r 27 5122 699 r 61 15 
1Operational taxonomic units defined at 97% sequence identity. 
2Standardized sampling effort of 2000 reads. 
3Initial soil used for the experiment. 
4Continuous flooding. 
5Continuous flooding with 14 days drainage before flowering. 
6Watering every 7-10 days. 

  

Table



Table 3 Relative abundance of taxa (%) involved in arsenic, iron and sulfur cycles (for references 

see Table S1) that significantly varied in the root compartments of rice plants from different 

treatments. 

Taxon 
 Rhizosphere soil Rhizoplane 

T01 CF2 CF-D3 D4 CF CF-D D 

Anaeromyxobacter 0.13±0.11 1.11±0.35 0.13±0.02 0 0.64±0.32 0.12±0.09 0 

Aquabacterium 0 0.07±0.05 0.05±0.01 0.01±0.01 0.03±0.03 0 0 
Aurantimonas 0 0 0 0.31±0.11 0 0 0.12±0.08 

Bacillus 0.28±0.23 0.23±0.05 0.02±0.04 0.14±0.08 0.18±0.07 0.15±0.1 0.04±0.02 

Desulfobacteraceae 0.03±0.03 0.59±0.3 0.01±0.01 0 0.05±0.04 0.07±0.07 0 

Geobacter 0.03±0.02 0.65±0.13 0.45±0.16 0.02±0.04 2.04±0.54 0.55±0.25 0 
Leptothrix 0 0.1±0.05 0.07±0.02 0 0.02±0.02 0.01±0.02 0 

Pseudomonas 0.04±0.03 0.28±0.01 1.82±0.35 2.69±0.59 0.34±0.19 0.01±0.02 0.18±0.07 

Rhizobium 0.27±0.35 0.04±0.001 0.07±0.04 2.06±0.63 0.44±0.16 1.21±0.25 1.90±0.47 
Rhodobacter 0 0.2±0.21 0.13±0.04 0.06±0.02 0.1±0.03 0.01±0.02 0 

Rhodovulum 0 0.13±0.05 0.05±0.03 0 0.05±0.06 0 0 

Stenotrophomonas 0.01±0.01 0 0.07±0.08 0.83±0.22 0.01±0.02 0 0.98±0.38 

Thermomonas 0.12±0.12 0.05±0.06 0.26±0.16 1.48±0.53 0.10±0.07 0.09±0.04 0.77±0.1 
Variovorax 1.1±0.51 0.23±0.06 0.69±0.04 0.22±0.06 0.16±0.11 0.08±0.02 6.76±1.44 
1Initial soil used for the experiment. 
2Continuous flooding. 
3Continuous flooding with 14 days drainage before flowering. 
4Watering every 7-10 days. 
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Table S1 Bacterial taxa retrieved in this study for which arsenic-processing and/or iron- and sulfur-

processing have been experimentally demonstrated or inferred by the presence of marker genes. 

Numbers are referred to the literature reported in pages 10-12. 

Taxon 

DISS. 

Fe(III) 

reduction 

Fe(II) 

oxidation 

Sulfur 

oxidation 

Diss. 

sulfate 

reduction 

Diss. As(V) 

reduction 

As 

resistance 

(ars or 

ACR) 

As(III) 

oxidation 

As(III) 

methylation 

Candidatus 

Solibacter 
- - - - - - - 1 

Geothrix 2, 3, 4 - - - - - - - 

Mycobacterium - - - - - 5 - - 

Amycolatopsis - - - - - - - 1 

Streptomyces - - - - - 5 - - 

Conexibacter - - - - - - - 1 

Aurantimonas - - 6 - - - - - 

Bradyrhizobium - - 6 - - - - - 

Rhodopseudomonas - 2, 7, 8, 9 6 - - 10 - 11, 1, 12 

Rhodomicrobium - 7, 8 - - - - - 1 

Methylobacterium - - 13 - - - - - 

Mesorhyzobium - 7 - - - 5 14 - 

Rhizobium - - - - - - 14 - 

Magnetospirillum - - - - - 10 - - 

Rhodobacter - 2, 7, 8, 9 6 - - - - - 

Rhodovulum - - 7, 8 - - - - - 

Sphingopyxis - - - - - 5 - - 

Achromobacter - - - - - 10 15, 14 12 

Burkholderia - - - - - 10 15 12 

Limnobacter - - - - - - 15 - 

Polynucleobacter - - 6 - - - - - 

Ralstonia - - 6 - - - 15 - 

Acidovorax - 2, 7, 8, 9 - - - - 15 - 

Aquabacterium - 7, 8 - - - - - - 

Comamonas - - 6 - - - - - 

Leptothrix - 2, 8, 9 - - - - - - 

Polaromonas - - 6 - - 10 15 - 

Variovorax - - - - - - 14 - 

Herminiimonas - - 6 - - - 15, 14 - 

Thiobacillus 4 2, 7, 8, 9 6 - - - - 1 

Sideroxydans - 2, 7, 8, 9 - - - 10 - - 

Dechloromonas - 7 6 - - 10 15 - 

Acidiferrobacter - 8 - - - - - - 

Acinetobacter - - - - - 10 15 - 

Pseudomonas - 7 - - - 5 15 - 

Stenotrophomonas - - - - - - 15 - 

Thermomonas - 7, 8 - - - - - - 

Desulfobacteraceae - - - 16 - - - - 

Pelobacter 4 - - - - 10 - - 

Geobacter 2, 3, 4 7 - - 15, 10 10 - 21 

Geothermobacter 17 - - - - - - - 
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Anaeromyxobacter 18 - 6 - - 10 - - 

Desulfomonile - - - 16 - - - - 

Syntrophus - - - - - 10 - - 

Desulfovirga - - - 16 - - - - 

Syntrophobacter - - - 16 - - - - 

Cytophaga - - - - - - - 1 

Flavobacterium - - - - - - - 12 

Chitinophaga - - - - - - - 1 

Niastella - - - - - - - 1 

Nostoc - - - - - - - 19 

Bacillus 4 - - - 15, 10 5 - - 

Clostridium - - - - - - - 20 

Desulfitobacterium - - - - 15, 10 - - 1 

Desulfosporosinus - - - 16 15, 10 - - - 

Pelotomaculum - - - - - - - 1 

Gemmatimonas - - - - - - - 1 

Nitrospira - - - - - - - 1 

Spirochaeta - - 6 - - - - - 

Opitutus - - - - - 10 - 1 
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Table S2 Relative abundance of taxa involved in either direct or indirect arsenic processing (see Table 

S1). 

Taxon 
 Rhizosphere soil Rhizoplane 

T01 CF2 CF-D3 D4 CF CF-D D 

Candidatus Solibacter 0.67±0.255 0.71±0.3 0.56±0.17 0.34±0.06 0.97±0.21 0.92±0.21 0.35±0.17 

Geothrix 0 0.01±0.02 0.02±0.02 0 0.02±0.02 0 0 

Mycobacterium 0.01±0.01 0.01±0.02 0.01±0.01 0.01±0.01 0 0 0.01±0.02 

Amycolatopsis 0.01±0.01 0 0 0 0 0 0 

Streptomyces 0.14±0.19 0.03±0.02 0.01±0.02 0.12±0.01 0.01±0.02 0 0.21±0.1 

Conexibacter 0.09±0.09 0.1±0.06 0 0 0.02±0.04 0 0 

Aurantimonas 0 0 0 0.31±0.11 0 0 0.12±0.08 

Bradyrhizobium 0.34±0.27 0.01±0.02 0.11±0.1 0.09±0.04 1.76±0.6 2.11±0.05 0.03±0.03 

Rhodopseudomonas 0 0 0.01±0.01 0.01±0.01 0.09±0.06 0 0 

Rhodomicrobium 0.05±0.04 0.05±0.06 0 0 0.02±0.02 0 0.01±0.02 

Methylobacterium 0.02±0.03 0.01±0.02 0.01±0.01 0.01±0.03 0.03±0.03 0 0.14±0.02 

Mesorhizobium 0.01±0.01 0 0 0.04±0.001 0.02±0.02 0.02±0.02 0.01±0.01 

Rhizobium 0.27±0.35 0.04±0.001 0.07±0.04 2.06±0.63 0.44±0.16 1.21±0.25 1.90±0.47 

Magnetospirillum 0.01±0.02 0.1±0.06 0.19±0.07 0 0.19±0.12 0.15±0.12 0 

Rhodobacter 0 0.2±0.21 0.13±0.04 0.06±0.02 0.1±0.03 0.01±0.02 0 

Rhodovulum 0 0.13±0.05 0.05±0.03 0 0.05±0.06 0 0 

Sphingopyxis 0 0 0 0.05±0.03 0 0.06±0.02 0.16±0.09 

Achromobacter 0.01±0.01 0.01±0.02 0.01±0.01 0.04±0.03 0.01±0.02 0.02±0.02 0.04±0.06 

Burkholderia 0.03±0.02 0.05±0.02 0.01±0.01 0.15±0.03 0 0 0.04±0.03 

Limnobacter 0 0 0.03±0.02 0 0 0 0 

Polynucleobacter 0 0 0 0 0.01±0.02 0.01±0.02 0 

Ralstonia 0 0 0.01±0.01 0.07±0.03 0.01±0.02 0 0.05±0.05 

Acidovorax 0.02±0.03 0.03±0.02 0.07±0.07 0.06±0.02 0.14±0.16 0.08±0.1 0.01±0.01 

Aquabacterium 0 0.07±0.05 0.05±0.01 0.01±0.01 0.03±0.03 0 0 

Comamonas 0.01±0.02 0.01±0.02 0.34±0.09 0.04±0.01 0.01±0.02 0.04±0.02 0 

Leptothrix 0 0.1±0.05 0.07±0.02 0 0.02±0.02 0.01±0.02 0 

Polaromonas 0.02±0.02 0 0 0 0 0 0.01±0.01 

Variovorax 1.1±0.51 0.23±0.06 0.69±0.04 0.22±0.06 0.16±0.11 0.08±0.02 6.76±1.44 

Herminiimonas 0.01±0.02 0 0.01±0.01 0 0 0 0 

Thiobacillus 0±0.01 0 0 0 0.05±0.04 0.03±0.03 0 

Sideroxydans 0.02±0.03 0 0.04±0.02 0 0.03±0.03 0.02±0.02 0 

Dechloromonas 0 0 0.03±0.03 0 0.06±0.03 0.02±0.02 0 

Acidiferrobacter 0 0.01±0.02 0 0 0 0.02±0.04 0 

Acinetobacter 0 0 0 0.12±0.05 0.02±0.04 0 0.01±0.01 

Pseudomonas 0.04±0.03 0.28±0.01 1.82±0.35 2.69±0.59 0.34±0.19 0.01±0.02 0.18±0.07 

Stenotrophomonas 0.01±0.01 0 0.07±0.08 0.83±0.22 0.01±0.02 0 0.98±0.38 

Thermomonas 0.12±0.12 0.05±0.06 0.26±0.16 1.48±0.53 0.10±0.07 0.09±0.04 0.77±0.1 

Desulfobacteraceae 0.03±0.03 0.59±0.3 0.01±0.01 0 0.05±0.04 0.07±0.07 0 

Pelobacter 0 0 0.01±0.01 0 0.01±0.02 0 0 

Geobacter 0.03±0.02 0.65±0.13 0.45±0.16 0.02±0.04 2.04±0.54 0.55±0.25 0 

Geothermobacter 0 0.05±0.05 0 0 0 0 0 

Anaeromyxobacter 0.13±0.11 1.11±0.35 0.13±0.02 0 0.64±0.32 0.12±0.09 0 

Desulfomonile 0 0 0 0 0.02±0.02 0.06±0.04 0 
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Syntrophus 0.01±0.01 0.05±0.06 0 0 0.11±0.04 0 0 

Desulfovirga 0 0 0 0.01±0.01 0 0 0 

Syntrophobacter 0.02±0.03 0.03±0.02 0 0 0.03±0.03 0 0 

Cytophaga 0 0 0 0 0 0.01±0.02 0 

Flavobacterium 0.02±0.01 0 0 0 0 0 0 

Chitinophaga 0 0 0 0 0 0.01±0.02 0.03±0.02 

Niastella 0.01±0.01 0 0.03±0.01 0 0.05±0.05 0 0.04±0.02 

Nostoc 2.11±2.01 0.98±0.44 0.01±0.01 0.04±0.02 0.15±0.04 0.18±0.04 0.28±0.03 

Bacillus 0.28±0.23 0.23±0.05 0.02±0.04 0.14±0.08 0.18±0.07 0.15±0.1 0.04±0.02 

Clostridium 0.04±0.04 0.18±0.02 0.07±0.01 0.15±0.02 0.55±0.13 0.23±0.01 0 

Desulfitobacterium 0 0 0 0 0 0.01±0.02 0 

Desulfosporosinus 0 0 0.01±0.01 0 0 0 0 

Pelotomaculum 0 0.03±0.02 0 0 0.01±0.02 0 0 

Gemmatimonas 0.64±0.37 1.89±0.59 0.74±0.11 1.71±0.45 0.43±0.14 0.48±0.24 0.32±0.07 

Nitrospira 0.01±0.01 0 0 0.03±0.01 0.08±0.07 0.2±0.15 0.01±0.01 

Spirochaeta 0.01±0.02 0 0 0 0.05±0.05 0.01±0.02 0 

Opitutus 0.05±0.02 0.01±0.02 0.04±0.04 0.01±0.01 0.15±0.13 0.01±0.02 0 
1Initial soil used for the experiment. 
2Continuous flooding. 
3Continuous flooding with 14 days drainage before flowering. 
4Watering every 7-10 days. 
5Data are reported as percentage (%) ± standard deviation. 
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Table S3 Mean counts (number of reads) calculated for the OTUs that vary significantly (according 

to ANOVA, p < 0.05, after Bonferroni’s correction) in the macrocosms. 
Compartment CF1 CF-D2 D3 Taxon OTU 

Rhizosphere soil 

0 0 83.7 Micrococcales denovo23217 

1.7 0.7 39.7 Arthrobacter AB637277 

0 0.3 22.3 Arthrobacter EU221355 

0 0 37.7 Arthrobacter FJ382040 

0.3 0.3 8.7 Agromyces denovo36205 

5.7 0 0 
Uncultured 

Gaiellales 

denovo9942 

0 22 0.7 Flavisolibacter denovo35275 

0.3 9.3 0.3 Sphingomonas denovo27415 

2 59.3 9.3 Pelomonas FJ269077 

22.7 222.7 12 Comamonadaceae JN869130 

1 18.3 0 Comamonadaceae EF018534 

2.3 29 1 Comamonadaceae FQ658719 

0 10.7 1 Comamonadaceae EU133771 

0 5.3 0 Comamonadaceae JF267702 

0 5.3 0 Comamonadaceae AY491563 

4 110 21 Ramlibacter HQ640565 

0.3 21.3 0.7 Pseudomonas JN038312 

0 0 13.3 Xanthomonadaceae HQ341391 

0 1.3 123 Lysobacter FR682714 

7.3 0.7 0 Dictyoglomus denovo11774 

Rhizoplane 

0 0 25.3 Bacteria denovo26504 

4 0.7 48.3 Arthrobacter FQ659744 

0 1 12 Nocardioides denovo13694 

1.3 0 20 
Uncultured 

Gaiellales 

EU132848 

0 0 13 Flavisolibacter JN409004 
1Continuous flooding. 
2Continuous flooding with 14 days drainage before flowering. 
3Watering every 7-10 days. 
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Figure S1 Rank abundance (a) and number of phyla categorized according to their relative abundance 

(b). Values are shown for the original soil, rhizosphere soil and rhizoplane (T0, RS and RP) managed 

either with continuous flooding (CF), with continuous flooding with 14 days drainage before flowering 

(CF-D) or with watering every 10 days (D) 

 

 
Figure S2 Relative abundance (%) of species potentially able to process arsenic directly (a) or 

indirectly as a consequence of their metabolism (b) in the T0 soil.  The metabolic groups considered 

in this analysis were dissimilatory As(V)-reducing bacteria (DAsRB), As-resistant bacteria (AsRB), 
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As(III)-oxidizing bacteria and As(III)-methylating bacteria (AsMB), dissimilatory Fe(III)-reducing 

bacteria (DfeRB), Fe(II)-oxidizing bacteria (FeOB), dissimilatory SO4
2--reducing bacteria (DSRB) 
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