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RESEARCH ARTICLE

Transdermal administration of melatonin coupled to cryopass laser treatment as
noninvasive therapy for prostate cancer

Laura Terraneo , Paola Bianciardi, Eleonora Virgili, Elena Finati, Michele Samaja and Rita Paroni

Department of Health Science, University of Milan, Milano, Italy

ABSTRACT
Melatonin, a pineal gland hormone, exerts oncostatic activity in several types of human cancer, includ-
ing prostate, the most common neoplasia and the third most frequent cause of male cancer death in
the developed world. The growth of androgen-sensitive LNCaP prostate cancer cells in mice is inhib-
ited by 3mg/kg/week melatonin (0.09mg/mouse/week) delivered by i.p. injections, which is equivalent
to a dose of 210mg/week in humans. The aim of this study is to test an alternative noninvasive deliv-
ery route based on transdermal administration of melatonin onto the tumor area followed by cryo-
pass-laser treatment. Two groups of immunodepressed mice were studied, one (n¼ 10) subjected to
18 cryopass-laser therapy sessions and one (n¼ 10) subjected to the same treatment without mela-
tonin. These groups were compared with mice treated with i.p.-administered melatonin or vehicle with
the same time schedule. We found that cryopass-laser treatment is as efficient as i.p. injections in
reducing the growth of LNCaP tumor cells, affecting plasma melatonin and redox balance.
Furthermore, both delivery routes share the same effects on the involved biochemical pathway driven
by hypoxia-inducible factor 1a. However, cryopass-laser, as used in the present experimental setup, is
less efficient than i.p delivery route in increasing the melatonin content and Nrf2 expression in the
tumor mass. We conclude that cryopass-laser treatment may have impact for melatonin-based therapy
of prostate cancer, by delivering drugs transdermally without causing pain and targeting directly on
the site of interest, thereby potentially making long-term treatments more sustainable.
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Introduction

Prostate cancer affects one in five of all newly diagnosed
cases of male cancers and is the third cause of cancer-related
death among men (Siegel et al., 2017). The vast majority of
prostate cancers are diagnosed at an early stage, but
approximately 15% of men with newly diagnosed prostate
cancer display high-risk disease with metastatic progression
and poor outcome (Miller et al., 2016, Wang et al., 2016a).
Most patients show favorable initial response to androgen
deprivation therapy or castration, but in the long term
almost all patients develop progression from androgen-
dependent to more aggressive androgen-independent stage
with development of metastases and decreased quality of
life. Although chemotherapy improves survival, its side effects
on healthy cells and the linked cytotoxicity limit its use espe-
cially in older patients (Poorthuis et al., 2017). Clinical studies
have demonstrated that the supplementation of melatonin
may enhance the efficacy and reduce the side effects of
chemotherapy, prolonging survival and improving the quality
of life (Lissoni et al., 2006; Bizzarri et al., 2013; Ma et al.,
2016; Najafi et al., 2017).

A natural molecule secreted by the pineal gland especially
nighttime, melatonin (N-acetyl-5-methoxy tryptamine) serves
as a bio-clock regulator of an array of physiological functions
(Kelleher et al., 2014) and displays almost null toxicity

(Flo et al., 2016). Melatonin has paracrine, autocrine as well as
antioxidant effects, and exerts diverse receptor-dependent
and receptor-independent actions, with overall homeostatic
functions and pleiotropic effects relevant to cell protection
and survival (Srinivasan et al., 2008; Luchetti et al., 2010).
Melatonin is known to display oncostatic activity in a variety
of tumors including breast (Mao et al., 2016), ovarian (Zhao
et al., 2016), colon (Gao et al., 2016), endometrial (Ciortea
et al., 2011), gastrointestinal (Wang et al., 2016b), and prostate
(Paroni et al., 2014). The link between plasma melatonin and
prostate cancer risk is well recognized. The decline in mela-
tonin production with age was suggested as a major con-
tributor of the development of cancer in elder people
(Srinivasan et al., 2011; Hill et al., 2013). Furthermore, shift
workers have an increased risk for prostate cancer (Dumont
et al., 2012), and exposure to artificial light at night is associ-
ated with prostate cancer because it disturbs endogenous cir-
cadian rhythms leading to the suppression of nocturnal
melatonin production (Kim et al., 2016). Melatonin likely
affects tumor biology via multiple mechanisms that include
the modulation of the redox balance, immune system, angio-
genesis, endocrine system, androgen receptors signaling, as
well as the direct action via specific membrane receptors
(Tam and Shiu, 2011; Gonzalez et al., 2017). In vitro and
in vivo models document that melatonin displays a relevant
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antiproliferative activity in cancer (Bizzarri et al., 2013).
In immunodepressed mice treated with melatonin (18 i.p.
injections of 1mg/kg melatonin for 42 days, 3 injections/
week), the growth of LNCaP prostate cancer was reduced 4-
fold compared to saline-treated control (Paroni et al., 2014).
The marked antitumor activity of melatonin even without
association with any other drug calls the opportunity to inves-
tigate novel roads for alternative painless and noninvasive
ways of administering this substance to improve the sustain-
ability of such therapy for long-term treatments. Here, we test
the antiproliferative activity of melatonin when delivered by
cryopass-laser treatment, a noninvasive transdermal adminis-
tration technology suitable for local delivery of drugs into
specific areas potentially avoiding distribution in non-target
tissues and unwanted systemic effects. We test this approach
in the same murine model that proved useful to assess the
antitumor effect of melatonin given via i.p. injections.

Methods

Mice and experimental design

Seven-week old Foxn1nu/nu mice (Harlan, n¼ 20), weighing
25–30 g at the entry into the study, were cared in accordance
to the Guide for the Care and Use of Laboratory Animals
published by the National Institutes of Health (NIH
Publication No. 85-23, revised 1996). The Ethical Committee
of the University of Milan approved the experimental proto-
col (All.5verb.16.03.2010). Water and bedding were heat-steri-
lized, whereas food was sterilized by 60Co c-irradiation. Mice
had free access to water and food until 24 h before sacrifice.
A12/12 h light/dark cycle was maintained.

LNCaP cells (ATCC) maintained in RPMI-1640 medium
(Euroclone), were resuspended in Matrigel (1:1) and inoculated
in each flank of mice (3� 106 cells/0.1ml). Mice were then
randomized and subjected to cryo-pass laser treatment with

either vehicle (vehicle-laser, n¼ 10) or melatonin (melatonin-
laser, n¼ 10). Body weight and tumor volume were measured
three times a week for 42 days. At the end of the observation
period, mice were anesthetized, thoracotomized to withdraw a
blood sample, and tumors were quickly excised from surround-
ing skin and frozen as described (Paroni et al., 2014). Figure 1
shows the flowchart of the experimental design.

Cryopass-laser treatment

The equipment for cryopass-laser treatment (LASERICE Med
C.I.R.C.E. S.r.L., Magnago, Milano) is constituted by cryo appli-
cators containing frozen emulsions with 1.5% (w/v) hydroxy-
methyl cellulose with or without 0.048mg melatonin/ml, and
by a scanner connected to a photodiode laser beam gener-
ator with k¼ 635 nm, maximum power<5mW, collimation
lens<20mV. The preparation of the cryo applicators took
place before the beginning of the experiment. The suspen-
sion was prepared by emulsifying for 7min in ice and dark
with a disperser tool (Ultra-Turrax T25, IKA Labortechnik,
Staufen, Germany) at the maximum speed. Then, 15ml of
this suspension was transferred into cryo applicators (0.72mg
melatonin each) and they were immediately frozen at �20 �C
until use. A single cryo applicator was used to treat six mice,
therefore the amount of administered melatonin was
�0.120mg melatonin/mouse/treatment, or �4mg/kg. For the
administration, the cryo applicator was connected to a laser
beam source and subsequently melted by rubbing on the
mice’s flanks in the correspondence of the area where LNCaP
cells were inoculated. The duration of the treatment was
2.4min/mice. As the application of frozen sticks may cause
hypothermia, mice were kept on a heating plate at 37 �C.
After this phase, mice were placed in specially devised con-
strictors specially assembled to expose the inoculated area
on the animal flanks. Then animals were subjected to a high-
power laser scanner connected to a laser beam generator

Figure 1. Experimental flowchart. Human prostate cancer cells (LNCaP) were cultured and resuspended in ice-cold Matrigel (1:1) at a final concentration of 3x106/
0.1ml. Mice were inoculated in each flank with LNCaP and subjected to cryopass-laser treatment (with 4mg/kg melatonin or vehicle) three times/week, for 6 weeks,
for a total of 18 treatments. At the end of the experimental time, tumors and blood were collected for the biochemical analysis.
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that oscillated over them for 15min. Cryo-laser application
over the skin area of the inoculum, was performed three
times/week for 42 days to a total of 18 treatments.

Biochemical measurements

After sacrifice (day 42), we measured blood hemoglobin (Hb)
concentration (Terraneo et al., 2014), oxidative capacity in
plasma (d-ROMS test, Diacron International srl, Grosseto,
Italy), the plasma antioxidant capacity (Total Antioxidant
Capacity Assay kit Catalog #K274-100; BioVision, Inc.,
Mountain View, CA, USA), as well as plasma and tumor con-
tents of melatonin (Melatonin ELISA REF RE54021; IBL,
Hamburg, Germany) as described (Paroni et al., 2014).

The expression of selected proteins was measured in
tumor biopsies by Western blot (Terraneo et al., 2014).
The primary antibodies and dilutions were: anti-HIF-1a
(inducible factor-1alpha, Santa Cruz Biotechnology, 1:300),
anti-Nrf2 (nuclear factor (erythroid-derived 2)-like 2, Santa
Cruz Biotechnology, 1:1000), anti-b-actin (Sigma Aldrich, St
Louis, MI 1:5000), The secondary antibodies were horseradish
peroxidase-conjugated anti-mouse IgG (Jackson Immuno
Research, West Grove, PA, 1:10,000) or anti-rabbit IgG
(Jackson Immuno Research, West Grove, PA, 1:10,000).
Chemiluminescence was detected by incubating the mem-
brane with LiteAblot Chemiluminescent substrate (Lite Ablot,
EuroClone, EMPO10004). After the images were acquired
using the Alliance LD6 image capture system (UVITEC
Cambridge Ltd, UK). Densitometric analysis was performed
using UVI-1 D software (UVITEC Cambridge Ltd, UK). The
HIF-1a level was also assessed by immunofluorescence assay,
by summing the green pixels intensities in 4–5 microphoto-
graphs taken from each image, exclusively on tumor area,
excluding the areas related to inflammatory infiltrate
(Terraneo et al., 2014).

Statistical analysis

Data are reported as mean± SEM. To facilitate the compari-
son between the effects of two routes of administration, data
related to melatonin or vehicle delivered via i.p. (melatonin-
ip and vehicle-ip groups) obtained in a previously published
study (Paroni et al., 2014) are also reported. The previously
published and the present studies were performed using the
same analysis procedures and timings, and differ only for the
treatments, i.p. or cryopass laser. Thus, we performed two-
way analysis of variance (ANOVA) assuming two factors: the
delivery route (i.p. or laser) and the treatment (melatonin or
vehicle). Statistics was performed using GraphPad Prism 6
software (GraphPad Software, Inc.), with the significance level
set at p¼ .05.

Results

Safety of cryopass-laser treatment

All the mice enrolled in this study survived without adverse
effects. Despite their thin skin, none of the treated mice

exhibited signs of skin burns. When melatonin was delivered
by cryopass-laser treatment, the body weight increased simi-
larly to previous experiments when melatonin was delivered
via i.p. administration (Figure 2(A)). No differences in Hb con-
centration were detected among the groups (7.77 ± 0.66,
7.53 ± 0.23, 7.41 ± 0.34, 7.36 ± 0.37mM respectively, for
vehicle-laser, vehicle-ip, melatonin-laser, melatonin-ip).

Melatonin inhibited LNCaP tumor growth independently
of the delivery route

Figure 2(B) shows the time course of the tumor volume dur-
ing the experimental time in all groups under study. Figure
2(C) reports the tumor volume measured on the last day of
treatment. Two-way ANOVA shows that tumor growth was
affected by the treatment (p¼ .0018) but not by the delivery
route (p¼ ns). The interaction of these two factor was not
significant (p¼ ns).

Laser-melatonin treatment induces changes in plasma

Figure 3(A) reports the melatonin plasma levels in the four
groups. Two-way ANOVA shows that the plasma level of
melatonin was affected by the treatment (p¼ .0004) but not
by the delivery route (p¼ ns). The interaction of these two
factors was non-significant (p¼ns). Likewise, the redox
imbalance in plasma was affected by the treatment
(p¼ .0072) independently of the delivery route (p¼ ns), but
in this case the interaction of the two factors was significant
(p¼ .0068) (Figure 3(B)). Finally, the plasma antioxidant cap-
acity remained unchanged by either factor (Figure 2(C)).

Melatonin administration by cryopass-laser and by i.p.
share the same biochemical pathways

The melatonin content in tumor tissue was affected by both
the treatment (p< .0001) and the route of administration
(p< .001). The interaction of the two factors was extremely
significant (p< .0001) in reducing tumor size (Figure 4(A)).
To assess whether the antitumor effect of melatonin follows
the same biochemical pathways independently of the deliv-
ery route, we measured two markers that were found to be
altered by i.p. melatonin. Figure 4(B) shows the effects of
treatment and delivery route on the expression of Nrf2, a
protein activated in response to oxidative insult. Two-way
ANOVA shows that Nrf2 is affected by both treatment
(p¼ .0109) and delivery route (p¼ .0185), with significant
interaction of the two factors (p¼ .0466). This indicates that
the antitumor effect of melatonin is independent of the
route of administration and it is mediated in part by the
known antioxidant activity of melatonin.

Figure 4(C–E) show the effects of treatment and delivery
route on the expression of HIF-1a, that was measured by
immunofluorescence techniques (Figure 4(C) and (D)) and
Western blotting (Figure 4(E)). Both techniques converged in
indicating that HIF-1a expression was affected by the treat-
ment (p¼ .0104 and p¼ .00308, respectively) but not by the
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delivery route (p¼ ns for either case). The interaction of the
two factors was not significant (p¼ ns for either case).

Discussion

The transdermal administration of melatonin by the
described cryopass-laser treatment proved to be efficient to
reduce the growth of LNCaP cells. The experimental setup
designed for cryopass-laser and i.p. treatments was rigorously
the same, with the only difference of the ways and amounts
of melatonin administrations. Cryopass-laser treatment
revealed to be a safe procedure without measurable side
effect as outlined by similar rates of body weight increase
and blood Hb content at the end of the observation.
Both delivery routes significantly decreased the growth of

LNCaP cells. In addition, both delivery routes affected by
similar extents the plasma melatonin level and the redox
imbalance, without altering the antioxidant capacity.

Early work already reported beneficial effects for transder-
mal delivery of melatonin (Lee et al., 1994). For example,
transdermal melatonin delivery through patches can elevate
the plasma melatonin level for an extended duration thereby
improving sleep maintenance to a greater extent than mela-
tonin per os (Aeschbach et al., 2009). Transdermal melatonin
may be advantageous with respect to per os delivery espe-
cially in elderly patients because of reduced age-driven
gastroenteric absorption (Flo et al., 2016). Furthermore, per
os administration might imply poor bioavailability due to
high liver metabolism and short plasma half-life of melatonin

Figure 3. Plasma measurements. (A) Melatonin content in plasma at day 42 of
mice treated with melatonin or vehicle. (B) Oxidant capacity in plasma deter-
mined measuring Reactive Oxygen Metabolites (ROMs) and expressed as H2O2

equivalents. (C) Plasma antioxidant capacity expressed as Trolox equivalents.
Data are expressed as mean ± SEM, �p< .05 for treatment factor (two-way
ANOVA).

Figure 2. Body weight and tumor volume changes. (A) Time course of body
weight of mice treated with melatonin or vehicle. (B) Time course of tumor vol-
ume in mice treated with melatonin or vehicle. Tumor volume was calculated
as length x width x height x 0.5236 by a caliper. (C) Tumor volume at day 42.
Data are expressed as the ratio (tumor volume)/(body weight) to compensate
different rates of body growth in the experimental groups. Data are expressed
as mean ± SEM, �p< .05 for treatment factor (Two-way ANOVA).
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Figure 4. Measurements in tumor mass. (A) Melatonin content in tumor of mice treated with melatonin or vehicle, determined by competitive enzyme immuno-
assay as described in the Methods section. (B) Expression of Nrf2 protein measured by Western Blot. The intensity of Nrf2 bands were quantified and expressed as
ratio with the intensity of b-actin bands. (C) Representative microphotographs of HIF-1a marked by immunofluorescence of all the experimental groups considered.
The bars represent 50 lm. (D) Quantification of the HIF-1a signal measured as the sum of green pixels intensities exclusively in the tumor area, without considering
the inflammatory infiltrate area. (E) Expression of the HIF-1a protein measured by Western Blot. The intensity of HIF-1a bands were quantified and expressed as
ratio with the intensity of b-actin bands. Data are expressed as mean ± SEM, �p< .05 for treatment factor (Two-way ANOVA) and $p< .05 for delivery route factor.
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(Babu et al., 2008). However, it must be pointed out that
substance penetration across the derma might also depend
strikingly on the inter-subject variability of stratum corneum
ultrastructure and composition, race and color of skin, tem-
perature across skin, in addition to dose and surface of appli-
cation (Oh et al., 2001; Aeschbach et al., 2009; Flo et al.,
2016; Marwah et al., 2016). Although both the stratum cor-
neum and epidermis of skin may block the penetration of
drugs, Figure 3(A) shows that the cryopass-laser treatment
enables marked increase of the plasma level of melatonin.

The cryopass-laser treatment is a procedure that promotes
the delivery of a drug molecule across the dermal barrier in
substitution of either chemical permeation enhancers, which
could irritate the skin (Andr�eo et al., 2016), or electric current
application by means of electrodes, which could be painful
and cause skin burns. The cryopass-laser technology pro-
motes biophysical permeation of drugs and, in contrast with
the application of electrodes, is suitable for polar and non-
polar molecules. The depth reachable by molecules in the
target tissue can be adjusted by changing the power of the
laser beam and the duration of the treatment. The developed
technique is based on the effect of a laser bean and is less
traumatic and painful, better targetable and more specific
than chemical permeation and electrophoresis therapy. In
the described application, an electromagnetic-wave gener-
ator (Bonizzoni, 2007) emits the energy needed for the pro-
cess that does not damage the skin: despite the thinness of
their skin, none of the treated animals exhibited burns. The
reason why the molecule need to be frozen in the cryo-appli-
cators resides in the laws of quantum physics. According to
this theory, when a photon hits an electron in the outer
orbital of the molecule, the applied energy excites the elec-
tron and makes it to jump to the higher energy level. The
subsequent decay process to its initial level with re-emission
of the photon is relatively slow when the molecule is in the
frozen state. In other words, the lower the temperature, the
slower the decay, which leads to energy conservation in the
form of potential energy. This facilitates the release of energy
in the form of kinetic energy only when the frozen molecule
melts at the temperature of the ice-skin interface, thereby
speeding up the passage of the drug across the skin to the
target area. Once the drug molecules have penetrated the
skin, a second laser scanning carried out on the region to be
treated enables better subdermal distribution of the drug
and facilitates targeting over the site of activity.

The cryopass-laser technology has been successfully used
in animal model of spinal cord lesion (de Souza et al., 2013)
and in several clinical uses.

Despite all the characteristics of LNCaP cells inoculation
were rigorously the same for either routes of melatonin
administration, the choice to compare two different delivery
routes necessarily implies that the doses of melatonin can’t
be the same as it could be desirable. Thus, the dose of mela-
tonin used in the i.p. experiments (1mg/kg) is not compar-
able with the dose of 4mg/Kg, or 0.12mg melatonin/mouse
for each treatment, in the cryopass-laser treatments.
Therefore, it is not surprising that the decrease of the tumor
growth rates was not coincident for the two delivery routes,
and we can’t exclude that adjusting the dose of melatonin or

the number of treatments could narrow the remaining differ-
ence between the delivery routes. Nevertheless, in either
case melatonin displays not only similar antitumor capacity,
but also similar recruitment of the involved biochemical sig-
naling pathways. Indeed, it appears that melatonin delivery
via cryopass-laser treatment is as efficient as melatonin deliv-
ery via the i.p. route in reducing the growth of LNCaP
tumors. Furthermore, either administration routes affect simi-
larly the antioxidant response and HIF-1a overexpression.
Similar recruitment of the basic mechanisms induced by
melatonin may make the cryopass-laser technology a valid
candidate for treatment of a life-threatening disease.

Conclusions

Besides confirming the beneficial effects of melatonin on
LNCaP tumor growth and providing the proof of concept for
an application in human models, this study emphasizes the
possibility to devise alternative ways to deliver melatonin in
clinical contexts. In facts, inefficient or unspecific drug deliv-
ery to the site of action is a well-known limitation in several
therapies. Here, we propose the transdermal administration
of the natural molecule melatonin coupled to cryopass laser
treatment but this approach could be suitable also with
more potent anticancer drugs to be used as painless therapy
reducing systemic effects to a minimum, thereby making it
more sustainable for long-term treatments.
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