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S U M M A R Y
Usually, when inverting geodetic data to estimate the slip distributions on a fault, the area
is made large enough to more than cover the rupture zone, with regularization producing
regions of large slip with very small slip over the rest of the surface. We have developed a new
inverse method which assumes that nonzero slip is confined to a rectangular region, and which
jointly estimates, using Bayesian methods, the boundaries of this region as well as the slip
distribution within it, using a smoothing parameter also determined as part of the inversion.
Synthetic tests show that our method can successfully image deeper slip regions not resolved
by previous methods, and does not produce spurious regions of nonzero slip. We apply our
method to coseismic displacements measured by GPS for the 2009 L’Aquila earthquake, first
determining the orientation of the fault assuming a simplified model with uniform slip, and
then determining probability density functions for the location, length, and width of the rupture
area and for the slip distribution. The standard deviation of slip is about 10 cm and describes
a normal-faulting earthquake with a maximum slip of 88 ± 11 cm and seismic moment of
3.32+0.30

−0.29 × 1018 N m.

Key words: Inverse theory; Satellite geodesy; Seismic cycle; Earthquake source
observations.

1 I N T RO D U C T I O N

Surface displacements and gravity anomalies observed by means
of different geodetic techniques (GPS, DInSar, and GRACE and
GOCE satellite missions) have been used to study earthquakes. The
information that we can obtain by inversion of these observations
depends on the earthquake and Earth models and the model pa-
rameters that we decide to estimate. In addition to oversimplified
earthquake models, like point-like seismic sources for estimating
the focal mechanism, magnitude and centroid location (Cambiotti &
Sabadini 2013) or rectangular finite faults with uniform slip pro-
viding also a first indication of the dimensions of the rupture area
(Anzidei et al. 2009; Devoti et al. 2012; Cambiotti & Sabadini 2012;
Wang et al. 2012), the scientific community has devoted particular
attention to heterogeneous slip distributions over the fault surface in
order to obtain a detailed description of the rupture and to determine
the stress drop within the gouge of the fault (Serpelloni et al. 2012;
Wang et al. 2015), as well as to improve the match of the modelling
with observations.

Our understanding of earthquakes indicates that they can be de-
scribed as a rupture of a specific area of a new or already existing
fault (i.e. the area unlocked by the earthquake) and that this rupture
mainly consists of a slip across the fault (or tangential dislocation).
According to arguments from continuum mechanics, the slip distri-
bution must be continuous over the fault (Dahlen & Tromp 1998).

At present, in order to make the inverse problem overdetermined
and to avoid unrealistic slip distributions, geodetic data inversions
rely on prior constraints on the roughness of the slip distribu-
tion. There exist several objective or subjective methods to quan-
tify the degree of smoothing from information from observations
(Fukuda & Johnson 2008). Nevertheless, none of these methods has
considered the rupture area where the slip distribution is confined
as an unknown which must be determined as part of the inversion.
Indeed, the extension of the finite fault is always fixed a priori and
chosen in a subjective way on the basis of where the slip is expected
to be localized and the rupture area is inferred a posteriori by in-
spection of the spatial distribution of the estimated slip. With the
aim of minimizing the impact of this choice on the results (Zhou
et al. 2014), the extension of the finite fault is often chosen large
enough to cover the expected region of largest slip and part of the
surrounding region where the slip goes smoothly to zero.

In this work we will present a new inverse method that incor-
porates prior information on the slip roughness and on the require-
ment that the slip must take place in a specific rupture area. Within a
Bayesian framework, where the full knowledge about the unknowns
can be described by probability distributions, we will objectively
estimate the extension of the rupture area, jointly with the slip dis-
tribution and its degree of smoothing, from GPS data. In contrast to
the classical approach, this method does not need to make a specific
choice about the extension of the finite fault and, for this purpose,
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Figure 1. A cartoon depicting the projection on the Earth surface of the along strike and updip axes of the fault reference system and of the rectangular rupture
area. The along strike and updip coordinates of the vertexes and of the mid-points of the top and bottom edges are indicated.

we will rely on the fully Bayesian approach proposed by Fukuda &
Johnson (2008) starting from the Akaike Bayesian information cri-
terion (Akaike 1980; Yabuki & Matsu’ura 1992).

As a case study, we will apply this inverse method to the 2009
L’Aquila earthquake. This earthquake has been widely studied with
the aid of geodetic (GPS and DInSAR) and strong motion data in
a two-step approach where, first, the fault geometry is determined
under the assumption of uniform slip and, then, used to estimate the
slip distribution (Walters et al. 2009; Atzori et al. 2009; Cheloni
et al. 2010; Serpelloni et al. 2012). In the first step, this approach
assumes that the slip is uniform over a rectangular rupture area and
geodetic data are inverted for estimating two parameters describing
the uniform slip (its along strike and updip components) and seven
parameters describing the extension of the rectangular rupture area
and the planar geometry of the fault (the length and width of the
rectangle, the depth of its top edge, the dip and strike angles and the
geographic coordinates of a chosen point of the rectangle, e.g. its
centre). These parameters are then used in the second step to define
the planar fault over which the slip distribution is estimated from
the same data set used in the first step. Nevertheless, the extension
of the finite fault for this second inversion is subjectively chosen
and taken larger than that estimated in the first step so that it could
contain the region of largest slip and part of the surrounding region
where the slip goes smoothly to zero. It is worth mentioning that
this procedure to determine the fault plane is typical for geodetic
data inversions. In waveform inversions, instead, the fault plane is
constrained from the nucleation point position, centroid parameters
(location, strike, dip), including sometimes aftershock distributions,
and varied until it delivers the best waveform.

Our inverse method can be regarded as an improvement of the
two step approach where, once the fault geometry has been estab-
lished in the first step under the assumption of uniform slip, the slip
distribution is estimated from observations, jointly with the rupture
area where the slip takes place. In this respect, our method makes
objective also the estimate of how large and where the rupture area
is located and, in this way, avoids making the a priori choice of
a sufficiently large finite fault over which the slip distribution is

inverted. For the sake of simplicity, we will keep the assumption
of planar fault surfaces and rectangular rupture areas and we will
adopt flat homogeneous elastic Earth models in order to simulate
surface displacement caused by earthquakes (Okada 1992), rather
than relying on complex, spherically symmetric Earth models as in
Cambiotti et al. (2011) and Cambiotti & Sabadini (2015).

2 E A RT H Q UA K E M O D E L

Let us consider a flat Earth model and assume that the fault surface
is planar and that we know its dip angle and line of strike (i.e.
the intersection between the planar fault and the Earth surface). In
order to identify the points of this planar fault, as depicted in Fig. 1,
we introduce the along strike, x1, and updip, x2, coordinates with
respect to an origin taken on the line of strike.

We assume also that the rupture area reaches the Earth surface and
is rectangular. In this respect, it can be specified by its along strike, L,
and along dip, W, lengths and by the along strike coordinate, x1 = l,
of the mid-point. We put these three parameters in the following
3-D array

a =
⎛
⎝ l

L
W

⎞
⎠ ∈ A ⊆ (−∞, ∞) × (0,∞) × (0, ∞) (1)

where A is the space of all possible rupture areas reaching the Earth
surface. It is possible to consider also rupture areas which do not
reach the Earth surface by including a fourth parameter indicating
the updip coordinate of the top edge of the rupture area. For the sake
of simplicity and in view of the application to the 2009 L’Aquila
earthquake, we do not consider this possibility here.

Following Yabuki & Matsu’ura (1992), we parametrize the slip
distribution using bicubic splines defined over a regular grid of the
rectangular rupture area, with N1 nodes along strike and N2 nodes
along dip. The bicubic splines of those nodes adjacent to and on the
edges of the rupture area are defined in such a way that, at the left,
right and bottom edges, the slip is zero and that, at the top edge, the
second derivative of the slip with respect to the updip coordinate is
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zero. The latter constraint allows the slip to reach the Earth surface
and, at the same time, avoids anomalous results at this edge. We
provide details about the regular grid and the bicubic splines in
Supporting Information Appendix A.

We decompose the slip distribution, u, into its along strike, u1,
and updip, u2, components

u(x) = u1(x) x̂1 + u2(x) x̂2 (2)

where x̂1 and x̂2 are the along strike and updip unit vectors, and x
is the vector position over the fault surface

x = x1 x̂1 + x2 x̂2. (3)

Then, we express each slip component as follows:

uk(x) =

⎧⎪⎨
⎪⎩

N∑
n=1

uk,n �n(x) x ∈ A

0 x /∈ A

(4)

where �n is the bicubic spline of the nth node, uk,n is the slip
coefficient associated to this node and to the along strike (k = 1)
or updip (k = 2) component, and A is the rupture area in the fault
reference system

A = [l − L/2, l + L/2] × [−W, 0] . (5)

We note that, by definition of the modified bicubic splines, the
slip distribution goes to zero at the left, right and bottom edges of
the rupture area and, by definition of rupture area, it is set to zero
outside. Furthermore, we note that the updip coordinates x2 = −W
and 0 identify the bottom and the top edge of the rupture area.

According to eq. (4), the slip is parametrized by a linear com-
bination of expansion (basis) functions, which are represented by
overlapping bicubic splines, defined over N = N1 N2 nodes. We col-
lect the slip coefficients uk,n into the following (2 N)-dimensional
array

s =
(

s1

s2

)
∈ S = R

2 N (6)

where 2 N is the total number of coefficients, S is the space of all
possible coefficients and sk is given by

sk =

⎛
⎜⎝

uk,1

...
uk,N

⎞
⎟⎠ . (7)

The number of nodes of the regular grid is established in such a way
that the grid steps do not exceed a spatial resolution specified both
along strike, δl0, and along dip, δw0, that is,

L/(N1 − 1) ≤ δl0 (8)

W/(N2 − 1) ≤ δw0 (9)

with the cautionary remark that the along strike, N1, and updip, N2,
numbers of nodes are never chosen smaller than 4 in order to define
properly the (modified) bicubic splines.

3 I N F O R M AT I O N F RO M
O B S E RVAT I O N S

Within the framework of the dislocation theory and linear elas-
tic Earth models, coseismic surface displacements depend lin-
early on the slip coefficients and non-linearly on the rupture area

(Okada 1992; Yabuki & Matsu’ura 1992). The relation between data
and model parameters thus takes the following form

ỹ = y(a, s) + e (10)

where ỹ and e are the M-dimensional arrays of the observed sur-
face displacements and errors, and y is the M-dimensional array of
modelled surface displacements

y(a, s) = K(a) s. (11)

Here, M is the number of data and K is the M × (2N)-matrix that
linearly relates the modelled surface displacements, y, to the slip
coefficients, s, and depends nonlinearly on the rupture area, a. The
elements of this matrix, Kiq, can be computed from the elastostatic
Green functions for tangential dislocations (e.g. Okada 1992)

Kiq (a) =
∫

A
Gk

i (x) � j (x) dx1 dx2. (12)

Here, the index i identifies the component of the surface displace-
ment at a specific GPS site (i.e. a datum), the index q is given by
q = (k − 1) N + j according to the arrangement of slip coefficients
introduced in eqs (6) and (7), �j is the modified bicubic spline
centred at the jth node of the regular grid, and Gk

i is the elasto-
static Green function for the along strike (k = 1) and updip (k = 2)
point-like unit slip.

The array of errors, e, contains observational errors from data
analysis and modelling errors that result, for example, from non-
planar fault geometries and heterogeneities in the Earth structure,
which are not taken into account by our earthquake and Earth mod-
els. Due to difficulties in assessing modelling errors and following
Fukuda & Johnson (2008), we use a simple representation of obser-
vational and modelling errors and assume that they obey a Gaussian
distribution with zero mean and covariance matrix

Cy = σ E (13)

where E is the covariance matrix of observational errors and σ ∈ (0,
∞) is a hyperparameter that must be estimated as part of the inver-
sion. The latter can be interpreted as follows: there are modelling
errors when σ > 1, they are negligible when σ = 1 and the earth-
quake model is over-parametrized (i.e. it fits the observations too
well) when σ < 1. Alternatively, we can say that observational er-
rors have been underestimated during the data analysis when σ > 1,
correctly estimated when σ = 1 and overestimated when σ < 1.

We note that, by definition, this assumption on the structure of
observational and modelling errors guarantees the statistical agree-
ment between observed and modelled surface displacements, on
average and within one-sigma error. The statistical agreement is
obtained by rescaling the observational errors with the hyperpa-
rameter σ and, in the most common case of σ > 1, this means that
there are modelling errors or that observational errors have been
underestimated during the data analysis.

From eqs (10), (11) and (13), the probability density function
(PDF) for the data given the earthquake model parameters and the
hyperparameter σ , can be written as

f (ỹ | s, a, σ ) =
exp

(
− Xy(a,s,ỹ)

2 σ

)
(2 π σ )

M
2

∥∥E
∥∥ 1

2

(14)

where Xy is the misfit between observed and modelled surface dis-
placements

Xy(a, s, ỹ) = (ỹ − K(a)s)T E−1 (ỹ − K(a)s) (15)
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and ‖ · ‖ and T stand for the determinant and the transpose, re-
spectively. Given the data ỹ, eq. (14) depends on the earthquake
model parameters (s and a) and of the hyperparameter σ and, thus,
provides the information on the parameters, supplied by the obser-
vations (Yabuki & Matsu’ura 1992).

4 I N F O R M AT I O N F RO M P R I O R
C O N S T R A I N T S

It is common to introduce as prior information that the slip distribu-
tion is smooth to some degree, to make the inverse problem overde-
termined and avoid implausible results. In this respect, we consider
the measure of slip roughness proposed by Yabuki & Matsu’ura
(1992) and defined as follows:

Xs =
2∑

i, j,k=1

∫
A

(
∂2uk(x)

∂xi ∂x j

)2

dx1 dx2. (16)

This involves the integration over the rupture area, A, of the second
order derivative of the along strike, u1, and updip, u2, components
of the slip with respect to the along strike, x1, and updip, x2, coor-
dinates.

Although this kind of constraint on the slip roughness is arbi-
trary (alternative definitions of slip roughness have been considered
(Zhou et al. 2014)), its implementation is mandatory to invert static
earthquake data recorded by different geodetic techniques. Only the
inclusion of kinematic earthquake data, together with the physics
of the rupture process describing plausible time evolutions of the
slip distribution, allows to remove this kind of constraint (Minson
et al. 2013).

Substituting eq. (4) into eq. (16), we obtain

Xs(a, s) =
2∑

k=1

sT
k B(a) sk (17)

or, equivalently,

Xs(a, s) = sT A(a) s. (18)

Here B is a symmetric positive definite N × N-matrix,
whose (n, n′)th element can be obtained analytically performing
the following integral

[B(a)]nn′ =
2∑

i, j=1

∫
A

∂2�n(x)

∂xi ∂x j

∂2�n′ (x)

∂xi ∂x j
dx (19)

and A is the following block (2 N) × (2N)-matrix

A(a) =
(

B(a) 0
0 B(a)

)
. (20)

We note that the matrices B and A depend on the rectangular rupture
area, a. They also depend on the parametrization of the slip distri-
bution and, particularly, on the along strike and along dip spatial
resolutions used to define the regular grid, eq. (9).

With this measure of slip roughness, the prior PDF for the slip
coefficients reads

f (s | a, β) =

∥∥B(a)
∥∥ exp

(
− Xs(a, s)

2 β

)
(2 π β)N

(21)

where β ∈ (0, ∞) is a hyperparameter that weights information
from the constraint on the slip roughness; we made use of the re-

lationship
∥∥A

∥∥ = ∥∥B
∥∥2

. Eq. (21) can be seen as the prior PDF for

the slip coefficients given the rupture area, a, and the hyperparam-
eter β. Within this framework we are not including any positivity
constraints on the slip distribution, meaning that we are not intro-
ducing any prior information about the slip direction. Although it
would be possible to include this kind of prior information, it is not
necessary for the case of the 2009 L’Aquila earthquake because of
the objective estimate of the smoothing parameter β, as discussed
in Sections 6 and 7.

In addition to this prior PDF, we may introduce also the prior
PDF for the rupture area and the hyperparameters, say f (a, σ, β).
Combining this PDF with the PDF for the slip given the rupture
area and the hyperparameter β, we thus obtain the prior PDF for all
earthquake model parameters and hyperparameters

f (s, a, σ, β) = f (s | a, β) f (a, σ, β). (22)

As far as we have no knowledge about these parameters, but for the
domain in which they take their values, that is, a ∈ A and σ , β ∈
(0, ∞), f (a, σ, β) is the uniform PDF and f (s, a, σ, β) is simply
proportional to f (s | a, β)

f (s, a, σ, β) ∝ f (s | a, β). (23)

5 P O S T E R I O R P D F

According to the Bayes’ theorem (Tarantola 2005; Fukuda &
Johnson 2008), the PDF for the data and the prior PDF, eqs (14)
and (23), can be combined in order to obtain the posterior PDF for
all the earthquake model parameters and hyperparameters given the
data

p(a, s, σ, β | ỹ) = c0 f (s, a, σ, β) f (ỹ | a, s, σ )

= c0

∥∥B(a)
∥∥ exp

(
− Xy(a, s, ỹ)

2 σ
− Xs(a, s)

2 β

)

(2 π σ )
M
2 βN

∥∥E
∥∥ 1

2

(24)

where c0 is a constant of normalization.
Eq. (24) takes into account information from observations and

prior constraints, and constitutes the solution of the inverse prob-
lem. It can be used to calculate any estimator, as optimal parameters,
means, standard deviations and confidence intervals, as well as to
investigate the marginal PDFs for selected earthquake model pa-
rameters or hyperparameters. From now on, for the sake of brevity,
we will not explicit any longer the dependence on the data. We will
thus write χy(a, s) and p(a, s, σ, β) instead of χy(a, s, ỹ), eq. (15),
and p(a, s, σ, e | ỹ), eq. (24), respectively.

By considering that eq. (24) depends on s only via the argument
of the exponential function and that the latter is a bilinear form in s,
this equation consists of a linear inverse problem for the slip coef-
ficients given the rupture area and the hyperparameters. Following
Yabuki & Matsu’ura (1992), the conditional PDF for the slip given
the rupture area and the hyperparameters can be cast in the form of
a Gaussian distribution with mean s̃ and covariance matrix σ S

p(s | a, σ, β) =
exp

(
− (s−s̃(a, γ ))TS−1(a, γ )(s − s̃(a, γ ))

2 σ

)

(2 π σ )N
∥∥S(a, γ )

∣∣ 1
2

(25)

where

s̃(a, γ ) = S(a, γ ) KT(a) E ỹ (26)

S(a, γ ) = (
KT(a) E−1 K(a) + γ A(a)

)−1
(27)
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with γ ∈ (0, ∞) given by

γ = σ

β
. (28)

On the basis of this result, it is straightforward to marginalize the
posterior PDF with respect to the slip s. We obtain

p(s, a, σ, β) = p(s | a, σ, β) p(a, σ, β), (29)

where p(a, σ, β) is the marginal PDF for the rupture area and the
hyperparameters

p(a, σ, β) =
∫
S

p(s, a, σ, β) ds

= c0

γ N
∥∥B(a)

∥∥ ∥∥S(a, γ )
∥∥ 1

2 exp

(
− X̂ (a, γ )

2 σ

)

(2 π σ )
M
2

∥∥E
∥∥ 1

2

(30)

with

X̂ (a, γ ) = Xy(a, s̃(a, γ )) + γ Xs(a, s̃(a, γ ))

= ỹT
(
E−1 − E−1K(a)S(a, γ )KT(a)E−1

)
ỹ. (31)

5.1 The fully Bayesian approach

As discussed in Fukuda & Johnson (2008), the approach proposed
by Yabuki & Matsu’ura (1992) is based on the Akaike Bayesian
information criterion (ABIC) and does not account for the uncer-
tainties of the hyperparameters, which is appropriate only if the
marginal PDF for the hyperparameters has a dominant and sharp
peak at its maximum. For this reason and with the purpose of includ-
ing positivity constraints on the slip distribution, Fukuda & Johnson
(2008) proposed a fully Bayesian approach which mainly consists
in estimating the mean slip distribution and its standard deviation
by integration of the posterior PDF over the slip coefficients and
hyperparameters in order to account also for the uncertainties of
the hyperparameters. The fully Bayesian approach, once applied to
the present case without positivity constraints, allows us to account
for the uncertainties in the rupture area, in addition to those of the
hyperparameters, and therefore we will rely on it.

In this perspective and following Fukuda & Johnson (2008),
we marginalize p(a, σ, β) with respect to the hyperparameters and
obtain

p(a, σ, β) = p(a) p(σ, β | a) (32)

where p(a) is the marginal PDF for the rupture area and p(σ, β | a)
is the conditional PDF for the hyperparameters given the rupture
area

p(a) =
∞∫

0

∞∫
0

p(a, σ, β) dσ dβ (33)

p(σ, β | a) = p(a, σ, β)

p(a)
. (34)

Furthermore, we define the expectation, E(·), and covariance,
C( · , ·), operators as follows

E(h) =
∫
A

E(h | a) p(a) da (35a)

C(h, g) = E(h g) − E(h) E(g) (35b)

where h and g are two functions of the earthquake model parameters
and hyperparameters, and E(·| a) is the expectation operator given

the rupture area

E(h | a) =
∞∫

0

∞∫
0

∫
S

h p(s | a, σ, β) p(σ, β | a) ds dσ dβ. (36)

We will use the expectation and covariance operators to estimate
the earthquake model parameters, the hyperparameters and their
uncertainties. As discussed in Supporting Information Appendix B,
and for some specific functions of the earthquake model parameters,
the integration over the slip coefficients can be performed analyti-
cally thanks to the fact that the conditional PDF for the slip takes the
form of a Gaussian distribution, eq. (25). Furthermore, by substi-
tuting the hyperparameter β with the new hyperparameter γ given
by eq. (28), it is possible to perform analytically the integration over
the hyperparameter σ . On the other hand, the integrations over the
rupture area a and the new hyperparameter γ must be performed
numerically and we do it using the Romberg algorithm (Quarteroni
et al. 2000).

In particular, as described in detail in Supporting Information
Appendix B, the mean and covariance of the along strike, u1, and
updip, u2, components of the slip at a given point x of the planar
fault are given by

E(uk(x)) =
∫
A

N∑
n=1

�n(x) E(uk,n | a) p(a) da (37a)

C(uk(x), uk′ (x)) =
∫
A

N∑
n,n′=1

�n(x) �n′ (x) E(uk,n uk′,n′ | a)

p(a) da − E(uk(x)) E(uk′ (x)). (37b)

The expectations of the slip coefficients, E(uk,n | a), and of their
products, E(uk,n uk′,n′ | a), given the rupture area are elements of
the expectations E(s | a) and E(s sT | a), which are given by eq.
(B.19) and require numerical integration over only the new hyper-
parameter γ . For the sake of simplicity, when we will discuss the
mean slip amplitude and its variance, we will consider the following
approximation. Given the definition of the slip amplitude,

u =
√

u2
1 + u2

1, (38)

the approximation of its expectation and variance read

E(u(x)) ≈
√(

E(u1(x))
)2 + (

E(u2(x))
)2

(39a)

C(u(x), u(x)) ≈
2∑

k,k′=1

E(uk(x)) E(uk′ (x)) C(uk(x), uk′ (x))

E(u(x))2
. (39b)

6 G P S I N V E R S I O N F O R T H E 2 0 0 9
L’ A Q U I L A E A RT H Q UA K E

For the case study of the 2009 L’Aquila earthquake, we consider the
surface displacements obtained from the time-series analysis of 50
continuous survey and 27 campaign GPS stations by Serpelloni et al.
(2012), Fig. 2 (black arrows). Considering that each GPS station
records the three (east, north and vertical) components of the surface
displacement, but for the MSNI GPS station for which there is no the
vertical component, the number of data is M = 77 × 3 − 1 = 230.
In this case, the covariance matrix of the observational errors, E,
is diagonal because the GPS time series analysis has been obtained
assuming that there is no noise correlation among GPS stations and
the different components of the recorded surface displacements.
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Figure 2. Comparison between observed and modelled (a) horizontal and (c) vertical components of the surface coseismic displacements (black and grey
arrows, respectively). Panels (b) and (d) show the residual (i.e. the difference) between observed and modelled surface coseismic displacements. The thin
circles represent the standard deviation of the observed horizontal and vertical displacements, after having been rescaled by the square root of the expectation
of the hyperparameter σ , that is, by

√
E(σ ) = 3.06. In this way we account for the structure of both observational and modelling errors estimated a posteriori

within the framework of the fully Bayesian approach. The dashed dot line and rectangle indicate the line of strike taken from Serpelloni et al. (2012) and the
estimated mean rectangular rupture area.

As already obtained by Serpelloni et al. (2012), the fault surface
estimated from the inversion of these GPS data under the assump-
tion of uniform slip is characterized by dip and strike angles of
50.5◦ and 129.4◦, respectively, and the mid-point of the top edge
of the extended finite fault (i.e. a point of the line of strike) is at
(13.4714◦E, 42.3609◦N). These values of the dip and strike angles
and of the mid-point of the top edge of the fault are kept fixed

and used as exact prior information in the following GPS data in-
version. We choose the mid-point of the top edge of the extended
finite fault area as origin of the fault reference system introduced
in Section 2.

For computational reasons, we take a finite rupture area space
where the along strike coordinate of the mid-point, l, varies from
−5 to 5 km, and the length, L, and the width, W, vary from 10 to 40
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and 50 km, respectively,

A = [−5 km, 5 km] × [10 km, 40 km] × [10 km, 50 km]. (40)

We sample this space over a regular grid of 65 nodes for each
parameters (i.e. 2n + 1 with n = 6 according to the discretization
required by the Romberg algorithm), which totals 653 = 274 625
nodes. Furthermore, as in Serpelloni et al. (2012), we fix at 2 km the
spatial resolution of the regular grid used for the parametrization of
the slip distribution, both along strike and along dip.

6.1 Rupture area

Fig. 3 shows the marginal PDFs for the along strike coordinate
of the mid-point, p(l), the length, p(L) and the width, p(W), of
the rectangular rupture area and their comparison with Gaussian
distributions with the same means and standard deviations of these
marginal PDFs. The estimates of the means, standard deviations
and 95 per cent confidence intervals are reported in each panels.

We note that the marginal PDFs are bell shaped and have only
one maximum at l = 0.47 km, L = 18.44 km. and W = 18.13 km. In
this respect, we note that the restriction to a finite rupture area space,
eq. (40), does not affect our conclusion because the probability of
those rupture areas that we are excluding is negligible. Furthermore,
the Gaussian distribution is a good approximation for l and L, while
it is not for W due to the asymmetry of this parameter at larger values.
This asymmetry is due to the fact that the resolving power of surface
coseismic displacements on the slip distribution decreases with in-
creasing depth and to the poor coverage of GPS network at the Earth
surface above the deep portion of the fault (from Fig. 2, we note that
there is no coverage southwestwards the ROIO GPS station for about
25 km, up to the PSCA GPS station; see also the discussion in Sup-
porting Information Appendix C). These results show that the GPS
data for the 2009 L’Aquila earthquakes resolve the rupture area with
a precision (95 per cent confidence intervals) of a few kilometres
along strike (l = 0.61+1.50

−1.38 km and L = 18.93+3.59
−2.74 km), and several

kilometres along dip (W = 20.72+14.22
−4.02 km). Particularly, the mid-

point of the top edge of the rupture area is at (13.4771◦E, 42.3574◦).
We note that our estimates of the length and width are greater than
those obtained by Serpelloni et al. (2012) under the assumption of
uniform slip, which are L = 14.3+3.8

−2.4 km and W = 15.8+7.9
−5.5 km: this

is due to our definition of length and width referring to the whole
region of the fault unlocked by the earthquake, even with small slip,
which is necessarily larger than that obtained under the assumption
of uniform slip, which is controlled by high slip values.

6.2 Slip distribution

Fig. 4 shows the mean slip distribution and its standard deviation in
the fault and geographic reference frames, which we obtain using
eqs (37) and (39). We note that the slip distribution describes a
normal earthquake with average rake angle of −103.3◦+4.2

−4.8 and is
well localized around the region of largest slip. Furthermore, it is
characterized by a single (global) maximum of 88.2 ± 10.8 cm
at depth of 6.2 km. The seismic moment is MS = 3.32+0.30

−0.29 × 1018

N m and the moment magnitude is MW = 6.281+0.025
−0.026 assuming a

shear modulus of 26 GPa as in Serpelloni et al. (2012) (derived
from Di Luzio et al. 2009). Left-lateral and right-lateral strike slips
of about 20 cm characterize the shallowest few kilometres of the
fault northwestwards and southeastwards the PAGA GPS station,
respectively.

Figure 3. Marginal PDFs for (a) the along strike coordinate of the mid-point,
p(l), (b) the length, p(L), and (c) the width, p(W), of the rectangular rupture
area and their approximation with Gaussian distributions (solid and dashed
lines, respectively). The grey regions indicate the 95 per cent confidence
intervals. In each panel, we also report the extremes of the 95 per cent
confidence intervals, the means and standard deviations of the marginal
PDFs.

The standard deviation is of the order of 10 cm in the mean
rupture area, with a maximum of 17 cm at 12.5 km depth. Outside
the rupture area it decreases to zero in less than a few kilometres
along strike and in a few tens of kilometres downdip. This differ-
ence in the dependence of the standard deviation with respect to
the along strike and updip coordinates shows how, according to
the fully Bayesian method, uncertainties on the dimensions of the
rupture area (especially those on the width Fig. 3) are translated to
uncertainties on the slip distribution. Furthermore, we note that the
standard deviation increases in the shallowest portion of the fault.
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Figure 4. (a,c) Mean slip distribution and (b,d) standard deviation in the fault and geographic reference frames (top and bottom panels, respectively) obtained
by the posteriori PDF, eq. (24). The grey arrows and circles in panel (a) indicate the mean slip and standard deviation and are given every 2 km, and the contour
lines are given every 10 and 2 cm for the mean slip distribution and standard deviation, respectively. The red rectangle indicates the mean rupture area, and the
grey small circles and labels in panels c and d show the locations and names of the GPS stations.

This increase can be explained considering that the shallower the
slip is, the more localized is the deformation at the Earth surface
and, so, the more dense must be the GPS network to resolve it. Only
in the very proximity of GPS stations, the shallowest slip can be
resolved, as shown by the local minimum of the standard deviation
attributable to the nearby PAGA GPS station, of about 3 cm. Deep
and intermediate slip, instead, deforms larger regions of the Earth
surface and, thus, can be resolved by more distant GPS stations.

The slip and, in particular, the standard deviation that we have
estimated according to the fully Bayesian approach are not exactly
zero outside the mean rupture area because they have been obtained
by means of the expectation and covariance operators, eqs (35) and
(36), which take into account the slip distribution for all possible
rupture areas weighted by the probability of the latter, p(a). This
implies that we estimate (almost) zero slip and standard deviation
only at those points of the fault surface which do not belong to



1000 G. Cambiotti et al.

likelihood rupture areas, that is, sufficiently far from the mean rup-
ture area.

The one asperity model for the synthetic test T1 discussed in Sup-
porting Information Appendix C, Fig. S1(A), closely resembles the
mean slip distribution estimated from the original data, Fig. 4(a),
and it is well recovered by the GPS network. More complex slip
distributions, like those characterized by two and four asperities for
the synthetic tests T2 and T3, Supporting Information Fig. S1(B,C),
can also be recovered by the GPS network, although the ability of
resolving multiple slip maxima deteriorates with increasing depth.
In light of this, we asses that GPS data for the 2009 L’Aquila earth-
quakes do not indicate the presence of one shallow and one deep
asperities as instead suggested by broad band ground motion seis-
mometers (Cirella et al. 2012; Gallovič et al. 2015). Since Ameri
et al. (2012) and Tinti et al. (2014) have shown clear evidence of
two asperities, separated in time, in the seismic data, it is likely that
this difference reflects aseismic afterslip that affects the GPS offsets
over their 24 hr sampling interval.

6.3 Observed and modelled surface displacements

According to the fully Bayesian approach, it is not meaningful to
consider modelled surface displacements for specific (e.g. mean
or optimal) rupture areas and slip distributions. Rather, similarly
to the expectation of the slip distribution, we must consider the
expectation of modelled surface displacements, that is,

E(y) =
∫
A

K(a) E(s | a) p(a) da (41)

with E(s | a) given by eq. (B.19a). Furthermore, according to the
assumption made on the structure of observational and modelling
errors, we must estimate also the hyperparameter σ in order to
rescale the covariance matrix from the GPS data analysis, eq. (13).
Particularly, from eqs (B.10) and (B.11), we obtain E(σ ) = 9.39
and C(σ , σ ) = 0.85 and, then, the estimate (mean and standard
deviation) of this hyperparameter, σ = 9.39 ± 0.92. In light of this,
the standard deviations of the east, north and vertical components
of the observed surface displacements must be increased by a factor
of

√
σ = 3.06 ± 0.96.

Fig. 2 shows the comparison between observed, ŷ, and modelled,
E(y), surface displacements and their residuals. The root mean
square (RMS) errors are 4.3 4.5 10.1 mm for the east, north and
vertical components of the surface displacements, respectively, and,
as implied by the fully Bayesian method, observed and modelled
displacements are in overall agreement within one-sigma error. This
is shown in Figs 2(b,d), where we compare the residual between ob-
served and modelled surface displacements with the observational
errors rescaled by the square root of the hyperparameter σ . Particu-
larly, we note that, in the near field, the agreement between observed
and modelled surface displacements is better in the hanging wall
than in the foot wall, both for the horizontal and vertical components
(the PAGA GPS station is just in the hanging wall). Furthermore,
the agreement is better in the far field than in the near field, although
this is mainly due to the fact that far field surface displacements are
smaller than their uncertainties.

The weighted residual square sum (WRSS), defined as follows:

WRSS = (ŷ − E(y))T E−1 (ŷ − E(y)), (42)

yields WRSS/M = 8.5, with M = 230 being the number of data.
This definition of WRSS constitutes an indication of the quality
of the fit between observed and modelled surface displacements

with respect to the original observational errors from GPS data
analysis, that is, without scaling the data covariance matrix by the
hyperparameter σ . We note that Serpelloni et al. (2012) obtained a
value of WRSS (7.1 M) smaller than that here obtained (8.5 M) and
this is mainly attributable to the different (subjective and objective)
methods used to quantify the slip roughness. Indeed, as we will
discuss in Section 7, the subjective method implemented by these
authors selects a slip distribution that is rougher than ours, thus
allowing a better fit to the observations.

7 T H E A P R I O R I C H O I C E O F T H E
E X T E N S I O N O F T H E F I N I T E FAU LT

In order to gain insight into the effects of the a priori choice of the
extension of the finite fault on the estimate of the slip distribution,
we now invert the GPS data for different choices of the extension of
the finite fault. This means that, instead of eq. (24), we will consider
the posterior PDF given by the conditional PDF for the slip and the
hyperparameters given the rupture area

p(s, σ, β | a) = p(σ, β | a) p(s | a, σ, β) (43)

and we will make different choices of the rupture area parameters.
The comparison between the results obtained in this way and those
discussed in Section 6, will show the advantages of our method
and enlighten the consequences of fixing the extension of the finite
fault. This comparison is also discussed in Supporting Information
Appendix C on the basis of synthetic tests.

Figs 5(a) and (b) show the slip distribution estimated assuming
the same finite fault as chosen by Serpelloni et al. (2012) and
characterized by l = 0 km, L = 30 km and W = 24 km. We note
that the slip distribution resembles that shown in Fig. 4(a), except
for the fact that it is slightly smoother. Particularly, it goes to zero
more slowly towards the borders and the maximum slip is 85.3 ±
8.5 cm. Furthermore, we note that this choice of the finite fault
yields smaller standard deviations in the region of largest slip and
in the surrounding few kilometres than those obtained according
to our method (Fig. 4), and larger standard deviations elsewhere. It
is worth mentioning also that this a priori choice of the extension
of the finite fault sets the standard deviation arbitrarily to zero at
depths greater than 24 km, where our method predicts instead small,
but nonzero, standard deviations. By definition, indeed, the standard
deviation, as well as the slip, is zero outside the chosen finite fault
according to the classical method.

Figs 5(c) and (d) show the slip distribution estimated assuming
a larger finite fault characterized by l = 0 km, L = 80 km and
W = 80 km. We note that the slip distribution is smoother than that
obtained for the smaller rupture area shown in Fig. 5(a) and (b),
and the maximum slip is 78.1 ± 5.8 cm. This is due to the fact
that the larger finite fault requires a higher degree of smoothing
to stabilize the slip distribution. The largeness of the chosen finite
fault also yields a few local maxima far from the region of largest
slip, which can be regarded as the attempt of the slip distribution
to improve the match of the modelling with observations, even at
locations where unlocking is not expected on physical grounds. As
specific example of this behaviour, we put our attention on the local
maximum close to the line of strike and at about the along strike
coordinate x1 = 25 km, which improves the fitting to the surface
displacement measured by the nearby BOMI GPS station. Similar
to the case of the smaller finite fault, the standard deviations in
the region of largest slip and in the surrounding few kilometres
are smaller than those obtained by our method (Fig. 4), while they
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Figure 5. (a,c) Mean slip distribution and (b,d) standard deviation in the fault reference frame obtained by the conditional PDF given the rupture area, eq. (43).
Results are shown for the 30 × 24 km2 and 80 × 80 km2 rupture areas discussed in the main text (top and bottom panels, respectively). The red rectangles
indicate the 30 × 24 km2 rupture area, which is the same as chosen by Serpelloni et al. (2012). The black arrows and circles in panels (a) and (b) indicate the
mean slip and standard deviation and the contour lines are given every 10 and 2 cm for the mean slip distribution and standard deviation, respectively.

are larger elsewhere. The further increase of the dimension of the
finite fault would make things even worse, up to the scenario where
the uncertainties of the slip distribution becomes larger and larger
going far away from the region of largest slip.

These results show that the pattern and amplitude of the slip
distribution and, especially, of the standard deviation depend on
the a priori choice of the extension of the finite fault. Our inverse
method, instead, does not have this dependence and, objectively

estimating the rupture area from information from observations, is
able to provide the rupture area where the slip actually takes place
and translates uncertainties on the dimensions of the rupture area to
uncertainties on the slip distribution.

By comparing the slip distribution shown in Fig. 5(a) with the
slip distribution obtained by Serpelloni et al. (2012) we can also
understand the impact of objective, rather than subjective, methods
for estimating the slip roughness. Indeed, both results have been
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obtained using the same data set and finite fault, and, thus, they
differs only by the way in which the prior constraint on the slip
roughness has been implemented. The fully Bayesian method esti-
mates a slip distribution smoother than that obtained by Serpelloni
et al. (2012) who choose the value of the smoothing near to the
location on the trade-off curve where only a small decrease in the
misfit between observed and modelled surface displacements is
gained by adding more slip roughness (Harris & Segall 1987; Du
et al. 1992). Our slip distribution, indeed, is characterized by only
one (global) maximum of 85.2 ± 8.5 cm, while that obtained by
Serpelloni et al. (2012) has a global maximum of more than about
100 cm and local maxima away from the region of largest slip. In
light of the ability of our method to resolve multiple maxima (see
Supporting Information Appendix C), these local maxima should
be considered as artefacts rather than being an information provided
by the GPS data. A similar remark holds also for the case of the
slip distribution obtained by Cheloni et al. (2010) from GPS data,
which is indeed characterized by four maxima and, then, rougher
than ours. Finally, we note that the objective method does not need
positivity constraints on the slip distribution in order to estimate
realistic rake angles.

Another example of the difficulties encountered in fixing a priori
the extension of the finite fault is offered by the slip distribution
estimated through the single value decomposition (SVD) inversion
of DInSAR data by Atzori et al. (2009) where, as the same authors
say, patches with null slip or very high uncertainty at the border
have been removed, without giving further details. In contrast to
these previous works, the slip distribution obtained by Walters et al.
(2009) inverting DinSAR and body-waves is smooth and closely
resembles our results. Nevertheless, we note that this agreement is
mainly due to the fact that these authors fix a priori a very small finite
fault of 20 × 18.5 km2, which is almost the mean rupture area that
we have objectively estimated from GPS data, about 19 × 21 km2. In
this respect, we can say that their choice was right, but not inferred
from observations.

These results show that our methodology, building on the objec-
tive estimation of the extension of the rupture area from observa-
tions, overcomes the need of a somehow subjective choice of the
extension of the finite fault pertaining to the second step of two step
approach for retrieving the heterogeneous slip distribution once the
planar fault geometry has been established. This advantage, at the
same time, is achieved without introducing any bias on the estimate
of the slip distribution.

8 C O N C LU S I O N S

We have presented a new inverse theory that incorporates prior in-
formation both on the slip roughness and on the evidence that slip
must take place in the region unlocked by the earthquake, that is,
the rupture area. This theory, based on the fully Bayesian approach
proposed by Fukuda & Johnson (2008), objectively estimates the
roughness of the slip distribution, as well as the location and di-
mensions of the rupture area, from information from observations.
For the sake of simplicity, we have assumed that the fault surface
is planar and that the rupture is rectangular and extends up to the
Earth surface.

Our objective estimation of the rupture area from information
from GPS data constitutes a step ahead of previous inverse meth-
ods aiming at estimating the heterogeneous slip distribution over
a finite fault. Indeed, independently from the use of subjective or
objective methods for constraining the slip roughness (Fukuda &
Johnson 2008), all previous inverse methods fix a priori the exten-

sion of the finite fault. This means that they implicitly assume that
the slip, as well as its standard deviation, is zero outside the chosen
finite fault. In contrast, our method consider the probability of each
rupture area and estimate the mean slip distribution by integration,
weighted according to these probabilities, over the whole space of
possible rupture areas. In this context, our new inverse method does
not make a unique choice of the extension of the finite fault and
predicts nonzero slip and standard deviation only at those points
belonging to likelihood rupture areas.

We have applied this new inverse method to the 2009 L’Aquila
earthquake, by employing the same GPS data of Serpelloni et al.
(2012), as well as their estimates of the dip angle and of line of
strike. From the analysis of the posterior PDF, we conclude that
GPS data are able to constrain the rupture area with a precision
(95 per cent confidence intervals) of a few kilometres along strike
and several kilometres along dip (see Fig. 3). The estimated slip
distribution clearly describes a normal earthquake of magnitude
MW = 6.281+0.025

−0.026 with average dip angle of −103.3◦+4.2
−4.8. It is char-

acterized by only one (global) maximum of 88.2 ± 10.8 cm at depth
of 6.2 km. The standard deviation is of the order of 10 cm within the
mean rupture area and decreases to zero in a few kilometres along
strike and a few tens of kilometres downdip where the slip goes to
zero. In contrast, we have shown that the standard deviation of the
slip distribution estimated fixing a priori the extension of the finite
fault depend on this a priori information.

As shown by the synthetic tests discussed in Supporting Informa-
tion Appendix C, our fully Bayesian method does not introduce any
bias in the resolving single- and multi-asperity slip distributions.
Instead, it provides results which closely resemble those obtained
according to the classical approach when the a priori choice of the
extension of the finite fault is optimal, that is to say that it coincides
exactly with the rupture area of the synthetic slip distribution. In re-
alistic situations, where this information is not available in advance,
our fully Bayesian method performs even better than the classi-
cal approach in resolving the synthetic slip distribution, especially
when there exist deep asperities.

We have also shown that the objective estimation of the slip
roughness makes the slip distribution smoother than those obtained
by using subjective methods. This avoids the appearance of spu-
rious regions of nonzero slip away from the region of largest slip
that, in view of the ability of our objective method to resolve multi
asperities, should be considered as artefacts of subjective methods
rather than being an information provided by GPS data. Further-
more, the objective estimate of the slip roughness for the case of
the 2009 L’Aquila earthquake avoids the inclusion of positivity con-
straints on the slip distribution, which have been implemented in
other works, as in Serpelloni et al. (2012). We have also shown
that the subjective choice of a too large finite fault may lead to
the appearance of artefacts, such as unrealistic local maxima away
from the region of largest slip, apart from the subjective or objec-
tive method used to estimate the slip roughness. In this respect, our
new inverse method, jointly estimating the slip distribution and the
rupture area where the slip takes place, solves this issue. Overall,
despite the computational effort in estimating the slip distribution
for different rupture areas, our new inverse method allows to obtain
more realistic slip distributions and a more reliable estimate of its
uncertainties compared to previous works.

A C K N OW L E D G E M E N T S

This research was partially supported by the CAS/CAFEA in-
ternational partnership program for creative research teams (No.



Bayesian inversion of GPS data 1003

KZZDEW-TZ-19), the National Natural Science Foundation of
China (Nos 41574021, 41331066 and 41474059) and the CAS
program QYJ-LLJC006. We thank David Yuen for discussion.

R E F E R E N C E S

Akaike, H., 1980. Likelihood and the Bayes procedure, in Bayesian Statis-
tics, pp. 143–166, eds Bernardo, J.M., DeGroot, M.H., Lindley, D.V. &
Smith, A.F.M., Univ. Press.
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