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Methods: Rats were made diabetic with streptozotocin (STZ, 65 mg/kg 
i.v.). Thirty days later rats were sacrificed and pulmonary vessels 
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significantly altered 4 weeks after STZ-injection. Antioxidant 
supplementation (3 mg/kg/day) with either vitamin C or grape seed 
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improved vasodilation to ACh and SNP. Norepinephrine-induced contractions 
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Conversely, vitamin C but not grape seed extract showed beneficial 
effects contrasting the loss of body weight in diabetic animals. Abnormal 
vascular function was not reversed when antioxidant supplementations were 
postponed 15 days after the induction of diabetes.  
Conclusions: This study provides scientific support for the therapeutic 
potential of an antioxidant therapy in endothelial impairment associated 
with diabetes. A daily supplementation of grape seed proanthocyanidins 
and/or vitamin C given at the earlier stage of disease may have a 
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pulmonary vascular dysfunction. 
 
 
 
 



1 

 

Proanthocyanidins from Vitis vinifera inhibit 1 

oxidative stress-induced vascular impairment in 2 

pulmonary arteries from diabetic rats 3 

 4 

Christian Pinna
 
a, Paolo Morazzoni b and Angelo Sala

 
a ,

 
c , * 5 

 6 

aDepartment of Pharmacological and Biomolecular Sciences, University of Milan, via 7 

Balzaretti, 9, 20133 Milanο, Italy; b Indena  S.p.A. R&D, Milan, Italy; 8 

cIBIM, National Research Council, Via Ugo la Malfa 153, 90146 Palermo, Italy 9 

 10 

*Corresponding author: Angelo Sala, Department of Pharmacological and Biomolecular 11 

Sciences, Via Balzaretti 9, 20133 Milano, Italy 12 

ph. +390250318308,  13 

E-mail address: angelo.sala@unimi.it 14 

*Manuscript_highlighted



2 

 

Abstract 1 

Background: Vitis vinifera L. (grape seed extract) is a natural source of proanthocyanidins 2 

with antioxidant and free radical-scavenging activities. 3 

Hypothesis: Grape seed extract supplementation may prevent vascular endothelium 4 

impairment associated with diabetes mellitus in rat pulmonary artery. 5 

Study design: We evaluated endothelial function of rat pulmonary artery ex-vivo at the 6 

intermediate stage (4 weeks) of streptozotocin (STZ)-induced diabetes mellitus. We also 7 

evaluated the protective effect of grape seed extract administered daily, beginning the day 8 

after diabetes induction, or 15 days after diabetes induction, until the day of sacrifice. In 9 

addition, we compared the effect of grape seed extract supplementation with that of vitamin 10 

C. 11 

Methods: Rats were made diabetic with streptozotocin (STZ, 65 mg/kg i.v.). Thirty days 12 

later rats were sacrificed and pulmonary vessels reactivity and endothelial function 13 

compared to that of age-matched healthy animals.  14 

Results: Concentration-response curves to ACh, NE, sodium nitroprusside (NO donor), but 15 

not to histamine and iloprost (prostacyclin analog), were significantly altered 4 weeks after 16 

STZ-injection. Antioxidant supplementation (3 mg/kg/day) with either vitamin C or grape 17 

seed extract, starting the day after diabetes induction, significantly improved vasodilation to 18 

ACh and SNP. Norepinephrine-induced contractions were preserved by grape seed extract, 19 

but not vitamin C supplementation. Conversely, vitamin C but not grape seed extract 20 

showed beneficial effects contrasting the loss of body weight in diabetic animals. Abnormal 21 

vascular function was not reversed when antioxidant supplementations were postponed 15 22 

days after the induction of diabetes.  23 
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Conclusions: This study provides scientific support for the therapeutic potential of an 1 

antioxidant therapy in endothelial impairment associated with diabetes. A daily 2 

supplementation of grape seed proanthocyanidins and/or vitamin C given at the earlier 3 

stage of disease may have a complementary role in the pharmacological therapy of diabetes 4 

and pulmonary vascular dysfunction.  5 

 6 
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Abbreviations: GSE, grape seed extract; His, histamine; L-NAME, nitro-L-arginine-11 

methyl ester; NADPH-oxidase, nicotinamide adenine dinucleotide phosphate-oxidase; NE, 12 

norepinephrine; NO, nitric oxide; ROS, reactive oxygen species; SNP, sodium 13 

nitroprusside; STZ, streptozotocin. 14 

 15 

Introduction 16 

The endothelium is a dynamic organ, which regulate vascular tone in response to various 17 

hormones and neurotransmitters via several vasoactive mediators and primarily nitric oxide 18 

(NO) (Sandoo et al., 2010).  Hyperglycaemia and an excess of reactive oxygen species 19 

(ROS) adversely affect endothelial function (Tousoulis et al., 2013) and are typical 20 

consequences of diabetes mellitus. As a result of endothelial impairment and a reduction of 21 

endothelial nitric oxide (eNOS) activity, an increased risk of microangiopathy, peripheral 22 

artery diseases (Mcgill et al., 2008), cardiovascular and also respiratory dysfunctions 23 

(Rosenecker et al., 2001) are observed in diabetic patients.  24 
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The relationship of diabetes with pulmonary vascular disease had been almost disregarded 1 

until recent epidemiological and in vitro studies revealed that ROS and diabetes are risk 2 

factors for pulmonary arterial hypertension (Moral-Sanz et al., 2014; Wong, 2013). Even 3 

with the maintenance of near-normal glycaemic values, endothelial dysfunction persists in 4 

diabetic patients (Ceriello et al., 2007; Dogra et al., 2001). Although balancing 5 

carbohydrate and insulin is the most important task in managing diabetes, epidemiological 6 

studies suggest that regular consumption of foods rich in polyphenols and beverages rich in 7 

vitamin C plays a vital role for maintaining weight, and keeping blood low-saturated fats 8 

and blood pressure under control, thus reducing the risk of cardiovascular complications 9 

(Mccall et al., 2009).  10 

Evidence suggests an important role for dietary factors in modulating endothelial function, 11 

in particular antioxidant compounds (Bondonno et al., 2012), and it has been observed  that 12 

poor vitamin C blood levels correlate with impaired endothelial function in type-1 diabetic 13 

patients (Odermarsky et al., 2009).  14 

Flavonoids and proanthocyanidins are the most common antioxidant compounds present in 15 

many fruits, vegetables and seeds of Mediterranean diet, and several studies have suggested 16 

that grape seed extract confers vascular protection due to the direct effects of its polyphenol 17 

content on endothelial cells (Blanch et al., 2015; Cui et al., 2012; Edirisinghe et al., 2008; 18 

Feng et al., 2010). 19 

A short-term (30 days) administration of streptozotocin, used to induce pancreatic injury, is 20 

also used to represent type-1 diabetes, since alterations such as cardiovascular dysfunction 21 

are common problems associated with diabetes. Even so, the progression of the disease 22 

becomes evident in tissues and organs already after 15 days from diabetes induction (James 23 

et al., 1994; Toleikis and Godin, 1995; Tong and Cheng, 2002). This study therefore aimed 24 
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to evaluate the protective effect of 15 and 30 days of a grape seed extract supplementation, 1 

on pulmonary artery responsiveness in diabetic rats treated for 4 weeks with streptozotocin.   2 

Results have been compared with those of vitamin C, a physiological non-enzymatic 3 

antioxidant present in the blood, which was shown to improve endothelium-dependent 4 

responses under certain conditions such as diabetes mellitus or hypertension (Ting, 1996; 5 

Taddei et al., 1998). 6 

 7 

Materials and methods 8 

Animals and Surgical Procedure:  9 

A total number of 64 male Sprague-Dawley rats weighing 200 - 225 g were used. Animals 10 

were assigned at random into four groups of 8 animals each, as follows: (a) age-matched 11 

healthy control rats, diabetic rats daily treated with: (b) vehicle, (c) ascorbic acid and (d) 12 

grape seed extract, starting on the sixteenth day after the STZ injection and continued daily 13 

for the last 15 days. A separate set of animals were also divided into the same groups as 14 

mentioned above, but treatment started the same day of diabetes induction. 15 

After a period of not less than 5 days following arrival, rats were made diabetic by a single 16 

injection of STZ (60 mg/kg i.v.). Control animals received an equivalent volume of STZ 17 

vehicle (0.1 N citrate buffer, pH 4.5). Same day as diabetes induction, 5% glucose was 18 

added to the drinking water to prevent hypoglycaemia. 19 

Diabetes induction was considered successful when the blood glucose level was equal or 20 

higher than 300 mg/dl (Glucotrend, Roche Diagnostic, Monza, Italy). This was generally 21 

the case within 48-72 hours after STZ injection, as described before (Pinna et al., 2001). 22 

All in vitro experiments were carried out the day after last treatment.  23 
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Ascorbic acid and grape seed extract were dissolved in distilled water every day at a 1 

concentration of 3 mg/kg/day as tested in a study by Pinna et al. (2001), and both 2 

administered by oral gavage. 3 

Characteristics of plant material: 4 

The standardized extract from Vitis vinifera L. grape seed (a brownish-orange powder) was 5 

a kind gift of Indena S.p.A. (Milan, Italy). The starting herbal material has been identified 6 

against a crude drug standard and authoritative literature source by a botanical analyst. The 7 

seeds harvested in September-October from cultivated plants in the European Community 8 

were artificially dried and ground to a fine powder. The extraction solvent was water at the 9 

temperature of 70-90 °C.  Drug extract ratio (DER) was 10-15:1 (native extract). The water 10 

content in the dry extract was 5% or less. No excipient or other components 11 

(antioxidants/preservatives) for adjustment were added to the powder. The extract was 12 

standardized to provide ≥95.0% (accuracy: ±15%) of proanthocyanidins by Folin-Ciocalteu 13 

method coupled to UV-visible spectrophotometry, which is a classical method used to 14 

determine polyphenol content in plant extracts, as described in the European 15 

Pharmacopoeia (Council of Europe, 2007).  16 

The analysis specifically revealed a relatively low amount (8.6%) (by HPLC) of flavane 17 

monomers (catechin, epicatechin and epicatechin gallate), and about 91% oligomeric 18 

proanthocyanidins (OPC) of which 9% (by HPLC) were of the dimeric type. Pentamers, 19 

hexamers, heptamers and their gallates accounted for less than 5% (w/w). HPLC 20 

quantitative analysis was carried out as described by Gabetta et al. (2000). Briefly, 21 

monomers and dimers were quantitated by HPLC-UV at room temp on a SupelcoSil LC-18 22 

column (250×4.6 mm i.d.), particle size 5 μm (Supelco). The solvent system was a linear 23 

gradient using MeCN (solvent A) and 0.3% phosphoric acid (solvent B) from 10% A to 24 
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20% A in 45 min, then to 60% A in 20 min. The flow-rate was 0.7 ml/min, the UV detector 1 

was set at 278 nm and the injection volume was 10 μl.  2 

All experimental procedures involving animals and their care were conducted in 3 

accordance with institutional guidelines that are in compliance with national (Decreto 4 

Legislativo No 26, March 4, 2014, G.U. No 61 March 14, 2014) and international laws and 5 

policies (86/609 EEC Council Directive 2010/63, September 22, 2010: Guide for the Care 6 

and Use of Laboratory Animals, United States National Research Council, 2011). 7 

Ex-vivo experiments on isolated pulmonary artery rings: 8 

Animals were sacrificed with an i.p. injection of thiopental sodium (20 mg/kg). Lung and 9 

heart were rapidly excised and larger intrapulmonary artery segments were removed and 10 

cleaned of adherent parenchimal tissue. Two pulmonary arterial rings (2 mm) from each 11 

lung were mounted under 0.8 g of resting tension, in a 5 ml organ bath and perfused with 12 

Krebs solution (118 mM NaCl, 4.7 mM KCl, 1.2 mM KH2PO4, 1.1 mM MgSO4, 2.5 mM 13 

CaCl2, 25 mM NaHCO3, 5.5 mM glucose, pH 7.4) at 37 °C, continuously bubbled with 14 

95% O2 and 5% CO2. Artery rings were connected to isometric force transducers for 15 

tension recording (PowerLab, ADInstruments, UK). Following equilibration for 1 h, 16 

preparations were precontracted with a submaximal concentration of norepinephrine (NE, 17 

10 µM) to check the vitality of preparations. Norepinephrine was then removed with 18 

several washes with Krebs’ solution and rings were allowed to rest a further 30 min, until 19 

basal tone was restored. Thereafter, cumulative concentration-response curves to the 20 

agonists were performed. In between two cumulative concentration-response curves, tissues 21 

were washed several times with Krebs’ solution and they were allowed to rest for at least 22 

30 min. With the exception of norepinephrine itself, concentration–response curves were 23 

done in EC60-norepinephrine-precontracted tissues. The EC60 value for norepinephrine used 24 
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to evoke precontracted tone, was estimated to be 60 nM for pulmonary artery rings from 1 

control rats and 150 nM for diabetic rats, in preliminary experiments.  2 

A different set of diabetic and healthy pulmonary arterial preparations were used to study 3 

the effect of grape seed extract itself. 4 

Contractile responses to norepinephrine were measured as increase in tone above baseline 5 

(mN/mg tissue), whereas relaxant responses were expressed as percentage of relaxation on 6 

EC60-norepinephrine precontracted tissues. 7 

Drugs and Chemicals: 8 

Norepinephrine hydrochloride, Nitro-L-arginine methyl ester hydrochloride, acetylcholine, 9 

SNP, indomethacin, ascorbic acid and STZ were purchased from Sigma-Aldrich. Iloprost 10 

(SHL 401) was purchased from Shering (Berlin, Germany). All compounds were freshly 11 

dissolved in distilled H2O, except Iloprost, which was purchased as a concentrated water 12 

solution. 13 

Statistical Analysis: 14 

All data were expressed as mean±S.E.M. of eight experiments and represent unpaired data. 15 

Concentration-response curves were fitted and compared by analysis of variance (ANOVA) 16 

using GraphPad Prism3.0. If P values were less than 0.05 the treatment affected the 17 

response over the tested range of concentration (Ludbrook, 1994).  Maximal responses and 18 

pD2 values (-log EC50) for each agonist were compared by one-way ANOVA followed by 19 

Tukey’s post hoc test using GraphPad InStat. 20 

 21 

Results 22 

Serum glucose levels and body weight:   23 
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A fivefold increase in glycaemia value was observed in untreated STZ-diabetic rats (491± 1 

12 mg/dl), compared to control animals (112±9 mg/dl), (P<0.001). After 30 days of 2 

treatment with either grape seed extract or ascorbic acid, glycaemia in treated diabetic rats 3 

was still unchanged compared with untreated diabetic rats (Figure 1).  4 

Although there was no difference in body weight prior to diabetes treatment, after 4 weeks 5 

of diabetes induction, the body weight of the untreated diabetic group was significantly 6 

lower  (213±9 g) than that of the healthy group  (354±22 g), (P<0.001). Nevertheless, body 7 

weight of diabetic rats treated for 30 days with ascorbic acid was significantly higher 8 

(266±20 g), (P<0.05) than that of the untreated diabetic rats (Figure 2).  9 

Relaxation to acetylcholine and histamine:   10 

Pulmonary arteries precontracted with (EC60)-NE responded to ACh (1 nM – 30 µM) with 11 

concentration-dependent vasodilations. The response to ACh, which are endothelium-12 

dependent and mediated by the release of NO, showed a reduced efficacy in diabetic 13 

pulmonary arteries. Concentration-response curves to ACh in the control and in the diabetic 14 

groups were significantly different (P<0.005), (Figure 3).  15 

Sensitivity to ACh, expressed as the pD2, also appeared reduced in arterial pulmonary rings 16 

from diabetic rats  (6.64±0.08) compared to that observed in pulmonary artery from healthy 17 

animals (6.86±0.09), but the difference was not statistically significant. Maximal 18 

vasodilation was significantly reduced in pulmonary artery from diabetic rats (75.4±2.5%) 19 

when compared to that of vessels from healthy animals (98±2.6%), (P<0.001). Pulmonary 20 

preparations from diabetic rats supplemented with either grape seed extract or ascorbic acid 21 

(3 mg/kg/day) for 30 days, showed a restored response to ACh, and their vasodilatory 22 

response to ACh was not different from control tissues. Antioxidant supplementation from 23 

day 16 to 30 resulted ineffective.  24 
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The relaxation induced by histamine was concentration-dependent (0.1–30 µM), however 1 

no significant difference was observed between any of the respective groups (Figure 4).  2 

Relaxation to sodium nitroprusside:  3 

Sodium nitroprusside added cumulatively (0.3 nM – 1 µM) produced on its own complete 4 

relaxation of the NE-constricted pulmonary artery rings. Sensitivity to SNP, expressed as 5 

the pD2, was significantly higher (P<0.01) in pulmonary artery from untreated diabetic rats 6 

(7.94±0.03) than that from healthy animals (7.49±0.04),  and the SNP concentration-7 

response curve in diabetic rings was shifted to the left (P<0.01), compared to the curve in 8 

the controls (Figure 5). Antioxidant supplementation from day 16 to 30 resulted ineffective 9 

and did not modify tissue sensitivity to SNP. The pD2 values in grape seed extract- 10 

(7.97±0.04) and in vitamin C-treated group (7.99±0.07) did not differ significantly from 11 

that of untreated diabetic group. Antioxidant supplementation from day 1 to 30 restored 12 

tissue sensitivity. Significant difference (P<0.01) was found between pD2 values in diabetic 13 

rings and those of grape seed extract- (7.57±0.06) or vitamin C-treated animals 14 

(7.35±0.05).  15 

Relaxation to iloprost:       16 

The stable prostacyclin analogue iloprost, added cumulatively (0.3 nM – 0.3 µM) to the 17 

NE-constricted rings evoked concentration-dependent vasodilations in pulmonary vessel 18 

tissues. Tissue sensitivity to iloprost, expressed as the pD2 were comparable in the diabetic 19 

(7.88±0.33) and in the control group (7.80±0.14), as well as maximal responses (Emax) 20 

being (46.2±3.3%) and (44.1±1.5%) in the diabetic and in the control animals, respectively. 21 

Hence, concentration-response curves performed in the untreated diabetic and in the control 22 

rings were not significantly different. Ascorbic acid or grape seed extract supplementation 23 

for 30 days did not alter iloprost-induced vasodilation in the diabetic group (Figure 6). 24 
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Norepinephrine-mediated vascular contraction:  1 

Norepinephrine (1 nM – 10 µM) induced impaired concentration-related contractions in 2 

pulmonary artery rings from untreated diabetic rats, compared to controls (Figure 7). 3 

Sensitivity to NE, expressed as the pD2 was significantly reduced (P<0.05) in the diabetic 4 

(7.15±0.03) compared to control tissues (7.45±0.03). Maximal response was also 5 

significantly attenuated (P<0.01) in pulmonary artery from diabetic rats (0.98±0.07 6 

mN/mg), compared to that observed in the healthy animals (1.21±0.03 mN/mg) and the two 7 

concentration-response curves performed in the untreated diabetic tissues and in the  8 

controls were significantly different (P<0.001). grape seed extract supplementation 9 

administered daily for 30 days protected vascular function from diabetic damage and 10 

concentration-response curves performed in the grape seed extract-treated and in the 11 

untreated diabetic tissues were significantly different (P<0.01). On the contrary, grape seed 12 

extract for 15 days or vitamin C supplementation for either 15 or 30 days administered to 13 

diabetic animals had no effect on NE-induced responses.  14 

Effect of grape seed extract on pulmonary arterial rings: 15 

Grape seed extract added cumulatively (0.1 - 30 µM) produced a slow and sustained 16 

relaxation of the NE-constricted pulmonary arterial rings. The relaxation induced by grape 17 

seed extract was concentration-dependent and it was not significantly altered by diabetes 18 

(Figure 8). Nitro-L-arginine-methyl ester (L-NAME, 10 µM) pretreatment significantly 19 

inhibited grape seed extract-mediated vasodilation (P < 0.01). Pretreatment with 20 

indomethacin (1 µM) plus L-NAME (10 µM) completely blocked vasodilation. On the 21 

contrary, ascorbic acid (0.1 - 30 µM) did not induce on its own any response. 22 

 23 

Discussion 24 
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The present study showed that pulmonary arterial rings from 4-weeks STZ-diabetic rats 1 

displayed altered reactivity, resulting in altered vasodilation to ACh, SNP and reduced 2 

vasoconstriction to NE. Grape seed extract and vitamin C prevented the observed 3 

alterations of vascular responsiveness, when supplemented at the earlier stages of diabetes.  4 

An intact vascular endothelium was shown to play an important role in the control of 5 

vascular tone (Sandoo et al., 2010). Conversely, endothelial dysfunction was associated to 6 

the pathogenesis of a large spectrum of human diseases (Su, 2015; Prieto et al., 2014) 7 

including diabetes (Hamilton and Watts, 2013) and vascular impairment (Tousoulis et al., 8 

2013). Substantial evidence also indicated that diabetes mellitus impairs eNOS activity as 9 

well as enhances ROS production, thus resulting in diminished NO bioavailability (Su, 10 

2015), increased NO degradation and peroxynitrite formation (Zou, 2007).  11 

Endothelium-dependent vasodilation to ACh was significantly impaired in pulmonary 12 

artery from 4-weeks STZ-diabetic rats. Our result was congruent with that of Lopez-Lopez 13 

et al. (2008) and suggested an altered synthesis or release of NO from vascular 14 

endothelium. On the other hand, impaired vascular endothelium and altered vascular 15 

reactivity in response to ACh was observed in aortic rings from STZ-diabetic rats after 8-16 

weeks of disease, but not after 2-weeks (Pieper, 1999). Our study showed that either grape 17 

seed proanthocyanidins or vitamin C supplementation for 30 days, starting the day of 18 

diabetes induction to the day of sacrifice, had a protective effect on pulmonary artery 19 

vasodilation to ACh.  20 

On the contrary, both supplementations failed to restore vascular function when postponed 21 

15 days after diabetes induction.  22 

SNP showed increased tissue sensitivity in the untreated-diabetic pulmonary vessels, 23 

suggesting the presence of a compensatory mechanism to counteract a reduced endothelial 24 
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NO synthesis and release. Lopez-Lopez et al. (2008) observed unaltered relaxation to SNP 1 

in 6-weeks untreated-diabetic and control pulmonary vessels, however, the discrepancy 2 

may be related to fluctuating changes during the course of the disease. Our data also 3 

indicated that a daily supplementation of vitamin C or grape seed proanthocyanidins 4 

administered immediately after diabetes induction preserved vascular response to SNP.  5 

Prostanoids such as PGI2, PGF2α and TXA2 were also involved in the regulation of vascular 6 

function.  In particular, PGI2 played a compensatory role in vasodilation when endothelial 7 

NO release was impaired (Beverelli et al., 1997) and its synthesis increased in rat aorta 8 8 

weeks after diabetes induction (Csanyi et al., 2007). Our result showed that the stable PGI2 9 

analogue iloprost evoked comparable vasodilations in the control and in the diabetic 10 

preparations. However, as in the case of ACh, vascular responses to iloprost might change 11 

with the progression of disease. 12 

Contractile response to NE decreased significantly in 4-week untreated diabetic rats. On the 13 

contrary, Lopez-Lopez  et al. (2008) found increased contractile responses to phenylephrine 14 

in pulmonary arterial rings from 6-week diabetic rats. The discrepancy may be explained by 15 

differences in experimental conditions (longer period of diabetes, different adrenergic 16 

agonist used) and in particular by the fact that the response to phenylephrine was expressed 17 

as % of KCl response, as in this case an overall impaired contractile capacity would go 18 

unaccounted.  19 

NE-induced contractions in the diabetic and in the control preparations were comparable if 20 

rats received a daily supplementation of grape seed proanthocyanidins, but not vitamin C, 21 

starting at the earlier stages of diabetes.  22 

Several in vitro and epidemiological studies suggested an important role of dietary factors 23 

with antioxidant properties in preserving endothelial function in a dose dependent manner 24 
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(Ghosh and Scheepens, 2009; Mccall et al., 2009). While proanthocyanidins received 1 

widespread acclaim for their health benefits, several studies indicated limited 2 

bioavailability, and no conclusive results have been obtained in clinical studies (Blanch et 3 

al., 2015). These results may not necessarily indicate that polyphenol-rich foods are not 4 

useful. Instead, it should be taken into account that the bio-absorption of polyphenols is 5 

very low, and, furthermore, they are rapidly metabolised. Maximum proanthocyanidins 6 

plasma level in humans are about 0.15 µM, 1-3 h after polyphenol-rich foods intake (Ghosh 7 

and Scheepens, 2009).  This concentration is probably too low to have a direct antioxidant 8 

protective effect at a vascular level in vivo, as suggested by Cohen and Tong (2010), and 9 

also to evoke vasodilation in vitro. In our experimental conditions, the lower concentration 10 

at which grape seed proanthocyanidins evoked vasodilation was 1 µM, in agreement with 11 

that observed by Lorenz et al. (2004) in rat aortic rings. Furthermore, vasodilation was 12 

partially blocked by L-NAME or indomethacin, suggesting that grape seed 13 

proanthocyanidins may activate endothelial NO and prostaglandin synthesis. 14 

Our data also showed that grape seed proanthocyanidins extract was as active as vitamin C 15 

in restoring ACh and SNP responses, but more active than vitamin C in restoring NE 16 

altered contractility, perhaps as a consequence of the synergistic effects among 17 

proanthocyanidins contained in the grape seed extract, or among their active metabolites. 18 

Both antioxidants resulted ineffective on glycaemia, but vitamin C supplementation 19 

contrasted the loss of body weight in diabetic animals.  20 

The timing of antioxidant supplementation also appeared to be as an important parameter 21 

while looking at vasoprotection. In our experimental conditions, grape seed 22 

proanthocyanidins and vitamin C resulted active in preventing vascular dysfunction only 23 

when administered at the very early stages of diabetes. 24 



15 

 

Not much is known about the mechanisms of action of proanthocyanidins: it was suggested 1 

that dietary polyphenols or their metabolites activate, at low concentration, intracellular 2 

signalling pathways leading to vascular protection, rather than having a direct antioxidant 3 

effect on vascular endothelium. Alternatively, they may interfere or inhibit pro-oxidant 4 

enzymatic processes (Ghosh and Scheepens, 2009), and also synergistic effects among 5 

polyphenols present in the food or among their active metabolites might increase their 6 

efficacy.  7 

Vascular response of pulmonary arteries was altered in the 4-week diabetic rats and grape 8 

seeds proanthocyanidins and vitamin C supplementations were useful to preserve 9 

endothelial function.  Natural antioxidant intake is essential for humans, but dietary vitamin 10 

C or the intake of other antioxidant natural compounds may be sub-optimal in oxidant 11 

stress exposed, diabetic patients. Although the mechanism by which polyphenols protect 12 

endothelial function is still not clear, a daily supplementation of both grape seed 13 

proanthocyanidins and vitamin C seems to be a good strategy to prevent or delay diabetes-14 

associated endothelial dysfunction, along with the conventional pharmacological approach. 15 
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Figure Legends 1 

Figure 1. Glycaemia (mg/dl) in control, untreated diabetic, grape seed extract- (GSE) and 2 

vitamin C-treated for 30 days. *P<0.001: control vs. diabetic. 3 

Figure 2. Body weight (g) in control, untreated diabetic, grape seed extract- (GSE) and 4 

vitamin C-treated for 30 days. *P<0.001: control vs. diabetic;   +P<0.05: vitamin C vs. 5 

diabetic. 6 

Figure 3. Cumulative concentration-response curves for acetylcholine in pulmonary arterial 7 

rings from control, untreated diabetic, grape seed extract- (GSE) and vitamin C-treated for 8 

15 days (starting on day 16 after diabetes induction) and for 30 days. Data represent the 9 

mean % of vasodilation of NE-precontracted rings±S.E.M. (n=8 in each group). Statistical 10 

significance for curves: *P<0.001: control vs diabetic; +P<0.01: vitamin C (30 days) vs. 11 

diabetic; and GSE (30 days) vs. diabetic. 12 

Figure 4. Cumulative concentration-response curves for histamine in pulmonary arterial 13 

rings from control, diabetic untreated, grape seed extract- (GSE) and vitamin C-treated for 14 

30 days. Data represent the mean % of vasodilation of NE-precontracted rings±S.E.M. (n=8 15 

in each group).  16 

Figure 5. Cumulative concentration–response curves for SNP in pulmonary arterial rings 17 

from control, diabetic untreated, grape seed extract- (GSE) and vitamin C-treated for 15 18 

days (starting on day 16 after diabetes induction) and for 30 days. Data represent the mean 19 

% of vasodilation of NE-precontracted rings±S.E.M. (n=8 in each group). Statistical 20 

significance for curves: *P<0.01: control vs diabetic; vitamin C (30 days) vs. diabetic; GSE 21 

(30 days) vs. diabetic. 22 
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Figure 6. Cumulative concentration–response curves for iloprost in pulmonary arterial 1 

rings from control, diabetic untreated, grape seed extract- (GSE) and vitamin C-treated for 2 

30 days. Data represent the mean % of vasodilation of NE-precontracted rings±S.E.M. (n=8 3 

in each group).  4 

Figure 7. Cumulative concentration–response curves for norepinephrine in pulmonary 5 

arterial rings from control, diabetic untreated, grape seed extract- (GSE) and vitamin C-6 

treated for 15 days (starting on day 16 after diabetes induction) and for 30 days. Contractile 7 

tension is expressed as mN/mg weight tissue, and data are shown as the means±S.E.M. 8 

(n=8 in each group). Statistical significance for curves: *P<0.001: control vs untreated 9 

diabetic; +P<0.01: GSE (30 days) vs. diabetic. 10 

 11 

Figure 8. Cumulative concentration–response curves to grape seed extract (GSE) in 12 

pulmonary arterial rings from control, untreated diabetic, control+L-NAME, control+L-13 

NAME+indomethacin. Data represent the mean % of vasodilation of NE-precontracted 14 

rings±S.E.M. (n=8 in each group). Statistical significance for curves: *P<0.01: control vs 15 

control+L-NAME. Lower panel: an original tracing showing GSE-induced relaxation in 16 

control tissue. 17 
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