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ORIGINAL INVESTIGATION

Genome-wide analysis of LPS-induced inflammatory response in the rat
ventral hippocampus: Modulatory activity of the antidepressant agomelatine

Q5 Andrea Carlo Rossettia, Maria Serena Paladinib, Giorgio Racagnia, Marco A. Rivaa , Annamaria Cattaneoc,d

and Raffaella Moltenib

aDipartimento di Scienze Farmacologiche e Biomolecolari, Universit�a degli Studi di Milano, Milan, Italy; bDepartment of Medical
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Dio - Fatebenefratelli, Brescia, Italy; dDepartment of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience,
King's College London, London, UK

Q1

ABSTRACT
Objectives: Several studies reported that antidepressant drugs have immune-regulatory effects
by acting on specific inflammatory mediators. However, considering the highly complex nature
of the inflammatory response, we have adopted an unbiased genome-wide strategy to investi-
gate the immune-regulatory activity of the antidepressant agomelatine in modulating the
response to an acute inflammatory challenge.
Methods: Microarray analysis was used to identify genes modulated in the ventral hippocampus
of adult rats chronically treated with agomelatine (40mg/kg, o.s.) before being challenged with
a single injection of lipopolysaccharide (LPS; 250lg/kg, i.p.).
Results: The administration of LPS induced the transcription of 284 genes mainly associated
with pathways related to the immune/inflammatory system. Agomelatine modulated pathways
not only connected to its antidepressant activity, but was also able to prevent the activation of
genes induced by LPS. Further comparisons between gene lists of the diverse experimental
groups led to the identification of a few transcripts modulated by LPS on which agomelatine
has the larger effect of normalisation. Among them, we found the pro-inflammatory cytokine Il-
1b and, interestingly, the metabotropic glutamatergic transporter Grm2.
Conclusions: These results are useful to better characterise the association between depression
and inflammation, revealing new potential targets for pharmacological intervention for depres-
sion associated to inflammation.
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1. Introduction

It is currently known that conventional pharmaco-
logical treatment of major depression (MD), despite
the different antidepressants available, has to face sev-
eral critical issues, such as: a low grade of complete
remission (25–30%) and a poor response to the treat-
ment in a high percentage of patients and a relapse
rate of the 35% within 12 months. In addition, the
latency to reach a therapeutic effect, the development
of adverse effects and the poor efficacy on cognitive
deficits and somatic symptoms, represent critical
points for the conventional depression treatments
(Connolly & Thase 2012). All these issues are even
worse if we consider that MD affects more than 10%
of the general population and it is associated with
such a high degree of functional impairment, that it is
estimated to become, in the next future, the second

leading cause of disability worldwide (Bromet et al.
2011). On these bases, it is crucial to identify new
molecular systems and mechanisms involved in the
neurobiology of depression, which may represent can-
didate targets for the development of novel pharma-
cological interventions.

Among the systems that may contribute to the
development of depression, a large body of data sup-
ports the involvement of the immune/inflammatory
system (Dantzer et al. 2008; Haroon et al. 2012;
Wohleb et al. 2016). Indeed, the levels of pro-inflam-
matory mediators such as TNF-a, IL-6 and C-reactive
protein are increased in the blood stream and in the
cerebrospinal fluid of depressed patients (Raison et al.
2006; Howren et al. 2009; Dowlati et al. 2010).
Moreover, depression often occurs in comorbidity with
medical conditions characterised by an inflammatory
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state, such as diabetes, cardiovascular or neurodege-
nerative disorders (Anisman et al. 2008; Berge & Riise
2015; Reus et al. 2015). In addition, the administration
of the cytokine-inducer lipopolysaccharide (LPS) in ani-
mal models is able to elicit depressive-like behaviours
(Frenois et al. 2007; Zhu et al. 2010; van Heesch et al.
2013), an effect also observed after the central admin-
istration of the pro-inflammatory cytokines IL-6, IL-1b
and TNF-a (Dantzer et al. 2008; Wu & Lin 2008; Sukoff
Rizzo et al. 2012).

On the basis of these observations, evidence exists
that antidepressant treatments are able to modulate
immune/inflammatory systems (Janssen et al. 2010)
and that non-steroidal anti-inflammatory drugs or
monoclonal antibodies in combination with standard
therapy may be beneficial for the therapeutic outcome
(Brunello et al. 2006; Akhondzadeh et al. 2009; Raison
et al. 2013). The relevance of these findings is even
higher if we take into account that treatment-resistant
depression has been associated with elevated levels of
specific inflammatory mediators (Miller & Raison 2015;
Strawbridge et al. 2015).

With all these considerations, by using a candidate-
approach analysis, we have already demonstrated that
different classes of antidepressants possess anti-inflam-
matory properties in the chronic mild stress model of
depression (Rossetti et al. 2016). Moreover, we showed
that the novel antidepressant agomelatine is able to
ameliorate the neuroinflammation induced in the rat
by an acute inflammatory challenge (Molteni et al.
2013) by acting on specific inflammatory mediators.

Conversely, in this study we performed a broader
examination of the anti-inflammatory effect of agome-
latine by an unbiased genome-wide-based approach.
More in detail, adult male rats were treated with the
antidepressant for 21 days or with vehicle and, at the
end of the treatment, half of the animals received a
single injection of LPS. This experimental approach has
been designed based, first, on the hypothesis that the
anti-inflammatory properties of antidepressants can, at
least in part, be ascribed to the long-term adaptive
mechanisms induced by their chronic treatment.
Second, because the inflammatory response triggered
by LPS is limited to a short temporal window and nor-
malises within hours. The transcriptomic profiles of the
different experimental groups were investigated in the
hippocampus, based on the role of this brain region in
MD pathophysiology (Malykhin et al. 2010; Huang
et al. 2013; Malykhin & Coupland 2015). Specifically,
we carried out our study in the ventral hippocampus,
which is mainly related to stress, emotion and affect
(Fanselow & Dong 2010), and it was previously shown
to be particularly sensitive to the anti-inflammatory

ability of agomelatine on specific pro-inflammatory
cytokines (Molteni et al. 2013). With this broader
approach we analysed network and pathway altera-
tions in order to better understand the anti-inflamma-
tory properties of agomelatine and identify novel
targets for the treatment of depression associated to
inflammation.

2. Materials and methods

2.1 Animals

Adult male Sprague-Dawley rats (Charles River, Calco,
Italy) weighing 300–350 g were used throughout the
experiments. Rats were housed in groups of four per
cage under standard conditions (12-h light/dark cycle
with food and water ad libitum) and were exposed to
daily handling for 1 week before any treatment. All
animal handling and experimental procedures were
approved by the University of Milan Institutional
Animal Care and Use Committee and adhered to the
Italian legislation on animal experimentation (D.Leg.
2014/26), the EC (EEC Council Directive 2010/63/UE),
and the National Institutes of Health Guide for the
Care and Use of Laboratory Animals. All efforts were
made to minimise animal suffering and to reduce the
number of animals used.

2.2 Experimental design and pharmacological
treatments

Rats were chronically (21 days) treated by oral gavage
with vehicle (VEH; hydroxyethylcellulose 1%, 1ml/kg)
or agomelatine (AGO; 40mg/kg) at 17:00 h, i.e. 2 h
before the dark phase to mimic the evening adminis-
tration of agomelatine in clinics. This schedule was
based on our previous studies (Calabrese et al. 2011;
Molteni et al. 2013) in order to have the best condi-
tion for its circadian activity on melatonergic receptors
(de Bodinat et al. 2010), since the onset of melatonin
secretion is during the night phase, independently of
the biorhythm of the species (nocturnal or diurnal like)
(Pevet 2003). Sixteen hours later, the animals were
challenged with LPS (from E. coli, serotype 026:B6;
250 lg/kg, i.p.) or saline (SAL). The choice of agomela-
tine dose was based on previous work demonstrating
its activity in different animal models of depression
(Papp et al. 2003) and for its anti-inflammatory proper-
ties in a previous study (Molteni et al. 2013). Similarly,
the dose of LPS was chosen consistently with our pre-
vious studies (Macchi et al. 2013, Molteni et al. 2013)
and on the base of several reports showing its capabil-
ity to reliably induce peripheral and central
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inflammatory response and depression-like behaviours
(Bluthe et al. 1992; Yirmiya 1996; Konsman et al. 1999).

This experimental design implied four experimental
groups: animals that received saline and vehicle (VEH/
SAL), animals challenged with LPS without pharmaco-
logical pre-treatment (VEH/LPS), animals treated with
agomelatine without the inflammatory challenge
(AGO/SAL) and animals treated with agomelatine and
injected with LPS (AGO/LPS). Neither agomelatine nor
LPS affected the body weight of the animals.

The animals were sacrificed by decapitation 2 h
(11:00 h) post LPS injection, in order to evaluate the
effect of agomelatine during the peak of the inflam-
matory response induced by endotoxin (Dantzer et al.
2008), ventral hippocampus was rapidly dissected, fro-
zen on dry ice and stored at –80 �C for the molecular
analyses.

2.3 Total RNA preparation

Total RNA was isolated from ventral hippocampus by
single step guanidinium-isothiocyanante/phenol
extraction using PureZOL RNA isolation reagent (Bio-
Rad Laboratories; Segrate, Italy) according the man-
ufacturer’s instructions and quantified by spectro-
photometric analysis as previously reported (Rossetti
et al. 2016).

2.4 Microarray gene expression analysis

Gene expression microarray assays were performed
using Rat Gene 2.1ST Array Strips on Gene AtlasTM

platform (Affymetrix), following the WT Expression Kit
protocol described in the “Affymetrix Gene Chip
Expression Analysis Technical Manual” and in the
GeneAtlasTM WT Expression Kit User Manual.

Briefly, starting from 250 ng of total RNA, cDNA was
synthetised with the Gene Atlas WT Expression Kit
(Affymetrix, Santa Clara, CA, USA). The concentration
and quality of cRNA and cDNA were determined by
measuring its absorbance at 260 nm using NanoDrop
Spectrophotometer.

After fragmentation and labelling procedures, 5.5 lg
of cDNA were hybridised using Rat Gene 2.1 ST Array
Strip. The hybridisation, the fluidics and the imaging
were performed on the Affymetrix Gene Atlas instru-
ment according to the manufacturer’s protocol.

2.5 Quantitative real-time PCR analysis

Quantitative real-time polymerase chain reaction (PCR)
was used to validate microarray results by assessing
Grm2 mRNA levels.

Briefly, an aliquot of each sample was treated with
DNAse to avoid DNA contamination and subsequently
analysed by TaqManqRT-PCR instrument (CFX384 real-
time system, Bio-Rad Laboratories) using the iScript
one-step RT-PCR kit for probes (Bio-Rad Laboratories).
Samples were run in a 384-well format in triplicate as
multiplexed reactions with a normalising internal con-
trol (36b4). Thermal cycling was initiated with incuba-
tion at 50 �C for 10min (RNA retrotranscription) and
then at 95� for 5min (TaqMan polymerase activation).
After this initial step, 39 cycles of PCR were performed.
Each PCR cycle consisted of heating the samples at
95 �C for 10 s to enable the melting process, and then
for 30 s at 60 �C for the annealing and extension reac-
tions. Relative target gene expression was calculated
according to the 2(-Delta Delta C(T)) method. Probes
and primers sequences used were purchased from
Eurofins MWG-Operon.

2.6 Statistical and bioinformatic analyses

For microarray data processing, Affymetrix CEL files
were imported into Partek Genomics Suite version 6.6
for data visualisation and statistical testing. All samples
passed the criteria for hybridisation controls, labelling
controls and 3’/5’ Metrics. Background correction was
conducted using Robust Multi-strip Average (RMA)
(Irizarry et al. 2003) to remove noise from auto fluores-
cence. After background correction, normalisation was
conducted using Quantiles normalisation (Bolstad et al.
2003) to normalise the distribution of probe intensities
among different microarray chips. Subsequently, a
summarisation step was conducted using a linear
median polish algorithm to integrate probe intensities
in order to compute the expression levels for each
gene transcript.

After the pre-processing of CEL files for quality con-
trol, we aimed to investigate the effect of the immune
challenge with LPS and the pharmacological treatment
with agomelatine, and their combination. Thus, we
first included in the two-way ANOVA the two main
independent variables (LPS and agomelatine), allowing
us to assess their impact in the whole sample.
Subsequently, we applied four contrasts (VEH/LPS vs
VEH/SAL; AGO/SAL vs VEH/SAL; AGO/LPS vs VEH/SAL;
AGO/LPS vs VEH/LPS) in order to get the transcrip-
tomic profiles in each specific condition of interest. In
these comparisons, a filter of a P value of <.05 and a
minimum absolute fold-change cut-off of 1.2 was
applied. Genes that passed these criteria were used to
run further analyses.

Ingenuity pathway analyses (IPA) software is then
used to identify regulation of molecular signalling
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pathways, network and GO terms in each condition. In
this case we kept a significance threshold of a log
value equal to 1.3 (P ¼ .05).

For real-time PCR, we used two-way ANOVA with
treatment (Vehicle vs Agomelatine) and challenge (LPS
vs Saline) as independent factors. When appropriate,
further differences were analysed by Fisher’s Protected
Least Significant Difference or single contrast post-hoc
test. Significance was assumed for P< .05. For graphic
clarity, data are presented as means percent ± standard
error (SEM) of control group, namely vehicle-pre-
treated rats received saline (VEH/SAL).

3. Results

3.1 Overall transcriptional effect of chronic
treatment with agomelatine and acute
administration of LPS

In order to investigate the overall transcriptional
effects of the treatment with agomelatine, LPS and
their combination, we first compared each experimen-
tal group (AGO/SAL; VEH/LPS; AGO/LPS) with the con-
trol group (VEH/SAL) as common baseline, thus
obtaining three lists of genes namely AGO/SALVEH/SAL,

VEH/LPSVEH/SAL and AGO/LPSVEHSAL. As shown in
Figure 1(A), we found that agomelatine significantly
regulated the expression of 105 genes, with 77 genes
(73%) up-regulated and 28 genes (27%) down-regu-
lated. A larger transcriptional effect was observed in
animals treated with LPS. Indeed, the inflammatory
challenge affected the expression of 284 genes and,
out of these, 231 (81%) were up-regulated and the
remaining 53 (19%) were down-regulated. Finally, a
total of 296 genes were differentially modulated in
animals that received both agomelatine and LPS com-
pared with the control group. Among these, 256 (86%)
transcripts were up-regulated, whereas 40 (14%) were
down-regulated.

Additionally, we analysed the magnitude of these
transcriptional effects finding mild changes in all the
experimental groups (Figure 1(B)). Specifically, the
majority of the genes showed fold-change values (FC)
between 1.2 and 1.5 and only a small number of tran-
scripts were regulated between 1.5 and 2 or more
than 2-fold with respect to control animals.

Moreover, to investigate the impact of the pre-
treatment with agomelatine on the effects of the
immune challenge we compared the group of animals
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Figure 1. Overall results of microarray analysis. (A) Number of genes up-regulated or down-regulated in the ventral hippocampus
of rat chronically treated with agomelatine (AGO/SALVEH/SAL), acutely injected with lipopolysaccharide (VEH/LPSVEH/SAL) or receiving
both drugs (AGO/LPSVEH/SAL), compared to the control group. (B) Magnitude of gene expression changes in these experimental
groups. (C) Transcriptional effect of the chronic treatment with agomelatine on animals that received only LPS is presented in the
AGO/LPSVEH/LPS gene list and magnitude of this modulation (D).
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that received both the antidepressant and LPS (AGO/
LPS group) with the animals that received only LPS
(VEH/LPS), in order to provide a direct estimate of ago-
melatine effect in modulating the response to LPS
effect. As shown in Figure 1(C), this analysis resulted in
a list of 52 genes, nine of which were down-regulated
(17%), whereas 43 were up-regulated (82%). The mag-
nitude of the modulation of these genes (Figure 1(D))
was between 1.2 and 1.5 FC, and only few transcripts
exceeded this threshold.

3.2 Genome-wide effect of the chronic treatment
with agomelatine

As previously indicated, a total of 105 genes were dif-
ferentially expressed in the ventral hippocampus of
animals chronically treated with agomelatine with
respect to rats that received vehicle. Among these
genes, we found, as with the most up-regulated, the
histone clusters Hist1h4m and Hist2h2ab (FC ¼þ1.66
andþ1.36, respectively); the glutathione peroxidase
Gpx3 (FC¼þ1.58); the transcript coding for the fusion
protein of fubi and ribosomal protein 30, Fau
(FC¼þ1.48); the zinc finger protein, Zdhhc22
(FC¼þ1.40); the guanine nucleotide binding protein
gamma-13, Gng13 (FC ¼þ1.25). Conversely, the most
down-regulated transcripts include the mitochondrial
GTPase, Rhot1, with a negative fold-change value of
–1.54; the N-acetyltransferase 8-like or Cml3 (FC
¼ –1.42), which has a probable N-acetyltransferase
activity; the olfactory receptor Olr1513 (FC ¼ –1.34);
the Hsp40 homologue Dnajc17 (FC ¼ –1.21). See
Supplementary Table S1 for the entire list of genes.
Next, in order to capture the diverse and complex
mechanisms altered by chronic treatment with agome-
latine, we performed a pathway analysis based on the
105 significantly modulated genes using Ingenuity
Pathways Analysis software (IPA) identifying 10 path-
ways that were significantly regulated by the anti-
depressant. Among these, we found the Rapoport-
Luebering shunt of glycolytic pathway, the signalling
pathways of phospholipase C and of the chemokine
receptor CXCR4 (the entire list of pathways is detailed
in Table S2, Supplementary materials).

3.3 Genome-wide effect of the acute
administration of LPS

The microarray analysis indicated that 284 genes were
differentially expressed between animals injected with
LPS and sacrificed 2 h later and saline-treated rats. All
these genes are listed in Table S3 (Supplementary
materials). A large part of these transcripts (81%) was

up-regulated by the inflammatory challenge. In par-
ticular, Cxcl10, a chemokine of the CXO subfamily,
resulted as the most up-regulated gene, with aþ13.06
FC with respect to the control group. As expected,
other genes related to the inflammatory response
were strongly increased by LPS, including the tran-
scripts coding for: the chemokine Cxcl11 (FC ¼þ4.71);
Gbp5, a guanilate binding protein inferred to be
involved in IFN-c cellular response (FC ¼þ4.26); and
the interferon-induced protein with tetratricopeptide
repeats 3, namely Ifit3 (FC ¼þ4.17).

Among the small fraction (19%) of transcripts sig-
nificantly down-regulated by LPS, we found genes
encoding for ion channels, such as the solute carrier
family 40 member 1 (Slc40a1) and Slco1a2, namely the
solute carrier organic anion transporter family member
1a2 (with a negative FC of –1.65 and –1.56, respect-
ively); the CDC-Like Kinase 2 (Clk2), a protein kinase
coding-gene whose targets are involved in the control
of the spliceosoma (FC ¼ –1.47); and the transferrin
receptor (Tfrc) that plays a role in the cellular uptake
of iron (FC ¼ –1.44). By using the IPA we identified
100 pathways significantly modulated (listed in Table
S4), which, as expected, are mainly related to the
inflammatory and cellular response to infections, such
as interferon, IL-6 and p38 MAPK related signalling.

3.4 Genome-wide effect of the pre-treatment with
agomelatine on the inflammatory response
induced by LPS

In order to evaluate the transcriptional impact of the
chronic treatment with agomelatine on the LPS-
induced inflammatory response, as first step, we com-
pared the list of the 284 genes significantly modulated
by LPS treatment (VEH/LPSVEH/SAL) with the list of 296
transcripts altered in rats treated with agomelatine
and challenged with the endotoxin (AGO/LPSVEH/SAL).
The resulting Venn diagram (Figure 2(A)) identified
three subgroups of genes. There were 91 transcripts
significantly expressed only in the VEH/LPSVEH/SAL
group (Table S5, Supplementary materials), and that
were not present at significant level in the list of
genes belonging to the AGO/LPSVEH/SAL, suggesting
that their modulation by the inflammatory challenge
was prevented by agomelatine treatment. A compari-
son of the FC values of these 91 genes in both the
experimental groups identified five transcripts whose
induction was particularly blunted by the pre-treat-
ment with the antidepressant: the chemokine ligand2
(Ccl2, which, as a member of the chemokine family, is
involved in the trafficking of immune cells); the major
histocompatibility complex, class I, A (RT1-CE1); RAB
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Interacting Factor or Rabif (a protein involved in the
regulation of vesicular transport); the Y box binding
protein 1, Ybx1 (a transcription factor that mediates
pre-RNA alternative splicing regulation and the tran-
scription of numerous genes); the metabotropic glu-
tamate receptor 2, Grm2 (involved in the regulation of
glutamatergic activity). Among the genes with a lower
difference in term of FC, we found transcripts strongly
related to the inflammatory system, such as interleukin
1b (Il1b); the chemokine (C-X-C motif) ligand 2 (Cxcl2);
the suppressor of cytokines signalling (Socs3) and the
interleukin 2 gamma subunit (Il2rg).

The IPA performed on the 91 genes identified 31
pathways significantly modulated by inflammatory
challenge and prevented by agomelatine (Table S6,
Supplementary materials), including systems involved
in the stress response, such as the corticotropin releas-
ing hormone (CRH) signalling as well as pathways
associated with the regulation of specific cytokines (i.e.
IL-9 signalling, IL-10 signalling, Role of JAK1 and JAK3
in cc Cytokine Signalling). The top 10 pathways are
shown in Figures 2(B,C).

Next in the analyses of the Venn diagram of
Figure 2(A), 193 transcripts were common between
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Figure 2. Preventive effect of agomelatine: indirect extrapolation of 91 genes modulated by the drug. (A) Venn diagram of the
comparison between VEH/LPSVEH/SAL and AGO/LPSVEH/SAL. The overlap of the gene expression changes observed in the animals
that received only lipopolysaccharide (VEH/LPSVEH/SAL) and those found in the rats pre-treated with agomelatine and then chal-
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the two lists of genes (Table S7, Supplementary mate-
rials), suggesting that their LPS-induced modulation is
observed independently from agomelatine treatment.

Last, 103 genes were significantly modulated only
in animals that received both the pharmacological
treatment and the immune challenge (Table S8,
Supplementary materials). This list contains genes that
may be linked to the transcriptional impact of agome-
latine by itself. In particular, among the top 10 mostly
modulated genes in the AGO/LPSVEH/SAL group, we
found Hist1h4m, Hist2h2ab (FC ¼þ1.87 andþ1.54,
respectively), Fau (FC¼þ1.55) and Dnajc17
(FC¼�1.32) that were already present in the list of
genes regulated by the antidepressant itself (Table S1).
Moreover, we also found genes exclusively modulated
by the combination of agomelatine and LPS: CD74 (FC
¼ –1.63) which is associated with class II major histo-
compatibility complex (MHC) and serves also as recep-
tor of the pro-inflammatory cytokine MIF; the RNA
component of the telomerase ribonucleoprotein com-
plex Terc (FC ¼þ1.44); the nueronatin or Nnat (FC
¼þ1.42), involved in the regulation of ion channels
during brain development; Acer2 (FC ¼þ1.33) that
codifies for the alkaline ceramidase 2, an enzyme
responsible for the generation of sphingosine with a
role in cell proliferation and survival.

To further evaluate the impact of agomelatine pre-
treatment on the inflammatory response induced by
LPS, we implemented the previously described com-
parison focussing on the AGO/LPSVEH/LPS list. This list
includes 52 genes (Figure 1(C)) and was generated
from the AGO/LPS group by using the VEH/LPS group
as baseline (see Section 4.1) in order to have a more
direct comparison between the animals that received
both the treatments and those injected only with LPS.
Among the most up-regulated genes in this list we
found the already mentioned Hist1h4m (FC ¼þ2.04),
Fau (FC ¼þ1.95) and Growth Arrest-Specific 5 (Gas5),
a long non-coding RNA involved in the regulation of
glucocorticoid receptor (FC ¼þ1.81). On the other
side, the top down-regulated genes were GH3 Domain
Containing (Ghdh) with a FC of –1.30 and Grm2 (FC
¼�1.27). For the complete gene list see Table S9.

The associated IPA generated a list of 33 pathways
significantly modulated (Table S10, Supplementary
materials). The most altered pathways were associated
to oxidative phosphorylation and mitochondrial
dysfunction, involving molecules that compose the
complex I of NADH dehydrogenase, as well as the
long-term potentiation with genes like the Grm2 and
the protein kinase C delta (Prkcd) (Figure 3).

Lastly, with the purpose of narrow the list of genes
whose LPS-induced modulation may be prevented by

agomelatine, we performed an overlap analysis
between the 52 genes belonging to the AGO/LPSVEH/
LPS list and the 91 genes, shown respectively in Table
S9 and S5, found using VEH/SAL as reference group.
The resulting Venn diagram (Figure 4(A)) indicates that
nine genes were common between these groups
(namely Ybx1, Grm2, Rabif, Lypla1, Tmem93, Fkbpl, Il1b,
Tmem60, Prkcd) that represent the transcripts induced
by LPS on which the pharmacological pre-treatment
has the larger effect of normalisation. Among these,
we focussed our attention on the glutamate metabo-
tropic receptor Grm2 and, as shown in Figure 4(B), the
qRT-PCR analysis confirmed the modulation observed
in the microarray study. Indeed, Grm2 mRNA levels
were significantly increased by LPS in animals pre-
treated with vehicle (þ34% P¼ .055 vs VEH/SAL)
but not in those that received agomelatine (–37%
P< .001 vs VEH/LPS), as indicated by the significant
Drug� LPS interaction (F1,2 7 ¼5.718, P¼ .025, two-
way ANOVA).

4. Discussion

This study provides novel findings on the transcrip-
tional effect of a chronic treatment with the anti-
depressant agomelatine and on the ability of this drug
to interfere with the response of the brain to an
inflammatory challenge. Specifically, by using a gen-
ome-wide approach, we identified genes and path-
ways that may contribute to the therapeutic efficacy
of the antidepressant and in particular on its previ-
ously demonstrated anti-inflammatory properties
(Molteni et al. 2013; Rossetti et al. 2016).

The pathway analysis revealed that the administra-
tion of agomelatine alone was able to modulate,
among others, two pathways: the signalling of C-X-C
chemokine receptor 4 (CXCR4) and phospholipase C
(PLC). Chemokines are small molecules that mediate
leukocyte mobilisation to sites of inflammation in the
periphery. Currently, the chemokine family consists of
more than 50 members with more than 20G-protein-
coupled receptors that have also been detected at a
cerebral level (Bajetto et al. 2001). CXCR4 is the recep-
tor of the very well-studied chemokine CXCL12 (or
SDF-1). This signalling pathway is not only important
in the immune system, where it has a role in the
development of immune cells and neutrophils
(Nagasawa 2014), but it is also fundamental for the
regulation of additional non-immune processes, such
as neurogenesis and neuronal activity. Indeed, these
molecules have a well-defined role in hippocampal
development, architecture and function, in the modu-
lation of the GABAergic and glutamatergic activity on
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serotonergic neurons, and in mechanisms related to
neuroprotection such as production and release of dif-
ferent neurotrophic factors (Shyu et al. 2008; Heinisch
& Kirby 2010; Reaux-Le Goazigo et al. 2013; Williamson
& Bilbo 2013). Interestingly, it is well known that alter-
ations of these systems are involved in the etiopathol-
ogy of psychiatric disorders and in particular for
depression (Duman & Monteggia 2006; Sanacora et al.
2012).

Another notable pathway modulated by the chronic
administration of agomelatine is the signalling of PLC.
Among the PLC isozymes, primary PLCs, PLCb and
PLCc, are directly triggered by receptor activation.
PLCb isozymes are activated by G-protein-coupled
receptor, whereas PLCc isozymes are activated by
receptor tyrosine kinase (Yang et al. 2013). Different
groups have already demonstrated the involvement of
the PLC pathway in the therapeutic effect of antide-
pressants. It has been reported that antidepressants
with different synaptic mechanisms are able to
increase the phosphorylation of PLCc through the acti-
vation of TrkB, the high affinity receptor for the

neurotrophin brain-derived neurotrophic factor
(Rantamaki et al. 2007). Our data add new information
as indicate that agomelatine is able to modulate the
PLC signalling by acting on a particular G protein,
GNG13, which is responsible for the activation of the
specific isozyme PLCb. Interestingly, it has been dem-
onstrated that the signalling of PLCb may also be acti-
vated by the chemokine receptor (Bach et al. 2007)
that, as discussed above, is modulated by chronic ago-
melatine treatment. Moreover, it has been recently
reported that a compound able to activate the PLCb/
inositol phosphate 3 pathway has antidepressant prop-
erties in a rodent stress-based model of depression, an
effect mediated by the BDNF/TrkB signalling (Jiang
et al. 2015), thus supporting the potential of PLCb as
new pharmacological target. In line with our result, it
has been recently demonstrated that TrkB signalling is
effectively involved in the antidepressant effect of ago-
melatine (Boulle et al. 2016).

However, besides these pathways involved in the
effect of agomelatine per se, we identified genes spe-
cifically related to its ability to counteract the
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Figure 3. Preventive effect of agomelatine: direct comparison between AGO/LPS and VEH/LPS groups. (A) Top ten canonical path-
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inflammatory response. Indeed, by analysing our data
with different approaches, we found that the LPS-
induced modulation of several genes was prevented
by the antidepressant. The majority of these genes are
related to the inflammatory system such as IL-1b, thus
confirming our previous data on the anti-inflammatory
properties of agomelatine (Molteni et al. 2013). Other
transcripts, belong to pathways related to the synthe-
sis, generation and production of reactive oxygen spe-
cies, suggesting an anti-oxidant effect of the
antidepressant that may be associated with its struc-
tural analogy with melatonin, a well-known antioxidant
agent (Reiter et al. 2008). By regulating these path-
ways, agomelatine could counteract the oxidative
stress associated to the inflammatory response, an
effect in line with its ability to positively modulate
energy metabolism and oxidative stress parameters
(de Mello et al. 2015).

Through different overlap analyses, we further nar-
rowed the list of genes whose LPS-dependent

modulation was prevented by the antidepressant, find-
ing nine transcripts: Ybx1 (a transcription factor that
mediates pre-RNA alternative splicing regulation and
the transcription of numerous genes); Grm2 (metabo-
tropic glutamate receptor 2); Rabif (member of the
family of small GTP-binding proteins that are involved
in the regulation of intracellular vesicular transport);
Lypla1 (lipophospholipase, a member of the a/b hydro-
lase superfamily with depalmitoylating activity,
involved in the regulation of G-protein signalling);
Tmem93 (ECM6, a transmembrane protein present in
the endoplasmic reticulum, recently discovered to be
involved in cell autophagy); Fkbpl (Fk506 binding pro-
tein like, involved in cellular response to stress and
homologue of the FKBP protein family); Il1b; Tmem60
(transmembrane protein 60, at present no further data
are available on this transcript); Pkcd (Protein Kinase
Cd, a family of serine- and threonine-specific protein
kinases that can be activated by calcium and the
second messenger diacylglycerol).
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Figure 4. Top nine genes modulated by agomelatine identified by intersection analysis. (A) Venn diagram of the comparison
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One interesting candidate emerging from our ana-
lysis is Grm2, the gene encoding for the presynaptic
metabotropic glutamate receptor type 2 (mGluR2) that
regulates the glutamatergic homeostasis through an
inhibitory tone on glutamate release. The observed
LPS-induced up-regulation of Grm2 transcription may
be due to the activity of NF-kB, a mechanism in line
with the literature (Cuccurazzu et al. 2013; Nasca et al.
2013) and with the increased nuclear translocation of
this transcription factor following LPS administration
(Molteni et al. 2013). Since mGluR2 is also expressed in
microglial cells, its increased expression might contrib-
ute to the detrimental consequences of microglia acti-
vation induced by the inflammatory challenge; this
effect may be associated with the capability of this
receptor to increase the release of TNF-a, the subse-
quent activation of neuronal caspase-3 and apoptosis
processes (Taylor et al. 2005). In line with this observa-
tion, it has been reported that mixed cortical culture
with neurons derived from mGlu2 knockout animals
are resistant to NMDA toxicity (Corti et al. 2007).
Moreover, in a recent gene expression study of a large
cohort of post-mortem depressed subjects, the
increased expression of Grm2 has been proposed as a
biomarker of suicide in major depressed patients (Gray
et al. 2015). Based on our results, it is feasible to
hypothesise that a reduction in LPS-induced increase
of Grm2 by agomelatine may be part of the anti-
inflammatory properties of the drug.

In conclusion, in the present study we used an
unbiased genome-wide strategy to broaden our view
on the immune-regulatory activity of the antidepres-
sant agomelatine.

Although further studies are needed to better inves-
tigate the modulatory activity of agomelatine and
other antidepressants on the transcripts and pathways
identified in our study, the information emerging from
these results are useful to better understand the
mechanisms of action of agomelatine and to identify
novel targets for pharmacological intervention as well
as to characterise the mechanisms involved in the
association between depression and inflammation.
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