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Abstract

Introduction: in chronic hemodialysis patients, a disruption in iron metabolism ranging from
absolute to functional deficiency, with compartmentalization of this metal into macrophages, is
often observed. Chronic inflammation indeed often causes an upregulation of the iron hormone
hepcidin, thereby reducing iron absorption and availability to the erythron.

Methods: we systematically reviewed the literature on the role of genetic risk factors on iron
metabolism in hemodialysis.

Findings: in this setting, mutations in the HFE gene of hereditary hemochromatosis may confer
an adaptive benefit by decreasing hepcidin release, thus improving iron availability to erythropoie-
sis, anemia control, and the response to erythropoiesis stimulating agents and iron itself, and
reducing the side effects of these therapies. The HFE protein together with Transferrin receptor-2
may also have a direct role on erythroid differentiation and iron uptake in erythroid cells. In addi-
tion, other genetic determinants of iron status, such as variants in Matriptase-2 (TMPRSS6), have
been shown to influence iron metabolism in chronic hemodialysis patients, most likely acting
through hepcidin regulation.

Discussion: although data must be confirmed in larger prospective studies, this favorable shift in
iron metabolism balance possibly results in reduced mortality, in particular because of cardiovascu-
lar and infective diseases. Further genetic studies may offer a valuable tool to test these hypothe-
ses and guide personalized clinical management and the research of new therapies.
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by chronic inflammation and/or blood losses, and plays a
key role in the pathogenesis of anemia.'? Conversely,
hyperferritinemia related to inflammation with altered
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observed, which is associated with a greater risk of cardio-
vascular disease and mortality.” Indeed, inflammation and
oxidative stress determine iron retention in macrophages,
with induction of ferritin. "> However, circulating ferritin
concentration may also reflect to a certain degree body iron
in CHD patients, so that in some patients truly increased
body iron stores are observed.®’ Chronic intravenous iron
supplementation to overcome resistance to erythropoiesis-
stimulating agents (ESA) is a key determinant of iron accu-
mulation, but there is a great interindividual variability in
the response to therapies, even after accounting for inflam-
mation levels. In fact, individuals who readily incorporate
iron into hemoglobin require lower doses of iron and ESA,
have less side effects, and may have a better prognosis.>°
Therefore, identification of the genetic determinants of iron
regulation in CHD may reveal novel biomarkers for risk
stratification and personalized clinical management and
potential new therapeutic targets.""

OVERVIEW OF IRON METABOLISM
AND IMPACT OF HFE MUTATIONS

Iron is an essential nutrient in human cells, playing
a crucial role in vital biochemical activities, as an
essential component of enzymes and other molecular
complexes.' %

The human body contains approximately 3-5 g of iron,
the main part of which is employed to synthesize hemo-
globin (Hb) circulating in red blood cells. Other iron-rich
organs are the liver and muscles. Approximately 20%—
30% of body iron is stored in hepatocytes and in macro-
phages, to a large extent within polymers of ferritin. A
healthy individual absorbs daily 1-2 mg of iron from the
diet, which is utilized to compensate nonspecific iron
losses by desquamation of enterocytes and epidermis and,
in childbearing aged women, by period. Erythropoiesis
requires approximately 30 mg of iron per day, mainly
provided by the recycling of iron via macrophages, which
ingest senescent red blood cells and release iron, which
binds to circulating transferrin (TF).

Iron uptake in the duodenum and the jejunum is medi-
ated by a specific set of transporters; the most important
for systemic regulation is named Ferroportin-1 (Fp-1),
which allows the transport across basolateral membrane of
enterocytes, macrophages, and hepatocytes. Ferric iron
binds to plasmatic apo-TF to form ferric iron-TF complex,
which is the major type of iron present in blood. The TF
complex facilitates the transport of iron to cells that express
TF receptors (TFR), including erythroid progenitors, and
limits the ability of iron to generate toxic radicals.

Iron uptake in the cells occurs primarily by the endo-
cytic pathway, which involves the interaction between TF
and TFR. Two different TFR are known, namely TFR-1,
which is found in all cells and shows an elevated affinity
for circulating TF, and TFR-2, mainly expressed in the liv-
er and in the hematopoietic cells, which binds the TF
complex with a lower affinity.

Not all absorbed iron is utilized in metabolic processes,
but it is partly stored as reserve, both for use when iron
levels are low, and to prevent toxic effects of free iron in
the cell. Under iron overload conditions, ferritin levels
increase dramatically, particularly in liver.

Systemic iron homeostasis is achieved by modulation
of the amount of iron absorbed in response to iron need
and availability and erythropoiesis activity. Conversely,
“inflammatory” regulators communicate signals in
response to infection or inflammation, resulting in accu-
mulation of iron in macrophages.

A small antimicrobial peptide synthesized by the liver,
named hepcidin,'” is the principal effector of the systemic
modulation of iron metabolism, via its ability to bind
Fp-1 on cellular surface blocking its iron transport activi-
ty, and to increase Fp-1 degradation.]6 In enterocytes,
Fp-1 internalization on the basolateral surface causes the
retention of absorbed iron with subsequent loss by des-
quamation, while the same process in macrophages
causes the failure to release iron.'” The final effect is the
reduction of plasma iron availability. Hepcidin secretion
is reduced in response to signals that cause an increase in
iron release from cells, such as iron deprivation, and stim-
ulus to erythropoiesis, whereas it is induced by iron over-
load or inflammation. Thus, hepcidin represents the
common effector of the homeostatic regulation of intercel-
lular iron fluxes in response to the iron stores, erythroid,
and inflammatory regulators. It is still not yet entirely
clear how systemic iron demand modulates hepcidin
release by the liver. The transcription and secretion of
hepcidin by the liver is regulated by a mechanism of body
iron sensing and is finely regulated by a group of pro-
teins, including the hereditary hemochromatosis protein
called HFE, TFR-2, hemojuvelin (HJV), bone morphoge-
netic protein 6 (BMP6), Matriptase-2 (TMPRSS6), and TF
(Fig. 1 A). Mutations in HFE, TFR-2, HJV, and the hepci-
din gene (HAMP) are responsible for hereditary hemo-
chromatosis (HH), a common iron overload disorder
characterized by a deficit of hepcidin release or
activity. 1718

HFE mutations represent the most frequent cause of
HH in Caucasian adults."® The most common HFE muta-
tion responsible for HH is a single nucleotide substitution
that causes the substitution of a cysteine with a tyrosine at
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position 282 (C282Y), leading to disruption of a disulfide
bridge, protein mysfolding, and lack of expression on the
plasma membrane. It is now clear that deletion of HFE
specifically in hepatocytes leads to increased iron absorp-
tion and systemic iron overload, that is mediated by lack
of hepcidin upregulation in response to circulating iron.*°
The homozygous genotype is very frequent in Caucasians,
particularly in people from Northern Europe (frequency
1/300-400), whereas the prevalence decreases toward
Southern Europe. A second and most frequent mutation
is a substitution at position 63 of a histidine with an
aspartate (H63D): this is a very common polymorphism
in the general population, as 25%—-30% of the population
carries the H63D variant. The H63D can predispose to a
milder form of iron overload in combination with the
C282Y variant (C282Y/H63D compound heterozygosity),
or more rarely in homozygosity (H63D/H63D), whereas it
does not predispose to iron accumulation in the general
population.”" The penetrance of iron overload depends
on age, gender, environmental factors, and on the role of
the so-called modifier genes,** for example, the beta-
thalassemia trait.”>** Many other molecules have been
implicated in the regulation of hepcidin secretion, such as
iron-regulated BMP6 ligand, a bone morphogenetic pro-
tein of the TGFf superfamily and its receptors, small
mother against decapentaplegic 1/5/8, HJV and TMPRSS6.
Notably, a common mutation in TMPRSS6 encoding for
the A736V substitution is associated with iron status and
erythropoiesis in the general population, and modulates
the phenotypic expression of HFE mutations by influenc-
ing hepcidin secretion.”” >

IMPLICATIONS OF IRON STATUS IN
CHD PATIENTS

In CHD patients, different types of situation related to
iron-metabolism are observed: (1) absolute iron deficien-
¢y, due to decreased total body iron stores. This situation
is common in CHD, due to low-grade but frequent blood
losses. (2) Functional iron deficiency, when iron stores
are normal or even increased, but the ESA-stimulated
bone marrow needs more iron from TF than the iron out-
put from tissue stores, resulting in ESA resistance. Hepci-
din can aggravate functional iron deficiency by decreasing
the release of stored and macrophage iron and intestinal
iron absorption, through Fp-1 downregulation. The most
severe form, historically termed 3) “reticuloendothelial
blockage,” which usually occurs in the setting of acute or
chronic inflammation/infection. It can be considered as
an extreme form of functional iron deficiency, and is

Hemodialysis International 2017; 00:00-00

HFE in hemodialysis

associated with inflammation, low TS, but normal to very
high levels of ferritin and tissue iron stores, which are
locked by hepcidin and inflammatory cytokines. As a
consequence, resistance to ESA and iron easily develops.
Thus, the pattern of anemia, hyposideremia, ESA resis-
tance, and high serum ferritin is frequently observed in
CHD patients.

Furthermore, excess iron has also been implicated in
the pathogenesis of the accelerated atherosclerosis by cata-
lyzing oxidative stress in CHD.”” In CHD patients, carotid
intima media thickness and plaques were correlated with
serum ferritin and oxidative stress and reduced plasma
antioxidant activity,”** and intima-media thickness was
also associated with the dose of iron administered.”
Furthermore, hepcidin and TNFu levels have also been
correlated with vascular stiffness, another reliable predic-
tor of cardiovascular events in CHD.?® Even after adjust-
ment for malnutrition and inflammatory biomarkers,
severe hyperferritinemia, and the intravenous dose of iron
were still associated with increased total and cardiovascu-
lar mortality.3 7% Moreover, as iron is an important
growth factor for invading pathogens, iron overload has
been associated with an increased incidence and severity
of infections.”®*

IMPACT OF HFE MUTATIONS IN CHD

A few studies have evaluated the impact of the major
C282Y and H63D HFE mutations in CHD patients
(Table 1).

The two common C282Y and H63D mutations, present
in about one third of individuals of European descent,
have been shown associated with baseline iron stores,
lower requirement of erythropoietin to maintain stable
Hb levels, and a trend to a lower requirement of iron sup-
plementation in Italian CHD patients.® The relationship
between iron parameters and HFE mutation in the setting
of HD was confirmed by Fernandez et al., who showed
increased ferritin levels in patients heterozygous for the
C282Y after a 4 months treatment with parenteral iron.*
Moreover, a possible role of the H63D mutation (when
present in homozygosity) as a modulating factor of iron
overload in end stage renal disease was also postulated.*®
These data suggest that in the context of CHD, character-
ized by “stressed” iron metabolism regulation, these
genetic variants may not only influence circulating iron
parameters and body stores, but also iron handling by
macrophages after infusion, and iron availability to the
erythron. Importantly, iron stores and the requirement of
iron and ESA were comparable between patients carrying
only the minor HFE H63D mutation and those positive
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Role of mediators implicated in iron homeostasis and impact of HFE protein mutations in renal failure. (A) HFE wild-type,
healthy controls; (B) HFE wild-type, in chronic renal failure; (C) HFE mutated, in renal failure. Bone morphogenetic protein
6 (BMP-6) binds to the co-receptor membrane hemojuvelin (m-HJV) and to the bone morphogenetic protein receptor (BMP-
R) on the membrane of hepatocytes. This promotes phosphorylation of small mother against decapentaplegic (SMAD) pro-
teins. After nuclear translocation, these initiate hepcidin transcription. An alternative pathway leading to hepcidin expression
involves Interleukin (IL)—6/gp130 signaling via signal transducer and activator of transcription 3 (STAT3) nuclear transloca-
tion. The proteolytic processing of membrane-HJV by matriptase-2 (TMPRSS6) leads to negative regulation of the BMP-HJV-
hepcidin pathway. Further negative regulation of hepcidin transcription is achieved by soluble-HJV, acting as an antagonist
of the BMP pathway by competing with m-HJV for BMP-6 binding. The hepcidin signaling pathway is moreover regulated by
HFE, which binds either to transferrin receptor 1 (TFR-1) or transferrin receptor 2 (TFR-2) depending on serum transferrin
saturation: in the presence of a high transferrin saturation HFE dissociates from TFR-1 and binds TFR-2 forming an iron
sensing complex influencing hepcidin expression via SMAD/ERK signaling. Liver-secreted hepcidin secreted binds to the
extracellular region of ferroportin 1 (Fp-1) on the basolateral membrane of duodenal enterocytes leading to Fp-1 internaliza-
tion, ubiquitination and degradation, and consequently hampered intestinal iron absorption. EPO = erythropoietin;
Epo-R = erythropoietin receptor; s-HJV = serum hemojuvelin; TS = transferrin saturation.

subjects affected by renal failure carrying HFE mutations
might be the ones showing long term survival in CHD,*
which could provide an alternative explanation for the
enrichment of at risk genotype in this setting,

In the hypothesis that altered regulation of hepcidin
release by iron stores might explain the apparent protec-
tive role of the HFE mutations on cardiovascular compli-
cations and on the response to eryrthopoietin,” it was
next investigated whether the effect of HFE gene

mutations on hepcidin-25, the active form of the hor-
mone, could be involved in the pathophysiology of the
alterations of iron metabolism and anemia. Increased lev-
els of hepcidin-25 were observed in CHD patients com-
pared to healthy controls,®*°° and a preserved regulation
of hepcidin-25 by iron stores and inflammation in CHD,
as demonstrated by the very strong correlation with
serum ferritin and CRP levels.”" Interestingly, there was
also a negative correlation between hepcidin-25 and
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serum iron, and in a subgroup of patients with stable dis-
ease, selected to avoid the confounding effect of the fre-
quent presence of acute inflammation, blood losses,
cancer, and recent variation in the dosage of therapy,
hepcidin-25 negatively correlated with hemoglobin levels.
Since anemia and hyposideremia should rather decrease
hepcidin levels, these findings suggest that hepcidin-25
plays a causal role in determining anemia by reducing
iron availability to the erythron, thus implying that in
CHD excessive iron administration may paradoxically
hamper iron utilization for erythropoiesis by increasing
hepcidin, and that the effect of inflammation on altered
iron metabolism and erythropoiesis may be partly mediat-
ed by increased hepcidin levels. As a consequence, phar-
macological downregulation of hepcidin may be
beneficial for anemia control in CHD.>

However, the protective effect of HFE mutations might
not be limited to enhanced erythropoiesis due to decreased
hepcidin levels. Indeed, HFE is expressed in erythroblasts,
where it plays a role in the regulation of erythroid differen-
tiation, and HFE deficiency is associated with increased
erythropoiesis partly due to enhanced iron absorption, and
partly due to a direct effect of HFE on the modulation of
iron uptake in erythroid cells.”® Moreover, TFR-2 is associ-
ated to the erythropoietin receptor (EpoR) in the EpoR
complex in erythroblasts, and is required for efficient ery-
throid differentiation and erythropoiesis.”* These data indi-
cate that the TFR-2/HFE complex is directly involved in
the regulation of erythropoiesis independently of hepcidin
levels, and thus that genetic variations, or pharmacological
modulation, of HFE and TFR-2 may influence the pro-
duction of red blood cells and anemia in conditions char-
acterized by reduced iron availability, such as CHD (Fig.
1 B-O).

OTHER GENETIC FACTORS: ROLE OF
TMPRSS6

The TMPRSS6 gene encodes for Matriptase-2, a
membrane-bound protease that downregulates hepcidin
transcription by cleaving hemojuvelin. Rare loss-of-
function germline mutations of TMPRSS6 cause iron-
refractory iron-deficiency anemia, characterized by very
high hepcidin levels, whereas the common 1s855791
polymorphisms leading to the p.A736V substitution is an
important determinant of iron status in healthy subjects.
In particular, the p.736V allele has been associated with
lower serum iron, higher hepcidin levels, and decreased
Hb in the general population.”>>* Moreover, it has been
demonstrated that the p.A736V polymorphism influences
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iron overload in hereditary hemochromatosis and nonal-
coholic fatty liver disease.*”*®

Since hepcidin is one of the major determinants
involved in the pathogenesis of anemia of CHD, the role
of the TMPRSS6 A736V polymorphism on erythropoiesis
and iron parameters per se and in combination with HFE
was evaluated in this subset of patients. '

Indeed, in CHD patients the A736V TMPRSS6 poly-
morphism modulates serum hepcidin, being the
TMPRSS6 736V variant associated with higher levels of
the iron hormone.

The combined HFE (presence or absence of HFE muta-
tions) and TMPRSS6 A736V genotypes also played a role
in this respect: patients negative for HFE mutations had
higher hepcidin than patients with 736A/A and positive
for HFE mutations. Furthermore, in patients carrying HFE
mutations, those with the 736V/V genotype showed
higher hepcidin than those with the 736A/A genotype.
Importantly, HFE and A736V TMPRSS6 genotypes also
predicted serum hepcidin independently of inflammation.

In line with previous results, in patients without acute
inflammation and overt iron deficiency the 736V
TMPRSS6 variant was also associated with higher erythro-
poietin maintenance dose.

All these findings validate the role of HFE on iron
metabolism in CHD, but also show the importance of oth-
er genetic factors such as TMPRSS6 per se and in combi-
nation with HFE. Evaluation of the effect of the TMPRSS6
genotype on clinical outcomes in prospective studies in
CHD may be in fact useful to predict the outcomes of
hepcidin manipulation, and to optimize anemia manage-
ment and treatment in these patients.'

CONCLUSIONS

The CHD setting is characterized by chronic inflammation
and increased hepcidin levels with consequent reduction
in iron absorption, recycling, and availability. This fre-
quently leads to severe anemia, impairing the response to
Epo and iron therapy.

The common polymorphisms C282Y and H63D of the
HFE gene play a major role in iron metabolism: these
genetic factors act by hampering hepcidin upregulation in
hepatocytes in response to increased iron stores, thereby
leading to reduced serum hepcidin. However, in CHD
patients HFE mutations may cause an adaptive benefit by
decreasing hepcidin release in response to iron and
inflammation, thus improving iron availability to erythro-
poiesis, anemia control, and the response to ESA and
iron. This favorable shift in iron metabolism balance may
possibly result in mortality reduction, in particular
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because of cardiovascular and infective causes. Evidence
is also accumulating that HFE mutations directly promote
erythroblast maturation and hemoglobinization indepen-
dently of hepcidin.

Other genetic determinants such as the TMPRSS6
A736V per se or in combination with HFE mutations have
also been shown to influence iron metabolism in CHD
patients, most likely acting through hepcidin regulation.

Despite these findings, iron metabolism in chronic
hemodialysis patients remains a controversial topic,
whose main aspects are still under definition. In fact,
most of the currently available studies show some limita-
tions often due to limited sample size and lack of well-
characterized multicenter cohorts with long time follow-
up and non-European populations evaluation.

Further studies are, therefore, needed to clarify the role
of genetic determinants and hepcidin regulation on iron
metabolism in CHD patients in order to develop new
approaches to optimize anemia management, and to
guide treatment personalization.

Manuscript received December 2016.
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