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Abstract Amyotrophic lateral sclerosis (ALS) is a neurologi- 

cal disease characterized by the progressive loss of cortical, 

bulbar, and spinal motor neurons (MNs). The cardinal manifes- 

tation of ALS is a progressive paralysis which leads to death 

within a time span of 3 to 5 years after disease onset. Despite 

similar final output of neuronal death, the underlying pathogen- 

ic causes are various and no common cause of neuronal damage 

has been identified to date. Inflammation-mediated neuronal 

injury is increasingly recognized as a major factor that promotes 

disease progression and amplifies the MN death-inducing pro- 

cesses. The neuroimmune activation is not only a physiological 

reaction to cell-autonomous death but is an active component of 

nonautonomous cell death. Such injury-perpetuating phenom- 

enon is now proved to be a common mechanism in many hu- 

man disorders characterized by progressive neurodegeneration. 

Therefore, it represents an interesting therapeutic target. To 

date, no single cell population has been proved to play a major 

role. The existing evidence points to a complex cross talk be- 

tween resident immune cells and nonresident cells, like mono- 

cytes and T lymphocytes, and to a dysregulation in cytokine 

profile and in phenotype commitment. After a summary of the 

most important mechanisms involved in the inflammatory re- 

action in ALS, this review will focus on novel therapeutic tools 

that rely on tackling inflammation to improve motor function 

and survival. Herein, completed, ongoing, or planned clinical 

trials, which aim to modify the rapidly fatal course of this dis- 

ease, are discussed. Anti-inflammatory compounds that are 
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currently undergoing preclinical study and novel suitable mo- 

lecular targets are also mentioned. 
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Abbreviations 

ALS Amyotrophic lateral sclerosis 

A-SMase Acid sphingomyelinase ABC

  ATP-binding  cassette 

ALSFRS-R ALS function rating scale revised 

AMPA α-Amino-3-hydroxy-5-methyl-4-isoxazole 

propionic acid 

AP1 Activator protein 1 

APP Amyloid precursor protein 

Arg1 Arginase 1 

ATP Adenosine triphosphate 

AUC Area under curve 

BDNF Brain-derived neurotrophic factor 

KIT Receptor  tyrosine-kinase 

C(max) Maximum serum concentration 

C/EBP CCAAT-enhancer-binding   protein 

C9ORF72 Chromosome 9 open reading frame 72 

CAFS Combined assessment of function and 

survival 

CB2 Cannabinoid receptor 2 

CCAAT Cytidine-cytidine-adenosine-adenosine- 

thymidine 

CD Cluster  of differentiation 

Chi3l3 Chitinase-3-like-3 

CNS Central nervous system 

COX Cyclooxygenase 

CRP C-reactive protein 
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CSF1 Colony-stimulating  factor 1 MN Motor neuron 

CSF1R Colony-stimulating factor 1 receptor MnSOD Manganese-dependent  superoxide dismutase 

CysGly Cysteinylglycine MRI Magnetic  resonance imaging 

EAAT/ Excitatory amino acid  transporter/glutamate mRNA Messenger RNA 

GLAST aspartate transporter MS Multiple sclerosis 

EAAT/GLT1 Excitatory amino acid  transporter/glutamate mSOD1 Mutant SOD1 
 transporter 1 MyD88 Myeloid  differentiation primary response 

EDSS Expanded Disability Status Scale  gene 88 

EMA European Medical Agency N-SMase Neutral  sphingomyelinase 

ER Endoplasmatic reticulum NCAM Neural cell adhesion molecule 

ERK Extracellular  signal-regulated kinases Nec-1 Necrostatin-1 

FACS Fluorescence-activated  cell sorting NF-kB Nuclear factor kappa-light chain-enhancer of 

FADD Fas-associated protein with death domain  activated B cells 

fALS Familial amyotrophic  lateral sclerosis NFAT Nuclear factor of activated T cells 

FAS Fas cell surface death receptor NIV Noninvasive ventilation 

FasL Fas ligand NMDA N-methyl-D-aspartate 

FDA Food and Drug Administration NO Nitric oxide 

FEV1 Forced expiratory volume in the 1st second NOD Nucleotide  oligomerization domain 

FGF Fibroblast growth factor NTG Normal tension glaucoma 

FIZZ1 Found in inflammatory zone 1 OPTN Optineurin 

FoxP3 Forkhead box P3 PDGFR Platelet-derived  growth factor receptor 

FTD Frontotemporal dementia PET Positron  emission tomography 

FUS Fused in sarcoma PG Prostaglandin 

FVC Forced vital capacity PI3K Phosphatidylinositol  3-kinase 

GDNF Glial cell-derived neurotrophic factor PKA Protein kinase A 

GIST Gastrointestinal  stromal tumor PML Progressive  multifocal encephalitis 

HHD Hand-held dynamometry PPAR Peroxisome  proliferator-activated receptor 

HLA Human leukocyte antigens RAGE Receptors for advanced glycation end 

HMGB1 High mobility group box 1  products 

HSE Herpes  simplex encephalitis RIG Retinoic acid-inducible gene 

HSP Heat shock protein RIP Receptor-interacting protein 

IFN Interferon RIPK Receptor-interacting  serine/threonine kinase 

IGF Insulin-like growth factor ROS Reactive oxygen species 

IkB Inhibitor of kB RUNX Runt-related  transcription factor 

IL Interleukin S1P Sphingosine-1-phosphate 

iNOS Inducible nitric oxide synthase sALS Sporadic amyotrophic lateral  sclerosis 

iPSC Induced pluripotent stem cells SCID Severe  combined immunodeficiency 

IRAK Interleukin-1  receptor-associated kinase shRNA Short hairpin RNA 

IRF Interferon  regulatory factor SOCS Suppressor of cytokine signaling 

JNK c-Jun N-terminal kinase SOD1 Superoxide dismutase 1 

KIR3DL2 Killer cell immunoglobulin-like receptor 3DL2 STAT Signal transducer and activator of 

LMN Lower motor neuron  transcription 

LPS Lipopolysaccharide SVC Slow vital capacity 

LTP Long-term potentiation TACE TNF-alpha converting enzyme 

Mal MyD88-adapter-like TANK TRAF family member-associated NF-kB 

MAPK Mitogen-activated  protein kinase  activator 

MCP Monocyte  chemoattractant protein TARDBP Transactive response DNA-binding protein 

mGluR Metabotropic  glutamate receptor TBK1 TANK binding kinase 1 

MHC Major  histocompatibility complex TDP-43 Transactive response DNA-binding protein 

MIF Migration  inhibitory factor  43 kDa 

MIP Maximum  inspiratory pressure TGF Transforming growth factor 

MLKL Mixed lineage kinase domain-like protein Th T helper 

MMT Manual muscle testing TIR Toll/IL-1 receptor 



 
 

 

 

TLR Toll-like receptor 

TNF Tumor necrosis factor 

TNFR Tumor necrosis factor receptor 

TRADD TNFR1-associated death domain 

TRAF2 TNF receptor-associated factor 2 

TRAIL TNF-related apoptosis-inducing ligand 

Treg Regulatory T cells 

TSPO Translocator protein 18 kDa 

VEGF Vascular endothelial growth factor 

VZV Varicella zoster virus 

WT Wild type 

[11C]PBR28 [11C] peripheral benzodiazepine receptor 28 

 

 

Introduction 

 
Amyotrophic lateral sclerosis (ALS) is a degenerative neuro- 

logic disease with an adult-age onset. ALS is marked by the 

selective death of spinal, bulbar, and cortical motor neurons 

(MNs), ultimately causing progressive paralysis and precocious 

death usually occurring3 to5 years after the diagnosis [1]. 

In the majority of cases (~90%), no familial history of 

ALS is recognized, thus being classified as sporadic forms 

of ALS (sALS), while only 10% of ALS cases are familial 

(fALS). More than 10 different mutated genes have been 

associated with fALS [2] cases. The expansion in the 

hexanucleotide repeat (GGGGCC)n in the chromosome 9 

open reading frame 72 (C9ORF72) gene (accounting for 

about 40% of fALS in Western countries) and mutations in 

the  superoxide dismutase  1  (SOD1),  fused in sarcoma 

(FUS) and  transactive response DNA binding protein 

43 kDa(TDP-43 or TARDBP) genes (identified in about  

20, 1–5, and 1–5% of fALS patients, respectively) are rec- 

ognized as the underlying cause of the majority of fALS 

cases. 

Despite our current knowledge, the underlying pathogenic 

mechanism remains unclear, especially for sALS. Besides 

riluzole, which can extend the median survival of ALS patients 

only by 3 months, no other approved therapy exists for ALS. It 

is urgent to identify new potential therapeutic targets in order to 

develop treatments that can have a clinically meaningful impact. 

The inflammatory reaction in the central nervous system 

(CNS) is emerging as a potential pathogenic and precipitating 

factor in a broad spectrum of degenerative diseases [3]. 

Neuroinflammation has been demonstrated in areas of neuro- 

nal loss in both animal and human tissues, even during the 

presymptomatic phase of the disease, but its role is far to be 

completely elucidated [4]. There is no definitive evidence 

whether inflammation is a major cause of cell death or if it 

represents a reaction to local damage signals derived from 

dying MNs, mutant proteins, or self-antigens. However, the 

emerging fact regarding neuroinflammation is its ambivalent 

action on ALS onset and course, being neuroprotective and 

repair driving during an early phase and becoming cytotoxic 

in an advanced phase (Fig.1) [5]. Another interesting evidence 

of noncell-autonomous neuronal death is that neurons ex- 

pressing mutant SOD1 (mSOD1) show no major pathological 

sign when supported by healthy macroglia and microglia, 

while MNs lacking SOD1 develop pathologic hallmarks of 

ALS when exposed to glial cells expressing mSOD1 [6]. 

 
 

 
 

Fig. 1 The ambivalent role of inflammation on motor neuron survival. 

Left: Resting state astrocytes, M2 microglia, Th2, and Treg lymphocytes 

are predominantly present at an early stage of disease and support neuron 

function and viability by removing glutamate excess from the 

extracellular space and releasing anti-inflammatory and neurotrophic 

factors (IL-4, IL-10, TGF-β, IGF-1, BDNF, GDNF). Right: Danger 

signals and misfolded or mutated proteins (like mSOD1 and TDP-43) 

cause a switch of immune cells to a pro-inflammatory and neurotoxic 

state, which is predominant at a late stage of disease. Activated astrocytes, 

M1 microglia, and Th1 and Th17 lymphocytes secrete nitric oxide (NO) 

and pro-inflammatory factors (IL-1, IL-6, IFN-γ, TNF-α) that induce 

neurotoxicity and death of motor neurons. The impairment of glutamate 

uptake by activated astrocytes increases excitotoxicity and apoptosis of 

motor neurons 



 

 

 

The major inflammatory pathways studied include microg- 

lia and astrocyte activation, recruitment of peripheral mono- 

cytes, the role of lymphocytes, and their ability to regulate the 

type and strength of immune response [7]. 

Given this evidence, several compounds targeting neuroin- 

flammation such as celecoxib [8], ceftriaxone, thalidomide, 

and minocycline have been tested in preclinical stage and have 

been shown to exert positive effects on ALS transgenic mice 

[9–11] in the last years. However, none of them has been 

proved to be effective when transferred to human clinical tri- 

als. In a similar way, counteracting the negative effect of re- 

active oxygen species (ROS) exerted positive effects on ALS 

animal models but not on ALS patients [12]. Indeed, several 

well-known immunosuppressive drugs such as azathioprine, 

corticosteroids, cyclophosphamide, and calcineurin inhibitors 

like cyclosporine, which have a well-established efficacy on 

many immunological disorders and are routinely used, had not 

demonstrated any therapeutic efficacy in ALS [13, 14]. Also, 

some immunomodulatory drugs used for multiple sclerosis 

(MS), like glatiramer acetate, have been disappointing in a 

clinical setting [15]. 

The reasons of this failure are largely unknown. Such fail- 

ure can be reasonably due to the fact that these drugs are 

generally administered when the disease has already 

progressed to an advanced phase. During this phase, inflam- 

mation could no longer represent an appropriate target or it is 

also likely that inflammatory pathways could contribute in a 

more complex way to ALS than to other neurological diseases 

with a clear inflammatory pathogenesis. 

In this review, we propose a brief overview of the changes 

in innate and adaptive immunity and the evidence of their 

involvement in ALS. Then, we will discuss recent studies 

and ongoing or planned clinical trials that investigated the 

effects of anti-inflammatory and immune-modulating drugs 

on disease onset and progression. The different compounds 

are classified based on their main putative molecular/cellular 

targets. 

 
Microglia and ALS 

 
Several studies have demonstrated that glial cells, activated 

lymphocytes, and production of pro-inflammatory and neuro- 

toxic agents have a role in the degeneration of MNs [16–18]. 

Increased activation of glial cells in ALS patients has been 

shown upon postmortem analysis [19] and with in vivo imag- 

ing techniques [20–22]. A good marker of enhanced glial 

activation is the translocator protein (TSPO), which is highly 

expressed in activated microglia [23]. Positron emission to- 

mography (PET) imaging with the TSPO-binding radiotracer 

[11C] peripheral benzodiazepine receptor 28 ([11C]PBR28) 

has showed that the uptake of this compound was increased 

in the corticospinal tract and in the motor cortex of ALS pa- 

tients compared to controls [24]. Also, this technique has 

showed a strong link between the anatomical localization of 

active microglia and the clinical manifestation of the disease. 

Microglial cells express different classes of receptors typi- 

cally associated with the innate immunity. The most important 

and known of them are Toll-like receptors (TLRs), nucleotide 

oligomerization domain receptors (NOD), receptors for ad- 

vanced glycation end products (RAGE), and retinoic acid- 

inducible gene (RIG) [25]. The activation of these receptors 

can be triggered by a variety of danger and damage signals, 

like the accumulation and aggregation of abnormal or 

misfolded proteins and the release of cellular components 

from damaged or dying cells. These factors are well- 

recognized pathogenic factors in different forms of ALS as 

previously described. 

When activated, glial cells can acquire a M1 pro- 

inflammatory phenotype (classically activated microglia) or 

a M2 anti-inflammatory phenotype (alternatively activated 

microglia) [26]. M2-type glia has a positive effect on MN 

function and survival [27] and is mainly present at an early 

stage of disease, which is often a slow progression phase [28]. 

As the disease progresses, microglia strongly tend to switch to 

a M1 phenotype, enhancing the production of ROS and 

inflammation-inducing cytokines such as tumor necrosis 

factor-α (TNF-α), interleukin-1 (IL-1), and IL-6 and reducing 

the production of neurotrophic factors like insulin-like growth 

factor-1 (IGF-1) and IL-4 [29]. In fact, IGF-1 and, more re- 

cently, IGF2 [30] have been shown to prolong MN survival 

and ameliorate motor function in ALS mice [31]. Recently, 

RNAseq analysis has shown that TNF-α represents one of the 

most significant molecular alteration in the human ALS spinal 

cord [32]. 

TNF-α is first synthetized as a transmembrane protein and 

then cleaved by the TNF-α converting enzyme (TACE) to 

release its soluble form. Both the transmembrane and the sol- 

uble forms are active and able to bind to specific neuronal 

receptors, which are the effectors of the TNF-α-induced tox- 

icity [33]. TNF-α has two different membrane receptors: tu- 

mor necrosis factor receptor 1 (TNFR1), which possesses a 

death domain in its cytoplasmatic portion, and TNFR2 [34]. 

The soluble form of TNF-α activates TNFR1, which in re- 

sponse recruits the adaptor protein TNFR1-associated death 

domain (TRADD). The latter in turn activates other adaptor 

proteins downstream, like receptor-interacting protein (RIP), 

TNF receptor-associated factor 2 (TRAF2), and Fas- 

associated protein with death domain (FADD), that ultimately 

lead to the activation of caspase 8 and caspase 10 and to 

apoptosis. Furthermore, TNFR1 is also responsible for the 

activation of other intracellular signal pathways related to cell 

survival and inflammatory response such as extracellular 

signal-regulated kinase (ERK), p38 mitogen-activated protein 

kinase (p38 MAPK), c-Jun N-terminal kinase (JNK), the acid- 

ic and neutral sphingomyelinase (A-SMase and N-SMase), 

and nuclear factor kappa-light chain-enhancer of activated B 



 
 

 

 

cells (NF-kB) [35]. TNFR2 has been shown to induce apopto- 

sis and activate NF-kB, ERK, p38 MAPK, and JNK through 

adaptor proteins TRAF2 and FADD [36]. The role of TNFR2 

is still not completely understood, as other studies have 

showed that it could also have a neuroprotective effect [34]. 

Indeed, anti-TNF drugs are associated with neurological ad- 

verse events and negative effects on myelin [37]. The detri- 

mental effect of TNF in neurodegeneration is amplified by its 

autocrine and paracrine action. The production of TNF-α is 

increased by TNF-α itself through binding to the TNFR1 [38] 

and to the group 2 metabotropic glutamate receptor (mGluR2) 

expressed by microglial cells. TNF signaling also increases 

the release of Fas ligand (FasL) [39] and glutamate from 

microglial cells [40]. Furthermore, glutamate toxicity is am- 

plified by the impairment in the glutamate homeostasis system 

induced by TNF-α [41]. The downregulation of the excitatory 

amino acid transporter/glutamate aspartate transporter  

(EAAT1/GLAST) and excitatory amino acid transporter/ 

glutamate transporter 1 (EAAT2/GLT1) on astrocytes, trig- 

gered by the activation of TNFR1 and secondarily of NF-kB 

[42], results in decreased glutamate uptake from the extracel- 

lular space [43, 44]. The reduced expression of these trans- 

porters has been demonstrated to occur both in rat models [45] 

and in ALS patients [46]. At the same time, it has been de- 

scribed that neurons exposed to TNF-α increase the expres- 

sion of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic 

acid (AMPA) [47] and N-methyl-D-aspartate (NMDA) recep- 

tors [48], which cause increased Ca
+2 

influx and excitotoxicity 

[49]. 

Microglial activation and polarization are highly de- 

pendent on the surrounding environment and signals from 

surrounding cells. Lipopolysaccharide (LPS) and 

interferon-γ (IFN-γ) promote a classical activation path- 

way (M1), whereas IL-4 and IL-13 induce the alternative 

activation pathway (M2) [50]. Notably, it has been spec- 

ulated that IL-13 could also be able to modulate inflam- 

mation in the CNS by decreasing the survival of activated 

microglia [51]. The term M2 microglial also includes an- 

other  microglial  state  called  Bacquired deactivation,^ 

which  is  induced  by  IL-10  and  transforming growth 

factor-β (TGF-β) and the uptake of apoptotic  bodies [52]. 

As well as alternatively activated  ones, glial  cells that 

undergo acquired deactivation appear to foster repair and 

neuron survival [53]. M2-related cytokines are not 

produced exclusively by Th2 lymphocytes but are also 

produced by microglia, astrocytes, and neurons them- 

selves in the CNS and show a paracrine and autocrine 

activity  [51,  54, 55]. 

The molecules Found in inflammatory zone 1 (FIZZ1), 

mannose receptor (CD206), chitinase-3-like-3 (Chi3l3), and 

arginase 1 (Arg1) are considered typical M2 markers. The 

most studied and interesting of them is Arg1. Along with 

inducible nitric oxide synthase (iNOS), Arg1 is a key enzyme 

in the metabolism of arginine in the nervous system, using this 

amino acid as its only substrate. iNOS uses arginine to pro- 

duce nitric oxide (NO) and citrulline, while arginine metabo- 

lized by Arg1 gives urea and ornithine. Urea and ornithine are 

converted to hydroxyproline, proline, and polyamines [56]. 

These products not only contribute to cellular processes such 

as growth and differentiation [57], but proline and hydroxy- 

proline are key components of the extracellular matrix and 

collagen [58, 59]. It has been described that Arg1 could rea- 

sonably have a neuroprotective effect that is not directly relat- 

ed to its products. Indeed, by consuming arginine, Arg1 could 

compete with iNOS for the use of available arginine, thus 

limiting the amount of this amino acid available for NO syn- 

thesis [60, 61]. 

As microglial cells represent the primary immune cells 

in the CNS, microglial activation correlates with many 

stimuli and danger signals. mSOD1 is responsible for 

microglial activation through cluster of differentiation 14 

(CD14), TLR2 and TLR4 [62], and adenosine triphos- 

phate (ATP) released from damaged or dying cells. 

The upregulation of TLRs in ALS patients [63], includ- 

ing TLR4 and its ligand high-mobility group box 1 

(HMGB1), and the protective action of TLR4 antagonism 

have been studied in murine models of MN degeneration 

[64] and support the possible pathogenic role of TLR4. A 

preclinical study using mSOD1 transgenic mice has char- 

acterized the expression of both TLR4 and its ligand dur- 

ing determined stages of disease. The study has demon- 

strated that the deletion of TLR4 has a beneficial effect on 

disease progression. The levels of both HMGB1 and 

TLR4, along with the respective messenger RNA 

(mRNAs), were shown to be higher in mSOD1 mice than  

in wild-type (WT) controls. Also, they were shown to be 

especially upregulated in microglial and astrocytic cells.   

In this perspective, the authors have generated a transgen- 

ic mouse lacking TLR4 which exhibited a prolonged dis- 

ease course and a significant improvement of motor per- 

formance, confirming that TLR4 is a  notable  player  in 

MN degeneration [65]. Given these results, the inhibition  

of TLRs, particularly TLR4, could hold promise as a 

pharmacological target. Recently, the beneficial effect of 

TLR4 antagonists in cellular models has been  studied. 

Two synthetic glycol-lipoic  molecules  have  been  tested 

in LPS and mSOD1 animal models. One of the two mol- 

ecules inhibits LPS-induced TLR4 activation, while the 

other one directly interacts with TLR4 and prevents its 

activation. Protective effects against LPS and cytokine 

toxicity have been demonstrated on MNs in spinal cord 

cultures. Positive results have also been shown in co- 

cultures of MNs and glial cells derived from mSOD1 

mice, reducing glia-mediated MN death. We advise that 

more experimental data are needed in order to  demon- 

strate the  efficacy of such therapies  in  vivo. 



 

 

 

Among the receptors crucial to innate immunity TLRs, 

TLR4 is expressed by the majority of both immune and non- 

immune cells, including CNS-resident immune cells [66, 67]. 

Activated TLR4 can enhance the secretion of many cytokines 

and so promote the neuroinflammatory mechanisms that have 

been demonstrated to be involved in ALS. The Toll/IL-1 re- 

ceptor (TIR) region is the protein domain responsible for sig- 

nal transduction and is present in all TLRs. Upon activation of 

TLRs, this region binds adaptor proteins such as myeloid dif- 

ferentiation primary response gene 88 (MyD88) and MyD88- 

adapter-like (Mal), which contain a TIR domain. Mal can 

form either homodimers or heterodimers with MyD88 and 

can activate NF-kB through the interaction with interleukin- 

1 receptor-associated kinase 2 (IRAK2). Instead, MyD88 

seems to activate NF-kB via IRAK1 [68]. The products of 

the classical NF-kB activation are NO and TNF-α and can 

be measured as indicators of NF-kB activation. As proved 

by in vitro co-cultures of MNs with WT or mSOD1 microglia, 

the products downstream of NF-kB activation released by 

mSOD1 microglia are toxic to MNs. Interestingly, NF-kB 

activation in WT microglia decreased MN survival by 50% 

in co-cultures. This has been confirmed by the fact that the 

inhibition of NF-kB, either by overexpression of inhibitor of 

kB (IkB) or transgenically, can rescue MNs [69]. The impor- 

tance of NF-kB activation in microglia is further supported by 

the fact that TDP-43 and FUS have been proved to be co- 

activators of NF-kB [70, 71]. Indeed, the inhibition of NF- 

kB in mice that express the mutant form of TDP-43 has re- 

sulted in an improvement of motor function and phenotype 

[70]. These studies seem to have recognized NF-kB as the 

common pathway activated by many pathogenic stimuli in- 

volved in ALS and as the crucial factor of microglia-mediated 

damage. Alongside the good therapeutic potential of NF-kB 

inhibitors, we think that this approach could require a good 

degree of specificity in targeting this nuclear factor just in 

microglia. In fact, the activity of NF-kB in neurons has been 

demonstrated to be important for many functions such as 

long-term potentiation (LTP) and, consequently, for memory, 

synaptic plasticity, and the ability to elaborate spatial informa- 

tion [72–74]. Many genes involved in neurite growth and 

migration [protein kinase A (PKA) [75], amyloid precursor 

protein (APP) [76], neural cell adhesion molecule (NCAM), 

β1-integrin [77]], calcium homeostasis (calbindin [78, 79]), 

and neurotrophic signals [brain-derived neurotrophic factor 

(BDNF) [80]] are target genes of NF-kB. NF-kB has also been 

demonstrated to enhance the expression of manganese- 

dependent SOD (MnSOD or SOD2) [81] both in neurons 

and nonneuronal cells and so could have a role in protecting 

neurons from apoptosis and from the damaging effects of 

ROS [82]. MnSOD is a mitochondrial protein and its function 

is to clear ROS, particularly superoxide, which is a toxic by- 

product of mitochondria [83]. The neuroprotective effect of 

SOD2 has been shown in animal models of Alzheimer’s 

disease [84] and in mice with traumatic brain damage [85]. 

Notably, the area of cortical damage has been shown to be 

larger in mice in which the TNFR gene is knocked-out as 

compared to WT [85]. In fact, abolishment of the signal down- 

stream of the TNFR resulted in decreased activation of NF-kB 

and disrupted upregulation of MnSOD. The protective effect 

was also abolished in neurons in which NF-kB was inhibited 

by a kB decoy DNA [82]. 

 
Astrocytes 

 
The major role of astrocyte is to nourish neurons and to sustain 

proper neuronal function. One of the ways by which astroglia 

exert its function is by regulating the extracellular glutamate 

concentration. In fact, glutamate clearance is impaired in ALS 

because of the lower levels of the molecule EAAT2, a gluta- 

mate transporter normally expressed by astrocytes, hence in- 

creasing extracellular glutamate [86]. This functional impair- 

ment is the rationale for the clinical use of riluzole, which is 

the only pharmacological therapy approved for ALS to date. 

Astrocytes also contribute to glutathione synthesis by secret- 

ing glutathione precursor cysteinylglycine (CysGly), thus en- 

hancing neurons’ defenses against oxidative injury [87]. This 

function has been shown to be compromised in astrocytes 

upon activation. 

Astrocytes participate in the cellular response to damage 

and danger signals releasing inflammation-related molecules 

like NO, IL-6, and TNF-α and can induce the apoptosis of 

neurons through FasL [88] and TNF-α signaling [89] as de- 

scribed for microglia. TNF-α acts as previously described. 

While activated microglial cells seem to be responsible for 

propagation and clinical progression of the disease after the 

onset, astrocytes could be directly involved in the disease 

onset. In fact, neural progenitor cells derived from induced 

pluripotent stem cells (iPSC) from ALS patients have been 

shown to differentiate into astrocytes once transplanted into 

the spinal cord of severe combined immunodeficiency (SCID) 

mice and induce a motor deficit [90]. Many other possible 

mechanisms through which astrocytes can trigger MN death 

have been proposed in the last years. Astrocytes have been 

shown to secrete factors that drastically reduce the expression 

of class I major histocompatibility complex (MHC I) on MNs 

[91]. The loss of MHC I expression has been demonstrated in 

MNs cultured with astrocytes expressing mSOD1, in MNs 

cultured with mSOD1 astrocyte conditioned medium, and in 

the mSOD1 mouse model. The same phenomenon has been 

described to occur in patients with fALS or sALS. In fact, 

spinal cord samples from these patients stained with antibod- 

ies against human leukocyte antigens (HLA) A, HLA-B, and 

HLA-C have showed a near complete loss of MHC I on MNs. 

The causative toxic factors have not been identified yet but are 

probably secreted only by astrocytes since mSOD1 microglia 

has not altered the expression of MHC I molecules on MNs in 



 
 

 

 

co-cultures. Classical inflammatory mediators, such as 

TNF-α, IL-1, and IFN-γ produced by activated astrocytes, 

have proved to have no effect on MHC I expression. 

Instead, up to 76% of cultured MNs lost the expression of 

MHC I after being treated with thapsigargin. This compound 

triggers the stress of the endoplasmic reticulum (ER) by 

inhibiting the ER calcium-ATPase. We speculate that the loss 

of MHC class I molecules could be a key pathogenic factor in 

the selective vulnerability of MNs to astrocyte toxicity. 

Indeed, overexpression of MHC class I subclasses, especially 

H2k, in mSOD1 mice through a viral vector has been demon- 

strated to fully rescue MNs from astrocyte-related toxicity, 

both in co-cultures and in vivo, and to increase survival as 

well motor function. The same results have been obtained 

by overexpressing HLA-F in human MNs which were co- 

cultured with astrocytes derived from patients with fALS 

and sALS. MHC I molecules modulate astrocyte activation 

by binding to inhibitory receptors which have been shown to 

be expressed by astroglia in mSOD1 mice and in humans. 

Among many MHC I receptors, killer cell immunoglobulin- 

like receptor 3DL2 (KIR3DL2) has been found to be 

expressed only by astrocytes from ALS patients. The in vitro 

results have been confirmed by analysis of RNA expression in 

postmortem spinal cord specimens from individuals with 

ALS. 

Furthermore, astrocytes have been shown to induce MN 

death by activating an alternative pathway of programmed cell 

death called necroptosis [92]. Necroptosis represents a form of 

programmed necrosis which is independent from the activa- 

tion of caspases and involves the loss of the plasma membrane 

integrity. Two main effector proteins of necroptosis, receptor- 

interacting serine/threonine-protein kinase 1 (RIPK1) and 

mixed lineage kinase domain-like (MLKL), have been identi- 

fied to date. In vitro inhibition of the necroptosis pathway, by 

the RIPK1 antagonist necrostatin-1 (Nec-1) or by direct si- 

lencing of RIPK1 via a short hairpin RNA (shRNA), has been 

reported to protect MNs from astrocyte-induced toxicity [93]. 

The inhibition of MLKL with necrosulfonamide has also been 

shown to rescue MNs from astroglia toxicity almost complete- 

ly. Such results suggest that necroptosis could be required for 

MN degeneration induced by astroglial cells and thus could 

represent a new, interesting therapeutic target. However, we 

highlight that the toxic soluble factors released by astrocytes 

are yet to be identified with certainty. Although TNF-α, FasL, 

and TRAIL can trigger necroptosis and are also known to be 

released by astrocytes and microglia upon activation, some 

studies have reported that none of these factors was identified 

in mSOD1 or sALS astrocyte-conditioned media. 

Since astrocytes are now recognized to contribute more 

than previously thought to MN loss, an interesting approach 

would be to replace ALS astrocytes with wild-type or modi- 

fied cells that can mitigate the toxic environment, modulate 

neuroinflammation, and foster the MN repair process  [16]. 

Several studies have been conducted grafting different types 

of cells in the mSOD1 murine model: human neural precursor 

overexpressing vascular endothelial growth factor (VEGF), 

BDNF, IGF-1, or glial cell-derived neurotrophic factor 

(GDNF) [94]; human umbilical cord blood cells overexpress- 

ing VEGF and fibroblast growth factor 2 (FGF2) [95]; rat glial 

restricted neural precursors [96]; and rat adult mesenchymal 

stem cells [97]. All cell types have been shown to differentiate 

into astrocytes, retain growth factor secretion, and reduce neu- 

roinflammation. The effect on motor function and survival has 

been reported to be variable from no effect [94, 97] to in- 

creased survival and improved motor function [96] or has 

not been reported in other studies [95]. Currently, there is no 

consensus on which cell type could provide the best safety and 

efficacy profile, nor on the route of administration. Several 

clinical trials are now ongoing to evaluate this approach. 

 
T Lymphocytes 

 
Although T lymphocytes probably do not exert a direct action 

in the pathogenic cause of this disorder, they are involved in a 

complex cross talk with the CNS-resident immune cells and 

can drive the activation and polarization of the surrounding 

glia and astrocytes. CD4+ T lymphocytes are recalled to the 

brain and the spinal cord early during the disease and rise in 

number as ALS progresses. CD4+ lymphocytes remain the 

predominant T cell subpopulation. 

As with microglia, Tcells have been recognized to predom- 

inantly assume two phenotypes, one with anti-inflammatory 

and immune-modulating properties [(T helper (Th) 2 and reg- 

ulatory T cells(Treg)) [98] and the other one with pro- 

inflammatory and toxicity-prone characteristics (Th1 and 

Th17). Th1 and Th17 secrete predominately IL-1, IL-6, and 

IFN-γ, while Th2 and Treg release TGF-β, IL-4, and IL-10. 

The neuroprotective action of T cells is supported by in vivo 

studies on mSOD1 transgenic mice lacking functional T cells, 

which showed a faster disease progression and a marked 

shortening in survival [99]. In many studies, mostly on mouse 

models, T cells have been proven to behave like glial cells. 

They have showed a preferred polarization toward Th2 and 

Treg early during the disease and a switch to Th1 and Th17 at 

a late, fast progression phase. This has been confirmed by the 

analysis of mRNA expression [28]. Given the similarity, not 

only in the type of behavior but also in the phase of the disease 

during which these phenotypic changes occur, it is likely that 

T lymphocytes and glial cells are interdependent and closely 

influence each other’s properties. In fact, IL-4 produced by 

Treg cells can abolish the cytotoxic effect of microglia 

[100], and at the same time, M2 microglia can promote the 

acquisition of Th2 or Treg phenotype [101]. This phenome- 

non has been demonstrated to occur also in humans. In ALS 

patients, the blood count of Treg cells has been inversely as- 

sociated with a faster disease progression. The same 



 

 

 

correlation has been observed with the levels of the transcrip- 

tion factor forkhead box P3 (FoxP3) in leucocytes [102]. 

Interestingly, the factors that are specific of Th1 and Th17, 

such as IL-6, IL-1, and INF-γ, can inhibit the phosphorylation 

of FoxP3, thus inhibiting the immune suppression mediated 

by Treg cells [103] and facilitating their switch to Th17 lym- 

phocytes [104]. 

 
Peripheral Immune System 

 
The role of peripheral monocytes/macrophages remains con- 

troversial. There is no clear evidence that they can infiltrate the 

spinal cord and contribute to MN death [105] unless there is a 

disruption in the blood-brain barrier [106]. However, their 

damaging action on peripheral axons has been well recog- 

nized [107]. The increased activation of circulating monocytes 

has been described in ALS patients [108]. 

It is clear though that the characteristics of the many cellu- 

lar components of the immune system are not the result of the 

influence of a single cell type or a unique cytokine or factor 

but the consequence of the complex milieu of signals and 

factors. These factors seem to be worsening over time and 

are now being recognized as major players in MN degenera- 

tion. What seems to be the most likely scenario is that an early 

slowly progressing phase, during which immune cells drive 

the repair processes and support MN function and viability, is 

followed by a late fast progressing phase. During this late 

stage, the cell-autonomous neuronal injury could also be re- 

sponsible for a progressive switch in glia, astrocyte, and T cell 

phenotype through the release of apoptotic bodies, misfolded 

proteins, and ATP. This ultimately results in the amplification 

of injury and neurotoxic environment [5]. 

In this perspective, reducing the inflammation and modu- 

lating the reaction of immune cells appear as a promising 

strategy to consistently influence the progression and progno- 

sis of ALS. 

 

 
Experimental Drugs 

 
Drugs with different mechanisms of action and molecular tar- 

gets have been or are currently studied in clinical trials. Even if 

inflammation is a complex process and the altered behavior of 

a cell type can greatly influence that of other cells, many drugs 

can be classified based on their primary cellular target. 

Masitinib, ibudilast, and NP001 are reported to act predomi- 

nantly on microglia by modulating microglial activation, sur- 

vival, and production of pro-inflammatory mediators. Instead, 

T lymphocytes are the primary target of fingolimod. 

Fingolimod causes T cells to be retained to secondary lym- 

phoid organs, consequently hindering their migration to the 

CNS and peripheral nerves. 

Since cytokines are crucial mediators of inflammation, 

drugs targeting pro-inflammatory cytokines could represent 

a valuable tool and have been tested in clinical trials. Such 

drugs include anakinra, an anti-IL-1 receptor monoclonal an- 

tibody, and tocilizumab, a monoclonal antibody directed 

against the IL-6 receptor. 

Other anti-inflammatory drugs with a wider spectrum of 

cellular targets have also been studied. Given the lack of a 

precise cellular target, they were classified as other anti- 

inflammatory drug in this work. These compounds include 

RNS60, pioglitazone, celecoxib, celastrol, AM-1241, and 

folic acid. The mechanism of action of the different drugs is 

described in the dedicated sections (Table 1, Fig. 2). 

 
 

Drugs Targeting Microglia and Macrophages 

 
Masitinib (AB1010) 

 
A way to tackle inflammation is inhibiting the kinases in- 

volved in this process and in apoptosis. Masitinib, a molecule 

that can selectively inhibit the tyrosine-kinase mast/stem cell 

growth factor receptor (c-KIT) and a small number of other 

kinases [109], is a potential therapeutic drug and can be ad- 

ministered orally. Masitinib blocks microglia proliferation and 

activation and mast cell-mediated degranulation [110] and the 

release of cytotoxic factors that could worsen the injury to 

motor nerves. The inhibition of microglia is also mediated 

by the blockade of colony-stimulating factor 1 receptor 

(CSF1R) [111]. 

Compared to other molecules with inhibitory activity on 

tyrosine-kinases, masitinib is characterized by a relative selec- 

tivity for its target and requires half the concentration to exert 

its activity, thus suggesting that masitinib could have milder or 

less side effects. Indeed, genotoxicity or cardiotoxicity has not 

been reported [109]. Several clinical trials have been conduct- 

ed on rheumatologic and neoplastic diseases such as gastroin- 

testinal stromal tumors (GIST) [112, 113], in pancreatic ductal 

adenocarcinoma [114, 115], colorectal tumors (ClinicalTrials. 

gov Identifier:  NCT02605044 ), and melanoma 

(ClinicalTrials.gov Identifier: NCT01280565). Furthermore, 

masitinib has been proved to reduce the resistance of 

cancerous cells to antineoplastic drugs by inhibiting 

transporter proteins of the ATP-binding cassette (ABC) type. 

This phenomenon is often responsible for the failure of che- 

motherapy [116]. Among neurologic diseases, masitinib has 

been studied in Alzheimer’s dementia and MS, and some clin- 

ical trials are currently recruiting or completed (clinicaltrial. 

gov). Mast cells are likely to be crucial actors in the 

pathogenesis of MS and could be a target of masitinib, 

which has been proved to be well tolerated in a phase IIa 

clinical trial [117]. In Alzheimer’s dementia, masitinib 

blocked the  Fyn  protein, a  kinase involved in  the signals 

http://clinicaltrials.gov/
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Table 1 Investigational anti-inflammatory drugs. The name of the 

drugs, their mechanism of action, and phase of clinical study are reported 

in the table 

neuroprotective effect on MNs [111]. This therapeutic regi- 

men with masitinib increased postparalysis survival time by 

40% (7 days). 

Product 

name 

Company Mechanism of action Phase A multicenter, phase II/III, double-blind clinical trial ran- 

domized 394 ALS patients to three experimental arms, two of 

Masitinib AB Science Tyrosine-kinase inhibitor    Phase III— 

active, 

not 

recruiting 

them receiving 4.5 and 3  mg/kg of  masitinib daily for  

48 weeks, while the third group was the placebo control group 

(ClinicalTrials.gov Identifier: NCT02588677). All 

participants were taking riluzole 50 mg and they must have 
NP001 Neuraltus 

Pharmaceuti- 

cals 

 

Fingolimod   ALS Therapy 

Development 

Institute 

Modulation of monocyte 

activation and 

downregulation of 

NF-kB in macrophages 

Sphingosine-1-phosphate 

receptor modulator 

Phase II— 

recruiting 

 
 

Phase II— 

complet- 

ed 

been on riluzole therapy for at least 30 days before screening. 

According to the results of the interim analysis, collected in 

April 2016 and based on data gathered from about 50% (n = 

191) of the enrolled patients who completed the 48 weeks’ 

therapy, masitinib seems to have met both its primary and 
secondary endpoint. The first was a change in the ALS 

RNS 60 Ravalesio Inc Modulator of PI3K-Akt 

pathway 

 

 

 

 
Tocilizumab  Genentech, Inc.   mAb blocking IL-6 re- 

ceptor 

Phase I— 

recruiting 

Phase II 

start date: 

January 

2018 

Phase II— 

recruiting 

function rating scale revised (ALSFRS-R) score, while the 

latter included respiratory function (forced vital capacity or 

FVC) and combined assessment of function and survival 

(CAFS). The dose used in this trial was below the maximum 

tolerated pharmacologic dose, which has not been clearly 

established yet, although pharmacokinetic data demonstrated 

Anakinra Swedish 

Orphan 

Biovitrum 

AB 

IL-1 receptor antagonist Phase II— 

complet- 

ed 

a linear rising of the maximum serum concentration [C(max)] 
and of the area under curve (AUC) in a dose-dependent fash- 

ion [120]. Masitinib received orphan drug designation for 

ALS from the Food and Drug Administration (FDA) and the 
Ibudilast MediciNova 

Inc. 
Nonselective 

phosphodiesterase 

(PDE) inhibitor 

Phase II— 

recruiting 
European Medical Agency (EMA). Apparently, the side effect 

profile was relatively satisfactory, while long-term side effects 

GW2580 Calbiochem CSF1R tyrosine-kinase 

inhibitor 

Preclinical 

phase 

consisted in gastrointestinal,  hematological, and dermatologi- 

cal  manifestation and other  systemic symptoms  [112]. 
Pioglitazone  Takeda Pharma 

GmbH 

 
 

Celecoxib Pharmacia, 

Gaithersburg, 

MD 

Peroxisome 

proliferator-activated 

receptor γ (PPARγ) 

agonist 

Cyclooxygenase-2 

(COX-2) inhibitor 

Phase II— 

complet- 

ed 

 

Phase II— 

terminat- 

ed 

Recently, a case of autoimmune-like hepatitis has been report- 

ed in a patient with ALS who received masitinib for 6 months: 

transaminases and bilirubin kept increasing for 9 weeks after 

discontinuation of the drug. Other tyrosine-kinase inhibitors 

have been associated with drug-induced liver injury, but this is 

the first case of liver injury caused by masitinib to date [121]. 
Celastrol Generic Antioxidant  triterpene— 

suppresses TNF-α, 

IL-1β, and iNOS and 

induces heat shock 

protein response 

Preclinical 
phase 

In September 2016, AB Science applied for marketing autho- 

rization of masitinib in ALS at EMA. 

On March 20, 2017, AB Science disclosed the results of the 

final analysis of the trial (Source: AB Science press release). 
AM-1241 Tocris 

Bioscience 
Selective cannabinoid 

receptor 2 (CB2) ago- 

nist 

Preclinical 
phase 

The final analysis was based on data gathered from 394 pa- 

tients and confirmed the positive results of the interim analysis 

Folic acid Generic Methyl donor—reduces 

homocysteine levels 

Preclinical 

phase 

regarding efficacy and safety. Indeed, the effects on change in 

ALSFRS-R score, progression-free survival, and patients’ 

quality of life were statistically significant. Furthermore, the 

final analysis confirmed the safety profile of masitinib. The 

downstream of amyloid β plaques, and reduced the symptoms 

in a murine model [118]. Masitinib also decreased ischemic 

brain area and neurological deficits in rat models of 

postischemic stroke through the inhibition of the platelet- 

derived growth factor receptors (PDGFR) [119]. Preclinical 

experiments with masitinib have been performed. Oral thera- 

py with masitinib initiated 7 days after the occurrence of pa- 

ralysis in mSOD1 rats diminished gliosis and exerted a 

estimated completion date of the trial is June 2017. 

 
AV411 or MN-166 (Ibudilast) 

 
AV411 (or MN-166) is a relatively nonselective inhibitor of 

phosphodiesterase (PDE), available in an oral formulation and 

initially employed to treat asthma [122], along with first-line 

drugs such as steroids, β2-agonists, and leukotriene inhibitors. 

http://clinicaltrials.gov/


 

 

 

 
 

Fig. 2 Experimental drugs and their cellular and molecular target. Anti- 

inflammatory drugs studied in clinical trials can act predominantly on 

microglial cells and monocytes (masitinib, NP001, RNS60, ibudilast, 

celecoxib) or on T lymphocytes (fingolimod) or act on different cellular 

targets simultaneously (pioglitazone). By blocking different signaling 

pathways or enzymes, these anti-inflammatory drugs can also decrease 

the production and release of pro-inflammatory and cytotoxic cytokines. 

Other anti-inflammatory drugs act by blocking the action of pro- 

inflammatory cytokines (anakinra and tocilizumab), thus decreasing 

pro-inflammatory signals and inflammation-induced neurotoxicity 

 
 

The role of ibudilast in reducing the release of leukotrienes, 

cytokines, and other molecules involved in bronchospasm 

[123] and inflammation is the basis for its indication as an 

anti-asthmatic medication [124, 125]. Furthermore, ibudilast 

seemed to be a useful treatment in poststroke dizziness, prob- 

ably because of its vasodilator effect. 

Further studies have shown that ibudilast could also atten- 

uate inflammation in the CNS. MN-166 modulates survival 

and activation of immune cells [126] by preventing the pro- 

duction of pro-inflammatory agents from resident immune 

cells such as microglia [127, 128]. At the same time, it mod- 

ulates how resident and peripheral immune cells interact with 

each other. It modulates the release of migration inhibitory 

factor (MIF), a strong pro-inflammatory molecule, which 

limits the activity of both peripheral and central macrophages. 

The results obtained studying animal models of autoimmune 

 

encephalomyelitis [129], cerebrovascular white matter lesions 

due to chronic microglial activation [130], and Krabbe’s dis- 

ease [131] have proved a globally favorable impact. This sup- 

ports a possible beneficial role of ibudilast in neurological 

disorders [132] in which glial dysregulation has been demon- 

strated to contribute to pathogenesis and progression [133]. 

Initially, ibudilast has been tested in MS. A phase 2, mul- 

ticenter, double-blind trial has been conducted on 297 patients 

affected by MS who showed a relapsing clinical pattern and 

with contrast-enhancing lesions at the magnetic resonance im- 

aging (MRI). Patients have been randomized in three groups 

receiving respectively 30 or 60 mg of ibudilast or placebo on a 

daily regimen for a period of 12 months. The primary end- 

point was the total number of new active brain lesions visible 

at the MRI obtained every 2 months over the study period, 

while the secondary endpoints considered the rate of relapse, 



 
 

 

 

modification in the Expanded Disability Status Scale (EDSS) 

score, the volume of lesions seen as hyperintense in T2- 

weighted MRIs and hypointense in T1-weighted MRI se- 

quences, and the percentage change in brain volume. This trial 

has proved that the drug was safe and well tolerated but it has 

not met the primary or the secondary endpoints, reasonably 

suggesting that ibudilast had no impact on the course of dis- 

ease. On the other hand, a neuroprotective role of this mole- 

cule could have been detected in limiting brain atrophy and 

damage after acute inflammatory injury [134]. A multicenter, 

randomized controlled trial [ClinicalTrials.gov Identifier: 

NCT01982942] is currently ongoing to assess whether the 

drug is safe and tolerated and test its activity in 250 subjects 

diagnosed with either primary progressive or secondary 

progressive forms of MS, who are not undergoing long-term 

treatment with MS disease-modifying medications or who are 

treated with either glatiramer acetate or IFN-β. In the latter 

case, the drug is administered in combination. Randomization 

into two treatment groups is based on disease status and 

immune-modulating therapy status. The experimental drug 

(ibudilast 100 mg/day or placebo) is administered twice daily 

over 96 weeks. The pharmacological activity of the drug will 

be assessed at a time point of 96 weeks through the evaluation 

of the degree of atrophy of the entire brain using MRI and the 

evaluation of its overall safety and tolerability. The secondary 

endpoints are the examination of CNS structures via different 

MRI measures and the evaluation of disability, cognitive im- 

pairment, quality of life, and neuropathic pain. This trial could 

also highlight any possible interaction with eventually co- 

administered  immune modulators. 

Two trials on humans are now ongoing to evaluate the 

efficacy of ibudilast in ALS. The first is an open-label, single 

center phase II trial of MN-166 on ALS patients (n = 15) that 

is currently being carried out at Massachusetts General 

Hospital [ClinicalTrials.gov Identifier: NCT02714036]. The 

main purpose of this study is to evaluate the impact of 

ibudilast on inflammation in the CNS measured by imaging 

techniques. The study consists in a screening phase of 6 weeks 

followed by an open-label treatment phase of 36 weeks with 

100 mg/day of ibudilast and a 4-week follow-up phase after 

the discontinuation of ibudilast. The primary endpoint in- 

cludes the quantification of the drug uptake in the motor cor- 

tex and in the brain stem by PET imaging at 24 weeks and the 

effect of ibudilast on blood markers of inflammation, such as 

TNF-α, IFN-γ, IL-1, IL-6, and IL-10. The secondary outcome 

measures are safety, tolerability, the impact of the drug on 

motor function expressed as ALSFRS-R score, slow vital ca- 

pacity (SVC), and hand-held dynamometry (HHD) as mea- 

sures of the global respiratory function. At the same time, a 

phase II double-blind, placebo-controlled trial is ongoing and 

recruiting at Carolinas Healthcare System (ClinicalTrials.gov 

Identifier: NCT02238626). Its aim is to assess the general 

safety and tolerability profile and the clinical response to  a 

daily dosage of 60 mg of ibudilast, in combination with 

riluzole (100 mg/day), after a 6-month therapy. Sixty patients 

are randomly assigned to two experimental groups, receiving 

respectively MN-166 or placebo. Both groups will undergo a 

3-month screening phase followed by a double-blind phase of 

6 months for the MN-166 group, an open-label follow-up of 

6 months only for the placebo control group, and a 2-week 

follow-up after the discontinuation of the drug. A periodic 

evaluation is performed at 3 and 6 months, while telephonic 

contacts will occur at 1, 2, 4, and 5 months to notice potential 

effects of concomitant medications or side effects. The prima- 

ry endpoint is safety and tolerability of the drug when admin- 

istered in association with riluzole, while the secondary out- 

come is the activity of MN-166 on disease progression, mus- 

cle strength, and respiratory function evaluated with the fol- 

lowing scales or occurrence of clinical event: ALSFRS-R, 

SVC, maximum inspiratory pressure (MIP) and forced expi- 

ratory volume in the 1st second (FEV1), manual muscle test- 

ing (MMT), hand grip dynamometry, and the requirement of 

noninvasive ventilation (NIV). Even though these clinical tri- 

als on ALS patients are still at an early phase, the results of the 

use of ibudilast in MS allow us to hope in a potential effect in 

ALS, at least in combination with other molecules or the cur- 

rently approved therapy. 

 
NP001 

 
Immunomodulatory therapy targeting monocytes/macro- 

phages is the rationale of the use of NP001, produced by 

Neuraltus Pharmaceuticals, Inc. NP001 is a pH-adjusted for- 

mulation of sodium chlorite, available for IV administration, 

that is converted to taurine chloramine within monocytes and 

macrophages. It can regulate the function of monocytes both 

in vivo and in vitro by downregulating NF-kB expression, 

thus inhibiting the production of IL-1β. This inhibition causes 

a switch in monocytes from an inflammation-promoting phe- 

notype to a basal, noninflammatory phenotype [135]. Safety, 

tolerability, and preliminary efficacy of NP001 have been 

assessed in a phase II, double-blind, placebo-controlled study 

(ClinicalTrials.gov Identifier: NCT01281631) [136]. The 

results were published in 2015. The study enrolled 136 

patients who were randomly divided into three groups (1:1: 

1), receiving respectively 1 or 2 mg/kg or placebo in a total of 

20 infusions over 6 cycles. The primary outcome of efficacy 

was expressed as ALSFRS-R score after 6 months of treat- 

ment, while secondary endpoints were tolerability and safety, 

change in pulmonary function, and other measures of patients’ 

status such as survival and time to tracheotomy. At the begin- 

ning of each treatment cycle and after 6 months, plasma con- 

centration of biomarkers of inflammation such as C-reactive 

protein (CRP) and monocyte chemoattractant protein 1 

(MCP-1) were obtained. At the end of the study, other bio- 

markers of activation of macrophages to a pro-inflammatory 
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state such as IL-1, IL-18, IL-6, TNF-α, IFN-γ, LPS, and CRP 

were also quantified. The trial demonstrated that NP001 was 

generally safe and tolerated while the most common adverse 

effects were dizziness and infusion site pain, both of which 

had a higher incidence in the group receiving the higher dose 

regimen. Although 25% of patients that were assigned to the 

high dosage regimen did not show clinical signs of progres- 

sion over 6 months, compared to 11% of patients who re- 

ceived the placebo, the trial failed to prove that NP001 could 

alter the progression of disease (p = 0.55). It is to note that the 

study was underpowered due to small sample size, as pointed 

out by the authors. It is also important to highlight that 70 to 

80% of responders in the two groups receiving the NP001 

formulation had elevated baseline markers of inflammation 

and that these markers, such as LPS and IL-18, decreased after 

treatment. This observation supports the fact that NP001 could 

be helpful and show a greater efficacy in slowing the progres- 

sion of disease in a subset of patients who show relevant 

systemic neuroinflammation. In August 2016, Neuraltus 

Pharmaceuticals, Inc. initiated a phase II randomized, dou- 

ble-blind, placebo-controlled, multicenter study of NP001 in 

ALS patients (ClinicalTrials.gov Identifier: NCT02794857). 

Interestingly, inclusion criteria for this trial include a high 

concentration of CRP at screening with the aim to include 

only patients with elevated systemic inflammation. The 

primary endpoint of this study is the change in the ALSFRS- 

R score from baseline, while secondary outcomes are change 

in pulmonary function, time to tracheotomy, and change in the 

levels of blood markers of inflammation. The estimated pri- 

mary completion date is September 2017. 

 
 

Drugs Targeting Lymphocytes 

 
FTY720 (Fingolimod) 

 
FTY720 (fingolimod), the first approved oral drug for the 

treatment of relapsing-remitting MS [FDA, 2010, 2015], is 

a modulator of the sphingosine-1-phosphate (S1P) receptor 

[137]. The phosphorylated form of FTY720 causes the in- 

ternalization and degradation of the S1P receptors, leading 

to the retention of lymphocytes to secondary lymphoid 

organs and the subsequent reduction of circulating naïve 

and central memory T cells [138]. Effector memory T cells 

are spared, thus preserving peripheral immune surveil- 

lance. The lipophilic characteristic of this compound 

makes it capable of crossing the blood-brain barrier and 

acting directly on CNS-resident cells where S1P receptors, 

except for S1P  receptor 4,  are  highly expressed [139]. 

In vitro studies have demonstrated that FTY720 reduced 

the production of pro-inflammatory mediators in activated 

microglial cells in a dose-dependent manner by acting as a 

S1P receptor agonist. At the same time, it increased the 

production of neurotrophic factors such as BDNF and 

GDNF [140]. Animal models of brain ischemia [141], ep- 

ilepsy [142], and spinal cord damage [143] have showed a 

reduction of neuronal damage and microglial  activation 

after treatment with FTY720, confirming the anti- 

inflammatory and neuroprotective properties of fingo- 

limod. The primary effect of the drug on toxic neuronal 

death has been proved in cellular and animal models. 

Cultures of neurons without contact with the peripheral 

immune system and exposed to toxic concentrations of 

NMDA have showed a dose-dependent decrease in neuro- 

nal death after a prolonged treatment with fingolimod. The 

protective effect has been confirmed in vivo [144]. The 

toxicity due to the excess of excitatory stimuli is a crucial 

mechanism involved in ALS. Therefore, FTY720 seems to 

be a promising therapeutic drug because of its ability to act 

on at least two different processes involved in MN disease. 

Recently, it has been described that treatment with 

fingolimod can improve the outcome of SOD1 murine model 

of ALS [145]; 0.1 or 1 mg/kg i.p. doses of fingolimod were 

administered to animals during the whole course of disease. 

The compound led to a significant improvement of clinical 

signs and survival rate of mSOD1 mice, even if only of 10– 

15 days. The positive effects have been linked to the modula- 

tion of inflammatory genes (CD11b, Foxp3, iNOS, IL-1β, IL- 

10, Arg1, and BDNF) in the CNS. These findings suggest that 

fingolimod could have a beneficial effect in ALS. 

A phase IIA clinical trial, assessing the safety and tolera- 

bility of this molecule on ALS patients (ClinicalTrials.gov 

Identifier: NCT01786174), has been recently completed and 

the results should soon be published. The study enrolled 28 

ALS patients, 18 of which received the treatment. The drug 

was administered for a short time span (28 days). No major 

safety issue was detected. ALSFRS-R score did not change 

significantly at 8 weeks (based on the data reported on 

clinicaltrial.gov), but the drug was administered only for    

1 month. 

Some adverse effects have been reported in MS patients 

both during clinical trials and postmarketing surveillance. 

Alterations in heart rate, especially bradycardia, were caused 

by the action of fingolimod on S1P receptors expressed on 

atrial myocytes and required the patient to be monitored for 

at least 6 h during the administration of the first dose [146]. A 

reduction of the number of lymphocytes up to 70% was an- 

other effect of the drug but was completely reversible after 

6 weeks. Mild infections of the upper and lower airways were 

common but serious events were rare. A case of disseminated 

varicella zoster virus (VZV) infection and other severe herpes 

virus infections have been reported, thus making the serologic 

screening for VZV and the vaccination of antibody-negative 

patients necessary prior to treatment. Cases of cryptococcal 

meningitis and progressive multifocal encephalitis (PML) 

have been described. Finally, before and during the therapy, 
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an examination of fundus oculi could be required for early 

detection of macular edema, especially during the first   4 

months [147]. 

Given these results and the fact that fingolimod has both direct 

and indirect neuroprotective effects, the next step would be a 

phase IIB/III clinical trial to test its efficacy and long-term safety. 

 
 

Drugs Targeting Cytokines 

 
Other inflammatory pathways have been proved to play a role 

in neuronal loss in ALS [3] and have been further investigated 

as pharmacological targets. Different compounds that can in- 

hibit cytokines directly or indirectly have been investigated. 

 
Anakinra 

 
IL-1 has been shown to be particularly unregulated in re- 

sponse to the presence of mSOD1 [148]. The mutant protein 

induces the activation of a component of the cytosolic protein 

complex inflammosome [149] called caspase-1, a protein that 

is also necessary for IL-1β to be converted to its mature form 

through a proteolytic mechanism [148]. IL-1 stimulates mac- 

rophages and microglia in a dose-related fashion, leading to 

the acquisition of a pro-inflammatory phenotype and ultimate- 

ly to inflammation-related neurotoxicity [17]. A study con- 

ducted by Meissner et al. [150] has demonstrated that the 

uptake of mSOD1 had a higher efficiency than that of the 

WT SOD1 and led to its cytoplasmic accumulation. mSOD1 

can form oligomers that resemble those formed by amyloid 

protein, as described either in vitro and in animal models, and 

the misfolding degree was linked to IL-1β maturation and 

faster disease progression. In the same study, Meissner and 

colleagues have shown that the deficiency of IL-1β and 

caspase-1 and the treatment with the antagonist of the IL-1 

receptor slowed disease progression in mice, providing further 

evidence that IL-1 could be a suitable therapeutic target. 

A single-arm pilot study [151] (ClinicalTrials.gov Identifier: 

NCT01277315) has been conducted in Berlin at Charité 

University Hospital to assess safety and tolerability of the IL-1 

receptor antagonist anakinra, a drug currently used to treat rheu- 

matoid arthritis [152]. The results were published in 2015. 

Anakinra was administered in association with riluzole in ALS 

patients, and disease progression was measured using ALSFRS- 

R and forced expiratory vital capacity as secondary endpoint. 

Serum markers of inflammation such as IL-6 and TNF-α were 

also measured. Assuming that anakinra could reach a higher 

concentration in peripheral nerves, the study was designed to 

enroll only patients who showed predominantly or exclusively 

signs of degeneration of lower MNs (LMNs), even if there is 

evidence that anakinra can reach therapeutic concentration in the 

CNS [153]. Patients were enrolled at an early stage of disease 

(mean ALSFRS-R  = 40.7 and mean delta ALSFRS-R  = 0.35, 

mean age = 57.9 years old) and had no sign of hypoventilation 

syndrome at baseline. The 52-week treatment with anakinra, 

100 mg daily, was completed by 17 patients. Anakinra was gen- 

erally safe, with the most common adverse effect being reaction 

at the site of injection, which occurred with increased frequency 

and intensity over the course of the study. Infections of the respi- 

ratory tract occurred in seven patients and resolved without the 

need of antimicrobial therapy. Fifteen patients were also screened 

for mutation in the SOD1 and C9ORF72 genes, in the attempt to 

identify a link between the genotype and the response to the 

treatment with anakinra. Only four patients were found to have 

the expansion of the hexanucleotide repeat (with 1700 repeat or 

more) in C9ORF72 and did not show any difference in the re- 

sponse to the treatment or any apparent sign of dementia com- 

pared to the rest of the group. The study did not prove any 

difference in disease progression, although the trial did not have 

sufficient power to show any statistically relevant difference and 

lacked a placebo control group. IL-6 and TNF-α levels were not 

significantly altered at the end of the treatment, but cytokine 

levels were measured only in plasma and not in the cerebrospinal 

fluid. It is otherwise relevant that 16 out of 17 patients developed 

anti-anakinra IgG after a mean of 4 weeks after treatment. These 

antibodies can halt the drug from acting on its target. The study 

proved the general safety and tolerability of anakinra and justifies 

further placebo-controlled studies on a broader cohort of patients 

to prove efficacy. 

 
Tocilizumab 

 
Another immunomodulatory drug, tocilizumab, is currently 

being studied for the treatment of ALS. Tocilizumab is a 

monoclonal antibody, currently approved to treat rheumatoid 

arthritis and juvenile idiopathic arthritis. It blocks the IL-6 

receptor thus exerting a neuroprotective effect by decreasing 

cytokine production and the activation of the immune system. 

The in vitro efficacy of tocilizumab in reducing inflammation 

has been assessed by a pilot study [154]. Another study [155] 

has tested the effect of tocilizumab in sALS patients and has 

shown that the effects of Actrema
R 

on inflammation were 

different in the two groups of patients. It reduced inflamma- 

tion, as shown by downregulation of inflammatory genes as 

IL-1β, in patients who had strong baseline inflammation 

(eight key genes showed a more than 4-fold increased expres- 

sion, p < 0.05), while it slightly increased inflammation in the 

second group which showed weak baseline inflammation. A 

phase 2 randomized, placebo-controlled trial is currently on- 

going (ClinicalTrials.gov Identifier: NCT02469896), and its 

primary endpoint is to assess safety and tolerability of 

tocilizumab over a 16-week time frame, while evaluation of 

the expression of pro-inflammatory genes in monocytes from 

peripheral blood is the secondary endpoint. Patients are treated 

with 8 mg/kg tocilizumab infusion or placebo every 4 weeks 

for 3 months. The trial is currently recruiting participants and 
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the estimated completion date is August 2017. No update is 

available to date. 

However, recent preclinical studies have revealed that the 

knockout of the IL-6 gene had no effect in modifying the out- 

come of mSOD1 mice [156]. The same has been observed with 

the pharmacological block of IL-6 through a murine analogous 

of tocilizumab, namely MR16-1 [157]. A significant increase in 

weight loss has been reported as a negative effect of MR16-1, 

despite a moderate anti-inflammatory effect. 

These studies support the targeting of monocyte/ 

macrophage activation as a strategy to slow the progression 

of disease but only in patients who show increased systemic 

inflammation and dysregulated activation of macrophages. 

This highlights that it could be needed to identify this subset 

of patients for this approach to be suitable. However, the pos- 

sible negative effects observed in preclinical models represent 

a caveat for this approach. 

 
 

Other Anti-inflammatory Drugs 

 
RNS60: Charge-Stabilized Nanoparticles 

in Oxygen-Saline Solution 

 
RNS60 has been proposed as a novel approach to attenuate 

NF-kB activation and the associated activation of glial cells. 

RNS60 consists of a saline solution (0.9% NaCl) contain- 

ing charge-stabilized nanostructures or nanobubbles, which 

have been shown to decrease inflammation and cell death. 

RNS60 is generated by subjecting normal saline solution to 

Taylor-Couette-Poiseuille flow under high oxygen pressure. 

Nanobubbles were applied for the first time in the late 

1990s by Tony Wood to increase plants’ resistance to diseases. 

Thereafter, its therapeutic use for human diseases has been 

suggested. 

RNS60 has been found to inhibit the production of NO and 

the expression of iNOS in activated microglia. It has been 

hypothesized that RNS60 could carry out its anti- 

inflammatory action by inhibiting NF-kB through the activa- 

tion of type IA phosphatidylinositol 3-kinase (PI3K) and the 

phosphorylation of Akt protein. The latter would subsequently 

upregulate IκBα, which blocks NF-kB, ultimately preventing 

iNOS expression and the production of NO and neurotoxins 

[158]. iNOS upregulation has been related to MN loss and 

overactivation of microglia and astrocytes. Therefore, it has 

been proposed that the inhibition of iNOS could represent a 

fruitful direction to explore new therapeutic agents for neuro- 

degenerative disorders [159]. It has been shown that RNS60 

could enhance ATP synthesis by facilitating oxygen transport 

into the mitochondrial system in Xenopus laevis oocytes and 

on squid synapses [160]. 

Recently, positive effects of RNS60 have been reported on 

Alzheimer’s disease, both  in  vitro and in  the   5XFAD 

transgenic mouse model, by augmenting the expression of 

neuronal plasticity-associated proteins and AMPA-/NMDA- 

dependent hippocampal calcium inflow [161]. It also de- 

creased neuron apoptosis, tau phosphorylation, and glial acti- 

vation and the amount of amyloid tangles [162]. RNS60 has 

been reported to be a potential disease modulator in 

Parkinson’s disease [163] and MS [164], improving neuro- 

transmission [165] and neuroprotection on one hand while 

acting on the immune response on the other. 

Preclinical studies on RNS60 toxicity have shown little or 

no side effects and three phase I clinical trials have provided 

satisfactory data on tolerability of inhaling and intravenous 

administration. 

To date, an open-label phase I clinical trial is ongoing at 

Massachusetts General Hospital focusing on safety, tolerability, 

and efficacy in a group of ALS patients (ClinicalTrials.gov 

Identifier: NCT02525471). Inclusion criteria encompass 

riluzole naïve patients and patients who have not been on 

riluzole therapy for at least 30 days. The study combines the 

previously tested way of administration with a 7-day scheme 

for 24 weeks. Evaluation of the main endpoints will involve  

the measurement of blood biomarkers of inflammation, neuro- 

imaging analysis (PET), and the assessment of the clinical out- 

come by testing of pulmonary function (SVC), strength (test of 

limb isometric strength), and functional status (ALSFRS-R). 

Although the real biological impact of this compound is 

controversial, we are further concerned by the fact that 

RNS60 is basically saline solution. This raises doubt about 

the ethical basis of this trial and if the study should have been 

allowed to proceed to a phase II study. 

 
Pioglitazone 

 
Pioglitazone belongs to the class of thiazolidinediones and acts as 

a peroxisome proliferator-activated receptor γ (PPARγ) agonist 

[166]. Pioglitazone is currently used as an oral antidiabetic drug 

because it increases sensitivity to insulin and decrease glycemia. 

The PPARs are nuclear hormone receptors which present several 

isoforms. Isoforms share the major structural and functional 

properties but can show different ligand specificities and tissue 

distribution. For example, PPARα expression is predominant in 

the liver, skeletal muscle, kidney, heart, and vascular wall, while 

PPARγ is primarily found in adipose tissue, intestine, and mac- 

rophages. The activation of this class of receptors modulates the 

expression of several genes and influences the cellular response 

to different stimuli such as metabolic alterations or inflammation 

[167]. Interestingly, PPARs have been shown to regulate the 

inflammatory response by reducing the release of the pro- 

inflammatory cytokines TNF-α, IL-1β, and IL-6. PPARs have 

been reported to upregulate the expression of iNOS and 

metalloproteases in mononuclear and epithelial cells. 

Furthermore, PPARs inhibit various transcription factors and pro- 

mote the expression of NF-κB, signal transducers and activators 
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of transcription (STATs), activator protein 1 (AP1), and nuclear 

factor of activated T cells (NFAT) [168]. Such effects have been 

demonstrated to be induced by PPARα thanks to the availability 

of PPARα knockout animal models [169]. Since the absence of 

PPARγ is not compatible with life, it is not possible to create a 

similar animal model. Consequently, the PPARα-induced anti- 

inflammatory effects have not been confirmed to be induced also 

by PPARγ. However, additional studies have been performed  

in vitro, using cerebellar granule cells and mononuclear cells 

[170, 171], and in vivo [172]. These studies have strongly sug- 

gested a pivotal role of PPARγ in attenuating inflammation- 

related neurotoxicity. Three independent groups have tested pio- 

glitazone, the only molecule able to extensively penetrate the 

blood-brain barrier, in mSOD1 mice [173–175]. Since inflam- 

mation has been identified as an early event in disease pathogen- 

esis, the treatment with oral pioglitazone was started before the 

onset of clinical signs. Treated animals have shown prolonged 

survival, decreased weight loss, and delayed decline in motor 

function compared to untreated mice. Neuropathological studies 

have demonstrated extended survival of MNs, which preserved 

their structural and functional properties, as well as a significant 

decrease in microglial activation. A reduced expression of two 

major pro-inflammatory enzymes cyclooxygenase-2 (COX-2) 

and iNOS and an increased expression of the anti-inflammatory 

genes SOCS-1 and SOCS-3 have been confirmed by Western 

blot analysis. The expression of SOD1 was not affected by the 

treatment. These promising results have encouraged the design 

of a phase II, multicenter, stratified, parallel-group, placebo- 

controlled trial to test the potential efficacy of pioglitazone in 

ALS patients who already received riluzole (ClinicalTrials.gov 

Identifier: NCT00690118) [176]. The primary endpoint of the 

trial was survival. The secondary endpoints included incidence 

of NIV and tracheotomy, decline of motor function measured as 

ALS-FRS-R score, modifications in SVC, and quality of life. 

Patients were matched for age, sex, type of disease onset, and 

functional and metabolic status. Patients were randomly assigned 

to two groups: one receiving placebo and the other one receiving 

pioglitazone. Unfortunately, on April 2010, the trial was termi- 

nated because of the increased number of deaths among the 

treated patients. However, further analyses have demonstrated 

that such deaths were not caused by pioglitazone. In fact, pioglit- 

azone was globally well-tolerated. The failure of this clinical trial 

has been attributed to the fact that the drug should have been 

administered before the disease onset, as in preclinical studies. 

 
COX-2 Inhibitors: Celecoxib 

 
The COX-2 enzyme has been reported to play an important 

role in the pathogenesis of ALS. COX-2 catalyzes the synthe- 

sis of prostaglandins (PGs), especially PGE2, which are di- 

rectly involved in glutamate-mediated neurotoxicity and in- 

flammation. Specifically, PGE2 promotes the release of glu- 

tamate from astroglial cells via a calcium-dependent pathway, 

feeding the mechanism of impaired glutamate turnover detect- 

ed in ALS [177, 178]. Furthermore, COX-2 contributes to the 

inflammatory process by favoring the production of neuro- 

toxins, cytokines, and free radicals. COX-2 inhibitors, like 

celecoxib, have already been approved by the FDA for the 

treatment of arthritis and have been suggested to have a po- 

tential therapeutic effect in ALS. These observations have 

been supported by the fact that high levels of COX-2 and 

PGE2 have been detected in the cerebrospinal fluid and in 

the spinal cord of mSOD1 mice and of patients affected by 

sALS [179, 180]. The oral administration of celecoxib in 

mSOD1 mice has obtained promising results. The treatment 

with celecoxib extended the survival rate and prevented 

weight loss and motor function decline. Reduced expression 

of PGE2 in the spinal cord of treated animals has been dem- 

onstrated by neuropathological analysis [181]. A randomized, 

double-blind, placebo-controlled trial has been conducted to 

test the clinical effect of celecoxib in ALS [8]. The trial has 

been prematurely terminated because preliminary statistical 

analyses have showed no difference between the celecoxib 

and the placebo-treated groups. In fact, neither the primary 

nor the secondary endpoints have been met. Also, PGE2 

levels in the cerebrospinal fluid have showed no changes be- 

tween the two groups. The authors have claimed that PGE2 

levels were not properly dosed because of unreliable biochem- 

ical tools. 

 
Other Anti-inflammatory Compounds: Celastrol, 

AM-1241, and Folic Acid 

 
Over the years, several well-known anti-inflammatory com- 

pounds have been tested for the treatment of ALS. Celastrol is 

a triterpine, a natural extracted molecule which is traditionally 

used in Southern China for its potent anti-inflammatory and 

neuroprotective effects. Celastrol has been shown to suppress 

the release of cytokines, decrease glial activation, and promote 

the synthesis of heat shock proteins (HSPs), especially HSP70 

[182]. Preclinical studies have tested a 4-week treatment with 

celastrol in mSOD1 mice. Such studies have confirmed the 

ability of the drug to downregulate TNF-α expression and 

glial activity and to upregulate HSP70 expression and prevent 

the early loss of MNs in the spinal cord. Treated mice showed 

a delayed disease onset, slower motor function decline, and 

prolonged survival compared to controls [183]. 

Despite such promising results, no sufficient data on the safety 

of the drug and its capacity to penetrate the blood-brain barrier 

have been collected to date. Therefore, further studies are needed 

before celastrol could proceed to testing in humans [184]. 

The role of endocannabinoids in ALS pathogenesis is still 

controversial. They have been demonstrated to prevent the 

death of neuronal cells induced by excitotoxicity or oxidative 

damage and to have anti-inflammatory properties [185]. The 

selective activation of the cannabinoid receptor 2 (CB2) by 
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AM-1241 has demonstrated a positive effect against inflam- 

matory hyperalgesia in animal models [186]. The first studies 

of AM-1241 in mSOD1 mice have demonstrated no psycho- 

tropic effect of the drug and a sex-dependent delay in the 

motor function impairment. Delayed motor function decline 

has been reported even if the treatment was started after the 

onset of the symptoms. No effect on weight loss and survival 

has been reported [187]. 

The upregulation of the CB2 receptors in glial cells and 

spinal cord specimens has been described in tissue samples 

from ALS patients [188]. Shoemaker’s group has detected a 

significant increase of the CB2 receptor density in tissue sam- 

ples from mSOD1 mice. The density of the CB2 receptor 

varied as the disease progressed, thus suggesting an early neu- 

roprotective effect of such receptors [189]. 

Furthermore, a significant extension of life span has been 

obtained after the injection of AM-1241 in symptomatic 

mSOD1 mice. Despite these positive results, the exact role 

of endocannabinoids in ALS and the mechanism of action of 

compounds that bind to CB receptors remain to be elucidated. 

AM-1241 has been proposed to act as a Bprotean agonist^ 

displaying a different mechanism of action, depending on 

the assay and/or tissue examined [190]. 

Folic acid has been evaluated for its ability to reduce the 

levels of homocysteine, which have been found to be elevated 

in astrocyte-derived ALS animal models [191]. It is still de- 

bated how homocysteine could be involved in the pathogen- 

esis of ALS. However, its role in promoting inflammation and 

inducing cytokine release and excitotoxicity has been largely 

demonstrated [192]. Good preclinical data have been obtained 

from the treatment of mSOD1 mice with acid folic. Treated 

animals exhibited a delayed disease onset and an extended 

survival. Furthermore, a reduction of both MN degeneration 

and pro-inflammatory cytokine expression has been detected 

by histopathological and biochemical analysis [193]. Despite 

the good results obtained in the preclinical setting, we believe 

that the simple supplementation of folic acid would not have 

the same effects in humans. For this reason, we do not encour- 

age the translation of this approach to clinical trial in humans. 

 
 

Molecules in Preclinical Stages 

 
Role of IL-10 

 
Inflammation is a constant phenomenon in ALS and involves 

both systemic and CNS alterations in the immune response. In 

the CNS of ALS subjects, reactive astrocytes, activated mi- 

croglia, levels of cytokines, and inflammatory mediators are 

typically increased. 

Several in vitro and in vivo studies have shown that reac- 

tive microgliosis represents not only a hallmark of ALS but 

also correlates with the severity of MN degeneration. The 

clinical onset of the disease could depend on what type of 

cytokines is predominately expressed. Gravel et al. [194] have 

demonstrated that, in two mSOD1 murine models (SOD1
G93A 

and SOD1
G37R 

mice), microglial cells overexpress IL-10 dur- 

ing the presymptomatic phase of disease. The overexpression 

of IL-10 via viral vectors has been shown to slow the progres- 

sion of disease and increase survival, while the opposite has 

been demonstrated by blocking this pathway with an anti-IL- 

10 receptor antibody. 

Although it is a very fascinating and investigated aspect, 

the role of T cells in the pathogenesis and progression of ALS 

is not clear yet. There is evidence that microglial activation 

could have a toxic effect on neuronal progenitor by blocking 

their differentiation, while the activation of T cells could pro- 

mote neurodifferentiation [195]. However, it is still unknown 

whether T lymphocytes are the primary inducers of microglia 

activation or vice versa. They could be just bystanders and be 

recalled to the site of inflammation by the death of neurons 

and chemokines released by resident cells [196]. 

 
Colony-Stimulating Factor 1 Receptor Inhibitor 

 
CSF1R (or CD115) is a transmembrane receptor for IL-34 and 

colony-stimulating factor 1 (CSF1) and belongs to the type III 

growth factor receptor family with tyrosine-kinase activity. 

Signaling through this receptor leads to the activation of a 

downstream mitogenic pathway sustained by the activity of 

PU.1 and CCAAT/enhancer binding protein (C/EBPa) [197], 

a pathway that contributes to the maturation of microglia and 

monocytes and to hematopoiesis [198]. There is evidence that 

this pathway is among those involved in developing and 

maintaining the inflammatory response and the subsequent 

damage to neurons [199]. 

A recent study [200] on a mouse model of prion disease 

supported the role of CSF1R in microglial proliferation across 

different areas of the brain. This effect increased as the disease 

progressed and positively correlated with the progressively 

higher expression of CSF1 and CSF1R mRNAs. In the same 

study, GW2580, a CSF1R inhibitor, was shown to decrease 

the expression of CSF1R, PU.1, and C/ECBa and of the 

downstream effectors of this pathway cyclins D1 and D2. 

GW2580 also increased the acquisition of an M2 microglial 

phenotype. The block of microglial expansion resulted in 

slower disease progression, decreased number of damaged 

neurons, improved survival rate, and delayed onset of behav- 

ioral symptoms. 

The same effect of the treatment with GW2580 has been 

shown in animal models of MS [201] and of Alzheimer’s 

disease [202]. 

A preclinical study on mSOD1 mice has showed beneficial 

effects of GW2580 on disease progression and survival rate 

[203]. The inhibition of CSF1R reduced the number of 

microglial cells in the spinal cord by 30% and increased the 



 
 

 

 

number of viable MNs at a late stage of disease compared to 

untreated mice. The results have been confirmed by 

fluorescence-activated cell sorting (FACS) and immunohisto- 

chemical analysis. Decreased levels of the transcription fac- 

tors PU-1, IRF8, and RUNX1 have been detected. These tran- 

scription factors are involved in microglial maturation and 

proliferation. Furthermore, the cell cycle regulator cyclin D2 

acts downstream of CSF1R. However, the treatment with 

GW2580 had no significant effect on the expression of the 

11 cytokines investigated. The inhibition of this pathway has 

been proved to increase motor function and survival and delay 

the progression of the disease. No effect on disease onset has 

been observed. Instead, the impact on peripheral nerves was 

consistent, as suggested by the reduction of monocytes in the 

tibial nerve of treated mSOD1 mice, probably due to a 2.5- 

fold depletion of blood monocytes after treatment. The im- 

provement in the peripheral nervous system could be benefi- 

cial to motor impairment by slowing early muscle denervation 

even before any measurable reduction in microglial prolifera- 

tion. In fact, the upregulation of CSF1R has not been observed 

at an early stage of disease, suggesting that its role could be 

limited to a later stage. However, consistent microgliosis has 

been found to be an early mark of neurodegeneration and to be 

likely driven by the activation of other signaling pathways, 

some of which were previously discussed. 

In contrast with the previously discussed studies on 

CSF1R, a study on a murine model of Alzheimer’s disease 

has reported a favorable impact of the administration of hu- 

man recombinant CSF1 and IL-34 and of the deletion of 

CSF1R in the forebrain on neuron survival and memory per- 

formance [204]. As reported by the authors, this could be due 

to the limited expression of CSF1R in a small group of cortical 

and hippocampal neurons under physiological conditions, 

while the receptor seems to be almost exclusively expressed 

by microglia in the CNS. 

This evidence supports further studies on the role of the 

CSF1R signaling pathway in neurodegeneration, especially 

in ALS. The targeting of CSF1R could be evaluated as a 

therapeutic strategy for future trials on humans. 

 

 
 

Novel Promising Molecular Targets 

 
TANK Binding Kinase 1 (TBK1) 

 
TBK1 is a serine/threonine kinase that plays an essential role 

in regulating the inflammatory response. When activated, this 

protein associates with TRAF3 and TANK and phosphory- 

lates different IFN regulatory factors (IRFs). Phosphorylated 

IRFs can undergo homodimerization and translocate to the 

nucleus to activate the transcription of pro-inflammatory and 

antiviral genes such as IFN-α and IFN-β. 

Recently, TBK1 has been implicated in the regulation of 

autophagy and inflammation. Mutations in the TBK1 gene 

have been recognized to cause ALS, frontotemporal dementia 

(FTD) [205], normal tension glaucoma (NTG), or childhood 

herpes simplex encephalitis (HSE) [206]. In particular, muta- 

tions that cause the abnormal activation of TBK1 have been 

linked to NTG, while mutations that abolish its function lead 

to ALS/FTD or HSE. Genetic mutations that alter the signal- 

ing process between the TLR3 and IFN [207], like those in 

TBK1, have been shown to negatively affect IFN-γ levels and 

to be correlated with the onset of HSE in a group of children. 

Autophagy dysfunctions caused by loss of TBK1 [208] have 

also been described as possible underlying causes of ALS/ 

FTD, but the possible perturbation of neuroinflammatory 

pathways should also be considered as potential therapeutic 

target in this case. 

 
RIPK1 

 
It has been recently described that optineurin (OPTN), the 

protein encoded by one of the ALS causative genes, inhibits 

the signaling downstream of RIPK1 by modulating its turn- 

over [209]. RIPK1 is recruited to the TNFR1 receptor and 

consequently mediates TNF-α-mediated neurotoxicity. The 

lack of OPTN causes a gradual demyelination and progressive 

axonal damage by activating necroptosis signals, comprising 

RIPK1, RIPK3, and MLKL. RIPK1- and RIPK3-linked axo- 

nal damage has  been detected in Optn
−/−  

mice, in  mSOD1 

mice, and in tissue samples from ALS patients. Therefore, 

RIPK1 and RIPK3 are likely to exert a significant action on 

axonal degeneration. Ito et al. [209] have also demonstrated 

that the increased activation of RIPK1 in Optn
−/− 

mice caused 

an increased activation of microglial cells toward an M1 phe- 

notype in the spinal cord and increased the secretion of pro- 

inflammatory factors like TNF-α, IFN-γ, IL-1, IL-2, and IL- 

12. This suggests that the lack of OPTN and the impaired 

turnover of RIPK1 could induce neuronal injury either by 

causing axonal degeneration and necroptosis and increasing 

microglia-induced inflammation. To further confirm the in- 

volvement of this cell death pathway in vivo, the authors stud- 

ied the effects of RIPK1 inhibition through the generation of 

Optn
−/−

;Ripk1
D138N/D138N 

double mutant mice or the pharma- 

cological inhibition of the RIPK1 kinase activity with Nec-1 

in Optn
−/− 

or mSOD1 mice. Either genetic disruption or phar- 

macological inhibition of RIPK1 activity rescued hind limb 

weakness and axonal pathology of Optn
−/− 

mice, as well as 

axonal pathology and degeneration in mSOD1 mice. 

Furthermore, the myelination defects observed in mSOD1 

mice were rescued by knockdown of Ripk3. Given these re- 

sults, the inhibition of RIPK1 could represent a suitable strat- 

egy to rescue MNs from TNF-α-mediated death. Because 

RIPK1 has been shown to be specifically recruited by 

TNFR1 and modulate the negative effect of TNF-α, it has 



 

 

 

been suggested that targeting RIPK1 could have a beneficial 

effect without involving TNFR2. Based on this evidence, the 

inhibition of the RIPK1 kinase activity could represent a 

promising strategy to slow or even stop the axonal injury 

and to improve MN function in ALS. Since an effective phar- 

macological inhibitor of RIPK1 is available, we encourage 

further in vivo studies with Nec-1 to confirm its efficacy and 

safety in ALS. These data would be helpful for a foreseeable 

application of Nec-1 in humans. 

 

 
 

Conclusions 

 
While no effective therapy for ALS is currently available, 

inflammation has come to light as an active injury mechanism 

and a new suitable target for a therapeutic effort. To date, 

many different molecules and antibodies have been tested in 

clinical trials, targeting astrocytes, microglial cells, mono- 

cytes, T cells, and cytokine pathways. Even though there is 

no major concern on the safety of all the studied drugs, almost 

all of them showed moderate or no efficacy in the phase II 

clinical trials that have been concluded, while others are still 

ongoing. Only masitinib has been proved to have a modest 

effect on motor performance. The final analysis of the phase 

II/III trial of masitinib in ALS patients has confirmed the pos- 

itive results of the interim analysis and has proved that 

masitinib was effective in improving motor function, 

progression-free survival, and quality of life of patients. It is 

noteworthy that the studies that tested NP001, anakinra, and 

tocilizumab were not sufficiently powered to show a statisti- 

cally relevant outcome. Furthermore, the trial that has been 

conducted with tocilizumab supported the fact that not all 

patients may present a strong inflammatory component. 

Therefore, this kind of approach could be consistently helpful 

for a relatively small group of patients. However, the identifi- 

cation of patients who have a strong baseline inflammation is 

still limited to subjects enrolled in a small number of clinical 

trials, thus making difficult to estimate the percentage of pa- 

tients with a strong inflammatory component compared to all 

ALS cases. We suggest that recognizing this group of patients 

would be helpful to know what percentage of ALS subjects 

would be more likely to benefit from an anti-inflammatory 

treatment and would also allow to select a homogeneous 

group of patients for clinical trials. Moreover, this would per- 

mit to recognize if increased systemic inflammation is more 

frequent in subjects with fALS or sALS or if it could be asso- 

ciated with certain genetic mutations. 

Immune modulation and promotion of an anti- 

inflammatory phenotype in microglia and T cells seems to 

be a relatively unexplored field to modify the course of this 

disease. Further studies could prove a positive impact of this 

strategy. 

A considerable issue that emerged is the relatively frequent 

failure of clinical trials to replicate the results obtained in the 

animal model. Preclinical studies on ALS almost invariably 

employ the mSOD1 transgenic murine model (generally the 

SOD1
G93A 

mouse model). Despite being a useful model for 

research, it is now clear that it is also a limited one. In fact, 

patients who harbor a recognized pathogenic mutation in the 

SOD1 gene represent a very limited subgroup of all ALS 

patients. Moreover, the ALS phenotype showed by these mice 

is greatly dependent on four factors: gender, genetic back- 

ground, SOD1 mutation, and expression levels of the human 

SOD1 transgene [210]. The standard SOD1
G93A 

mouse model 

carries 25 copies of the mSOD1 transgene under the control of 

the human SOD1 promoter [211], but it is known that loss of 

several transgene copies can occur spontaneously during mei- 

osis [210]. This phenomenon can lead to a variable phenotype 

expression and cause a variable degree of severity and re- 

sponse to treatment [212]. The same phenomenon can occur 

in mice carrying a human SOD1 transgene with a different 

mutation. Since the SOD1
G93A 

mouse model is the most used 

one, the effects of different SOD1 mutations can be generally 

overlooked. The issue of the variable genetic background is 

more challenging because many genetic variations could 

modify the severity, the time of onset, and the progression of 

disease [213]. Further studies aimed to improve the available 

animal models of ALS or MN degeneration could help to 

improve the preclinical screening of novel therapeutic 

compounds. 

Based on what is known about neuroinflammation and 

CNS-resident immune cells, we highlight that the NF-kB 

pathway seems to be particularly relevant for inflammation- 

induced neurotoxicity. The activation of NF-kB likely repre- 

sents the converging point of several damage signals and 

could be a particularly fruitful target for therapeutics. 

However, this approach would likely require the precise target 

of NF-kB into microglial cells and astrocytes to have a signif- 

icant impact. 

Even if no major change in ALS progression has been 

achieved by targeting inflammation, some of the compounds 

undergoing preclinical investigation could have the potential- 

ity to exert a meaningful impact on the disease and could be 

easily applied in clinical settings. Also, the discovery of novel 

molecular mechanisms warrants further investigation toward 

the development of an effective therapy for ALS. We postulate 

that a deeper knowledge of the molecules and cellular path- 

ways involved in neuronal damage could lead to the selection 

and design of efficient therapies. 

Based on the data presented herein, targeting inflammation 

in ALS would certainly have a weaker impact on the disease 

than a possible therapy directed against its pathogenic causes. 

However, we think that the development of efficient anti- 

inflammatory or immune-modulating therapies would at least 

lead  to symptomatic improvement or  to  a  relatively short 



 
 

 

 

increase in survival, which would provide an acceptable clin- 

ical improvement for ALS patients. This possibility supports 

further efforts to improve this approach, since no pathogenic 

therapy is available to date. 
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