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Effect of ground-state deformation on isoscalar giant resonances in 28Si
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Multipole strength distributions for isoscalar L � 2 transitions in 28Si have been extracted using 386-MeV
inelastic α scattering at extremely forward angles, including 0◦. Observed strength distributions are in good
agreement with microscopic calculations for an oblate-deformed ground state. In particular, a large peak at
an excitation energy of 17.7 MeV in the isoscalar giant monopole resonance strength is consistent with the
calculations.
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I. INTRODUCTION

Isoscalar giant resonances have been extensively investi-
gated in a wide range of nuclei [1–21] due to their funda-
mental relationship with bulk nuclear properties. A particular
emphasis has been on the isoscalar giant monopole resonance
(ISGMR) since its energy centroid, EISGMR, allows the ex-
perimental determination of the incompressibility of the finite
nuclei, KA, and the incompressibility of nuclear matter, K∞
[22–24]. In heavy-mass nuclei, the experimentally observed
giant resonance strength comprises a broad peak exhausting
nearly 100% of the energy-weighted sum rule (EWSR) [25].
However, identification of giant resonances in lighter nuclei
(A < 60) is somewhat ambiguous due to the fragmentation of
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strength distributions and an increase in the observed spurious
strength from other three-body channels [26,27]. Additionally,
significant overlap of the strength distributions of different
multipoles leads to difficulties in the separation of individual
resonances in a multipole-decomposition analysis (MDA).

Isoscalar giant resonance strength in 28Si has been in-
vestigated previously by the KVI and Texas A&M groups
[6,28–31], but without any direct reference to the deformed
nature of the ground state of the nucleus. In this paper we report
the first experimental and theoretical evidence of the effect
that the ground-state deformation of the 28Si nucleus has on
the strength distributions of multipole transitions up to L = 2.
Quasiparticle random-phase approximation (QRPA) calcula-
tions suggest that the strength distributions of monopole,
dipole, and quadrupole transitions in 28Si display a unique
structure as a result of the deformation of the ground state of
this nucleus. Recently, similar observations have been made
in the ISGMR in 24Mg where a “splitting” of the ISGMR has
been attributed to the prolate deformation of the 24Mg ground
state [32].

II. EXPERIMENTAL TECHNIQUES

The experiment was performed at the Ring Cyclotron
facility at the Research Center for Nuclear Physics (RCNP),
Osaka University, using 386-MeV α particles. Inelastically
scattered particles were momentum-analyzed using the Grand
Raiden magnetic spectrometer [33]. A focal-plane detector
setup consisting of two position-sensitive multiwire drift
chambers (MWDCs) and two plastic scintillators [34] was
used to measure both the vertical and horizontal positions of
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FIG. 1. 28Si(α,α′) excitation-energy spectra at an average spec-
trometer angle of θavg = 0.8◦. The black and blue lines represent the
low−Ex and high−Ex spectra, respectively.

the scattered α particles. Knowledge of the exact position of the
scattered particles at each MWDC allows the reconstruction
of the trajectory through the spectrometer and, hence, the
scattering angle. Further, the vertical-position spectrum was
used to eliminate virtually all instrumental background. The
plastic scintillators were utilized for particle identification.

The observed excitation energy range of 6 � Ex � 50 MeV
was covered in two run settings, henceforth referred to
as low−Ex and high−Ex, spanning 6 � Ex � 34 MeV and
23 � Ex � 50 MeV, respectively. Figure 1 displays, for an
average spectrometer angle of θavg = 0.8◦, an extremely good
agreement between the low−Ex and high−Ex runs in the
overlapping regions. Inelastic scattering cross sections were
measured at central angles of 0◦, 2.5◦, 3.5◦, 5.0◦, 6.5◦, 8.0◦,
and 9.5◦ using natural Si targets of thickness 1.25 mg/cm2 for
0◦ runs and 2.16 mg/cm2 for the other angles. Cross sections
were extracted for five equal angular bins at each central angle.
Elastic scattering data were obtained to determine suitable
optical-model parameters. The elastic scattering runs spanned
an angular range starting at 5.0◦ and then increasing from 6.5◦
to 26.5◦ in 2.0◦ intervals; a target thickness of 2.16 mg/cm2

was used for 5.0◦ � θ � 18.5◦ and 11.27 mg/cm2 for θ �
20.5◦. For calibration purposes, data were taken for a 3.00
mg/cm2-thick 12C target at each angle at which 28Si(α,α′)
measurements were made.

The 28Si(α,α′) energy spectrum displays a fragmented
structure at low excitation energies (see Fig. 1); this is utilized
in selecting MDA energy bins so that isolated peaks from
individual, or closely neighboring, states can be specifically
investigated. Energy bins ranging from approximately 300
to 700 keV in width were used up to an excitation energy
of 30 MeV, above which the continuum structure begins to
dominate the spectrum and uniform energy bins of 500 keV
were used.

III. DATA ANALYSIS AND RESULTS

Multipole strength distributions corresponding to L = 0–2
have been extracted using the standard MDA procedure
[35]. Contributions from each multipole are determined in
terms of fractions of 100% of EWSR [36,37] by fitting a
linear combination of calculated angular distributions to the

TABLE I. Optical-model parameters obtained from fitting elastic
scattering data. V0 is the depth of the single-folded real potential, W0

the imaginary potential depth, RI imaginary radius parameter, and
aI the imaginary diffuseness parameter. RC is the Coulomb radius of
the uniform charge distribution of the nucleus. The B(E2) value for
the 1.78-MeV 2+ excited state in 28Si [42] is also included.

V0 W0 RI aI RC B(E2)
(MeV) (MeV) (fm) (fm) (fm) e2b2

35.6 36.3 4.083 0.744 3.15 0.0326

corresponding experimental cross sections. Optimum fits are
determined such that

d2σ exp

d�dE
(θc.m.,Ex) =

7∑
L=0

aL(Ex) × d2σ DWBA
L

d�dE
(θc.m.,Ex) (1)

where d2σ exp

d� dE
(θc.m.,Ex) is the extracted inelastic α-scattering

cross sections, d2σ DWBA
L

d� dE
(θc.m.,Ex) is the calculated angular

distribution for 100% EWSR, and aL(Ex) is the fractional
EWSR contribution, determined in MDA for each multipole
transition. Angular distributions of multipole transitions up to
L � 7 were used in MDA fits to best represent extracted cross
sections.

The theoretical cross sections, d2σ DWBA
L

d� dE
(θc.m.,Ex), were

calculated in the distorted-wave Born approximation (DWBA)
framework and we used the hybrid optical model proposed
by Satchler and Khoa [1]. In this model, density-dependent
single folding is used to determine the real part of the
optical potential, whereas the standard Woods-Saxon form is
employed for the imaginary part. The optical potential U (r) is
written as

U (r) = V (r) + iW (r), (2)

where V (r) is the real single-folding potential obtained using
the computer code SDOLFIN [38] by folding the ground-state
density with a density-dependent α-nucleon interaction, and
W (r) is the imaginary potential given by

W (r) = W0

1 + exp[(r − RI )/aI ]
, (3)

where W0 is the imaginary potential depth, RI the radius, and
aI the diffuseness. A Fermi mass distribution is assumed to
describe the radial moments of the 28Si nucleus with radius
c = 3.15 fm and diffuseness a = 0.523 fm [39]. The optical-
model parameters (OMPs) were determined by fitting elastic
scattering cross sections, with the computer code PTOLEMY

[40,41]. A calculation of the cross sections of the first 2+ state
(Ex = 1.78 MeV) in 28Si, using the previously established
B(E2) value from Ref. [42], was used to verify the optimum
OMP set. The OMPs so extracted are presented in Table I.
Figure 2 shows the fit to the elastic scattering cross section
as well as the comparison of the experimental and calculated
cross sections for the first 2+ state.

Using the OMPs so obtained, it was possible to carry out
multipole decomposition analysis over the whole experimental
energy range by dividing the spectra into individual energy
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FIG. 2. (a) Optical-model fit to the angular distribution of elastic
scattering cross sections; data points marked in orange were omitted
from the fitting procedure because of uncertainties in cross sections
stemming from low statistics. (b) Comparison of differential cross
sections (solid points) for the excitation of the 2+ state in 28Si with
results of a DWBA calculation using the extracted optical-model
parameters (solid line).

bins as discussed earlier in the text. Figure 3 displays MDA
fits corresponding to eight excitation-energy bins ranging from
10.44 to 39.50 MeV. Individual multipole contributions up to
L � 4 are also displayed in each figure. The parameters aL(Ex)
for each energy bin were determined by χ2 minimization.
The uncertainties in the parameters were determined by
systematically changing the strength contribution of each
multipole until, by refitting the other parameters, the χ2

increased by 1 from the minimum value.
Multipole strength distributions for L = 0, 1, and 2

transitions in the 28Si nucleus have been extracted over the
energy range 9.35 to 44.50 MeV and are presented in Figs.
4–6. Strengths are calculated from aL(Ex) coefficients using
Eqs. (4)–(6) [13,36,37]:

S0(Ex) = 2�
2A〈r2〉
mEx

a0(Ex), (4)

S1(Ex) = 3�
2A

32πmEx

(
11〈r4〉 − 25

3
〈r2〉2 − 10ε〈r2〉

)
× a1(Ex), (5)

SL�2(Ex) = �
2A

8πmEx

L(2L + 1)2〈r2L−2〉aL(Ex), (6)

where m, A, and 〈rn〉 are the nucleon mass, the mass number,
and the nth moment of the ground-state density, respectively,
Ex is the excitation energy corresponding to a given state, and
ε is given by

ε =
(

4

E2
+ 5

E0

)
�

2

3mA
. (7)

FIG. 3. Selected MDA fits (solid red lines) to extracted cross
sections corresponding to the indicated energy bins (excitation energy
Ex and width 	). Constituent multipole contributions are shown for
L = 0 (blue dashed line), L = 1 (orange dash-dotted line), L = 2
(green dash-double-dotted line), L = 3 (yellow dot-double-dashed
line), and L = 4 (purple dotted line).

E0 and E2 are the centroid energies of the ISGMR and the
isoscalar giant quadrupole resonance (ISGQR), and have been
taken as 80 A− 1

3 and 64 A− 1
3 , respectively [13]. While the

DWBA cross sections up to L = 7 were utilized in the MDA,
only the L � 2 strength distributions are presented in this paper
since it was not possible to reliably extract meaningful strength
distributions for L > 2 due to the limited experimental angular
range.

Although the E0 strength distribution (Fig. 4) clearly indi-
cates the presence of a broad peak, extra strength is observed in
both the low- and high-excitation energy regions. The observed
strength at Ex ∼ 10–15 MeV is from individual narrow L = 0
transitions. There also is some extra strength beginning at
Ex ∼ 20 MeV. The exact nature of this extra strength is not
well understood; however, similar contributions have been
observed previously in other nuclei [34,43] and this spurious
strength has been attributed to contributions from three-body
channels such as knock-out reactions [26,27]. These processes
are implicitly included in MDA, resulting in extra multipole
strength at higher excitation energies where extracted cross
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FIG. 4. E0 strength distribution in 28Si, as observed in the present
work. The dashed line (blue) represents the microscopic calculation
for an oblate-deformed nucleus (see text) and the dot-dashed (red) line
shows calculations from Ref. [63]. Also shown (purple histogram) is
the strength distribution obtained by the Texas A&M group [29].

sections are quite low. These conclusions have been validated
in coincidence measurements, with decay neutrons and protons
emitted at backward angles, where no such spurious strength is
observed [26,27,44–46]. In the Ex = 9.35–35 MeV region, the
observed E0 strength distribution exhausts a total of ∼125%
of the EWSR. The “extra” strength is easily accountable by
consideration of the spurious high-energy strength and the
uncertainties associated with choosing OMPs and DWBA
calculations, which can be up to ∼20%.

FIG. 5. E1 strength distribution in 28Si, as observed in the present
work. The dashed line (blue) represents the microscopic calculation
for an oblate-deformed nucleus (see text). Also shown (purple
histogram) is the strength distribution obtained by the Texas A&M
group [29].

FIG. 6. Same as Fig. 4, but for E2 strength.

The E1 strength distribution (Fig. 5) rises monotonically
with excitation energy and exhausts a total of ∼125% of the
EWSR in the Ex = 9.35–35 MeV region. A direct comparison
can be drawn between this distribution and that obtained by the
Texas A&M group [47,48], where almost identical structure is
observed such that there exists a smooth increase in strength
with energy, beyond the low-lying discrete states. In that case
as well, the extracted sum-rule strength is more than 100%.

The experimental E2 strength (Fig. 6) displays a structure
that is similar in nature to the E0 distribution in that at
excitation energies below 15 MeV, transitions from discrete
states are clearly visible, whereas above 20 MeV, spurious
continuum contributions begin to dominate. In the energy
region of 9.35 to 30 MeV, 109% of the EWSR is exhausted.

Overall, the extracted strength distributions are in good
agreement with the corresponding results from the Texas
A&M group. However, there are some discrepancies in the
high-excitation energy region (Ex � 20 MeV); these might be
attributable to the method of background subtraction employed
in that work.

IV. THEORETICAL CALCULATIONS

A. Basic equations of deformed HFB + QRPA

Details of the calculation scheme of the axially deformed
Hartree-Fock-Bogoliubov (HFB) and the QRPA employing
the Skyrme energy-density functional (EDF) can be found in
Refs. [49,50]. Here, we briefly recapitulate the outline of the
formulation.

To describe the nuclear deformation and the pairing
correlations simultaneously, we solved the HFB equations
[51,52](

hq(rσ ) − λq h̃q(rσ )
h̃q(rσ ) −[hq(rσ ) − λq]

)(
ϕ

q
1,μ(rσ )

ϕ
q
2,μ(rσ )

)

= Eμ

(
ϕ

q
1,μ(rσ )

ϕ
q
2,μ(rσ )

)
(8)
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in real space using cylindrical coordinates r = (ρ,z,φ). Here,
q = n (neutron) or p (proton); h and h̃ labels, respectively, the
mean-field and the pairing field, while λ is the Fermi energy.
We assume axial and reflection symmetries. Since we consider
only even-even nuclei, the time-reversal symmetry was also
assumed. A nucleon creation operator ψ̂†(rσ ) at the position r
with the intrinsic spin σ is written in terms of the quasiparticle
(qp) wave functions ϕ as

ψ̂†
q (rσ ) =

∑
μ

ϕ
q
1,μ(rσ̄ )β̂†

q,μ + ϕ
q∗
2,μ(rσ )β̂q,μ (9)

by using the qp creation and annihilation operators β̂†,β̂. The
notation ϕ(rσ̄ ) is defined as ϕ(rσ̄ ) = −2σϕ(r − σ ).

Using the qp basis obtained as a self-consistent solution
of the HFB equations (8), we solved the QRPA equation
in the matrix formulation [53]. The residual interaction
in the particle-hole (p-h) channel appearing in the QRPA
matrices was derived from the Skyrme EDF. The residual
Coulomb interaction was neglected because of computational
limitations. We expect that this interaction plays only a minor
role [54–57]. We also dropped the so-called J 2 term CT

t both
in the HFB and QRPA calculations for self-consistency. The
residual interaction in the particle-particle (p-p) channel was
the same as used in the HFB calculation.

The transition strength distribution as a function of the
excitation energy Ex was calculated as

Sτ
λ (Ex) =

∑
i

∑
K

γ/2

π

∣∣〈i|F̂ τ
λK |0〉∣∣2

(Ex − �ωi)2 + γ 2/4
, (10)

with �ωi being the QRPA eigenfrequency. The smearing width
γ is set to 2 MeV to simulate the spreading effect 	↓ that is
missing in the QRPA.

Here, we define the isoscalar (τ = 0) monopole, dipole,
quadrupole, and octupole operators as

F̂ τ=0
λ=0 =

∑
q=n,p

∫
d r r2ψ̂†

q (r)ψ̂q(r), (11)

F̂ τ=0
λ=1,K =

∑
q=n,p

∫
d r r3Y1K (r̂)ψ̂†

q (r)ψ̂q(r), (12)

F̂ τ=0
λ=2,K =

∑
q=n,p

∫
d r r2Y2K (r̂)ψ̂†

q (r)ψ̂q(r), (13)

F̂ τ=0
λ=3,K =

∑
q=n,p

∫
d r r3Y3K (r̂)ψ̂†

q (r)ψ̂q(r). (14)

Here, Yλ,K are spherical harmonics. The spin index σ has been
omitted for simplicity because the spin direction is unchanged
by the operator.

B. Details of the numerical calculation

We employed the SkM* parametrization [58] for the mean-
field Hamiltonian and adopted mixed-type pairing interaction
with the strength V0 = −275 MeV fm3 for neutrons and
protons. The pairing strength was set so as to lead to the pairing
gap of neutrons in 20O to be about 1.9 MeV. This also resulted
in pairing gaps in 28Si to be vanished. To numerically solve the

HFB equations (8), we used a lattice mesh size �ρ = �z =
0.6 fm and a box boundary condition at ρmax = 14.7 fm and
zmax = 14.4 fm. The differential operators were represented
by use of the 13-point formula of the finite-difference method.
Since the parity (π ) and the magnetic quantum number (�)
are good quantum numbers, the HFB Hamiltonian is in a
block diagonal form with respect to each (�π,q) sector. The
HFB equations for each sector were solved independently with
64 cores for the qp states up to � = 31/2 with positive and
negative parities. Then, the densities and the HFB Hamiltonian
were updated, which requires communication among the 64
cores. The modified Broyden’s method [59] was utilized to
calculate new densities. The qp states were truncated, with the
qp energy cutoff at 60 MeV.

We introduced an additional truncation in terms of the
two-quasiparticle (2qp) excitation energy at 60 MeV. The
calculation of the QRPA matrix elements in the qp basis was
performed using parallel computing: all the matrix elements
are real in the present calculations and 256 cores were used to
compute them.

The IS dipole operator, Eq. (12), contains the component
of the center-of-mass motion. To eliminate the mixing of the
spurious modes, we used the corrected operator

F̂ τ=0
λ=1,K = 1

2

∑
q=n,p

∫
d r(r3 − ηKr)Y1K (r̂)ψ̂†

q (r)ψ̂q(r) (15)

instead of using Eq. (12). Here, the correction factor in the
IS dipole operator, originally discussed for a spherical system
(η) to subtract the spurious component of the center-of-mass
motion [60], was extended to a deformed system (ηK ) [49], and
coincides with ηK = η = 5/3 in the spherical limit. The factor
1/2 is introduced in Eq. (15) to match the strength definition
given in Eq. (5).

V. DISCUSSION

The comparison of experimental and theoretical E0
strength distributions (Fig. 4) displays clear evidence for
the oblate ground-state deformation of 28Si; the theoretical
strength distribution for oblate deformation is consistent with
the experimentally extracted E0 strength distribution. In
particular, there is a large peak in the theoretical distribution,
similar to the 17.7-MeV peak observed in the experimental E0
strength.

Figures 7(a) and 7(b) show the calculated ISGMR and IS-
GQR strength distributions. The SkM* parametrization gives
an oblate deformation (β = −0.22) for the ground state. The
K = 2 component of the ISGQR is thus shifted lower in energy
and carries a large portion of the transition strength, while
the K = 0 component shows a resonance structure around
22-MeV excitation-energy region. This K = 0 component is
coupled to the ISGMR and is expected to shift the ISGMR
energy downward with respect to the spherical case. As
a reference, Fig. 7(a) also shows the strength distributions
obtained by constraining the nucleus to be spherical. In such a
case, the ISGMR strength distribution shows a broad resonance
structure in the energy region of 20–25 MeV. Therefore, the
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FIG. 7. The ISGMR and ISGQR (left), and the ISGDR and ISGOR (right) transition-strength distributions in 28Si. For the quadrupole and
octupole strength distributions, the results of each component are shown.

prominent peak observed at 17.7 MeV is a clear signature of
ground-state deformation.

The calculated isoscalar giant dipole resonance (ISGDR)
strength distribution for an oblate-deformed ground state is
compared with the experimental E1 distribution in Fig. 5.
While the calculation replicates the experimental E1 strength
distribution at low excitation energies reasonably well, there
is a large disparity between the calculated and experimental
strength beyond Ex ∼ 20 MeV, which might be attributable
to spurious results from three-body reaction channels, as
discussed previously.

The ISGDR strength gets fragmented due to the ground-
state deformation and the coupling to the K = 0 and 1
components of the isoscalar high-energy octupole resonance
as discussed for the heavy deformed systems in Ref. [50].
Figures 7(c) and 7(d) show the calculated dipole and
octupole (ISGDR and ISGOR) strength distributions. The
ISGDR strength distribution is already quite fragmented
in the spherical case. Nonetheless, deformation makes the
distribution smoother and produces a non-negligible amount
of strength in the energy region around 12–16 MeV. This
latter effect can be seen as a result of the coupling to the
low-energy octupole resonance. In order to discuss further
the deformation effect on the E1 strength distribution, it is
desirable to obtain a reliable E3 strength distribution in a future
experiment.

Much like the previously discussed E0 and E1 strength
distributions, Fig. 6 further indicates that the ISGQR strength
is heavily influenced by the oblate deformation of 28Si.
Figure 7(b) shows a comparison of the calculated transition
strengths for the oblate-deformed ground state and for the
spherical configuration. Due to the K-splitting of the ISGQR,
the width of the resonance increases, and the peak position
is shifted lower in energy because the K = 2 component
constitutes a very large transition strength.

As we have shown, the theoretical calculations for the
oblate-deformed ground state reproduce the overall features of
the measured multipole L = 0–2 strength distributions quite

reasonably. In particular, the main monopole and quadrupole
peaks are accounted for. However, the calculations miss the
low-lying states in the energy region of 10–15 MeV for
L = 0–2. It should be noted that recent works, based on
the antisymmetrized molecular dynamics combined with the
configuration mixing calculation, suggest the low-lying states
in this energy region may be attributed to a cluster-type
structure [61,62].

Results have recently become available for E0 and E2
strengths in 28Si from calculations in the Skyrme QRPA
approach with the SVbas interaction [63]. These results,
included in Figs. 4 and 6, provide further affirmation of the
effects of deformation on giant resonance strengths in this
region. Indeed, the SVbas results appear to reproduce the
experimental strength distributions somewhat better than the
SkM* results obtained in this work, especially for the E0
strength.

VI. SUMMARY AND CONCLUSIONS

To summarize, we have extracted strength distributions
for multipole transitions up to L = 2 in 28Si using 386-MeV
inelastic α-particle scattering at very forward angles, including
0◦. Equivalent theoretical strength distributions have been
calculated in the Hartree-Fock-Bogoliubov mean field +
QRPA framework for an oblate deformed nuclear shape. These
calculations reproduce the experimental data reasonably well.
In particular, a peak structure in the excitation-energy region
of 17–23 MeV in the experimental E2 strength distribution is
well reproduced in the calculations. However, a quantitative
reproduction of the measurement was not achieved with the
HFB-QRPA calculation with the SkM* parametrization. In
such a light N = Z nucleus, the proton-neutron pairing, or
other correlations that are not included in HFB-QRPA, may
play a bigger role than in heavier spherical nuclei where the
agreement between theory and experiment has been shown in
the past to be significantly better.
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23 (2006).
[25] M. N. Harakeh and A. van der Woude, Giant Resonances

Fundamental High-Frequency Modes of Nuclear Excitation
(Oxford University Press, New York, 2001, 1973).

[26] S. Brandenburg, W. T. A Borghols, A. G. Drentje, L. P. Ekström,
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