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We evaluate the second-order (beyond-mean-field) contribution to the equation of state of nuclear matter
with the effective Skyrme force and use cutoff and dimensional regularizations to treat the ultraviolet
divergence produced by the zero-range character of this interaction. An adjustment of the force parameters
is then performed in both cases to remove any double counting generated by the explicit computation of
beyond-mean-field corrections with the Skyrme force. In addition, we include at second order the rearrangement
terms associated with the density-dependent part of the Skyrme force and discuss their effect. Sets of parameters
are proposed to define new effective forces which are specially designed for second-order calculations in nuclear
matter.
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I. INTRODUCTION

The energy-density-functional (EDF) theory has been
developed in nuclear physics over the last several decades.
In this theoretical framework, the energy of the system is
computed by using functionals of the density, which are
usually derived from effective interactions [1], with some
exceptions (see, for instance, the work reported in Ref. [2]).
Mean-field-type models constitute the basis on which this
theory was constructed starting from the 1970s. Such models
have strong analogies with the leading order of the many-body
Dyson perturbative expansion [3], based on the independent-
particle approximation, and are currently applied to numerous
many-particle systems.

Mean-field-based models are extensively employed in the
study of medium-mass and heavy nuclei, and are particu-
larly successful in describing with a good accuracy a large
number of known masses and radii. Despite this success,
more sophisticated beyond-mean-field models are necessary,
for instance, to perform accurate spectroscopic analyses for
nuclear ground states or to provide reliable descriptions of the
physical fragmentation of nuclear excitations. In these cases,
additional correlations, with respect to what is contained in
a mean-field picture, have to be included in the theoretical
scheme. Going beyond the mean field, with respect to the
many-body Dyson perturbative expansion, implies including
higher orders. This is a challenging task to accomplish for
several reasons: among them, the highly increased numerical
cost, and the conceptual problems implied by the choice of the
interaction to be used. Some of these problems are mentioned
in what follows. Within the EDF theory, the currently used
density functionals are usually produced by phenomenological
interactions or Lagrangians in the nonrelativistic and relativis-
tic cases, respectively. Skyrme [4,5] and Gogny [6,7] forces
are the most used interactions in the nonrelativistic framework.
The fitting procedure of their parameters is performed with
mean-field calculations for nuclear matter and some chosen

nuclei. It is obvious that, if such interactions are used in cases
where higher orders are explicitly included in the theoretical
models, double-counting problems arise. Furthermore, in those
cases where the effective interactions have a zero range,
ultraviolet divergences may occur beyond the mean field and
have to be treated.

Our objective is to construct a generalized EDF framework,
where new effective interactions are introduced, which are
now designed to treat both matter and finite nuclei in beyond-
mean-field models, avoiding double-counting problems and
regularizing ultraviolet divergences. We started this work with
the Skyrme interaction [8–10]. Second-order calculations were
performed to compute the equation of state (EOS) of sym-
metric, neutron, and asymmetric matter. First, only symmetric
matter and a simplified form of the Skyrme interaction (contact
interaction with a density-dependent coupling constant) were
analyzed [8]. This simplified Skyrme model corresponds to
the so-called t0 − t3 model, where the velocity-dependent,
the spin-orbit, and the tensor terms of the Skyrme force
are omitted. The second-order contribution was evaluated
analytically and its cutoff-dependent part was identified. The
divergent part was found to have a linear asymptotic behavior
with respect to a momentum cutoff. The set of parameters
(three in that case) were adjusted on a benchmark EOS for
several values of the cutoff. These parameter sets were recently
employed in a simplified test-calculation for the nucleus 16O
[11]. The second-order correction to the total binding energy
was evaluated in this nucleus and encouraging results were
found, indicating a reasonable convergence with respect to the
chosen cutoff.

We then performed the same type of procedure (analytical
derivation of the second-order contribution and adjustment
of the parameters) by including also the velocity-dependent
terms in the Skyrme interaction. Two directions were ex-
plored, namely (i) keeping the cutoff-dependent terms [9] and
(ii) applying the dimensional regularization technique to
extract only the finite part [10].
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We recently realized that some aspects of the formal
derivation on which both studies [9,10] were based are
not correct, and we aim here at providing the correct full
formulas and results. For the sake of clarity and to present
a self-contained reference on the topic, we provide here all
the needed details via reference to previous literature, new
formulas and, for an easy comparison with Refs. [9,10],
the same type of figures. In addition, we illustrate the
effect on the EOS related to the inclusion of the proper
rearrangement terms at second order. Rearrangement terms
were neglected in Refs. [9,10]. The general way of com-
puting them in beyond-mean-field models was discussed in
Ref. [12].

The ultraviolet divergence at second order is handled in two
ways: (i) by using a cutoff regularization, as in Ref. [9]. The
cutoff-dependent results are adjusted on a benchmark EOS and
several sets of parameters are generated for each chosen value
of the cutoff; (ii) by applying the dimensional-regularization
procedure. Only the finite parts of the second-order corrections
are thus extracted as in Ref. [10] and the cutoff-dependent part
is eliminated by the dimensional regularization. A unique set
of parameters is thus produced by adjusting on a benchmark
EOS.

As a first approximation, in the first part of the article we
replace the effective mass m∗ with the bare mass m, as done
in Ref. [13] (this approximation will be abandoned in the last
part of the article). We find in this case that the finite part
of the EOS calculated for symmetric and neutron matter is
consistent with the recent results shown in Ref. [13]. There
are differences from Ref. [13]: (1) The tensor and spin-orbit
parts are omitted for simplicity in the interaction. For the
tensor part, this is first justified by the fact that many currently
used Skyrme interactions do not contain such terms. Spin-orbit
and tensor terms do not contribute to the first-order EOS. In
principle, they contribute when the second order is included.1

(2) We also calculate the cutoff-dependent part in the second-
order contribution because we perform a cutoff regularization.
(3) Also asymmetric matter is treated here. (4) The density-
dependent part of the Skyrme interaction is not omitted. It is
well known that this term is necessary to reproduce the correct
saturation point of symmetric matter at first order. In Ref. [13]
it is stressed that this term is indeed necessary for properly
reproducing the saturation density of symmetric matter also
at second order. The second-order curves obtained there by
omitting the density-dependent term do not reproduce at all the
saturation point, providing a saturation density of ∼0.22 fm−3.
It is well known that the inclusion of such a term may be
problematic in many respects (see, for instance, Ref. [14]).
Several drawbacks related to the density dependence were
identified, such as the existence of pathologies in some

1We note that such terms were taken into account in Ref. [13];
however, the adjustment of the parameters performed in that work
for the second-order EOS of symmetric matter (done by omitting the
density-dependent term) provided W0 = t4 = t5 = 0, where W0, t4,
and t5 are the parameters that tune the spin-orbit (W0) and tensor (t4
and t5) terms introduced in Ref. [13].

applications of the generator-coordinate method [15]. Our
pragmatic choice is to use density-dependent interactions as a
starting point in our work because of their good performance,
and we leave for a future work the discussion of the associated
problems.

Note that, despite the explicit density dependence in the
interaction, the Hugenholtz–van Howe theorem [16] is satis-
fied in the Skyrme case whenever the proper rearrangement
terms (associated with the density dependence) are explicitly
introduced, as is usually done within the random-phase ap-
proximation (RPA) and as was recently done also in the specific
case of the second RPA [17]. Reference [18] pointed out that
the matrix elements of the interaction used for the computation
of the energy in second-order perturbation theory are related to
B RPA matrix elements. The RPA residual interaction (second
derivative of the Hartree-Fock energy functional [19], which
automatically includes the rearrangement terms) has thus to
be used to calculate the second-order energy correction. As
a first approximation, as done in Refs. [9,10], we neglect
rearrangement terms. We then include them (together with
the effective mass) in the last part of the article for symmetric
and neutron matter and provide sets of parameters where their
effect is taken into account. Such sets of parameters may
be considered a very reasonable starting point to construct a
bridge between infinite matter, where our effective regularized
interactions are presently adjusted, and finite nuclei, where we
eventually plan to employ them.

We analyze here the second-order integrals using two
choices for the momentum cutoff. While the numerical Monte
Carlo integration is performed with a cutoff (�) on the
transferred momentum q, it turns out that the use of a cutoff
(λ) on the outgoing relative momentum k′ is more convenient
for the analytical derivation. This choice is analogous to that
adopted for instance in the low-momentum interaction Vlow-k

[20]. The analytical derivation is performed here only for
symmetric and pure neutron matter. For asymmetric matter,
we solve numerically the second-order integrals with the
Monte Carlo method. To present a coherent analysis of the
obtained results and discuss figures with a unique choice for
the momentum cutoff, we show in this article, in the case of
the cutoff regularization, second-order EOS’s obtained in all
cases numerically, with a cutoff equal to �.

The article is organized as follows. In Sec. II the cutoff
regularization is discussed. First, the analytical expressions of
the second-order EOS’s are shown in the cases of symmetric
and pure neutron matter (Sec. II A). Numerical results for
the second-order EOS’s, obtained with the Monte Carlo
method, are then shown for several values of the cutoff �
for symmetric, neutron, and asymmetric matter. Adjustments
of parameters are presented and discussed (Sec. II B). In
Sec. III the dimensional-regularized results are illustrated and
the adjustment of the parameters is discussed also in this
case. Section IV illustrates results obtained for symmetric and
neutron matter in the case where the approximation m∗ = m
is not employed (m∗ is taken equal to its mean-field value)
and rearrangement terms are included. Sets of parameters are
provided. We draw conclusions in Sec. V. The Appendix lists
the factors appearing in front of the different types of integrals
which are solved by the Monte Carlo method.

034311-2



SECOND-ORDER EQUATION OF STATE WITH THE . . . PHYSICAL REVIEW C 94, 034311 (2016)

II. CUTOFF REGULARIZATION

A. Analytical derivation of the second-order contribution for
symmetric and neutron matter

We start by writing the standard Skyrme interaction,

v(k,k′) = t0(1 + x0Pσ ) + 1
2 t1(1 + x1Pσ )(k′2 + k2)

+ t2(1 + x2Pσ )k′ · k + 1
6 t3(1 + x3Pσ )ρα, (1)

where we adopt the following convention,

v(k,k′) =
∫∫

d3r d3r′e−ik·rv(r,r′)eik′ ·r′
. (2)

As already anticipated, we have omitted the spin-orbit and
tensor parts, for simplicity. The parameters (ti , xi , and α)
are in this case nine. Pσ is the spin-exchange operator, Pσ =
1
2 (1 + σ1 · σ2). The mean-field or first-order contribution to the
EOS of symmetric matter is the well-known expression
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where �S = 3t1 + t2(5 + 4x2). For neutron matter, the first-
order contribution to the EOS is written as
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with �V = t1(2 + x1) + t2(2 + x2). In symmetric matter, the
total density and the Fermi momentum kF are related by the

relation kF = ( 3π2

2 ρ)
1/3

. Neutron and proton Fermi momenta
are in this case equal to kF . In neutron matter, the Fermi
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FIG. 1. (a) Second-order EOS of symmetric matter computed for
several values of the cutoff � and compared with the mean-field EOS;
(b) second-order correction to the energy per particle for symmetric
matter. The used parameters are those of SLy5.
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FIG. 2. (a) Second-order pressure; (b) second-order incompress-
ibility modulus. The used parameters are those of SLy5.

momentum kFN
is related to the total density (which is equal

to the neutron density) by the relation kFN
= (3π2ρ)

1/3
.

The second-order contribution is calculated by solving the
integral

	E(2) = −1

4
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(3)

where V = v/
, 
 is the box volume where the wave
functions are normalized, v is the Skyrme interaction written
in Eq. (1), k′

1 = q + k1, k′
2 = k2 − q, and q is the transferred

momentum. Eq. (3) may be written as
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where we have introduced the propagator G,

G = −1

ε′
1 + ε′

2 − ε1 − ε2
, ε

(′)
i = �

2k
(′)2
i

2m∗
i

, (5)

with

|k1| < kF1, |k2| < kF2,

|q + k1| > kF1, |k2 − q| > kF2. (6)

In Eq. (5), m∗
i represents the nucleonic effective mass. In this

work, we first take the approximation m∗
i = m for simplicity.

Such approximation will not be adopted in Sec. IV. As is
well known, the k dependence of the potential U is absorbed
in the effective mass while a constant term in U cancels
out in the denominator of Eq. (3) and is consequently not
written.

In the integral of Eq. (4), k1 and k2 lie inside the Fermi
spheres associated with kF1 and kF2, respectively, and the
integrals on k1 and k2 do not diverge. An ultraviolet divergence
appears in the computation of the integral on the transferred
momentum q and a cutoff � is put in that integral as a
regulator.

We now introduce the incoming k and outgoing k′ relative
momenta, appearing in the Skyrme interaction, Eq. (1), and
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FIG. 5. (a) Difference between the second-order pressure and
the mean-field-SLy5 value; (b) same as in panel (a), but for the
incompressibility modulus. The black arrow indicates the maximum
deviation of the compressibility from the mean-field-SLy5 value at
the saturation point.

related to k1, k2, and q by

k = k1 − k2

2
, k′ = k′

1 − k′
2

2
= k1 − k2

2
+ q. (7)

In this work, the analytical derivation of the second-order
contribution to the EOS has been done following Ref. [21].
This specific derivation can be adapted only to the cases
of symmetric and pure neutron matter, where there is a
unique Fermi momentum kF1 = kF2, and not to the case of
asymmetric matter, where kF1 �= kF2. For asymmetric matter,
the EOS is computed numerically by a Monte Carlo integration
and discussed in Sec. II B together with all the other numerical
results. In the present section, as well as in the following,
we neglect the rearrangement terms associated to the density-
dependent part of the interaction. Such terms will be included
in Sec. IV.

1. Symmetric matter

In symmetric matter as well as in neutron matter (next
subsection) it is advantageous to perform the change of

TABLE I. Parameter sets obtained with the fit of the second-order EOS of symmetric matter for different values of the cutoff � compared
with the original set SLy5. In the last column, the χ2 values are shown.

t0 t1 t2 t3 x0 x1 x2 x3 α χ 2

(MeV fm3) (MeV fm5) (MeV fm5) (MeV fm3+3α)

SLy5 −2484.88 483.13 −549.40 13763.0 0.778 −0.328 −1.0 1.267 0.16667
� (fm−1)
0.5 −1461.868 497.986 −1471.462 9915.064 0.5360 −1.529 −1.068 8.298 0.3201 2.08 × 10−3

1.0 −1207.550 645.148 −1361.666 6942.115 0.4854 −2.106 −1.092 5.575 0.2831 1.46 × 10−3

1.5 −1124.277 614.238 −1063.666 5711.048 0.4333 −2.690 −1.349 5.103 0.2070 2.26 × 10−2

2.0 −530.285 227.301 −389.370 8927.183 0.9383 −0.7346 −0.3959 0.4783 0.6680 3.13 × 10−2
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FIG. 6. (a) Second-order pressure compared to the SLy5-mean-
field curve; (b) same as in panel (a), but for the incompressibility
modulus.

variables given by Eq. (7) to write the propagator as

G = −m

�2(k′2 − k2)
. (8)

Starting from Eq. (4), dividing by the number of particles
A = 
ρ, writing explicitly the sums over spin and isospin and
the direct and exchange terms, the second-order correction to
the EOS is equal to

E(2)
sym

A
= − 3m

32(2π )7�2k3
F

∑
ST MSMS′

(2T +1)
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d3K d3k d3k′

×
∣∣〈XS

MS

∣∣vST (k,k′) − (−)S+T vST (k,−k′)
∣∣XS

MS′

〉∣∣2

(k′2 − k2)
.

(9)

Here S and T are the total spin and isospin, respectively, MS(′) is
the projection of S on the z axis, and XS

MS(′) is the two-body spin
state. The interaction vST is always the interaction v of Eq. (1),
after having evaluated the expectation value in the isospin
state, and where we have explicitly indicated spin and isospin
labels for convenience. Note that the additional factor 1/(2π )6

in Eq. (9), with respect to the corresponding expression in
Ref. [21], comes from the different convention adopted in
Eq. (2). The two terms in Eq. (9) represent the direct and
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FIG. 7. (a) Second-order EOS of neutron matter for several values
of the cutoff, calculated with the SLy5 parameters, and SLy5-mean-
field EOS; (b) second-order correction.

exchange contributions. We have introduced a third variable
K, which is chosen in the same way as in Ref. [21]; that is,
K ≡ k1 + k2. Since both k1 and k2 lie inside the Fermi sphere
associated with kF , the integrals on the incoming relative mo-
mentum k and on K do not diverge. A regulator must however
be put on the diverging integral in k′ (we call this cutoff λ̃
and we will use later the dimensionless cutoff λ = λ̃/kF ). If
this cutoff is chosen smaller than kF , also the integral on the
incoming momentum must be regulated by the same cutoff λ̃.

The interaction can be expanded in partial waves,

vST (k,k′) =
∑

JMJ ll′
vJ

ST ,ll′ (k,k′)yJMJ

lS (̂k)
[
y

JMJ

l′S (̂k′)
]†

, (10)

where y
JMJ

lS is written as

y
JMJ

lS (̂k) =
∑

ml,MS

〈JMJ |lSmlMS〉Ylml
(̂k)XS

MS
. (11)

In general, l and l′ in Eq. (10) must have the same parity. By
imposing antisymmetrization, it holds that

(−1)l+S+T = (−1)l
′+S+T = −1.

TABLE II. Parameter sets obtained with the fit of the second-order EOS of neutron matter for different values of the cutoff � compared
with the original set SLy5. The χ 2 values are shown in the last column.

t0 t1 t2 t3 x0 x1 x2 x3 α χ 2

(MeV fm3) (MeV fm5) (MeV fm5) (MeV fm3+3α)

SLy5 −2484.88 483.13 −549.40 13736.0 0.778 −0.328 −1.0 1.267 0.16667
� (fm−1)
0.5 −1859.971 474.575 −715.911 16306.843 0.7102 −0.7273 −0.9174 1.230 0.1625 2.19 × 10−2

1.0 − 3524.393 569.934 −686.914 11329.194 1.048 −0.7025 −0.8657 1.680 0.08796 2.14 × 10−2

1.5 −3924.552 677.302 −724.123 11822.333 1.398 −0.5270 −0.9360 2.141 0.09518 3.01 × 10−2

2.0 −1701.409 159.406 −733.505 24941.293 1.246 −0.6726 −1.1089 0.9313 0.09610 1.71 × 10−2
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This implies that the exchange term in Eq. (9) is equal to the direct term. After some manipulations, and, by evaluating the
spin matrix elements, Eq. (9) becomes

E(2)
sym

A
= − 3m

16(2π )8�2k3
F

∑
ST J J̄LMll′ l̄ l̄′

δST lδST l̄(2T + 1)(2J + 1)(2J̄ + 1)(2L + 1)−1

× [(2l + 1)(2l′ + 1)(2l̄ + 1)(2l̄′ + 1)]1/2〈L0|ll̄00〉〈L0|l′ l̄′00〉W (J J̄ ll̄; LS)W (J J̄ l′ l̄′; LS)

×
∫∫∫

d3K d3k d3k′ YLM (k̂)Y ∗
LM (k̂′)vJ

ST ,ll′ (k,k′)vJ̄
ST ,l̄l̄′ (k,k′)(k′2 − k2)−1, (12)

with

δST l = 1
2 [1 − (−1)S+T +l]. (13)

In Eq. (12), W indicates Racah coefficients. In our case, the
interaction is diagonal in l and independent of J ; that is,
vJ

ST ,ll′ (k,k′) = δll′vS,T ,l(k,k′). The product δST lδST l̄ in Eq. (12)
implies that l and l̄ must have the same parity. This means
that, for a given (S,T ), only even-even and odd-odd partial
waves of the interaction may mix at second order. The Skyrme
interaction of Eq. (1) contains only one type of even waves,
the s-wave t0, t3, and t1 terms, and one type of odd waves,
the p-wave t2 term. Consequently, l and l̄ must be the same
(equal to 0 or 1) and the only quadratic terms that enter in the
second-order contribution are proportional to t2

0 , t2
3 , t2

1 , t0t3,
t0t1, t3t1, and t2

2 (the only possible values for L are L = 0
and 2 for the p-wave case and L = 0 for the s-wave case).
Interference terms proportional to t0t2, t3t2, and t1t2 are absent
in the EOS of symmetric and pure neutron matter. We stress
that, on the other side, such interference terms are present in
the EOS of asymmetric matter. This occurs due to the different
Fermi momenta between neutrons and protons in asymmetric
matter. Also the different effective masses of neutrons and
protons would be responsible for such interference terms.

We write now explicitly the squares of the interaction
v2

S,T ,l(k,k′) in the different channels. For the isovector case
T = 1, one has S = 0 (Pσ = −1) for l = 0, and S = 1
(Pσ = 1) for l = 1. The square of the interaction is then written
as

v2
S=0,T =1,l=0(k,k′)

= (4π )2
[
t2
0 (1 − x0)2 + 1

4 t2
1 (1 − x1)2(k′4 + 2k′2k2 + k4)

+ 1
36 t2

3 (1 − x3)2ρ2α + t0(1 − x0)t1(1 − x1)(k′2 + k2)

+ 1
6 t1(1 − x1)(k′2 + k2)t3(1 − x3)ρα

+ 1
3 t0(1 − x0)t3(1 − x3)ρα

]
(14)

and

v2
S=1,T =1,l=1(k,k′) = (4π )2

9
t2
2 (1 + x2)2(k′k)2, (15)

for the two cases, respectively. Note that the factors (4π )2 and
(4π )2/9 in Eqs. (14) and (15), respectively, come from the
partial wave expansion, Eq. (10), of the Skyrme interaction. In
the isoscalar case T = 0, one has S = 1 (Pσ = 1) for l = 0 and
S = 0 (Pσ = −1) for l = 1. The expressions for the square
of the interaction v2

S=1,T =0,l=0(k,k′) and v2
S=0,T =0,l=1(k,k′)

may be obtained from Eqs. (14) and (15), respectively, by
substituting (1 + xi) to (1 − xi) in Eq. (14) and (1 − x2) to
(1 + x2) in Eq. (15).

We perform a change of variables to use dimensionless
vectors,

y = k
kF

, y′ = k′

kF

, x = K
2kF

. (16)

The new variables y and y′ should satisfy the conditions

|y| < 1, |y′| < λ. (17)

We integrate over all angles by using the function

JLM (x,y,y ′) =
∫∫∫

dx̂ dŷ dŷ ′ YLM (ŷ)Y ∗
LM (ŷ ′). (18)

After some manipulations, one can write

JLM (x,y,y ′) = 16π2δM,0(2L + 1)AL(y,x)A′
L(y ′,x), (19)

where the explicit expressions of the functions A
(′)
L are given

by Eqs. (3.16a)– (3.17b) of Ref. [21]. The radial integration
on x is done and the functions I (L) are introduced,

I (L)(y,y ′) =
∫ 1

0
x2dxAL(y,x)A′

L(y ′,x). (20)

The following expressions for the s- and p-wave contributions
to the EOS may be finally written:

	E
(2)
sym(l=1)

A
= −18mk4

F

4π4�2

∑
ST

(2T + 1)(2S + 1)δST 1

∫∫
dy dy ′ y2y ′2

y ′2 − y2
[I (0)(y,y ′) + 2I (2)(y,y ′)][vS,T ,1(kF y,kF y ′)]2,

	E
(2)
sym(l=0)

A
= −18mk4

F

4π4�2

∑
ST

δST 0

∫∫
dy dy ′ y2y ′2

y ′2 − y2
I (0)(y,y ′)[vS,T ,0(kF y,kF y ′)]2. (21)
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The expressions of the EOS’s may be then obtained analytically. The two terms that should be summed up are

	E
(2)
sym(l=0)

A
= − mk4

F

110880�2π4

{[
−6534 + 1188 ln[2] + 3564λ − 19602λ3 − 5940λ5 + (1782 − 20790λ4) ln

[
λ − 1

λ + 1

]

+ (24948λ5 − 5940λ7) ln

[
λ2 − 1

λ2

]]
T̃ 2

03 +
[
−14696 + 2112 ln[2] + 5280λ − 2860λ3 − 48840λ5

− 18480λ7 + (2640 − 55440λ6) ln

[
λ − 1

λ + 1

]
+ (71280λ7 − 18480λ9) ln

[
λ2 − 1

λ2

]]
k2
F T̃03T̃1

+
[
−9886 + 1128 ln[2] + 2520λ + 147λ3 − 3654λ5 − 35280λ7 − 15120λ9 + (1260 − 41580λ8) ln

[
λ − 1

λ + 1

]

+ (55440λ9 − 15120λ11) ln

[
λ2 − 1

λ2

]]
k4
F T̃ 2

1

}
(22)

and

	E
(2)
sym(l=1)

A
= − mk8

F

73920�2π4

{[
−1033 + 156 ln[2] + 420λ + 140λ3 − 840λ5 − 5880λ7

− 2520λ9 − (−210 + 6930λ8) ln

[
λ − 1

λ + 1

]
+ (9240λ9 − 2520λ11) ln

[
λ2 − 1

λ2

]]
T̃ 2

2

}
, (23)

where we have introduced the combinations of parameters

T̃ 2
03 =

[
t0(1 − x0) + 1

6
t3(1 − x3)ρα

]2

+
[
t0(1 + x0) + 1

6
t3(1 + x3)ρα

]2

,

T̃ 2
1 = 1

4
t2
1 [(1 − x1)2 + (1 + x1)2] = 1

2
t2
1

(
1 + x2

1

)
,

T̃03T̃1 = t1

2

[[
t0(1 − x0) + 1

6
t3(1 − x3)ρα

]
(1 − x1) +

[
t0(1 + x0) + 1

6
t3(1 + x3)ρα

]
(1 + x1)

]
,

T̃ 2
2 = [

t2
2 (1 − x2)2 + 9t2

2 (1 + x2)2
]/

9 = 2

9
t2
2

(
5 + 8x2 + 5x2

2

)
. (24)

The asymptotic behavior can be written as a polynomial form in λ. One has to sum up the two terms

	E
(2)
sym(l=0),asympt.

A
= − 9mk4

F

2�2π4

[
k4
F T̃ 2

1

360
λ5 +

(
k2
F T̃03T̃1

108
+ k4

F T̃ 2
1

240

)
λ3 +

(
T̃ 2

03

72
+ k2

F T̃03T̃1

60
+ k4

F T̃ 2
1

140

)
λ

+ 44k2
F T̃03T̃1(−167 + 24 ln[2]) + k4

F T̃ 2
1 (−4943 + 564 ln[2]) + 297T̃ 2

03(−11 + 2 ln[2])

249480

−
(

T̃ 2
03

240
+ k2

F T̃03T̃1

140
+ k4

F T̃ 2
1

270

)/
λ + O(λ−2)

]
(25)

and

	E
(2)
sym(l=1),asympt.

A
= − 9mk8

F

2�2π4

[
1

720
λ3 + 1

560
λ +

(−1033 + 156 ln[2]

332640

)
−

(
1

1080

)/
λ + O(λ−2)

]
T̃ 2

2 . (26)

2. Neutron matter

Note that the triple integral is the same for neutron and symmetric matter. The factors are not the same (see the nn contribution
in the Appendix), leading to a different combination of the Skyrme parameters, and kF → kFN

. Here we report the final result.
One has to sum up the two terms

	E
(2)
neutr(l=0)

A
= − mk4

FN

166320�2π4

{[
−6534 + 1188 ln[2] + 3564λ − 19602λ3 − 5940λ5 + (1782 − 20790λ4) ln

[
λ − 1

λ + 1

]

+ (24948λ5 − 5940λ7) ln

[
λ2 − 1

λ2

]]
T 2

03 +
[
−14696 + 2112 ln[2] + 5280λ − 2860λ3 − 48840λ5
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− 18480λ7 + (2640 − 55440λ6) ln

[
λ − 1

λ + 1

]
+ (71280λ7 − 18480λ9) ln

[
λ2 − 1

λ2

]]
k2
FN

T03T1

+
[
−9886 + 1128 ln[2] + 2520λ + 147λ3 − 3654λ5 − 35280λ7 − 15120λ9 + (1260 − 41580λ8) ln

[
λ − 1

λ + 1

]

+ (55440λ9 − 15120λ11) ln

[
λ2 − 1

λ2

]]
k4
FN

T 2
1

}
(27)

and

	E
(2)
neutr(l=1)

A
= − mk8

FN

110880�2π4

{[
−1033 + 156 ln[2] + 420λ + 140λ3 − 840λ5 − 5880λ7 − 2520λ9

− (−210 + 6930λ8) ln

[
λ − 1

λ + 1

]
+ (9240λ9 − 2520λ11) ln

[
λ2 − 1

λ2

]]
T 2

2

}
, (28)

where now the combinations of parameters are defined as

T03 = t0(1 − x0) + 1
6 t3(1 − x3)ρα,

T1 = 1
2 t1(1 − x1), (29)

T2 = t2(1 + x2).

The asymptotic behavior is written as the sum of the two terms

	E
(2)
neutr(l=0),asympt.

A
= −3mk4

FN

�2π4

[
k4
FN

T 2
1

360
λ5 +

(
k2
FN

T03T1

108
+ k4

FN
T 2

1

240

)
λ3 +

(
T 2

03

72
+ k2

FN
T03T1

60
+ k4

FN
T 2

1

140

)
λ

+ 44k2
FN

T03T1(−167 + 24 ln[2]) + k4
FN

T 2
1 (−4943 + 564 ln[2]) + 297T 2

03(−11 + 2 ln[2])

249480

−
(

T 2
03

240
+ k2

FN
T03T1

140
+ k4

FN
T 2

1

270

)/
λ + O(λ−2)

]
(30)

and

	E
(2)
neutr(l=1),asympt.

A
= −3mk8

FN

�2π4

[
1

720
λ3 + 1

560
λ +

(−1033 + 156 ln[2]

332640

)
−

(
1

1080

)/
λ + O(λ−2)

]
T 2

2 . (31)

One may note that in both EOS’s (symmetric and neutron
matter) the divergence is linear in λ if only the t0 − t3 part
of the interaction is taken, and goes like λ5 if the other terms
of the interaction are also included, as was already indicated
in Refs. [8,9]. The strongest divergence is provided by the t1
term.

B. Numerical results and fits of parameters for symmetric,
asymmetric, and pure neutron matter

We solve the second-order integrals for symmetric, neutron,
and asymmetric matter in the illustrative case δ = 0.5, where
δ is the asymmetry parameter δ = (ρn − ρp)/(ρn + ρp) and
ρn and ρp are the neutron and proton densities, respectively.
Several types of integrals are solved numerically (according to
the specific second-order contribution). The factors for which
such integrals are multiplied are shown in the Appendix for all
terms.

The adjustment of the parameters is done in all cases
on the benchmark SLy5-mean-field EOS [22]; we use nine
points, seven of them located up to 0.16 fm−3 and two of
them located at higher densities, between 0.16 and 0.3 fm−3.

The χ2 values are calculated as χ2 = 1/(N − 1)
∑

i(Ei −
Ei,ref)2/	E2

i , where N is the number of points on which the
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FIG. 8. Difference between the refitted EOS and the SLy5-mean-
field EOS for neutron matter.
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FIG. 9. Refitted second-order EOS for neutron matter compared
with the SLy5-mean-field EOS.

adjustment is done (the sum runs over this number), Ei,ref is
the benchmark value corresponding to the point i, and 	Ei

are all chosen equal to 1% of the reference value. This means
that, if the χ2 is less than 1, the average discrepancy between
the adjusted curve and the benchmark EOS is less than 1%.

1. Symmetric matter and incompressibility modulus

We plot in the upper panel of Fig. 1 the EOS of symmetric
matter calculated up to second order for several cutoff values
�. These curves are compared to the benchmark EOS. All
the second-order curves are obtained by using the same
parameters of SLy5. In the lower panel, we plot only the
second-order correction. The ultraviolet divergence is very
visible, especially at densities larger than the saturation
density. Starting from some values of the cutoff between 1.5
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FIG. 10. (a) Second-order EOS of asymmetric matter (δ = 0.5)
for several values of the cutoff, calculated with the SLy5 parameters,
and SLy5-mean-field EOS; (b) second-order correction.
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FIG. 11. Difference between the refitted EOS and the SLy5-
mean-field EOS for asymmetric matter (δ = 0.5).

and 2 fm−1, one observes that the EOS decreases (instead of
increasing) at large densities.

The pressure P and the incompressibility modulus K may
be computed from the EOS as first and second derivatives,
respectively, that is,

P (ρ,�) = ρ2 d

dρ

E

A
(ρ,�) (32)

and

K(ρ,�) = 9ρ2 d2

dρ2

E

A
(ρ,�). (33)

The second-order pressure (upper panel) and incompressibility
modulus (lower panel) calculated with the parameters of the
interaction SLy5 are displayed in Fig. 2 and compared with
the corresponding mean-field curves.
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FIG. 12. Refitted second-order EOS for asymmetric matter (δ =
0.5) compared with the SLy5-mean-field EOS.
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TABLE III. Parameter sets obtained with the fit of the second-order EOS of asymmetric matter (δ = 0.5) matter for different values of the
cutoff � compared with the original set SLy5. The χ2 values are shown in the last column.

t0 t1 t2 t3 x0 x1 x2 x3 α χ 2

(MeV fm3) (MeV fm5) (MeV fm5) (MeV fm3+3α)

SLy5 −2484.88 483.13 −549.40 13763.0 0.778 −0.328 −1.0 1.267 0.16667
� (fm−1)
0.5 −1639.753 584.294 −732.339 19750.210 0.5989 −0.339 −0.886 3.328 0.284 4.76 × 10−3

1.0 −1252.011 558.930 −744.859 10167.053 0.5887 −0.4652 −1.018 2.853 0.2272 1.19 × 10−2

1.5 −1328.894 594.658 −443.008 8579.156 0.4993 −0.8051 −1.038 2.222 0.1640 1.76 × 10−1

2.0 −745.086 358.107 −338.407 9905.0844 0.3919 −0.4444 −0.6662 0.6221 0.9432 6.87 × 10−2

The adjustment of the nine Skyrme parameters is then
performed and Figs. 3 and 4 show the curves obtained with the
refitted parameters. Figure 3 presents the difference between
the refitted second-order curve and the SLy5-mean-field curve,
whereas the absolute values are displayed in Fig. 4. The
saturation density is, for all values of the cutoff, the same
as the benchmark one; that is, 0.16 fm−3. The refitted
parameters are listed in Table I together with the χ2 values.
The quality of the fit looks remarkably good as indicated
by the χ2 values which are, in all cases, not larger than
∼3 × 10−2.

The pressure and incompressibility modulus are then
computed at second order, this time with the new values for
the parameters. Figure 5 displays the difference with respect
to the mean-field curves for the pressure (a) and the in-
compressibility modulus (b). Figure 6 shows the absolute
curves compared with the mean-field ones. We observe that the
maximum deviation of the incompressibility modulus from the
SLy5-mean-field value at the saturation density (∼ 230 MeV)
is only ∼ 5 MeV. This deviation is indicated by a black arrow
in the lower panel of Fig. 5. From the upper panel one can note
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FIG. 13. Second-order EOS’s obtained with the simultaneous fit
of symmetric matter (a), asymmetric matter with δ = 0.5 (b), and
neutron matter (c) compared with the SLy5-mean-field corresponding
curves.

that the pressure is non strictly equal to zero at the saturation
density. The deviation in the derivative is, however, very small
and accounts for very small variations in the saturation density
for the different fits.

2. Neutron matter

We show in Fig. 7 the second-order EOS for pure neutron
matter (a) and the second-order correction (b). In Table II we
list the values of the refitted parameters. Figures 8 and 9 show
the refitted results (differences with respect to the mean-field
curve and absolute values, respectively). The fit is also this
time extremely good, and the χ2 values are of the order of
10−2.

3. Asymmetric matter in the case of δ = 0.5

For asymmetric matter we take the illustrative case corre-
sponding to δ = 0.5. Figure 10 shows the second-order EOS
(a) and the second-order correction (b). Figures 11 and 12
present the refitted results shown again as differences with
respect to the benchmark EOS (Fig. 11) and as absolute values
(Fig. 12). Table III contains the refitted parameters and the χ2

values, which range from 10−3 to 10−1, according to the value
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FIG. 14. Difference between the global refitted EOS’s and the
SLy5-mean-field EOS’s for symmetric (a), δ = 0.5 (b), and neutron
(c) matter.
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TABLE IV. Parameter sets obtained with the global fit of the second-order EOS including symmetric, δ = 0.5 and neutron matter for
different values of the cutoff � compared with the original set SLy5. The χ2 values are shown in the last column.

t0 t1 t2 t3 x0 x1 x2 x3 α χ 2

(MeV fm3) (MeV fm5) (MeV fm5) (MeV fm3+3α)

SLy5 −2484.88 483.13 −549.40 13736.0 0.778 −0.328 −1.0 1.267 0.16667
� (fm−1)
0.5 −2245.402 493.322 −1832.783 11961.86 0.7462 −0.3936 −0.9684 1.309 0.1832 0.25
1.0 −1239.909 674.272 −387.948 4687.107 0.3649 −0.5993 −1.1349 3.4299 0.5558 3.96
1.5 −803.325 670.917 −42.426 4854.284 0.1165 −1.1436 −2.6727 3.4271 1.1831 13.9
2.0 −668.075 80.904 0.8980 8779.939 0.1605 0.3874 −0.2652 0.0004687 1.4723 10.7

of the cutoff. The χ2 values are still lower than 1. We can
conclude that the quality of the fit is always extremely good in
the three cases of symmetric, neutron, and asymmetric matter.

4. Simultaneous fit of symmetric, neutron, and asymmetric
matter in the case δ = 0.5

We have then adjusted simultaneously the second-order
EOS’s of symmetric, asymmetric (δ = 0.5), and neutron
matter, as was done in Ref. [9]. The obtained curves are
shown in Figs. 13 and 14 in absolute values and as differences
with respect to the benchmark EOS’s, respectively. The values
of the adjusted parameters are reported in Table IV with the
associated χ2 values. We observe that now the deviations from
the benchmark EOS’s are larger than in the previous single
fits providing however acceptable EOS’s in all cases. The
average discrepancy is less than 2% for cutoff values of 0.5 and
1 fm−1 (χ2 values equal to 0.25 and 3.96, respectively), and is
∼3.5% for cutoff values of 1.5 and 2 fm−1 (χ2 values equal to
13.9 and 10.7, respectively). The corresponding pressure and
incompressibility modulus are shown in absolute values and
as differences with respect to the mean-field curves in Figs. 15
and 16, respectively. The incompressibility modulus at the
saturation point has a maximum deviation from the mean-field
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FIG. 15. Pressure (a) and incompressibility modulus (b) com-
puted with the parameters of the simultaneous fit and compared with
the mean-field curves.

value of ∼25 MeV, as indicated by the black arrows in the
lower panel of Fig. 16. Also in this case the pressure is not
strictly equal to zero at saturation. The deviation is now larger
than in the previous case (larger deviations in the saturation
density for the different fits).

III. DIMENSIONAL REGULARIZATION

In the present section, we report the revised results,
with respect to Ref. [10], concerning the application of the
dimensional regularization to the second-order integrals and
the extraction of the corresponding finite contributions in the
EOS’s of symmetric, neutron, and asymmetric matter, for the
case δ = 0.5. This regularization technique, that was originally
introduced for the electroweak theory [23–25], is based on the
solution of the divergent integrals with the use a continuous
parameter d which replaces their integer dimension. After the
evaluation of the integral, the parameter d returns to the integer
value.

In Ref. [10], the first analyzed case was the simple model
t0 − t3 applied to symmetric matter (the case analogous to that
of Ref. [8]). This was correctly treated and the corresponding
results are reported in Secs. II A and III A and up to Fig. 2 of
Ref. [10].
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FIG. 16. Differences with respect to the mean-field curves of the
pressure (a) and incompressibility modulus (b), computed with the
parameters of the simultaneous fit.
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FIG. 17. (a) Dimensional-regularized second-order EOS for sym-
metric matter compared with the corresponding SLy5-mean-field
EOS. (b) Second-order correction.

For the other cases (Skyrme interaction containing all terms
except the tensor and the spin-orbit parts, and the treatment of
also asymmetric and neutron matter) the same corrections done
in the previous section have to be performed in the evaluation
of the second-order contribution. We provide in what follows
the analytical expressions of the second-order contributions
for symmetric and neutron matter. We analyze the results for
symmetric, neutron, and asymmetric matter in the case δ =
0.5. The case of asymmetric matter is not derived analytically,
but the finite part of this EOS is extracted from the numerical
Monte Carlo calculation.

Also in the present section we employ the approximation
m∗ = m and we neglect the rearrangement terms at second
order. These approximations will be abandoned in Sec. IV.

A. Symmetric matter

Starting from the Skyrme interaction of Eq. (1), the
dimensional-regularized second-order result for symmetric
matter is written as

E(2)F
sym

A
= mk4

F

�2π4

(
3

560
(11 − 2 ln[2])T̃ 2

03

+ 1

1260
(167 − 24 ln[2])k2

F T̃03T̃1
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FIG. 18. Refitted dimensional-regularized second-order EOS for
symmetric matter compared with the corresponding SLy5-mean-field
EOS.

+ 1

55440
(4943 − 564 ln[2])k4

F T̃ 2
1

+ 1

73920
(1033 − 156 ln[2])k4

F T̃ 2
2

)
, (34)

where F stands for finite part. The second-order EOS com-
pared with the SLy5-mean-field EOS is displayed in Fig. 17.
The refitted curve is plotted in Fig. 18 and the corresponding
parameters are written in Table V (δ = 0).

We could correctly reproduce the saturation region only
by restricting the fit of the parameters in a narrow region of
densities close to the saturation point. The EOS is, however,
poorly described in the other density regions, as can be seen in
Fig. 18; this implies that the incompressibility modulus is not
well reproduced (368 MeV). An improvement is however seen
with respect to the adjustment presented in Ref. [13], where the
equilibrium point was completely missed. This improvement
is due to the density-dependent term which allows us at least to
shift the equilibrium point to its correct value. We do not report
for this case the χ2 value because the reference points for the
fit are taken only close to the saturation point and such χ2

value would thus not be comparable with those obtained from
the previous fits where the reference points were distributed in
the whole region of densities.

TABLE V. Parameter sets obtained with the fit of the dimensional-regularized second-order EOS compared with the original set SLy5.

t0 t1 t2 t3 x0 x1 x2 x3 α

(MeV fm3) (MeV fm5) (MeV fm5) (MeV fm3+3α)

SLy5 −2484.88 483.13 −549.40 13763.0 0.778 −0.328 −1.0 1.267 0.16667
δ

1 −3746.7 264.38 1607.4 −4537.9 0.8322 −1.3524 −1.1643 −13.7421 2.0301
0.5 −920.60 544.55 −783.28 −879958 0.0289 −0.2788 −0.0681 −10650 9.1666
0 −938.36 975.87 −887.06 −348964.5 −0.156 −0.331 0.00265 −0.442 3.104
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FIG. 19. (a) Dimensional regularized second-order EOS for
neutron matter compared with the corresponding SLy5-mean-field
EOS. (b) Second-order correction.
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FIG. 20. Best fit for dimensional regularized second-order EOS
of neutron matter compared with the SLy5-mean-field EOS.
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FIG. 21. (a) Dimensional-regularized second-order EOS for
asymmetric matter in the case δ = 0.5 compared with the corre-
sponding SLy5-mean-field EOS. (b) Second-order correction.
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FIG. 22. Best fit for dimensional-regularized second-order EOS
for asymmetric matter (δ = 0.5) matter compared with the SLy5-
mean-field EOS.
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FIG. 23. Same as Fig. 1 but with an effective mass computed
within the mean-field approximation.
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FIG. 24. Same as Fig. 7 but with an effective mass computed
within the mean-field approximation.
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TABLE VI. Parameter sets obtained with the global fit of the second-order EOS including symmetric and neutron matter for different
values of the cutoff � compared with the original set SLy5. Here the mean-field effective mass is used in the second-order calculation. The χ2

values are shown in the last column.

t0 t1 t2 t3 x0 x1 x2 x3 α χ 2

(MeV fm3) (MeV fm5) (MeV fm5) (MeV fm3+3α)

SLy5 −2484.88 483.13 −549.40 13736.0 0.778 −0.328 −1.0 1.267 0.16667
� (fm−1)
0.5 −2254.55 555.99 −496.33 12099.62 0.7429 −0.3723 −0.9236 1.2982 0.1844 0.39
1.0 −1090.87 290.62 −552.05 11613.08 0.2255 −5.3624 −0.8087 2.1436 0.6404 10
1.5 −433.47 203.22 −280.96 6704.25 0.3570 −5.4828 −0.9308 2.7269 0.8262 1.9
2.0 −667.98 79.28 35.51 8842.99 0.6230 4.2801 −0.2024 −0.3620 1.3769 1.4

B. Neutron matter

The analytical expression for the second-order contribution
is

E
(2)F
neutr

A
= mk4

N

�2π4

(
1

280
(11 − 2 ln[2])T 2

03

+ 1

1890
(167 − 24 ln[2])k2

NT03T1

+ 1

83160
(4943 − 564 ln[2])k4

NT 2
1

+ 1

110880
(1033 − 156 ln[2])k4

NT 2
2

)
. (35)

The corresponding EOS is plotted in Fig. 19 and compared
with the corresponding SLy5-mean-field EOS. Figure 20
shows the curve obtained with the adjusted parameters and
Table V presents the associated parameters (δ = 1). In this
case, the nine reference points chosen for the fit are distributed
in the whole region of densities. The χ2 value is ∼91,
indicating an average deviation from the reference points of
about 9.5%. The quality of the fit is lower than that obtained
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FIG. 25. Second-order EOS’s for symmetric (a) and pure neutron
matter (b) adjusted on the SLy5-mean-field EOS’s, with an effective
mass equal to the mean-field effective mass, for different values of
the cutoff.

for neutron matter in the case of the cutoff regularization, but
is still reasonably good.

C. Asymmetric matter

The second-order EOS of asymmetric matter (for the case
δ = 0.5) and the refitted curve are plotted respectively in
Figs. 21 and 22. The parameters are listed in Table V. Also in
this case, as for symmetric matter, the equilibrium region can
be described only by taking a narrow region of densities around
the minimum to perform the adjustment of the parameters.
The EOS is clearly very poorly described in the other density
regions.

We may conclude that, when dimensional regularization is
used, the fit of the parameters has a global good quality only
for the case of pure neutron matter. We will see, however,
in the next section that results are considerably improved for
symmetric matter when the rearrangement terms are taken
into account.

IV. EFFECTIVE MASS AND REARRANGEMENT TERMS

We worked so far by using two approximations: We have
approximated the effective mass with the bare mass and
we have neglected the second-order rearrangement terms
generated by the density-dependent part of the interaction.
In the present section, we include first an effective mass in
the computation of the second-order EOS for the cases of
symmetric and pure neutron matter. Then, we also include in
these cases the corresponding rearrangement terms.

We use the mean-field approximation for the effective
mass, where only the velocity-dependent terms contribute. For
symmetric matter, one has

m∗
S

m
=

(
1 + m

8�2
ρ�S

)−1

, (36)

whereas for neutron matter one has

m∗
N

m
=

(
1 + m

4�2
ρ�S − m

4�2
ρ�V

)−1

. (37)

By using m∗ instead of m in Eq. (5), new EOS’s for symmetric
and pure neutron matter are obtained. In the case of cutoff
regularization, they are evaluated by multiplying Eqs. (22),
(23), and (27), (28) by Eqs. (36) and (37), respectively. In
the case of dimensional regularization, they are obtained
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FIG. 26. Second-order EOS’s for symmetric (a) and pure neutron
matter (b) compared with the SLy5-mean-field EOS’s, calculated with
the SLy5 parameters for the case where m∗ = m and rearrangement
terms are neglected (red circles and dotted line), for the case
where a mean-field effective mass is used and rearrangement terms
are neglected (gree squares and dotted line), and for the case
where a mean-field effective mass is used and rearrangement terms
are included (blue dashed line).

by multiplying Eqs. (34) and (35) by Eqs. (36) and (37),
respectively. The corresponding curves evaluated with the
SLy5 parameters show a density-dependent rescaling effect,
as obviously expected. This may be observed in the illustrative
case of cutoff regularization: Figures 23 and 24 describe the
same quantities as Figs. 1 and 7, but with m∗ �= m.

Fits of parameters may be done for symmetric and pure neu-
tron matter and we provide here the illustrative results obtained
in the case of the cutoff regularization. We show in Fig. 25 the
curves corresponding to a global fit done on the benchmark
SLy5 EOS’s by including simultaneously symmetric and pure
neutron matter. The obtained parameters are listed in Table VI.
The incompressibility modulus ranges from 202 to 238 MeV,
according to the different cutoff values. The quality of the fit
is globally very good with a maximum average deviation from
the reference curve of ∼3%. We mention that, in the case of
dimensional regularization, we found that the inclusion of an
effective mass is not sufficient to improve the quality of the fit
of the second-order EOS for symmetric matter, which remains
similar to that shown in Fig. 18.
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FIG. 27. Second-order EOS’s for symmetric (a) and pure neutron
matter (b) adjusted on the SLy5-mean-field EOS’s, with an effective
mass equal to the mean-field effective mass and with the inclusion of
the rearrangement terms, for different values of the cutoff.

We discuss now the rearrangement terms. As already
anticipated in Sec. I, Ref. [18] pointed out that the square of
the interaction entering in the computation of the second-order
energy correction coincides with the square of the RPA B
matrix, which means that the rearrangement terms have to
be computed by using the second derivative of the Hartree-
Fock energy functional, as done in RPA. By following such
procedure and using the Landau parameters computed with the
Skyrme force for symmetric and pure neutron matter [26], the
combinations of parameters containing the t3 part in Eqs. (24)
and (29) may be replaced by

T̃ R
2
03 =

[
t0(1−x0)+1

6
t3(1−x3)ρα+ 1

32
t3ρ

αα(3+α)

]2

+
[
t0(1+x0)+1

6
t3(1+x3)ρα+ 1

32
t3ρ

αα(3+α)

]2

,

T̃ R
03T̃ R

1 = t1

2

[[
t0(1−x0)+1

6
t3(1−x3)ρα+ 1

32
t3ρ

αα(3+α)

]

× (1 − x1)

]
+ t1

2

[[
t0(1+x0)+1

6
t3(1+x3)ρα

+ 1

32
t3ρ

αα(3 + α)

]
(1 + x1)

]
,

TABLE VII. Same as in Table VI, with also the inclusion of rearrangement terms.

t0 t1 t2 t3 x0 x1 x2 x3 α χ 2

(MeV fm3) (MeV fm5) (MeV fm5) (MeV fm3+3α)

SLy5 −2484.88 483.13 −549.40 13736.0 0.778 −0.328 −1.0 1.267 0.16667
� (fm−1)
0.5 −2226.39 833.57 −1054.76 12615.02 0.7243 −0.3572 −0.8483 1.2719 0.2020 0.03
1.0 −9.43 1004.59 −3683.79 −10057.96 −21.7819 3.1346 −1.2868 −0.2921 0.8324 3.48
1.5 520.74 664.84 −2226.01 −8415.55 1.7992 −1.6278 −1.3517 −6.5449 0.6387 2.15
2.0 894.01 −122.55 −968.37 −3284.51 1.3452 8.1176 −1.9424 −16.1373 0.7411 2.20
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FIG. 28. Same as in Fig. 18, but with an effective mass equal to the
mean-field effective mass and with the inclusion of the rearrangement
terms.

T R
03 = t0(1 − x0) + 1

6
t3(1 − x3)ρα

+ 1

48
t3ρ

αα(α + 3)(1 − x3), (38)

where R indicates the inclusion of the rearrangement terms.
Figure 26 shows, as an illustration, how the dimensional-

regularized second-order EOS’s (computed with the SLy5
parameters) are modified by the inclusion of the rearrangement
terms. One observes that, for the case of neutron matter, the
inclusion of rearrangement terms in the EOS has a very weak
effect compared to the much more important effect coming
from the inclusion of the effective mass. On the other side,
for the case of symmetric matter, rearrangement terms modify
the curve. Such modification, with respect to the case where
rearrangement terms were omitted, allows us to obtain a much
better refitted dimensional-regularized EOS for symmetric
matter, as will be shown below.

For the case of cutoff regularization, we present in Fig. 27
the curves obtained with a global fit including symmetric and
neutron matter (the corresponding parameters and χ2 can be
found in Table VII). The incompressibility modulus ranges
from 200 to 250 MeV, according to the different cutoff values,
and the quality of the fit is very good as indicated by the χ2

values.
The same global fit does not provide any good results for the

case of dimensional regularization. We have then performed
separately the two fits for symmetric and neutron matter
(Figs. 28 and 29 and Tables VIII and IX). The incompressibility
modulus is equal to 250 MeV. The quality of the fit is now less
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FIG. 29. Same as in Fig. 28, but for neutron matter.

good but still reasonably good in the case of symmetric matter
(average deviation of 13%) and acceptable for neutron matter
(average deviation of 21%).

We see here the importance of including the density-
dependent part of the Skyrme force. The inclusion of this part
without the rearrangement terms allowed us in the previous
section to shift the equilibrium point of symmetric matter to
the correct one (compared to the EOS obtained in Ref. [13]
where the t3 part of the Skyrme force was totally neglected).
The inclusion of the rearrangement terms allows us now to
correctly describe the EOS of symmetric matter also in the
other density regions and to have a reasonable value for the
incompressibility modulus.

V. CONCLUSIONS

We have presented a study devoted to the computation of
the second-order correction in the EOS of symmetric, neutron,
and asymmetric matter, with the use of the Skyrme effective
interaction. Owing to the zero range of such force, the second-
order contribution to the nuclear-matter EOS diverges and a
momentum cutoff must be used to regularize the divergent
integrals. The divergence is linear in the momentum cutoff in
the simplified t0 − t3 model [8] and goes like the fifth power of
the cutoff in the case where the velocity-dependent terms of the
Skyrme interaction are also included. For simplicity, we have
omitted the spin-orbit and tensor terms in the used expression
of the Skyrme interaction. In addition to the occurrence of an
ultraviolet divergence, second-order calculations performed
with such an effective interaction present also a well-known
risk of double counting, because the parameters of the force are

TABLE VIII. Parameter set obtained for symmetric matter with the fit of the dimensional-regularized second-order EOS compared with
the original set SLy5. The mean-field effective mass and rearrangement terms are included. The χ2 value is shown in the last column.

t0 t1 t2 t3 x0 x1 x2 x3 α χ 2

(MeV fm3) (MeV fm5) (MeV fm5) (MeV fm3+3α)

SLy5 −2484.88 483.13 −549.40 13763.0 0.778 −0.328 −1.0 1.267 0.16667
−1425.43 −16732.70 1345.58 373005.96 −0.0279 −0.1885 −5.2091 −0.2014 0.5796 184
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TABLE IX. Same as in Table VIII but for neutron matter.

t0 t1 t2 t3 x0 x1 x2 x3 α χ 2

(MeV fm3) (MeV fm5) (MeV fm5) (MeV fm3+3α)

SLy5 −2484.88 483.13 −549.40 13763.0 0.778 −0.328 −1.0 1.267 0.16667
1591.32 −837.21 −1498.53 2582.80 1.5534 1.7740 −0.9306 7.2733 1.3874 466

adjusted to reproduce observables with leading-order (mean-
field) calculations. This implies that the parameters already
contain in an implicit way some correlations. The cancellation
of such double counting is then required.

We have treated the ultraviolet divergence appearing at
second order in the EOS of nuclear matter by using cutoff
and dimensional regularizations, as was done in Refs. [9,10],
respectively: in the first case, the full second-order correction is
calculated with all the cutoff-dependent terms. The analytical
derivation of all the terms is presented for symmetric and neu-
tron matter. Results obtained numerically with a Monte Carlo
integration for symmetric, neutron, and asymmetric matter are
discussed. For each value of the introduced momentum cutoff,
a new set of parameters is obtained by adjusting the second-
order EOS to the chosen benchmark SLy5-mean-field EOS.
This procedure eliminates both double-counting problems and
divergences. In the case of dimensional regularization, only
the finite part of the EOS is kept. In such a case, only
double-counting problems arise and they are removed also,
this time by an adjustment of the parameters. Unique sets of
parameters are produced for each type of EOS (no cutoff). The
objective of this work is to present in a complete and detailed
form revised results and figures with respect to those illustrated
in Refs. [9,10]. We have realized recently that those results
are incomplete in some aspects concerning the analytical
derivation of specific second-order contributions. In addition,
we have evaluated the effects associated to the rearrangement
terms entering in second-order calculations and related to
the density dependence of the interaction. Sets of parameters
adjusted for symmetric and neutron matter, taking into account
an effective mass evaluated at the mean-field level, and
including also the proper rearrangement terms, are provided.
Such sets may be considered a very reasonable starting point
within our general objective; that is, the construction of
generalized effective interactions that are specially designed
to be used in a beyond-mean-field scheme: parameters are
adjusted at the same level of the performed calculations (no
double counting) and produce results which are independent
of the chosen energy or momentum cutoff. Such regularized
interactions will open the possibility of performing robust
beyond-mean-field applications to finite nuclei.
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APPENDIX: FACTORS IN FRONT OF THE INTEGRALS

The second-order correction written in the proton (p) and
neutron (n) basis is the sum of nn, pp, and np contributions,

that is,

	E(2) = 1

2

∑
ij

〈ij |V GV |ij 〉pp + 1

2

∑
ij

〈ij |V GV |ij 〉nn

+
∑
ij

〈ij |V GV |ij 〉np. (A1)

Here i and j are the labels of the two particles. Note that∑
ij = 
3

(2π)9

∫
d3k1

∫
d3k2

∫
d3q, and V = v/
. For the np

case, we associate i to n and j to p. The factor 2 in the np part
with respect to nn and pp parts accounts for the symmetric pn
contribution.

When evaluating the matrix element, the exchange term
is included by inserting (1 − PxPσPτ ) from the left, where
Px,Pσ ,Pτ are the space, spin, and isospin exchange operators,
respectively. The exchange contribution is thus equal to the
direct one in the nn and pp channels in the cases of even-even
and odd-odd mixing of the interaction. In the cases of even-odd
mixing of the interaction, one has 1 − PxPσ Pτ = 1 + Pσ Pτ

for the nn and pp channels (Px provides a minus sign). The
exchange term is always equal to zero in the np channel.

1. t2
0 (t2

3 ) matrix element

We start with the square of the term v = t0(1 + x0Pσ )
(analogous expressions may be written for the square of the t3
term).

(a) nn channel. In this case, T = 1. The mixing of the
interaction is even-even (l = 0) and this leads to S = 0. Pσ

acting on the spin singlet state provides a minus sign. One has

1

2

∑
ij

〈ij |V GV |ij 〉nn

= t2
0 


(2π )9

∫
d3k1

∫
d3k2

∫
d3q G

×
⎡
⎣∑

SMS

〈
XS

MS

∣∣(1 + 2x0Pσ + x2
0

)∣∣XS
MS

〉⎤⎦, (A2)

where MS is the spin projection. By applying the spin exchange
operator and by performing the sum (there is only one term:
S = 0; MS = 0) one has

1

2

∑
ij

〈ij |V GV |ij 〉nn

= t2
0 


(2π )9

[
1 − 2x0 + x2

0

] ∫
d3k1

∫
d3k2

∫
d3q G (A3)
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We introduce the quantities

k1 = k1

kN

, k2 = k2

kN

, q = q
kN

,

k = k
kN

, k′ = k′

kN

, (A4)

� = �

kN

, G = Gk2
N .

Then

1

2

∑
ij

〈ij |V GV |ij 〉nn = t2
0 


(2π )9

[
1 − 2x0 + x2

0

]
k7
FN

∫ 1

0
d3k1

∫ 1

0
d3k2

∫ �

0
d3qG. (A5)

(b) pp channel:
The pp contribution is the same as the nn contribution, with kFN

→ kFP
in Eq. (A5).

(c) np channel (in the np channel, the operator Pσ provides a plus sign when applied to the spin triplet states and a minus sign
when applied to the spin singlet state).

We introduce the quantity

a = kFP

kFN

=
(

1 − δ

1 + δ

)1/3

. (A6)

Then

∑
ij

〈ij |V GV |ij 〉np = t2
0 


(2π )9
k7
FN

∫ 1

0
d3k1

∫ a

0
d3k2

∫ �

0
d3q G

⎡
⎣∑

SMS

〈
XS

MS

∣∣(1 + 2x0Pσ + x2
0

)∣∣XS
MS

〉⎤⎦ (A7)

= 4
t2
0 


(2π )9
k7
FN

(
1 + x0 + x2

0

) ∫ 1

0
d3k1

∫ a

0
d3k2

∫ �

0
d3qG. (A8)

2. t0(t3)t2 part

This contribution is equal to zero in the case of symmetric and neutron matter, because it mixes even and odd terms of the
interaction. One has

vGv = t0(1 + x0Pσ )t2(1 + x2Pσ )k′·kG. (A9)

By including the direct and exchange terms,

〈ij |vGv|ij 〉 = k
′ ·kG〈ij |t0t2(1 + x2Pσ + x0Pσ + x0x2)(1 + PσPτ )|ij 〉. (A10)

(a) nn channel:
In this case, both particles are neutrons and the antisymmetrization condition must be imposed. Therefore, as in Sec. II A, the

odd-even mixing of the interaction is not allowed. Thus,∑
ij

〈ij |V GV |ij 〉nn = 0.

(b) pp channel:
The pp part is the same as the nn contribution and thus equal to zero.
(c) np channel:
Now the two particles are not identical if their densities are different (different Fermi momenta). We have the following

nonvanishing term:

∑
ij

〈ij |V GV |ij 〉np = t0t2


(2π )9
k9
FN

∫ 1

0
d3k1

∫ a

0
d3k2

∫ �

0
d3q k

′
·k G

⎡
⎣∑

SMS

〈
XS

MS

∣∣1 + (x0 + x2)Pσ + x0x2

∣∣XS
MS

〉⎤⎦

= 2
t0t2


(2π )9
k9
FN

(2 + x0 + x2 + 2x0x2)
∫ 1

0
d3k1

∫ a

0
d3k2

∫ �

0
d3q k

′
·k G. (A11)

Note that if protons and neutrons have the same density, then they can be considered as identical particles. This is reflected in the
above equation: by setting a = 1, the integral leads to zero, as for the nn and pp cases.

034311-18



SECOND-ORDER EQUATION OF STATE WITH THE . . . PHYSICAL REVIEW C 94, 034311 (2016)

All the other matrix elements can be evaluated in the same way as above. We list the results of the other terms
below.

3. t0(t3)t1 part

(a) nn channel:

1

2

∑
ij

〈ij |V GV |ij 〉nn = 1

2

t0t1


(2π )9
k9
FN

(1 − x0 − x1 + x0x1)
∫ 1

0
d3k1

∫ 1

0
d3k2

∫ �

0
d3q (k

′2 + k
2
)G (A12)

(b) pp channel:
The pp part is the same as the nn part, by replacing kFN

→ kFP
in Eq. (A12).

(c) np channel:∑
ij

〈ij |V GV |ij 〉np = t0t1


(2π )9
k9
FN

(2 + x0 + x1 + 2x0x1)
∫ 1

0
d3k1

∫ a

0
d3k2

∫ �

0
d3q (k

′2 + k
2
)G. (A13)

4. t1 t2 part

(a) nn channel. It is analogous to the nn part of the t0t2 part (even-odd mixing):∑
ij

〈ij |V GV |ij 〉nn = 0. (A14)

(b) pp channel:
The pp part is the same as the nn part and is equal to zero.
(c) np channel:∑

ij

〈ij |V GV |ij 〉np = t1t2


(2π )9
k11
FN

(2 + x1 + x2 + 2x1x2)
∫ 1

0
d3k1

∫ a

0
d3k2

∫ �

0
d3q (k

′2 + k
2
)k′·kG. (A15)

5. t2
1 part

(a) nn channel:

1

2

∑
ij

〈ij |V GV |ij 〉nn = 1

4

t2
1 


(2π )9

[
1 − 2x1 + x2

1

]
k11
FN

∫ 1

0
d3k1

∫ 1

0
d3k2

∫ �

0
d3q (k

′2 + k
2
)
2
G, (A16)

(b) pp channel:
The pp part is the same as the nn part, with kFN

→ kFP
.

(c) np channel:

∑
ij

〈ij |V GV |ij 〉np = t2
1 


(2π )9
k11
FN

(
1 + x1 + x2

1

) ∫ 1

0
d3k1

∫ a

0
d3k2

∫ �

0
d3q (k

′2 + k
2
)
2
G. (A17)

6. t2
2 part

(a) nn channel. In this case, T = 1. The mixing of the interaction is odd-odd (l = 1) and this leads to S = 1. Pσ provides a
plus sign for each of the triplet states:

1

2

∑
ij

〈ij |V GV |ij 〉nn = 3
t2
2 


(2π )9

[
1 + 2x2 + x2

2

]
k11
FN

∫ 1

0
d3k1

∫ 1

0
d3k2

∫ �

0
d3q (k

′
·k)

2
G, (A18)

(b) pp channel:
The pp part is the same as the nn part, with kFN

→ kFP
.

(c) np channel:

∑
ij

〈ij |V GV |ij 〉np = 4
t2
2 


(2π )9
k11
FN

(
1 + x2 + x2

2

) ∫ 1

0
d3k1

∫ a

0
d3k2

∫ �

0
d3q (k

′
·k)

2
G. (A19)
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