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Highlights 

- living cells use electricity for a plethora of physiological processes; 

- ion currents in channels and transporters are very well investigated by electrophysiological 

techniques; 

- it is equally possible to record electron currents mediated by specialized redox proteins. 

 

 

Abstract 

 

Living cells exploit the electrical properties of matter for a multitude of fundamental physiological 

processes, such as accumulation of nutrients, cellular homeostasis, signal transmission. While ion 

channels and transporters (able to couple ions to various substrates) have been extensively 

studied, direct measurements of electron currents mediated by specific proteins are just at the 

beginning. Here, we present the various electrophysiological approaches that have allowed 

recordings of electron currents and highlight the future potential of such experiments. 
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1. Introduction 

Electrical phenomena are governed by the general principle of electroneutrality: each negative 

charge must be associated with a positive charge (for a critical view see [1]). Therefore, to 

separate two charges of opposite sign, physical work must be employed. Because the electric field 

is conservative, this work is returned when the system is allowed to go back to equilibrium. Living 

cells exploit this law in various ways. Specialized proteins capable of separating ionic charges at 

the edges of the plasma membrane create a membrane potential. In the case of animal cells, this 

task is performed by the sodium/potassium antiporter, which creates a potassium gradient with the 

cytosolic K+ concentration (about 100 mM) being higher than the external K+ concentration (about 
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5 mM). The opening of potassium channels drives the membrane voltage to hyperpolarised values 

close to the equilibrium (Nernst) voltage of potassium, i.e. about -70 mV [2]. In plant cells, the 

membrane voltage has a different origin, can reach more negative values of up to -200 mV and is 

created by the combined action of H+-ATPases and potassium channels [3].  

 

1.1. Ion and gating currents mediated by ion-selective channels 

A very important class of membrane proteins able to detect variations in membrane potential is 

represented by voltage-gated cation channels. They have a tetrameric structure [4]; the single 

monomer is equipped with a voltage sensor, an alpha helix called S4 segment, able to perform 

significant movements upon physiological changes of the membrane potential. The topological 

variations of the S4 segment are then relayed to different parts of the protein (segments S5 and 

S6), which allow the opening and closing of the ion permeation pathway of the channel, a 

mechanism generally called gating [5]. In voltage-dependent channels, gating and selectivity, i.e. 

the ability of the channel to discriminate between ionic species, are mediated by different structural 

parts, the latter being determined by the precise assembly of four short segments (P-loops). In 

voltage-gated proteins, two distinct types of currents can be measured: 1) currents associated with 

the movement of the S4 segments, the so-called gating currents. This type of current is intrinsically 

transient, since the voltage sensor is anchored to the membrane, and difficult to detect, given the 

small amount of charge involved [6]; 2) currents associated with ion permeation, which have been 

investigated in cells of many organisms, including, for example, sponges [7,8] and mussels [9], 

marine [10,11] and aquatic [12] plants. These currents are modulated by a multitude of factors, i.e. 

oxidizing and reducing agents [13–16], polyunsaturated fatty acids [17], antibiotics [18], divalent 

ions [19–21], accessory proteins [22], in some cases even by differences in the voltage stimulation 

protocol [23]. The composition of the channel can also play an important role; for example, plant 

potassium channels are tetramers, which can be homomeric or heteromeric, likely according to the 

status of the plant, with different functional properties in potassium uptake [24–27]. Finally, fine 

structural differences can result in opposite functional properties such as inward or outward 

rectification [28]. Recently, an increasing interest in intracellular channels, namely the channels 

localised in compartments and organelles inside the cell, has also emerged and novel approaches 

to study their biophysical properties have been developed (see for example [29–32]). 

 

1.2. Ion transporters  

Ion transporters have also been intensively investigated. Differently to ion channels, in which the 

permeating ions simply follow their electrochemical potential, transporters employ a coupling 

mechanism between an ion and a specific substrate, which allows the substrate to move against its 

electrochemical gradient at the expense of the electrochemical potential of the coupled ion. For 

example, the plant proton/sucrose symporter, essential for phloem loading of sucrose (in special 
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cases also for the unloading), is able, to accumulate up to 1 M sucrose inside the phloem from an 

external concentration of few millimolar, by using the strong electrochemical gradient for protons 

(with pH 5.5 in the apoplast and pH 7.2 in the symplast, together with about -200 mV of membrane 

voltage) [33]. In transporters, the coupling mechanism is achieved through a conformational 

change of the protein [34], causing the turnover rate to be usually much lower compared to the 

values found in ion channels. An ion channel with a single channel conductance of 10 pS, 

stimulated by a 10-mV potential difference, allows the movement of about 600.000 ions per second, 

while the turnover rate of the proton/sucrose cotransporter has been estimated to be 500 ions per 

second [35]. Therefore, the currents mediated by transporters are generally small, even though 

their expression levels are usually higher than that of ion channels. In transporters, currents also 

exhibit two components: a transient component, called presteady-state current (Figure 1a, b), and 

a stationary phase associated with the ion/substrate cotransport (named transport-associated 

current, Itr) The presteady-state current usually occurs in the absence of the substrate to which the 

ion is coupled. The Peres group has proposed an interesting hypothesis about their origin: they 

would be the manifestation of the ion movement trapped within the carrier in the absence of the 

substrate; following the application of the substrate the ion would be unlocked and contribute to the 

transport-associated current [36]. This hypothesis, which arises from the surprising finding that 

transport-associated current amplitudes in the GAT1 sodium/GABA cotransporter can be 

accurately predicted from the mere knowledge of the presteady-state current amplitude [37], was 

also confirmed in the plant proton/sucrose symporter [35] (Figure 1c). 

 

 

2. Direct recordings of electron currents 

In plants and animals, electron transfer reactions play a major role in fundamental physiological 

functions like photosynthesis and respiration. However, the first example of a three-dimensional 

molecular structure of a photosynthetic reaction centre was from the purple bacterium 

Rhodopseudomonas viridis [38] and, after this discovery, theoretical models explaining the primary 

charge separation process were developed (see [39] as an example). In plants and animals, 

protein complexes like cytochrome c oxidase in mitochondria and photosystem I in chloroplasts 

transfer electrons from an electron donor on one side of the membrane to an acceptor on the other 

side. Few other systems exist that perform trans-membrane electron transfer reactions in other 

membranes, like plasma membranes or vacuolar membranes. These include b-type cytochromes 

of the NADPH-oxidase and Cytochrome b561 families. However, in spite of the multitude 

recordings of currents mediated by ion channels and transporters, there are only two examples of 

electron current recordings. 

 

2.1 NADPH oxidase 
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The first electron current recording was performed by the Krause group in 1998 [40], by using the 

patch-clamp technique applied on human eosinophils. They were able to provide strong 

experimental evidence of electron transfer from cytosolic NADPH to extracellular oxygen mediated 

by NADPH oxidase. This process reduces extracellular oxygen to superoxide, which, in turn, 

rapidly dismutates into hydrogen peroxide; the latter is mostly converted by myeloperoxidase [41] 

into hypochlorous acid, which is very effective to attack invading bacteria [42]. NADPH oxidase is 

an enzyme complex formed by the assembly of two membrane proteins with four cytosolic proteins, 

and involved in innate immunity through ROS (Reactive Oxygen Species) production. Mutations in 

one of its components, either altering or eliminating its function, gives rise to hereditary chronic 

granulomatous disease (CGD), in which patients have infections of various kinds [43]. An excellent 

recent review by Prof. DeCoursey [44] summarizes the electron current recordings mediated by 

NADPH oxidase in various cell types. Intriguingly, to remove protons released by cytosolic NADPH 

and to limit the depolarisation caused by the NADPH oxidase activity (both mechanisms inhibiting 

NADPH oxidase itself) a voltage-gated proton channel is working in parallel to NADPH oxidase [44]. 

Due to the multimeric nature of NADPH oxidase, which makes its expression in classical 

heterologous systems such as Xenopus oocytes demanding, and to the difficulties related to the 

handling of its canonical acceptor, molecular oxygen, a full functional characterisation of NADPH 

oxidase is lacking.  

 

2.2 Cytochrome b561 

Cytochrome b561, whose name derives from the characteristic reduced-minus-oxidised absorption 

band, are simple membrane proteins constituted by a single polypeptide with two heme groups 

facing both sides of the membrane [45]. By using intracellular ascorbate as an electron donor, they 

are able to reduce extracellular ferrichelates; the mouse cytochrome b561 (dcytb), for example, 

has been proposed to play a role in dietary iron absorption in the duodenum [46]. When expressed 

in Xenopus oocytes, these proteins show Fe3+ reductase activity, as evidenced by an appropriate 

colorimetric test [46]. Recordings using the double microelectrode voltage-clamp technique on 

Drosophila or soybean cytochrome b561 cRNA-injected oocytes have shown authentic electron 

currents [47,48]; these currents are generated by electrons derived from endogenous cytosolic 

ascorbate (Asc) and can be amplified by microinjection of exogenous Asc, as shown in Fig. 2a. An 

appropriate electron acceptor must be present in the extracellular bath solution to elicit measurable 

currents: ferricyanide proved to be the most efficient acceptor tested, even though ferrichelates 

such as ferric nitrilotriacetate (FeNTA) also induced detectable currents [47,48]. In accordance with 

the electronic nature of the currents, the exchange of any ionic species in the extracellular bath 

solution had no effect on the current magnitude. In soybean CYBDOM, mutation of the histidine in 

position 249 (into leucine), known to coordinate the heme group at the cytoplasmic side and to be 

conserved in all cytochromes b561, completely abolishes the ferricyanide elicited current without 
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modifying the protein expression level [48], providing strong evidence for electron movements 

involving the cytochrome's heme groups.  

 The oocyte system offers ideal experimental conditions to perform a detailed biophysical 

investigation, since it is possible to control all relevant parameters such as the membrane voltage 

as well as the cytosolic donor and extracellular acceptor concentrations. The transport mechanism 

of cytochromes b561 could be described by an extension of the Michaelis-Menten equation: I = Imax 

/ (KD / [D] + KA / [A] +1), where [D] and [A] are the donor and acceptor concentrations, respectively, 

KD and KA are two voltage-dependent constants linked to the apparent affinity constants of the 

donor and the acceptor, respectively, and Imax is the voltage-dependent current obtained at 

saturating donor and acceptor concentrations [47]. Despite its simplicity, this equation was able to 

predict complex experimental responses of the cytochrome, such as the voltage dependence of 

the apparent affinity constants for the donor and the acceptor (see [47] for details). If this equation 

can be similarly applied to further members of the cytochrome family, is an interesting question for 

future research. It is noteworthy that cytochromes b561, similarly to ion channels and transporters, 

show presteady-state currents, whose molecular origin still needs to be clarified [47]. 

 

 

3. Conclusion 

Electron current measurements mediated by specific transporters are only at the beginning. 

However, considering the existence of integral membrane proteins capable of trans-membrane 

electron transport and their general importance for the physiology of living organisms, the 

possibility to directly measure electron currents, together with the recent determination of high-

resolution 3-D structures [49], likely indicate significant developments in this field of science in the 

near future. 
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Figure legends 

Figure 1: Stationary and presteady-state currents in the proton/sucrose symporter ZmSUT1.  

a. In the inset, proton currents recorded in a ZmSUT1-expressing Xenopus oocyte, in the absence 

of sucrose (No suc) and in the presence of a saturating sucrose concentration (+suc) are shown. 

The same currents are displayed in the main panel after forcing their stationary level to zero. 

Holding and pulse voltages were -20 and -80 mV, respectively. b. Presteady-state currents vs time 

were obtained after subtracting the stationary currents in the absence and in the presence of 

saturating sucrose. Holding voltage -20 mV, voltage pulses from +40 mV to -120 mV (step -40 mV). 

In the inset: presteady-state current elicited by a voltage of -80 mV. c Measured (empty symbols) 

and predicted (filled symbols) currents displayed versus voltage for two oocytes with different 

ZmSUT1 expression levels. From Carpaneto et al. (2010), PLoS One, 5:e12605. 

 

Figure 2: Cytochrome b561 currents recorded in Xenopus oocytes 

a. Membrane currents recorded in a Xenopus oocyte expressing the soybean cytochrome 

CYBDOM, elicited by application of ferricyanide concentrations (arrowhead) ranging from 10 to 500 

M, at a holding voltage of 20 mV. Black traces were recorded under baseline conditions using the 

endogenous pool of cytosolic ascorbate, red traces were recorded from the same oocyte after 

injection of 10 mM ascorbate. b. Dose-response curves showing the dependence of stationary 

currents in a on the applied ferricyanide (FeCN) under baseline conditions (black symbols) and 

after injection of 10 mM ascorbate (red symbols). Data were fitted with a Michaelis-Menten function 

(continuous lines). c. and d. Summary plots of the apparent maximum current at saturating [FeCN] 

(Imax; c) and the apparent affinity constant for FeCN (KFeCN; d) using the endogenous pool of 

cytosolic ascorbate (Asc [cyt]) and after injection of 10 mM ascorbate (Asc [+10 mM]). From Picco 

et al. (2015), Plant Physiology, 169:986-95, copyright American Society of Plant Biologists, 

www.plantphysiol.org.  
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