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Abstract

Objectives
In this study on 90 individuals we aimed at evaluating the microRNAs (miRNAs) expression

profile associated with personal levels of Titanium (Ti) and Zirconium (Zr) traced in hair sam-

ples. Ti and Zr materials are broadly used for dental implants but the biological reactions

triggeredby a long termpresence of these materials in the oral cavity still need to be

assessed. MiRNAs are mechanisms that need to be investigated as they play a fundamen-

tal role in the control of gene expression following external stimuli and contribute to a wide

range of pathophysiological processes.

Methods
Using the TaqMan1 Low-Density Array, we assessed the expression levels of 377 human

miRNAs in peripheral blood of 90 subjects. Hair samples were analyzed for Ti and Zr con-

tent using Inductively Coupled Plasma-Mass Spectrometry. We performedmultivariable

regression analysis to investigate the effects of Ti and Zr exposure on miRNA expression

levels. We used the Ingenuity Pathway Analysis (IPA) software to explore the functional

role of the investigated miRNAs and the related target genes.

Results
Seven miRNAs (miR-99b, miR-142-5p, miR-152,miR-193a-5p, miR-323-3p, miR-335,

miR-494) resulted specifically associated with Zr levels. The functional target analysis
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showed that miRNAs are involved in mechanisms such as inflammation, skeletal and con-

nective tissue disorders.

Conclusions
Our data suggest that Zr is more bioactive than Ti and show that miRNAs are relevant

molecularmechanisms sensitive to Zr exposure.

Introduction
Over the last few decades there has been an increasing interest in studying the effects of expo-
sure to exogenous elements on several health effects such as developmental disorders, endo-
crine disruption, immunological syndromes, different types of cancers and even death [1].
Although human exposure to exogenous elements is often occupational, due to the high indus-
trial use, the attention is moving towards non-occupational environments. The study of bio-
medical application in dentistry raised interest, as materials like Titanium (Ti) and Zirconium
(Zr) are broadly used in prostheses, implants and orthodontic applications. These elements
haven't any biological function and their presence in human bodymay reflect not only inhala-
tion, ingestion, or skin absorption [2, 3], but also the release from the metallic implant surface
of biomedical devices due to electrochemical dissolution, frictionalwear, or a synergistic com-
bination of the two.

Titanium has been the material of choice for dental implants for about 30 years and the suc-
cess rates for various indications have been persistently high during the past decade. Yet the
development of newmaterials was promoted due to some disadvantages of titanium implants,
such as the unfavorable aesthetic results related to Ti shining through or the noticeable metallic
portion in case of gingival recession. For these reasons new dental ceramic materials such as
Zr-based ceramics have been successfully introduced and widely used in the clinic [4–6]. Zirco-
nium oxide (ZO2) is a bio-inertmaterial that exhibits high mechanical strength, excellent cor-
rosion resistance and good biocompatibility. The characteristics of tooth-colour like, the ability
to be machined and the low plaque affinity make Zr the material of choice in the esthetic of the
oral cavity, especially compared with Ti devices [7, 8].

Many clinical, in-vitro and experimental animal studies, focused on the potential health
effects related to Ti and Zr, mainly showed a lack of negative consequences [9–12]. However,
Ti and Zr materials used in dentistry stay in close contact with the surrounding tissues for a
long time. all these metallicmaterials used in surgery and dentistry that stay permanently in
the tissues are liable, to a certain degree, to corrosion due to variations in the internal electro-
lyte milieu [13]. When metal particles and ions are released from the implant surface, they can
migrate systemically, remain in the intercellular spaces near the site where they were released,
or being up-taken by macrophages [14, 15]. It has been shown that, due to their nature, Ti and
Zr can release ions that are able to cross the cell membrane triggering the production of reac-
tive oxygen species (ROS) [16], leading to cytotoxicity, oxidative damage, and direct binding to
lipids, proteins and DNA [17–19].

The mechanisms through which exogenous elements cause toxic effects seems to be also
strictly related to epigenetic alterations, mitotically and meiotically heritable changes in gene
expression that do not involve mutation the DNA sequence [20]. Among epigenetic changes,
microRNAs (miRNAs) represent an attractive and promising mechanism to be investigated.
MiRNAs are single-strandedRNAs of ~22 nt that can regulate hundreds of target genes [21].
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Recent experimental data linked altered miRNA expression with exposure to toxic elements
[22]; in particular it has been shown that blood leukocytes expression levels of two miRNAs
involved in oxidative stress response, miR-146a and miR-222, were altered in human subjects
exposed to lead and cadmium [23].

In the present study, we used a screening-based approach to investigate the association
between personal levels of Ti and Zr, and miRNA expression profile in peripheral blood of 90
obese/overweight subjects. Findings suggest that obese individuals might represent a suitable
population to investigate exogenous elements effects and related pathogenic mechanisms
partly because of the increased particle absorption [24]. We traced Ti and Zr concentration
in hair, obtaining a meaningfulmeasure of internal dose exposure.We used a bioinformatic
tool to perform an enrichment analysis to characterize the molecular pathways associated
with Ti and Zr. This study have the potential to enhance the current understanding of the
molecularmechanisms linked with the exposure to Ti and Zr commonly used in dental
practice.

Materials andMethods

Study population
We recruited 90 obese/overweight subjects at the Center for Obesity and Work (IRCCS Fonda-
zione Ca’Granda OspedaleMaggiore Policlinico) consequently from September 2010 to Janu-
ary 2011 as part of the SPHERE Study [25]. SPHERE is a cross-sectional study investigating the
effects of particulate air pollution exposure in a population of susceptible overweight/obese
subjects living in Lombardia Region. Each participant signed a written informed consent,
approved by the Ethic Committee of the Fondazione Ca’Granda—Ospedale Maggiore Policli-
nico (approval number 1425). Each subject was asked to provide 7 ml of blood sample, for
miRNA expression analysis, and a lock of hair cut next to the root in the occipital area of the
head, for the elements quantification.We measured the percentage of granulocytes in each
sample (Table 1).

Table 1. Characteristics of the study participants and exposure levels (n = 90).

Characteristics

Age, years 51.6 ± 11.9
Sex

Male 15 (16.7%)

Female 75 (83.3%)

BMI*,Kg/m2 32.9 ± 5.7
Overweight (25� BMI< 30) 34 (37.8%)

Class I obesity (30� BMI <35) 28 (31.1%)

Class II obesity (35� BMI <40) 19 (21.1%)

Class III obesity (BMI� 40) 9 (10.0%)

Smoking habits

Never smoker 48 (53.3%)

Ex-smoker 26 (28.9%)

Current smoker 16 (17.8%)

Metals in hair (μg/g)
Titanium 0.7 ± 0.4
Zirconium 0.046 ± 0.06
Granulocyte,% 61.3 ± 7.6

doi:10.1371/journal.pone.0161916.t001
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Hair collection, Ti and Zr quantification
Ti and Zr profile quantification was conducted by Doctor’s Data, a Clinical Laboratory
Improvement Act/Amendment (CLIA)-approved laboratory, on each study participant using a
standardized protocol (Hair samples treatment protocol in S1 File).

All hair specimens were cut from hair within 3cm from the scalp and stored at -80° in
labeled Ziploc bags at room temperature. Hair samples were mailed to Doctor’s Data in the
individual kits provided and treated using their laboratory analysis protocols [26, 27]. Hair
samples were analyzed for Ti and Zr content using Inductively Coupled Plasma-Mass Spec-
trometry (ICP-MS).

Blood collection and miRNA isolation
Peripheral bloodwas obtained on the day of examination by venipuncture from each partici-
pant (90 samples total). Samples were collected in PAXgene Blood RNA tubes, immediately
sent to a laboratory where they were left at room temperature for 24 hours and then put at
-80°C. Total RNA was extracted from whole bloodwith the MagMAX™-96 kit for microarrays,
according to the manufacturer’s protocol (Ambion, TX), which was modified for miRNA
extraction. To recover miRNAs, 1.25 volumes of isopropanol was added to the aqueous phase
instead of the standard half volume. The remainder of the protocol was not altered from the
originalMagMAX for Microarrays protocol. The amount of RNA was quantified in an ND-
1000 spectrophotometer (NanoDrop Technologies, Wilmington, DE). An Agilent 2100 BioA-
nalyzer (Agilent Technologies, Santa Clara, CA) was used to assess the RNA integrity from the
RNA Integrity Number. The presence of low-molecular-weight RNA (5S) was also verified
(data not shown).

MicroRNAExpression Profiling
MiRNA expression was profiled with the TaqMan1 Low-Density Array (TLDA) (TaqMan1

Array Human MicroRNA A Cards Set v2.1; Life Technologies, Carlsbad, CA). Each TLDA
card detects 384 features, including 377 human miRNAs, three endogenous small RNA con-
trols (RNU6, RNU44, and RNU48, the first in quadruplicate), and a negative control (Ath-
miR159a). All reactions were performed as specified in the manufacturer’s protocols. Briefly,
after reverse transcription (RT) (RNA Reverse Transcription for miRNA Expression Profiling in
S1 File), a total reactionmixture containing RT products and the TaqMan Universal PCRMas-
ter Mix (Life Technologies) was added to each line of TLDA after gentle vortexing. Each card
was centrifuged and mechanically sealedwith a Life Technologies sealer device. TLDAs were
run in a 7900HT Fast Real-Time PCR System (Life Technologies) under the following thermal
cycler conditions: 50°C for 2 minutes, 94.5°C for 10 minutes, 40 cycles of 97°C for 30 seconds,
and 59.7°C for 1 minute.

Analysis of miRNA expression is detailed in supplemental material (Analysis of miRNA
expression data in S1 file).

Statistical analysis
Descriptive statistical data were obtained for the demographic, physical, and anthropometric
variables. The mean and standard deviation (±SD) were calculated for normally distributed
data. We used linear regression models to verify the association betweenTi and Zr exposure
and miRNA expression levels. MiRNA expression values were log2-transformed to achieve a
normal distribution.Multivariable regression analyses adjusted for age, sex, BMI, smoking
habits (current smoker, non-smoker, or ex-smoker), % of granulocytes and were applied to
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evaluate changes in miRNA expression in association with Ti and Zr concentrations. Due to
the high number of comparisons, we applied a multiple comparison correction based on the
Benjamini-Hochberg False Discovery Rate (FDR) control. A threshold of 0.10 was applied to
the FDR P significance level to identify the set of top miRNAs. All statistical analyses were per-
formed with SAS software, version 9.3.

Results

Characteristicsof study participantsand exposure levels
This study included 90 overweight and obese participants (16.7%men, 83.3% women), who
had a mean age of 51.6 years. BMI was calculated as the weight divided by the height squared
(kg/m2). Participants were classified by BMI as overweight (37.8%, 25� BMI< 30), class I
obese (31.1%, 30�BMI<35), class II obese (21.1%, 35�BMI<40) and class III obese, or severe
obese, (10.0%, BMI�40). Mean BMI for 90 subjects was 32.9 ± 5.7 Kg/cm2 (Table 1).

Exposuremean levels and standard deviations to Ti and Zr are shown in Table 1. The par-
ticipant’s mean level of Titanium in the hair was 0.7 μg/g (SD = 0.4) and the Zirconiummean
level was 0.046 μg/g (SD = 0.06).

Association of miRNA expression with hair elements levels
To determine whether there was a specificmiRNA signature in association with exposure to Ti
and Zrmeasured in the hair, we used TLDA to screen for miRNAs whose expression levels are
correlated with Ti and Zr concentration. After data cleaning, we obtained 122 miRNAs (Analy-
sis of miRNA expression data in S1 File). We investigated their association with Ti and Zr expo-
sure values using multivariable regression analysis. Using an FDR linear step-up adjustment
for multiple comparisons (FDR P< 0.1), we found 7 miRNAs (miR-99b, miR-142-5p, miR-
152, miR-193a-5p, miR-323-3p, miR-335, miR-494) specifically associatedwith Zr levels traced
in the hair (Table 2). A positive association was observed for all the miRNAs suggesting an
enhancing effect of Zr on miRNA expression levels. Every increase of 1SD in Zr levels was asso-
ciated with an increase in expression ranging from 35% to 58%. Even considering a broader
FDR P threshold, we found that miRNA expression levels were still mainly associated with Zir-
conium levels (Table A in S1 File). Titanium levels measured in hair did not show any statisti-
cally significant association with miRNA expression levels.

Table 2. List of miRNAs associatedwith Zirconium levels.

microRNA Exposure %Variation 95%CI P FDR* P

hsa-miR-494 Zirconium 58.83 106.32 22.27 0.001 0.027

hsa-miR-193a-5p Zirconium 35.38 63.32 12.22 0.002 0.037

hsa-miR-142-5p Zirconium 40.69 74.84 13.2 0.003 0.053

hsa-miR-335 Zirconium 41.83 76.33 14.09 0.002 0.068

hsa-miR-99b Zirconium 35.32 65.32 10.76 0.004 0.07

hsa-miR-152 Zirconium 43.36 82.26 12.77 0.004 0.074

hsa-miR-323-3p Zirconium 50.37 95.02 15.94 0.003 0.098

*FDR: False Discovery Rate
Percentage variation express the percentage change of miRNA expression associated with an increase of 1SD in Zirconium (%Variation = ((2^β)-1)*100
and 95% CIs).

doi:10.1371/journal.pone.0161916.t002
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Prediction of miRNA targets
The sevenmiRNAs (miR-99b, miR-142-5p, miR-152, miR-193a-5p, miR-323-3p, miR-335,
miR-494) associated with Zirconium levels with FDR P< 0.1, were selected for downstream
target prediction analysis. To explore the functional role of the investigated miRNAs and
related targets, we used the Ingenuity Pathway Analysis (IPA) software (Ingenuity Systems,
RedwoodCity, CA, USA), selecting only the miRNA-mRNA relationships that were experi-
mentally observed and predicted with high confidence.MicroRNA Target Filter provides
experimentally validated as well as predictedmicroRNA-mRNA interactions from TargetScan,
TarBase, miRecords and Ingenuity1 Knowledge Base.

The analysis identified 606 mRNA that were experimentally observedor predicted with
high confidence level. More specifically, we identified that miR-152, miR-494 and miR-335
had the largest number of potentially regulatedmRNAs that were 254, 208 and 105 respec-
tively. MiR-99b, miR-193a-5p, miR-322-3p and miR-142-5p respectively regulated 25, 20, 2
and 1 targets (Table B in S1 File).

Disease and biological function analysis
The resulting target gene lists were analyzed to identify the possible diseases and biological
functions significantly associated with target gene sets. In particular, we carried out the func-
tional analysis for diseases and functions focusing the query on mechanisms involved in
inflammation, skeletal and connective tissue disorders. Table 3 shows the results restricted to
inflammation, skeletal and connective tissue disorders categories; for each category, we selected
the top 5 diseases and functions according to the P-value score.

Within the inflammation category, the most significantly involved molecules were associ-
ated with inflammation of organs, body regions and body cavities as well as connective tissue
inflammation and chronic inflammatory disorders.

The enriched pathways that we identified in associationwith skeletal tissue disorders
appeared to be largely involved in congenital anomaly of musculoskeletal system development,
cellular development/growth/proliferation of skeletal tissue, congenital anomaly of skeletal bone,
development and function of skeletal system and, interestingly, craniofacial abnormalities.

Table 3. Disease and biological functionassociatedwith target genes selected with IPA for 7 miRNAs.

Categories Diseases and Functions P # Targets

INFLAMMATION Inflammationof organ 5.17x10-20 111

Inflammation of body region 4.25x10-19 97

Inflammation of body cavity 1.06x10-18 79

Connective tissue inflammation 8.41x10-17 88

Chronic inflammatory disorder 8.63x10-17 84

SKELETAL DISORDERS Congenital anomaly of musculoskeletal system development 2.21x10-23 69

Cellular development, growth and proliferation of skeletal tissue 2.52x10-22 57

Congenital anomaly of skeletal bone 8.34x10-21 48

Craniofacial abnormality 5.34x10-20 44

Development and function of skeletal system 1.49x10-17 45

CONNECTIVE TISSUEDISORDERS Proliferation of fibroblast cell lines 7.08x10-21 55

Congenital anomaly of skeletal bone 8.34x10-21 48

Craniofacial abnormality 5.34x10-20 44

Proliferation of fibroblasts 5.66x10-17 46

Connective tissue development and function 8.41x10-17 88

doi:10.1371/journal.pone.0161916.t003
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The enrichment analysis performed in relation to connective tissue disorders showed that
target genes participates in mechanisms linked to proliferation of fibroblast cell lines, congeni-
tal anomaly of skeletal bone, craniofacial abnormality, proliferation of fibroblasts and connec-
tive tissue development.

Pathway analysis
In the following approach, we aimed at identifying the pathways mainly regulated by the 7 miR-
NAs. We considered the genes that were related at least with three of the selectedmiRNAs (S1
Table—gene selection procedure). As expected by the large number of predicted targets, miR-
152, miR-335 and miR-494 resulted to share targets such as the cytokine receptor KIT, the Rho-
dependent Protein Kinase (ROCK-1), proteins belonging to the tyrosine phosphatase family
(PTPN11 and PTPN14) and proteins belonging to the Rho Guanine Nucleotide Exchange Fac-
tor (ARHGEF2, ARHGEF12 and ARHGEF17).

We used IPA Path Designer tool (QIAGEN) to represent the cellular location of the above
mentioned targets (Fig 1) showing that their location is mainly cytoplasmic.

Discussion
Pure Titanium, Titanium alloys and Zirconiamaterials are widely used in dental surgery
because of their desirable mechanical properties, chemical stability, and biocompatibility [28].
In the present study on an obese population, we found that the exposure to Zr levels traced in
hair is associated with a distinct signature of 7 miRNAs (miR-99b, miR-142-5p, miR-152, miR-
193a-5p, miR-323-3p, miR-335, miR-494) expressed in peripheral blood. The bioinformatic
analysis showed that the 7 miRNAs are largely involved in inflammation, skeletal and connec-
tive tissue disorders and target commonmRNAs coding for proteins such as c-KIT, ROCK-1,
PTPN and ARHGEF. We did not observe any significant association with exposure to Ti, sug-
gesting that there might be a miRNA-specific signature in relation to Ti or Zr exposure.

We found only one in-vitro study that investigated the association betweenTi and Zr expo-
sure on miRNAs expression using a microarray approach. Palmieri et al. analyzed the expres-
sion pattern of 329 human miRNAs in human osteoblast-like cells (MG63) cultured on Grade
3 Ti and ZO2 ceramic disks. The study reported six up-regulatedmiRNAs in the cells cultivated
on ZO2 ceramics compared to the one cultivated on Ti layer (miR-214, miR-337, miR-423,
miR-339, miR-377, and miR-193b), and four down-regulatedmiRNAs (miR-143, miR-17-5p,

Fig 1. Cellular locationof targets shared by miR-152,miR-335 andmiR-494.

doi:10.1371/journal.pone.0161916.g001
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miR-24, and miR-22) [29]. The same authors also looked at the specific association betweenZr
levels and miRNA expression data and found 18 up-regulatedmiRNAs (miR-337, miR-423,
miR-497, miR-214, miR-377, miR-296, miR-99b, miR-193b, miR-25, miR-324, miR-518a,
miR-320, miR-23b, miR-93, miR-23a, miR-422b, miR-330, miR-197) and 3 down-regulated
miRNAs (miR-302c, miR-369 5p, miR-10b) [30]. Consistent with their findings, we found a
positive association betweenZr levels in the hair and expression of miR-99b; interestingly this
miRNA was found to play a major role in regulation of cell migration after epithelial damage
[31].

Among the other miRNAs expressed in association with Zr levels, we found that miR-152,
miR-494 and miR-335 had hundreds of potentially regulated targets, demonstrating that they
might have a relevant role in the context we are studying.

So far, few studies reported the relationship between these miRNAs and exposure to exoge-
nous elements such as nickel sulfide [32] and lead [33]. The common targets we identified for
miR-152, miR-494 and miR-335 seem to be largely involved in the regulation of inflammatory
processes. C-KIT is a type III tyrosine kinase receptor with function in a diverse range of bio-
logical processes; an alteration of the role of c-kit during injury, infection and inflammation is
well recognized [34]. ROCK-1 is a closely related Rho kinase that has been shown to have a
specific role in the recruitment and migration of circulating inflammatory cells such as macro-
phages and neutrophils, both in-vitro and in-vivo [35]. PTPs proteins are critical for the regula-
tion of fundamental cellular signaling processes; dysfunction of those PTPs brings to aberrant
and uncontrolled immune responses that result in chronic inflammatory conditions. Evidence
shows that expression levels of PTPN2, PTPN11, and PTPN22 are altered in actively inflamed
tissues and PTPN2 seems to be critical for regulating innate and adaptive immune responses
[36]. Finally the role of ARHGEF proteins have been studied in the regulation of chemotaxis of
mouse macrophages, T and B lymphocytes, and bone marrow-derivedmature dendritic cells
[37].

Differently from the above mentioned studies, this work was conducted on an obese popula-
tion samples with personal values of miRNA expression data and levels of exposure to Ti and
Zr. According to the increasing need of using noninvasive markers to study the exposure to
potentially toxic elements, this work focuses on the quantification of Ti and Zr in hair samples.
Analysis of metals in hair has been performed for almost 150 years but only recently it has
been used to identify exposures to potentially toxic elements in occupational and environmen-
tal medicine. The main advantages of this type of sampling are the simplicity of the collection
and the stability during the conservation process. Moreover, differently from blood, urine or
atmosphere, hair represent an internal dose of accumulation [38]. This kind of assessment pro-
vides a long term evaluation of the deposition of the element in the 3–4 months during which
the hair grew.

The percent change of the 7 miRNAs we found in the present study is small, thus indicating
that miRNA expression mechanism is tightly regulated.We want to address that the lack of a
control group reduced our chance to observe significant changes. MiRNA changes in healthy
subjects, unlike in diseased conditions, are often small and may accumulate over time, making
difficult to establish the precise cause—effect relationships among exposure, miRNA alter-
ations, and possible outcomes. Since that the obese population under this study is characterized
by a wide range of BMI values, the results we obtained are not addressable to the general popu-
lation. However, another strength of the present study consists on the use of real-time PCR
approach which gives high precision and sensitivity in detecting the expression levels of closely
related miRNAs that might differ in sequence by only one base [39]. Moreover, since the rela-
tively small sample size might have limited our capability to detect significant effects, larger
studies are needed to confirm our findings. A longitudinal study approach with multiple
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measures of exposures and miRNA expression at multiple times would be ideal to study
miRNA dynamics in relation to Ti and Zr exposures.

Conclusion
In conclusion, our data provide further evidence that miRNAs take part in a mechanism sensi-
tive to Zirconium exposure. Identifying specificmiRNAs will help our understanding of the
biological effects of host-implant integration with the artificial devices used in dentistry and
other medical therapies. The body's immediate response to a foreign object is immune-medi-
ated reaction; there have been several attempts to embed or coat anti-inflammatory drugs and
pro-regulatorymolecules onto medical devices with the aim of preventing implant rejection by
the host. The expression of specificmiRNAs revealed several osteogenic genes as potential tar-
gets that may influence the genetic mechanisms leading to osteogenic differentiation or protect
against undesired host responses. The identification of specificmiRNAs will help our under-
standing of biological effects related to the devices used in implantology, with the ultimate aim
of taking advantage of miRNAs possible therapeutic role in wound healing and host-implant
integration.
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