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ABSTRACT Solid state luminescent materials with long lifetimes are the subject of ever 

growing interest both from a scientific and a technological point of view. However, when dealing 

with organic compounds, the achievement of highly efficient materials is limited by aggregation 

caused quenching (ACQ) phenomena on one side and by ultrafast deactivation of the excited 

states on the other. Here, we report on a simple organic molecule, namely cyclic triimidazole 

(C9H6N6), 1, showing crystallization induced emissive (CIE) behavior and, in particular, 

ultralong phosphorescence due to strong coupling in H-aggregated molecules. Our experimental 

data reveal that luminescence lifetimes up to 1 s, which are several orders of magnitude longer 

than those of conventional organic fluorophores, can be realized under ambient conditions thus 

expanding the class of organic materials for phosphorescence applications.  
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Solid-state luminogens have been the subject of great interest because high tech applications of 

light emitting materials very often require their use in the condensed phase. Unfortunately, 

frequently, weakly or even non-emissive solid materials are obtained from highly emissive 

molecules due to the notorious Aggregation Caused Quenching (ACQ) phenomenon. However, 

since the pioneering work of Tang,
1
 many efforts have been spent on the isolation of compounds 

characterized by enhanced emission in the solid (crystalline and amorphous) state, referred to as 

Aggregation Induced Emission (AIE). In this regard, even more intriguing are some non-

emissive molecules which are induced to emit by crystallization (Crystallization Induced 

Emission; CIE) but not amorphization. In these systems specific features of the crystal packing 

play a key role on the emissive properties of the crystal-phase materials.
2
 

In parallel, a strong effort has been devoted to the search of organic molecules with long-lived 

excited states which enable exciton migration over long distances for increased production of 

free charges.
3-6

 Usually, to enhance the transition from singlet (short-lived) to triplet (long-lived) 

states, either inorganic metals or special organic moieties (for example, aromatic aldehyde, 

heavy halogen and deuterated carbon) are required. In addition, since the triplet excitons 

generated in organic molecules are highly sensitive to oxygen and temperature, stringent 

conditions are required to observe long lived phosphorescence from pure organic molecules. 

However, very recently, An et al. reported ultra-long phosphorescent emission features in 

structures of planar organic molecules coupled in H-aggregates, which provide an effective 

means of stabilizing and protecting the triplet excitons formed through intersystem crossing.
7
 

The stabilized excited state, which functions as an energy trap at a lower energy level, may 
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delocalize on several neighboring molecules, offering suppressed radiative and non-radiative 

deactivation decay rates in favour of long-lived excited states and ultralong phosphorescence. 

This feature is particularly intriguing owing to the commonly accepted view of H-aggregates as 

non-emissive in character, in contrast with many J-aggregates, though some papers have 

appeared reporting about highly emissive fluorescent H-aggregates.
8-10

  

Here we report a simple pure organic molecule which is weakly emissive in solution but highly 

so in crystals. The nature of the emission is verified by time resolved emission spectroscopy 

revealing the presence of both fluorescence and phosphorescence, this latter showing an 

impressive ultralong lifetime (up to 1 s at room temperature in air). By combined experimental, 

structural and theoretical calculations, the crystallization induced ultralong phosphorescence of 

the compound is attributed to its H-aggregation.  

Cyclic triimidazole (triimidazo[1,2-a:1',2'-c:1'',2''-e][1,3,5]triazine), 1, was prepared, together 

with minor amounts of isomeric by-product (separated by column chromatography) 2 

(triimidazo[1,2-a:1',2'-c:1'',5''-e][1,3,5]triazine) (Scheme 1), as described in the literature.
11,12

 

Both 1 and 2 are poorly emissive in solution but their powders are brightly so under an UV lamp. 

Starting from this key observation we have performed a full photophysical characterization of 

the two. 

Scheme 1. Structure of the two isomeric cyclic triimidazoles 1 and 2. 
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Diluted solutions of 1 (10
-4

-10
-5

 M) in good solvents (DCM, toluene, etc) display an absorption 

(230 nm, Fig. S1) and a weak emission even under nitrogen (10
-4

 M in DCM, 390 nm, 

photoluminescence quantum efficiency () = 2% at r.t. in air). 

The emission is slightly intensified only by forcing aggregation through addition of a non 

solvent (hexane or pentane) in a v/v 50:50 ratio (Fig. S2), while retaining a low concentration. 

However, very highly concentrated DCM solutions (10
-2 

M) show an additional very weak red 

shifted absorption band (345 nm) (Fig. S3) and a remarkable intensification of the emission (400 

nm,  best fitted as a triexponential = 0.15, 2.42 and 7.84 ns, Fig. S4, Table 1) corresponding to a 

band in the excitation spectrum at 325 nm (Fig. S5). These observations suggest that aggregation 

itself is not sufficient to switch on luminescence and that proper molecules’ organization is a 

conditio sine qua non to observe emission from 1.  

Surprisingly, by cooling the 10
-2 

M DCM solution at 77K in air (Fig. 1) a broader emission 

band (λmax = 435 nm) is observed due to the coexistence of a predominant prompt ( 

triexponential = 0.99, 4.35 and 15.68 ns) and a longer wavelength (500 nm) delayed component 

with ultralong lifetimes ( triexponential = 8, 115 and 939 ms measured at 570 nm, Table 1) (Fig. 

S6).   
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Figure 1. a) Photoluminescence of the DCM solution (10
-2

M, λexc=350 nm) at 77K (blue dotted 

line). Photoluminescence (black line, λexc=330 nm) and phosphorescence (red line, time delay 

172 ms, λexc=374 nm) of powders at 298 K. Pictures of powders at 77K with UV on (b) and off 

(c). 

 

Based on these observations, we undertook the investigation of solid 1. Powders of the 

compound display an intense blue emission under UV light but, surprisingly, upon removal of 

the UV source the emission color changes into green and slowly fades with a remarkably long 

luminescence lifetime, revealing, in general, crystallization emissive and, in particular, 

crystallization induced phosphorescence (CIP) behavior. To deeper investigate this CIE behavior 

we performed steady state and time resolved emission measurements both at r.t and 77 K.   

When excited at 350 nm, microcrystalline powders of 1 (obtained from DCM solution by 

evaporation in vacuum at 10
-2

 Torr, see XRPD pattern in Fig. S21) display at room temperature a 

strong, broad, featureless emission centered at 425 nm ( = 18%, Fig. 1). Time resolved 

emission experiment indicated the presence of a prompt ( biexponential = 3.49 and 10.89 ns) 
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and a longer wavelength (520 nm, Fig. 1) ultralong delayed component ( triexponential = 12, 57 

and 615 ms) which lasts for about 900 ms (Fig. S7 and S8). Emission experiment at 77 K 

revealed the presence of a prompt (430 nm,  biexponential = 2.97ns, 13.24 ns) and a longer 

wavelength (525 nm) ultralong delayed component ( triexponential = 10, 200 and 969 ms) 

which lasts for about 3.6 s (Fig. S9-S10, Table 1). In addition, almost identical steady-state 

photoluminescence spectra and lifetime measurements of the compound in solid state were 

obtained in different media (nitrogen and air), revealing an inertness of the triplet excited states 

to oxygen. However, we observed that both the shape of the emission and the absolute quantum 

yield are sensitive to the degree of crystallinity of the sample. In fact, crystals of 1 (obtained by 

slow evaporation from DCM solution) emit with  equal to 30%. Vibronic components appear 

both in the prompt (400, 424 nm) and in the time resolved delayed emission (525, 570 nm) 

which now lasts for 3.6 s ( triexponential = 10, 52 and 990 ms) (Fig. 2, S11-S12, Table 1), a 

behavior very similar to that of the microcrystalline powder at 77K. 

 

Figure 2. Photoluminescence (black line, λexc=350 nm) and phosphorescence (red line, time 

delay 472 ms, λexc=374 nm) of the crystals at 298 K. 
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Accordingly, a decrease in  (22 %) and the loss of the vibronic components is observed when 

crystals are ground in a mortar, revealing mechanochromic behavior.
13-15

  

In addition, single crystals of 1 show polarized emission with polarization orthogonal to the 

long axis of the crystal (Fig. 3) when excited with unpolarized UV light, indicating that the 

transition dipole moment is oriented orthogonal to the long axis of the crystal. The crystal 

surfaces display bright emission due to wave-guiding effects. 

 

 

Figure 3. Microscopy images of a part of a crystal under unpolarized UV light taken with an 

analyzer with the transmission axis horizontal (a), vertical (b) and under white light (c). Images 

of a smaller crystal under unpolarized UV light taken with the analyzer with the transmission 

axis vertical (d) and horizontal (e). White bars are 30 micron long.  
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The X-ray crystal structure of 1
11 

evidences that molecules are slightly twisted with respect to 

an idealized D3h symmetry. Very weak C–H∙∙∙N hydrogen bonds connect the molecules along 

planar rows, laterally connected through other C–H∙∙∙N hydrogen bonds to form approximated 

sheets. Along the third direction, molecules of 1 stack in face-to-face anti-parallel-packed zigzag 

columns with distances between average molecular planes alternately equal to 3.204(9) and 

3.290(10) Å, and corresponding distances between centroids of the central rings equal to 3.95 

and 3.73 Å, respectively (Fig. 4, left).  

Such short distances are indicative of strong - interactions in the ground state, associated 

with large interchromophoric -stacking area and formation of H-aggregates.  

 

 

Figure 4. Fragment of crystal packing of 1 (left) and 2 (right) showing the key 

intermolecular distances and the angles between the transition moment dipoles (red 

arrows) and the axis through the centroids of the triazinic rings (purple circles). 

 

3.29 Å 

3.20 Å 

3.73 Å 

3.95 Å 

87.7° 

50.7° 
4.64 Å 

3.25 Å 
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Table 1. Room and low temperature emission maxima, photoluminescence quantum efficiency 

() and lifetimes of 1 and 2. 

Sample 

298 K 77 K 

 
λem 

(nm) 
τ (%) 

λem 

(nm) 
τ (%) 

1 

(DCM) 

 

2%a 

 

400b 

τ1 0.15 ns (4.4)c 

 τ2 2.42 ns (32.3)c 

 τ3 7.84 ns (63.3)c 

 

435b 

τ1 0.99ns (5.4)e 

 τ2 4.35 ns (30.3)e   

 τ3 15.68 ns (64.3)e 

τ1 0.21 ns (10.9)d 

 τ2 1.45 ns (28.1)d 

τ3 7.25 ns (61.0)d 

500b 

τ1 8.32ms (2.6)d 

 τ2 114.8 ms (10.5)d   

 τ3 939 ms (86.9)d 

1 

(powder)f 

 

18% 

425  
τ1  3.49 ns (32.9)c 

τ2  10.89ns (67.1)c  
430 

τ1 2.97ns (30.6)c   

 τ2 13.24ns (69.4)c 

520 

τ1 11.49ms (29.0)d  

τ2 57.29ms (37.2)d   

τ3 614.56ms (33.8)d 

520 

τ110ms (0.88)g   

τ2 200ms (3.69)g    

τ3 969.33ms ( 95.5)g    

1 

(crystals) 

 

30% 

400 

τ1 0.17ns (81.0)h  

τ2 2.84ns (16.2)h   

τ3 15.29ns (2.8)h  

403 
τ1 1.71ns (69.6)c  

τ2 9.49 ns (30.4)c   

525 

τ1  10ms (10.2)d 

τ2  52ms (24.9)d  

τ3 990ms (64.9)d 

510 
τ1 510 ms (14.3)g  

τ2 1118 ms (85.7)g   

2 

(crystals) 

 

13% 

 

415 

τ1  1.26ns (70.5)c 

τ2  4.21ns (29.5)c   

420 

τ1  4.48ns (60.6)e 

τ2  18.17ns (39.4)e 

τ1  3.9ns (64.6)g 

τ2  13.88ns (35.4)g 

τ1  5.54 ns (73.0)g 

τ2  22.28ns (27.0)g  

 

a
10

-4
M;

 b
10

-2
M; 

c
measured at 420 nm; 

d
measured at 570 nm; 

e
measured at 450 nm;

 

f
microcrystalline powders obtained by fast DCM evaporation; 

g
measured at 540 nm; 

h
measured 

at 400 nm. 
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To probe the mechanism underlying the observed emissive behavior of 1, a DFT and TDDFT 

investigation on molecular scale has been performed. Geometry optimization of 1 provides a 

minimum having an almost perfect C3h symmetry, while optimization of stacked aggregates 

(dimer and tetramer, see Fig. S13) led to stable minima where the monomers lack such 

symmetry. This confirms that intermolecular - stacking interactions are responsible for the 

observed molecular distortion (interaction energy for the dimer = 10.11 kcal/mol). 

The simulated absorption spectrum of the optimized monomer consists of only two significant 

transitions, S0S3 and S0S4, both computed at 203 nm (207 nm in DCM) with oscillator 

strength f=0.56 and described as * transitions, with the involved frontier orbitals delocalized 

over the whole molecule (Fig. S14). They correspond to the strong absorption band observed in 

DCM solution at 230 nm (Fig. S1). The S0S1 transition, on the other hand, is computed at 228 

nm with virtually zero oscillator strength and * character. Similar features are obtained for 

the - stacked dimer and tetramer of 1 (two strong transitions at 200-203 nm and, respectively, 

two and four almost degenerate weak transitions at 228-230 nm), but the oscillator strengths of 

the weaker transitions slightly increase with increasing the dimensionality of the aggregate 

(f=0.0007 and 0.0011 for the dimer and the tetramer, respectively). Such trend is in agreement 

with the weak absorption/excitation band observed in highly concentrated DCM solutions. Its 

weakness could be explained by the chromophore’s high symmetry and may be then interpreted 

as a symmetry-forbidden transition. Such a high symmetry is approximately preserved in dilute 

solutions (as indicated by monomer calculations), but partially disrupted when intermolecular 

forces arising from the aggregate state come into play, allowing intensification of the S0S1 

transition. The associated transition dipole moment is found to lie in the molecular plane. 
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Referring to the X-ray structure, it forms an angle of 87.7° with the axis through the centroids of 

the triazinic ring (Fig. 4), confirming the H-type nature of the crystalline aggregates of 1.
16 

Aggregation is predicted to be as well responsible of the observed enhancement of the 

fluorescence when going from solution to the solid state. Optimization of the S1 excited state of 

the monomer and dimer of 1, in fact, leads to stationary states at 249 and 276 nm, respectively, 

characterized by significantly increased (from 0 to 0.086) oscillator strengths going from the 

monomer to the dimer. The nature of the excited emissive states of 1 has been investigated by 

determining the set of the first excited triplet states for the monomer and the dimer to compare 

their energy with that of S1,
7,17,18

 since it is known that intersystem crossing (ISC) is promoted by 

low energy gaps between the two states involved. For the monomer, up to six triplet states (T1-

T6) lye below S1, three of them having similar transition configurations to that of S1 and lying 

within 0.35 eV from it (Fig. 5, left).  

 

Figure 5. Schematic diagram of singlet and triplet TD-B97X/6-311++G(d,p) energy levels and 

main orbital configurations of a monomer (left) and dimer (right) of 1. The green dashed arrows 

correspond to the ISC processes probably occurring from the S1 state to the closest lower-lying 

triplet states (Tn).  
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Calculations on the dimer provide an increased number of triplet states below S1 (and the 

degenerate S1’ state), T1-T12, as obviously expected owing to the strong intermolecular 

interaction, six of them having transition configurations similar to S1 and S1’, and close to them 

within 0.35 eV  (Fig. 5, right), implying a smaller S-T energy gap. This indicates enhanced ISC 

for the dimer with respect to the monomer, supporting the higher ISC probability to populate 

triplet excited in the H-aggregate phase. As previously demonstrated,
7
 this type of aggregation 

together with the (,*) character of the triplet emitting state, which increases its lifetime owing 

to the poor spin-orbit coupling with the singlet states,
3
 might provide an effective stabilization of 

the triplet excitons necessary for ultralong phosphorescence. 

To confirm this hypothesis on the key role of H aggregates in 1, we have isolated and 

characterized (including single crystal X-ray structure determination,
19

 Fig. S19) its isomer, 2. 

This compound crystallizes as hydrated phase with CIE behavior, being very poorly emissive in 

solution (10
-4

 M in DCM  2.8% at r.t. in air) but quite so in crystals (λmax = 415 nm,  = 13%) 

(Fig. S15), with emission characterized by fast de-excitation (in the ns region, see S16 and Table 

1), which is red-shifted to 420 nm at 77 K (Fig. S17). However, no longer lifetime emissive 

component is observed for such emission even at low temperature (77 K, Fig. S18, Table 1). By 

looking at its crystal structure, a distortion from planarity quite similar to that of 1 is observed. 

Crystal packing, on the other hand, is completely different, revealing herringbone aggregation of 

- stacked ribbons formed by dimeric units interconnected through cyclic C–H∙∙∙N hydrogen 

bonds and joined each other by the cocrystallized water molecules (Fig. 4, right). The dimeric 

units form face-to-face parallel-packed slipped column with distances between average 

molecular planes equal to 3.250 Å, and distance between centroids of the central rings equal to 
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4.65 Å. The greater slippage compared to that of 1 suggests the presence of weaker - 

interactions. Moreover, the transition dipole moment forms an angle of 50.7° with the axis 

through the centroids of the triazinic ring (Fig. 4). Such loss of H-aggregation in this structure is 

in line with its lacking of the ultralong emission component. The role of aggregation in tuning 

the different emissive properties of 1 and 2 in crystal phase is further supported by theory. 

Calculations on 2 provide molecular properties
20

 rather similar to those of 1, as observed 

experimentally. However, differently from 1, simulations fail to model the aggregate form of 2, 

since a much shorter intermolecular distance for the optimized dimer with respect to the 

experimental value (see SI) was found owing to the lack, in calculations, of the cocrystallized 

water molecules.  

In conclusion, we have prepared and fully characterized a very simple organic molecule, cyclic 

triimidazole (C9H6N6), 1, able to display crystallization induced and mechanochromic emissive 

behaviour, together with visible ultralong luminescence (1 s) at ambient conditions associated 

with H-aggregation. This compound open up to a new family of next-generation organic 

phosphors. 
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