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A B S T R A C T

Endocytosis is an important regulator of cell–cell signaling and endocytic trafficking has

been increasingly implicated in control of tumor suppression. Recent insights from Dro-

sophila indicate that impairment of multiple trafficking steps which lead to receptor deg-

radation can cause tumor formation in epithelial organs. These tumors are characterized

by sustained activation of a number of mitogenic signaling pathways, and by subversion

of epithelial polarity and the apoptotic response. Cooperation between such alterations,

as well as tumor–host interactions, is also observed. The recapitulation of several hall-

marks of human cancers in fly tumors provides a framework to understand the role of

defective endocytosis in cancer.

ª 2009 Federation of European Biochemical Societies.

Published by Elsevier B.V. All rights reserved.

1. Introduction

Cancer progression involves the stepwise acquisition of
a number of neomorphic traits by tumor cells. These traits in-
clude self-sufficiency in growth signaling, evasion of apopto-
sis, insensitivity to antigrowth signals, tissue invasion and
metastasis, and the ability to alter tumor environment (Hana-
han and Weinberg, 2000). These hallmarks of cancer require
cells to subvert a number of physiological processes that

together contribute to determine the overall growth and orga-

nization of tissues. Processes generally subverted by cancer
cells include cell proliferation, cell polarization and pro-
grammed cell death. These processes are genetically con-
trolled by a number of tightly regulated, widely conserved
signaling pathways that communicate the state of cells within
a tissue. For this reason, genes that act as negative regulators
of intercellular signaling pathways can behave as tumor
suppressors.
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Since cancer cells promote their own growth and dissemina-
tion by altering physiological events that normally occur in the
tissue of origin, the question of how polarity, growth and apopto-

sis are controlled and can be subverted is one of central impor-
tance to modern cancer biology. Unfortunately, answering this
question in mammalian cells is complicated by the frequent
functionalredundancyofmammaliangenesaswellas theexten-
sive crosstalk between different pathways. Drosophila has more
simple genetic circuitry and has been extensively used to study
polarity, growth, and apoptosis, in particular due to the ability
to perform genetic screens to identify new molecules involved
in a given pathway (St Johnston, 2002). Inaddition, a good propor-
tion of cancer and disease genes in humans are conserved in
Drosophila and, in many case, a single fly gene serves the func-

tion of multiple related mammalian family members (Fortini
et al., 2000; Bernards and Hariharan, 2001). As extensively
reviewed elsewhere, the exploitation of these features is turning
the fly into an outstanding genetic system to study many biolog-
ical processes that are relevant to tumorigenesis (Bilder, 2004;
Hariharan and Bilder, 2006; Brumby and Richardson, 2005).

Endocytosis, the process by which cells internalize differ-
ent kinds of molecules, has been increasingly implicated in
controlling tumor suppression (Mosesson et al., 2008). In this
review, we will focus on emerging insights from Drosophila
suggesting that growth, polarity and apoptosis in epithelial or-

gans is strongly altered in tumors that arise when endocytic
regulators are impaired. These tumors display several hall-
marks of cancer and, as discussed at the end of the review,
might represent useful cancer models.

2. The dawn of tumor suppression studies
in Drosophila

The origins of tumor biology in Drosophila can be traced back
almost half a century, when Schneiderman, Gateff, and Bryant
identified mutations in a group of genes that they called ‘tumor
suppressor genes’ (TSGs). Animals homozygous mutant for
TSGs contained tumor-like tissue growths in larval and/or
adult organs. Larval tumors occurred in several tissues includ-
ing in the brain, the hematopoietic system, and the developing
epithelial organs called imaginal discs. The tumorous tissue
displayed continuous proliferation, and, in some cases, altered
cell morphology. In addition, some of the tumors were invasive

and transplantable, and the transplanted tumors were lethal to
the recipient as they were to the original host. These and other
characteristics indicated that the fly tumors displayed hall-
marks of cancer, and satisfied several criteria for tumors used
by vertebrate cancer biologists (Gateff and Schneiderman,
1967; Bryant and Schubiger, 1971; Gateff, 1978).

Since their original isolation, characterization of the differ-
ent fly TSG mutations has revealed a wealth of tumor tissue
phenotypes. For instance, tumors arising from epithelial imag-
inal disc tissue have been sorted in two classes. The first class
includes ‘hyperplastic’ tumors, which display increased prolif-

eration but otherwise normal differentiation and organ archi-
tecture. The second class includes ‘neoplastic’ tumors, which
displayed not only overproliferation but also altered epithelial
architecture and loss of terminal differentiation. Despite their
epithelial origin, tumor cells lack cell–cell junctions and have

a disorganized appearance, bringing to mind the epithelial to
mesenchymal transition (EMT) observed during malignant
cell transformation in human cancer. The original neoplastic

TSG mutations disrupt scribble, discs large, lethal (2) giant larvae,
which encode three proteins that function as scaffolds at cell–
cell junctions and which show altered expression in certain hu-
man cancers (Bilder et al., 2000; Humbert et al., 2003).

The limited number of mutations initially identified that
lead to tumorous growths in homozygous flies, as compared
to the variety of known mammalian TSGs, could reflect the
lethality of these mutations during early development. How-
ever, genetic mosaic technology was subsequently developed,
which allows the generation of homozygous mutant tissue
within an otherwise heterozygous fly by mitotic recombina-

tion. This technological advancement was instrumental in
developing genetic screens that have now identified a much
larger group of TSGs, including members of both the hyperplas-
tic and neoplastic classes. These TSGs have dramatically
expanded our understanding of the mechanisms that control
cell proliferation and restrain organ size.

3. Endocytic genes define a novel type
of Drosophila tumor suppressors

Mosaic screens aiming at identifying new neoplastic TSGs
were designed to recover mutations that were lethal to the
larva when homozygous mutant cells were generated within
only a small amount of epithelial tissue. This design was
meant to both circumvent the limitations of previous screens
(see above) and to mimic the clonal origin of cancer in verte-
brate epithelia. Mosaic screening led to a four-fold increase
in the number of known neoplastic TSGs (Lu and Bilder,

2005; Vaccari and Bilder, 2005; Menut et al., 2007; Morrison
et al., 2008). Surprisingly, despite the unbiased nature of the
approach, genetic mapping of the majority of the newly iso-
lated TSG mutations revealed lesions in genes coding for a sin-
gle class of proteins: regulators of the endocytic pathway.

Endocytosis is the main process by which cells maintain
transmembrane protein homeostasis. Endocytic trafficking
involves internalization of portions of the plasma membrane
to form carrier vesicles. Multiple routes of internalization ex-
ist in cells, which differ in their requirements for core cellular
machinery such as the hexameric Clathrin membrane coat

and the small GTPase Dynamin involved in vesicle scission
(for review, Doherty and McMahon, 2009). Most of these routes
lead to fusion of vesicles to the so-called ‘early endosome’, in
a process requiring specific syntaxins and regulated by the
small GTPase Rab5. The early endosome serves as a station
for both recycling certain cargoes back to the plasma mem-
brane, and for sending others for degradation in the lysosome
(Spang, 2009). Sorting for degradation involves capturing of
ubiquitylated cargoes on the limiting membrane of endo-
somes by the Hrs/STAM complex and subsequent sequestra-
tion to internal luminal vesicles by components of three

Endosomal Sorting Complex Required for Transport (ESCRT-
I, -II, -III) complexes. This leads to the formation of multivesic-
ular bodies (MVB), which fuse with lysosomes in which acidi-
fication-dependent degradation of internal luminal vesicles
and their embedded cargoes occurs (Saksena et al., 2007).
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The endocytic genes known to behave as TSGs in Drosoph-
ila encode regulators of two of these steps: cargo entry into the
early endosome and cargo sorting within the MVBs (Figure 1).
The former genes encode the fly homologs of Syntaxin7/12
[called Avalanche (Avl) in Drosophila], the GTPase Rab5, the
Syntaxin-binding protein Vps45 and the Rab5 effector Rabeno-
syn-5. The latter encode Tsg101 and Vps28, two components
of the ESCRT-I complex, Vps25 and Vps22, two components

of the ESCRT-II complex, and Vps20, Vps32 and Vps2, three
components of the ESCRT-III complex (Lu and Bilder, 2005;
Moberg et al., 2005; Thompson et al., 2005; Vaccari and Bilder,
2005; Herz et al., 2006; Morrison et al., 2008; Vaccari et al., in
press). Screens have not been saturating and approximately
half of the Drosophila genome has not been screened yet, sug-
gesting that the TSGs above constitute only a fraction of the
endocytic genes that control growth in Drosophila.

Null mutants in all of the above endocytic regulators lead to
formation of neoplastic tumors characterized by similar loss of
epithelial polarity and of organ growth. At the cell biological level,
electron microscopyand immunohistochemistryalso reveal ma-

jor defects in endocytic compartment morphology, ranging from
accumulation of small vesicles below the plasma membrane of
Avl, Rab5, vps45, and rabenosyn-5 mutant cells to enlarged endo-
somes and impaired MVB formation in ESCRT mutant cells

(Morrison et al., 2008; Vaccari et al., in press). Endocytic tracer up-
take and cargo trafficking assays were conducted in mutants to
determine whether endocytic trafficking was altered. Such ex-
periments reveal that endocytic trafficking is blocked at the
step of endocytosis at which the mutated gene is expected to
function (Lu and Bilder, 2005; Vaccari and Bilder, 2005; Morrison
et al., 2008; Vaccari et al., 2008). Together with the fact that all
the mutations are predicted to express non-functional protein

truncations, such trafficking defects suggest that the neoplastic
tumors arise from complete lack of endocytic gene function.

The discovery that endocytic trafficking steps are tumor
suppressive by forward genetics was rapidly followed by re-
ports that a classical Drosophila TSG with then unknown func-
tion, called lethal giant discs (lgd ), also plays a role in endocytic
trafficking (Childress et al., 2006; Gallagher and Knoblich, 2006;
Jaekel and Klein, 2006). A role in endocytic trafficking also
emerged for the Drosophila TSGs merlin and expanded, proteins
related to that encoded by the human TSG NF2 (Maitra et al.,
2006). In addition, shibire, the Drosophila homolog of dynamin,
a well-studied endocytic component, was found to act as a TSG

(Vaccari et al., 2008). This evidence reinforced the idea that im-
pairment of endocytosis can be a direct cause of tumor induc-
tion in Drosophila. Interestingly, analysis of other endocytic
mutants suggests that impairment of certain endocytic steps

Figure 1 – Tumorigenic steps of endocytosis. (A) Drosophila tumors arise when multiple steps of endocytic trafficking are blocked. Schematic view of

the compartments composing the endocytic system of Drosophila epithelial cells and of the endocytic trafficking steps that control tumorigenesis.

The genes that act as tumor suppressors at the step of internalization of cargoes, entry of cargoes into endosomes and ubiquitylation-dependent

sorting of cargoes into MVBs are listed in red. Genes that do not act as tumor suppressors are listed in black. (B) Loss of epithelial architecture and

growth control in endocytic tumors. Cross-section of the epithelial primordia of the eye in WT Drosophila larvae (top) and of tumorous eye primordia

arising from lack of vps25, an ESCRT component crucial of MVB sorting of ubiquitylated cargoes (bottom). Note the monolayered organization of

the WT epithelial tissue, compared to the multilayered and overgrown organization of the tumor (same magnification).
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do not lead to tumor formation. This is the case of Drosophila
mutant tissue for the late-acting endocytic mutants such as
the late endosomal PtdIns(3)P 5-kinase/PIKfyve Fab-1 and for

lysosomal HOPS complex genes vps18, vps33 and vps41 (Shes-
topal et al., 1997; Warner et al., 1998; Rusten et al., 2006).

Together, the mosaic screens and subsequent research sum-
marized above establish the existence of a novel class of Dro-
sophila tumor suppressor genes, which we will refer here as
to ‘endocytic TSGs’. The evidence that endocytic steps that pre-
cede cargo sequestration into MVBs are tumor suppressive in
Drosophila suggests that these genes act as tumors suppressors
by preventing inappropriate trafficking and accumulation of
cargoes important for polarity and growth in epithelial tissues.

4. Jack of all trades: the endosomal system is as
a multivalent infrastructure for diverse cellular processes

In order to understand how mistrafficking of cargoes might al-
ter tissue growth and polarity, it is useful to consider how en-
docytosis controls these processes in the first place.
Endocytosis plays a well-established and conserved role in

controlling signal transduction, as reviewed elsewhere in
this issue. Thus, here we will only touch on the current under-
standing of how endosomes are thought to control signaling,
and briefly review evidence in Drosophila useful to later dis-
cussions of the phenotypes of endocytic TSG mutant cells.

A classical paradigm posits that endocytosis acts as a nega-
tive regulator of signaling because a prominent fate of recep-
tors that are trafficked away from the plasma membrane is
MVB sorting and lysosomal degradation. However, a growing
body of studies in different organisms indicates that endocytic
trafficking can also sustain or even activate signaling (Miac-

zynska et al., 2004). The emerging role of the endosome in ac-
tivating signaling is illustrated in Drosophila by studies on
Notch, TGF-beta [Decapentaplegic (Dpp) in Drosophila], Wnt
[wingless (wg) in Drosophila] and Jak/Stat signaling. Indeed,
following ligand engagement, entry of the Notch receptor in
endosomes appears necessary for signaling activation
(reviewed in (Fortini and Bilder, in press; Kopan and Ilagan,
2009; Tien et al., 2009)). Interestingly, very recent data suggest
that in specific developmental contexts, Notch is activated in
a specific subpopulation of endosomes containing the endo-
cytic protein SARA, which have been previously characterized

as a major site of Dpp signaling (Bökel et al., 2006; Coumailleau
et al., 2009). As for Wg, while several studies indicated that sig-
naling is attenuated by lysosomal degradation (Dubois et al.,
2001; Piddini et al., 2005; Marois et al., 2006; Rives et al.,
2006), one report suggests that Wg signaling is indeed acti-
vated in endosomes (Seto and Bellen, 2006); Finally, Jak/
STAT signaling activation is dependent on endocytic traffick-
ing of Domeless, the IL-6 related receptor for Jak/STAT signal-
ing (Devergne et al., 2007). This evidence implies that the
signaling profile of endocytic TSG mutant cells is likely to de-
pend on the specific step of endocytosis affected and the acti-

vation status of each signaling pathway at such step.
The widespread role of endocytosis in control of signaling

suggests the possibility that loss of tumor suppression in endo-
cytic TSG mutant cells might arise from altered growth and po-
larity signaling. In contrast to the variety of gene product

interference strategies and cellular contexts in which growth
and polarity alterations have been studied in mammals, a large
part of these studies in Drosophila have been conducted in ep-

ithelial imaginal discs utilizing null mutant alleles. This has
provided a fairly uniform context in which to accurately com-
pare evidence to unearth some of the circuitry of endocytic tu-
mors, as discussed in the next part of this review.

5. Clogging the mitogen sink: multiple receptors fail
to be degraded and cannot stop signaling in endocytic
TSG mutant tissue

One of the prominent features of endocytic tumors in Drosophila
is theirunrestrainedproliferation.For instance,avl tumorscanbe
composed of almost three times as many cells as the epithelial
tissue they originate from by the time they are lethal to the
host (Lu and Bilder, 2005); ESCRT mutant tumors appear even
larger. Such overproliferation implies that the mutant cells
have acquired self-sufficiency in growth signaling. How could
such a trait be acquired in tumors arising from impaired endo-
cytic function? Not surprisingly, given the role of endocytosis in

controlling multiple signaling pathways, self-sufficiency is likely
to be acquired by ectopic activation of more than one mitogenic
signal. These include, in the order discussed below, pathways in-
volvingEGFR, Notch, and dpp.A contributionof Jak/STAT and Wg
signaling is also likely but merits further testing (Figure 2).

RTK signaling is widely used by multiple cell types to con-
trol proliferation in different organisms. In Drosophila as in
mammals, signaling induced by activation of EGFR is downre-
gulated by ubiquitylation and MVB-mediated degradation of
EGFR (Pai et al., 2000; Jékely et al., 2005). Consistent with an im-
pairment of EGFR degradation, clones of ESCRT mutant cells

accumulate EGFR in endosomes. This accumulation correlates
with sustained EGFR signaling, as also assessed by genetic in-
teractions with avl and ESCRT mutants (Vaccari et al., in
press). Despite the fact that EGFR signaling activation has
not been systematically tested in all endocytic TSG mutants,
this evidence suggests that sustained EGFR signaling activa-
tion might contribute to some of the self-sufficiency in growth
signaling observed in Drosophila endocytic tumors.

A second way by which certain Drosophila endocytic tumors
could reach self-sufficiency in growth signaling is by ectopically
activating Notch signaling. In contrast to EGFR signaling, the ex-

tent of Notch signaling activation has been systematically ana-
lyzed in Drosophila endocytic TSG mutant tissue. In imaginal
discs, mutations of endocytic TSGs that block MVB sorting of
Notch, such as lgd and ESCRT\ components, as well as expres-
sion of a constitutively active Rab5, lead to endosomal Notch ac-
cumulation and to high expression of reporters of Notch
signaling activation (Moberg et al., 2005; Thompson et al., 2005;
Vaccari and Bilder, 2005; Childress et al., 2006; Herz et al., 2006;
Jaekel and Klein, 2006; Vaccari et al., 2008). Considering that ex-
pression of a constitutively active Notch in eye imaginal discs
per se is mitogenic and results in overproliferation (Chao et al.,

2004), ectopic Notch activation in endocytic TSGs that block
MVB sorting is likely to contribute to growth self-sufficiency, al-
though this has not yet been directly tested. In sharp contrast,
mutations of endocytic TSGs such as shibire, avl, Rab5, vps45
and rabenosyn-5, or overexpression of a dominant negative
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form of Rab5 lead to failure to activate the Notch receptor (Lu
and Bilder, 2005; Morrison et al., 2008; Vaccari et al., 2008), indi-

cating that signaling is not active in endocytic TSGs that control
entry of Notch into the early endosome. This evidence suggests
that mitogenic Notch signaling is not required for overprolifera-
tion in this subset of endocytic TSG mutants.

Notch signaling activation in endosomes of cells that lack lgd
and ESCRTs is ligand-independent (Thompson et al., 2005;
Childress et al., 2006; Jaekel and Klein, 2006; Vaccari et al.,
2008). The mechanism of this unusual mode of Notch activation
in lgd and ESCRTs mutant tissue is presently unclear. However,
ligand-independent Notch activation happens physiologically
in a subset of normal Notch signaling events regulated by the

E3 ubiquitin ligase Deltex (Wilkin et al., 2004; Fuwa et al.,
2006). Deltex directs Notch to the degradative late endosomal/
lysosomal compartment and acts with the ß-arrestin Kurtz to
degrade it (Hori et al., 2004; Mukherjee et al., 2005). Recent
data indicate that HOPS and AP-3 complexes in certain contexts
act in opposition to MVB sorting and shunt Notch to the limiting
membrane of endosomes allowing activation of unliganded
Notch (Wilkin et al., 2008). Considering that to maintain
a steady-state levels of Notch at the plasma membrane, a por-
tion of unliganded and inactive Notch is continuously produced
and targeted to degradation via endocytic trafficking, (Sakata

et al., 2004), and that endosomal pH is optimal for activity of
g-secretase, the enzyme that cleaves and release active Notch
(Pasternak et al., 2003), it will be interesting to understand
whether impaired sorting of Notch in lgd and ESCRT mutant
cells might expose the accumulated unliganded Notch to an
acidifying and cleavage-prone environment, thus favoring ec-
topic and ligand-independent Notch cleavage and activation.
This mechanism might support some of the self-sufficiency in
growth signaling observed in lgd and ESCRTs tumors.

Other signaling pathways, though less studied, could also
contribute to self-sufficiency in growth signaling. In one ex-
ample, cells lacking Vps25 display endosomal accumulation

of Thickveins, one of the receptor for Dpp signaling, which is
known to be active in endosomes (Thompson et al., 2005;
Bökel et al., 2006). In addition, a reporter for Dpp signaling ac-
tivation is highly expressed in clones of vps25 mutant cells

and some of the outgrowth of surviving vps25 mosaic animal
mimicks those obtained by ectopic dpp activation (Thompson

et al., 2005). In a second example, evidence suggests that over-
proliferation in certain Drosophila endocytic tumors might be
mediated by Jak/STAT signaling. Indeed, ectopic Notch signal-
ing activation in ESCRT mutant cells causes inappropriate ex-
pression of Unpaired (Upd), a potent mitogen during normal
growth of eye imaginal discs (Tsai and Sun, 2004; Moberg
et al., 2005; Vaccari and Bilder, 2005; Herz et al., 2006). Upd is
the secreted ligand for Jak/STAT signaling, whose activation
perdures in endosomes (Devergne et al., 2007). Since Upd ac-
cumulates in ESCRT mutant endosomes, it is possible that im-
paired degradation of Jak/STAT signaling components in

ESCRT tumors might cause sustained autocrine activation of
signaling. However, while paracrine Jak/STAT signaling acti-
vation is sufficient to sustain non-cell-autonomous growth
(Moberg et al., 2005; Vaccari and Bilder, 2005; see cooperativity
section), the contribution of autocrine Jak/STAT signaling to
the growth of ESCRT tumors remains to be assessed.

Finally, while accumulation of Wg receptors has not been
tested in ESCRT mutant cells, Wg signaling activation is re-
duced in cells in which Dynamin or Rab5 function is impaired,
and enhanced in hrs mutant cells (Seto and Bellen, 2006), sug-
gesting that ectopic Wg signaling might be present in ESCRT

tumors. Overall, the analysis of mitogenic signaling in Dro-
sophila endocytic tumors indicates that multiple pathways
are altered. Further research will reveal the contribution of
each pathway to the tumor phenotype.

6. The ying and yang of epithelia: the
interdependence of endocytic TSG function and cell
polarity

Epithelial polarity, like intercellular signaling, relies on cues

received from the extracellular environment. Therefore, it
might be expected that endocytosis of cell surface proteins
could play a role in epithelial polarity as well. Mammalian
cell culture experiments initially stressed the role of polarized
sorting and delivery of TM proteins in PM polarity. Recently,

Figure 2 – The mitogenic, polarity and apoptotic profile of endocytic TSG tumors. Schematic representing the alterations observed in tumors

displaying impaired cargo internalization or entry into the early endosome (top row) or impaired MVB sorting (bottom row). The mitogenic

(yellow), polarity (green) and apoptotic (light blue) pathways found altered are listed. Abbreviations: Inc. [ increased signaling, Dec. [ decreased

signaling Act. [ activated signaling, ZA Misloc. [ Mislocalized, PM [ plasma membrane. 1 [ stronger increase in mutants affecting cargo

internalization or entry into the early endosome, rather MVB sorting. 2 [ ligand-independent activation. See text for details.
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however, genetic screens in flies have pointed to a central role
for endocytosis as well in this process. Many mutations that
confer strong blocks in the endocytic pathway, whether at

the cell surface, entry into early endosomes, or sorting into
MVBs, display a common defect in epithelial polarity. In these
mutant cells, peripheral membrane proteins normally re-
stricted to the apical membrane domain, such as aPKC, are
mislocalized instead throughout the plasma membrane (Lu
and Bilder, 2005; Vaccari and Bilder, 2005; Morrison et al.,
2008). This phenotype suggests an ‘apicalization’ of the plasma
membrane highly reminiscent of that seen in cells mutant for
TSGs that act as scaffold at cell–cell junctions (Bilder et al.,
2000). As mentioned above, these endocytic mutant cells also
show cell-autonomous overproliferation to form neoplastic

tumors, although there appear to be differences in prolifera-
tion kinetics and cell survival amongst the endocytic mutant
cells, perhaps due to the additional signaling pathways differ-
entially activated in them (see above and below).

This dramatic demonstration of the importance of endocy-
tosis in controlling epithelial polarity suggests that cell surface
levels of critical polarity regulators must be tightly controlled to
allow proper maintenance of epithelial organization. An attrac-
tive candidate for such a regulator is Crumbs, which is a trans-
membrane protein that displays characteristics of an apical
membrane determinant in Drosophila tissues. Increasing

Crumbs levels by transgenic overexpresion apicalizes cells
and drives neoplastic transformation (Lu and Bilder, 2005);
a similar increase resulting from a failure in endocytosis could
cause the same phenotype. The involvement of endocytic reg-
ulation of Crumbs or other TM cargo in neoplastic transforma-
tion has not yet been directly tested. Moreover, levels of
Crumbs appear increased in ESCRT mutant cells, but most of
the Crb is trapped in aberrant endosomes (Moberg et al., 2005;
T.V. and D.B., unpublished) it is not clear how accumulation
of this internalstoreof Crb could induce thePM polaritydefects.

The striking phenotypic similarities between mutations in

endocytic regulators and the junctional scaffold proteins sug-
gest that there may be molecular links between these two clas-
ses of neoplastic TSGs. Could the junctional scaffold nTSGs
control proliferation through effects of endocytosis? While the
mechanistic activity of the junctional scaffold nTSGs in epithe-
lial polarity remains unclear, it has been established that they
act by inhibiting the Par complex proteins which control apical
membrane identity. Interestingly, several recent reports have
highlighted activities of the Par complex, along with the small
GTPase Cdc42, in regulating endocytosis in general. In Caeno-
rhabditis elegans and mammalian cells, these proteins promote

either endocytic internalization or recycling of several different
cargo (Balklava et al., 2007). A role for Par proteins in promoting
surface endocytosis has also been described in Drosophila
imaginal discs, where the mechanism seems to involve actin
polymerization (Georgiou et al., 2008; Leibfried et al., 2008).
However, in Drosophila embryos, Par proteins and Cdc42 seems
to negatively regulate endocytosis from the cell surface (Harris
and Tepass, 2008). The precise step of endocytosis, and the
endocytic regulator, which the Par complex controls is there-
fore not yet clear. Overall, whether junctional scaffold nTSGs
have according effects on endocytosis, and whether an endo-

cytic defect underlies the common polarity and overgrowth
phenotypes seen in the TSG mutant tissue, remains unclear.

While the reasons for which loss of epithelial polarity causes
overproliferation in Drosophila remains unknown, one possi-
bility is that disruption of polarity and cell–cell junctions creates

a situation in which contact inhibition of proliferation is lost.
Contact inhibition of proliferation is a phenomenon originally
defined in mammalian cell culture, in which confluent cells
that are untransformed will stop proliferating; however, trans-
formed cells will continue to proliferate and pile up upon each
other. The extent to which the mechanisms underlying disrup-
ted contact inhibition in culture reflect the mechanisms disrup-
ted in a human tumor is the subject of debate. Nevertheless, it is
striking that a major regulator of contact inhibition is the Merlin
protein, encoded by the human TSG NF2, which is mutated in
some neurofibromatosis patients (Johnson et al., 2002; Curto

et al., 2007). Merlin is a cytoskeleton-associated protein found
at cell–cell junctions, and primary cultured cells mutant only
for NF2 show a strong disruption of contact inhibition. The
mechanisms underlying NF2-mediated tumor suppression are
the subject of a recent review (McClatchey and Fehon, 2009),
but in this context it is notable that one defect of NF2 mutant
cells is increased endocytic traffic of EGFR. Upon cell–cell con-
tact, Merlin seems to sequester EGFR in an endocytosis-resis-
tant membrane domain, contributing to silencing of EGFR
signaling. Conversely, NF2 mutant cells show increased EGFR
endocytosis as well as increased signaling that promotes cell

proliferation, even in confluent cultures (Curto et al., 2007). In-
terestingly, in fly tissues, where Merlin also participates in
growth control, loss of Merlin and the related protein Expanded
results in decreased endocytosis of EGFR and several other sig-
naling receptors (Maitra et al., 2006). The link seen with Merlin
between cell–cell contacts, endocytosis, and proliferation con-
trol provides further support that these links are not limited
to the fly but also play a role in mammalian cancer biology.

7. Dead or alive? The ambivalent regulation of
apoptosis in endocytic TSGs mutant tissue

Polarity alterations in epithelial cells are known to trigger apo-
ptosis. Despite this, one of the hallmarks of cancer cells is that
they are able to escape apoptotic elimination. Is apoptosis a fea-
ture altered in endocytic TSG tumors? Remarkably, endocytic
TSG mutant cells display a differing apoptotic behavior that de-
pends on tissue context in which the tumors arise. Consistent

with their loss of epithelial architecture and of cell–cell junc-
tions, it was found that, when clones of mutant cells are sur-
rounded by WT cells, they are apoptotic and eventually
eliminated from the epithelium (Lu and Bilder, 2005; Thompson
et al., 2005; Vaccari and Bilder, 2005; Herz et al., 2006; Morrison
et al., 2008). A recent study focusing on apoptosis of vps25 mu-
tant tissue concludes that there are at least two proapoptotic
pathways activated in these cells: One that is mediated by the
JNK signaling and another that is mediated by the Hid/Diap1/
Dronc/Ark (Herz et al., 2006). When both pathways are blocked,
clones of vps25 mutant cells become extremely overgrown, in-

dicating that even though mitogenic pathways are activated in
these cells (see above), their growth potential is also heavily
hindered by activation of multiple apoptotic pathways.

Interestingly, activation of the Hippo pathway is increased
in clones of vps25 mutant cells. Significantly, inactivation of
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Hippo signaling completely blocks cell death in vps25 mutant
clones, suggesting that the Hippo pathway control overall ap-
optotic response in these cells (Herz et al., 2006). Hippo signal-

ing can induce cell death (reviewed by Edgar, 2006; Vidal and
Cagan, 2006), but it is currently unknown how Hippo signaling
is activated in vps25 mutant cells. By analogy to Notch, it has
been proposed that a putative receptor which controls Hippo
signaling may fail to be degraded in vps25 mutant cells, lead-
ing to overactivation of Hippo signaling. The possibility of ab-
errant Hippo pathway activation in endocytic TSG mutant
tissue is particularly intriguing because the Hippo pathway
controls a wide range of cellular functions including, in addi-
tion to cell death, cell growth and polarity (Hamaratoglu et al.,
2006; Willecke et al., 2006). Disruption of the Hippo pathway

might therefore potentially link the apoptotic, proliferative
and polarity aspects of the endocytic tumors (see below).

In sharp contrast with the behavior of clones of mutant cells
that neighbor WT cells, when the entire imaginal disc is mutant,
cells are not apoptotic. However, they still strongly activate JNK
signaling, as judged by ectopic expression of MMP-1 (Menut
et al., 2007; Morrison et al., 2008; Vaccari et al., in press), a JNK tar-
get (Adachi-Yamada et al., 1999). The mechanism of such oppo-
site apoptotic behavior that depends on tumor context is
unknown. However, it is interesting to note that JNK-mediated
apoptosis is activated in response to signaling discontinuities,

such as those likely to occur at the boundary between WT and
endocytic mutant tissue (Adachi-Yamada and O’Connor, 2002).
It is thus possible that endocytic mutant cells that are part of
an entirely mutant imaginal discs or that lay at the center of large
tumors might escape apoptotic elimination. In addition, it has
been recently been suggested that JNK activation depends on
endocytic trafficking of Eiger, the Drosophila homolog of tumor
necrosis factor (TNF) (Igaki et al., 2009). These data suggest the
possibility that apoptotic response of endocytic mutant cells
might also be dictated by trafficking of specific apoptotic cargoes.

8. Partners in crime: cooperative pathway
interactions and heterotypic signaling in Drosophila
endocytic TSG mutant tissue

Given the variety of mitogenic, cell death and polarity pathways
that are altered in endocytic TSG mutant cells (see above), is co-
operation among these pathway contributing to the tumor phe-

notype? A recent line of investigation provides evidence
supporting this scenario in tumors arising from lack of scaffold-
ing TSG function. Indeed, these become invasive and metastatic
upon the additional forced activation of either Ras, a key trans-
ducer of RTK signaling, or of Notch signaling (Brumby and
Richardson, 2003; Pagliarini and Xu, 2003). Subsequent studies
suggest that in such a genetic context, loss of cell polarity, com-
bined with strong mitogenic signaling, trigger a switch in the role
of JNK signaling from proapoptotic to progrowth/proinvasive
(Igaki et al., 2006; Uhlirova and Bohmann, 2006). As specified
above, most endocytic TSG tumors display loss of polarity similar

to that of scaffolding TSGs. In addition, they activate JNK signal-
ing and display ectopic EGFR signaling. Finally, endocytic TSGs
that block MVB sorting, such ESCRT strongly activate Notch sig-
naling and display metastatic behavior upon block of apoptosis
(Thompson et al., 2005). This evidence predicts that cooperative

interactions between mitogenic, cell death and polarity path-
ways might contribute to the endocytic TSG tumor phenotype.
Such indirect evidence provides the basis for future investigation

of whether and how endocytosis controls invasive and meta-
static behavior, two of the deadliest hallmarks of cancer.

A final hallmark of vertebrate cancers that has received
renewed attention is heterotypic signaling, which is the ability
of cancer cells to modify the environment in which they arise
and viceversa (reviewed in Bissell and Radisky, 2001). Interest-
ingly, certain Drosophila endocytic tumors display two forms
of heterotypic signaling. One form of heterotypic signaling in
Drosophila involves paracrine secretion of Upd from ESCRT
mutant cells. This process activates Jak/STAT signaling in
neighboring WT cells. As a result, these cells overproliferate

to form hyperplastic tissue surrounding the ESCRT tumors
(Moberg et al., 2005; Vaccari and Bilder, 2005; Herz et al., 2006).
A second form of heterotypic signaling involves enhancement
of cell survival in tissue surrounding ESCRT tumors. Indeed,
ESCRT mutant cells promote non-cell-autonomous Diap1 ex-
pression by an unknown mechanism. This signaling behavior
is unrelated to the first pro-proliferative signaling, since the for-
mer does not depend on overactivation of Notch signaling (Herz
et al., 2006). Overall, the ability to model cooperative and het-
erotypic tumor interactions in Drosophila promises to shed
light on the rules governing tumor–host signaling.

9. The emerging field of endocytic tumorigenesis in
Drosophila

Based on the first hints of the genetic circuitry of the endocytic
tumors reviewed above, a speculative model to explain the
role of endocytosis in tumor suppression in fly epithelia is

the following (Figure 3):

1- Failure to sort a number of mitogenic receptors into MVBs
and consequent accumulation of active signaling receptors
in the endocytic pathway would provide tumor cells with
self-sufficiency in growth signaling.

2- Endocytic trafficking defects would also destabilize cell–cell
junctions and lead to loss of epithelial polarity, possibly
triggering apoptotic response. In addition, since polarity
has been shown to be important for signaling (Langevin
et al., 2005; Sotillos et al., 2008), loss of polarity could also di-

rectly contribute to alter signaling in tumor cells.
3- Strong mitogenic signaling might counteract apoptotic re-

sponse allowing some of the mutant cells to escape apopto-
tic elimination.

4- Unrestrained proliferation, freedom from the constrains of
epithelia and apoptotic resistance might cooperatively pro-
vide the basis for invasive and metastatic behavior.

5- While the role of tumor–host interaction in these tumors is
not clear, non-cell-autonomous promotion of apoptotic resis-
tance and growth might play an additional role in disrupting
the overall structure of the tumor-bearing epithelial organs.

While certainly incomplete, this model highlights the point
that the pleiotropic defects seen when endocytic gene func-
tion is disrupted in Drosophila epithelia, which bear similari-
ties to several hallmarks of cancer, suggest that subversion of
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endocytosis might be an underappreciated but important step
in cancer progression.

10. Open questions

The dramatic phenotypes seen upon inactivation of endocytic
regulators in Drosophila underline the central importance of en-
docytosis in controlling both normal growth and tumor suppres-
sion, as well as potentially additional unexpected physiological
processes. As this field of study is still in its infancy, a number
of outstanding questions remain to be addressed in the Drosoph-
ila system. First, an important underexplored question is the ex-
tent to which expression and activity of endocytic regulators is

developmentally regulated in normal tissues to control polarity,
proliferation and apoptosis during organ formation. Second, it
will be interesting to complete the list of endocytic regulators
that act as TSGs. These studies should shed light on why some
relatively early endocytic regulators, such as the MVB sorting

protein Hrs (Lloyd et al., 2002; Jekely and Rorth, 2003), are not in-
volved in tumor suppression, and why regulators of the recycling
pathway, which are mutated in certain human cancer (Cheng

et al., 2004; Garcia et al., 2005), have not emerged in these studies.
The apparent requirement of the key recycling regulator Rab11
for cell viability may provide a partial explanation to the latter
question.Finally, it will be important to identify thespecific effec-
tor cargoes mistrafficked in cells mutant for each endocytic TSG,
especially those that are involved in controlling polarity and ap-
optosis. The fact that endocytic TSG mutant cells under certain
conditions escape apoptosis and overproliferate massively al-
lows harvesting of null mutant tissue, granting the opportunity
for both proteomic screening to identify mistrafficked cargoes
and expression profiling to determine cellular processes altered
by loss of tumor suppression.

Once the list of endocytic TSGs and cargoes involved in tu-
mor suppression is completed, one challenge will be teasing
out the relative contribution of single cargoes to the final tu-
mor outcome. Since the phenotypic outcome of endocytic

Figure 3 – Speculative model of endocytic tumor suppression circuitry. Disruption of major endocytic regulators in Drosophila initiates

a tumorigenic process that displays a number of the hallmarks of human cancer. In WT epithelial cells, normal endocytic function ensures proper

receptor degradation (Notch in red, EGFR in blue, membrane-associated signaling factors in green) and cell–cell junction stabilization promoting

survival and quiescence (left). In tumor cells (right), increased mitogenic signaling, due to accumulation of multiple receptors in the endosomal

system, contributes to acquire self-sufficiency in growth signaling. In addition, junction destabilization, due to impaired endocytic trafficking,

results in loss of epithelial polarity and potential insensitivity to antigrowth signals. Loss of junctions might also relieve contact inhibition, leading

to activation of apoptotic pathways. Moreover, increased mitogenic signaling and increased proliferation might help tumor cells escape apoptotic

elimination. Finally, loss of polarity and increase mitogenic signaling cooperate to promote invasive and metastatic behavior in tumor cells, while

non-cell-autonomous signaling between tumor cells and their surroundings represent an example of tumor–host interactions.
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alterations within different tissues may depend on the tis-
sues’ intrinsic mitotic activity, polarity, and apoptotic physiol-
ogy, it would be ideal to study this in multiple tissues. Such an

effort will entail a systematic block of each single pathway al-
tered in endocytic TSGs mutant cells, an analysis amenable to
the power of Drosophila genetics. Finally, it will be of high in-
terest to determine how much of the endocytic mutant tissue
phenotype depends on failed degradation of signaling
cargoes, as opposed to other cargo-independent functions.
While little is known about these functions, it has been re-
cently appreciated that the endosome can act as a platform
to assemble and possibly deliver to the site of action molecu-
lar machines that influence diverse cellular processes includ-
ing cell polarity (reviewed in Gould and Lippincott-Schwartz,

2009). Overall, future studies aimed at answering the above
questions will further our knowledge of endocytic tumor sup-
pression and broaden the list of endocytic TSGs and of the
molecules and cellular processes controlled by them.

11. Relevance of Drosophila endocytic tumorigenesis
to human cancers

What will be the relevance of studying endocytic tumor sup-
pression in Drosophila to an understanding of human can-
cers? With respect to molecular similarities, to date most
endocytic regulators implicated in human cancer – the ubiqui-
tin ligase Cbl, the AP-2 interactor Numb, and the Rab5 effector
Rabaptin-5, (see Mosesson et al., 2008 for an extensive list),
have not been yet found in Drosophila TSG screens. However,
there is some evidence for Drosophila TSGs with endocytic
roles that also act as tumor suppressors in mammals.
Tsg101, a component of the ESCRT-I complex, was originally

identified because transplantation of tsg101-deficient cells
into nude mice generated tumors (Li and Cohen, 1996). The
notion that Tsg101 acts as TSG was subsequently challenged
by two reports. One found that Tsg101 mutant cells in condi-
tional knock-out animals had proliferation and survival de-
fects but failed to develop tumors (Ruland et al., 2001;
Wagner et al., 2003); the other revealed that overexpression
rather than inactivation of tsg101 was observed in a subset
of invasive tumors and that forced tsg101 overexpression dis-
played mild oncogenic effects (Oh et al., 2007). In contrast, an-
other ESCRT-I component, vps37a/hcrp1, was recently shown

to be downregulated in hepatocellular carcinoma; its inactiva-
tion relieves growth inhibition and enhances invasive ability
of tumor cells (Xu et al., 2003; Bache et al., 2004). Drosophila
studies suggest ways to reconcile some of these apparently
contradicting data. Indeed, the fact that clones of ESCRT mu-
tant cells in Drosophila are sensitive to apoptotic elimination
but overgrow upon block of apoptosis (Thompson et al., 2005;
Herz et al., 2006) predicts that the full tumorigenic potential of
mammalian tsg101 cells might be hindered by apoptotic elim-
ination. In addition, evidence in Drosophila indicates that
overexpression of certain ESCRT can have a dominant nega-

tive effect (Sweeney et al., 2006; Rodahl et al., 2009). Finally,
work in Drosophila might point to unexpected endocytic func-
tions for well-studied mammalian TSGs. This is the case of
NF2, a well-known human TSG with an unclear cellular func-
tion which studies in Drosophila supported its importance as

a regulator of endocytosis (Maitra et al., 2006). Future studies
may similarly reveal unexpected links between other known
mammalian TSGs and endocytic mechanisms.

The emerging roles of endocytosis in regulating functionally
conserved mitogenic signaling pathways in Drosophila under-
lines the relevance of the studies reviewed here to human can-
cers. With respect to RTK signaling, human tissue culture cells
depleted of ESCRT components fail to degrade EGFR leading to
increased signaling, as also seen in Drosophila (Kanazawa
et al., 2003; Doyotte et al., 2005; Komada and Kitamura, 2005;
Razi and Futter, 2006). Considering that human cancer cells
draw on an astonishing number of ways to inactivate the ma-
chinery that ubiquitylate RTKs and sort them for degradation
via MVBs (for review see Mosesson et al., 2008), Drosophila endo-

cytic tumors might prove a valuable model for cancers that dis-
play increased RTK signaling. With respect to Notch signaling,
work to ascertain the basis of ligand-independent activation in
pathologic Notch signaling events in Drosophila tumors such
as ESCRT mutants may inform the study of some blood cancers.
Indeed, ligand-independent Notch activation is associated with
43% of T-cell acute lymphoblastic leukaemia (T-ALL) (Grabher
et al., 2006; Roy et al., 2007). It will exciting to know whether
the destabilizing mutations leading to ligand-independent
Notch activation found in T-ALL patients affect endocytic Notch
trafficking. With respect to the fact that ESCRT mutant cells in-

duces JAK/STAT signaling non autonomously, it is interesting to
note that the Drosophila Jak/STAT receptor Domeless is related
to IL-6, which mediates inflammatory cytokine signaling in ver-
tebrates (Brown et al., 2001). Inflammatory cytokines are known
to be secreted by human cancer cells to modify their environ-
ment (Lin and Karin, 2007). Thus, despite differences in inflam-
mation mechanisms in fly and vertebrates, recapitulation of
simple tumor–host interactions in Drosophila allows the possi-
bility of future genetic dissection of a heterotypic signaling event
potentially relevant to tumor inflammation.

In addition to signaling, other hallmarks of human cancer

observed in Drosophila endocytic tumors are the loss of epi-
thelial polarity and escape from apoptotic elimination. With
respect to polarity, downregulation of Crumbs3 correlates
loss of tight junctions, impaired cell adhesion and contact in-
hibition, and stimulates migration and metastasis in a mouse
kidney cell line model (Karp et al., 2008). Consistent with this,
the Snail transcription factor, a master gene controlling EMT,
represses expression of Crumbs3 (Whiteman et al., 2008). This
evidence indicating that functional impairment of Crumbs
might contribute to cancer progression, suggests that the
study Drosophila endocytic TSGs might inform us on can-

cer-relevant polarity aberration. Finally, with respect to the
apoptotic response, JNK signaling has been found altered in
a wide number of mammalian cancers (Huang et al., 2003;
Ventura et al., 2004; Hagemann et al., 2005; Kwei et al., 2006).
In addition, dysregulation of the mammalian Hippo pathway
has been linked to tumorigenesis (Dong et al., 2007). Thus,
the tantalizing evidence that Drosophila endocytic tumor cells
display opposite JNK- and Hippo-mediated apoptotic behav-
ior, depending on their immediate environment, predicts
that their future study might shed light on the mechanisms
of apoptotic escape in human cancer cells.

In summary, the above evidence highlights the promise of
studies of Drosophila tumorigenesis studies to illuminate
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human cancer biology. It also provides a rationale for future
further screening in Drosophila and for systematic search
for human homologs of Drosophila endocytic TSG whose ex-

pression is reduced in human cancers. Even in the case in
which a certain endocytic TSG is found not to act as a tumor
suppressor in human cancers, a comparison of the signaling
profile and phenotypic pattern of Drosophila with that of
existing human cancers might lead to the establishment of
new predictive cancer models in Drosophila.

12. Concluding remarks and future perspectives

The complexity of untangling all the alterations that underlie
the tumor suppressive role of endocytosis is clearly exempli-

fied by the pleiotropy of the defects observed in Drosophila
endocytic tumors. However, exploiting the advantages of Dro-
sophila, the approaches described above provide an opportu-
nity to systematically and comprehensively define the
mitogenic, polarity and apoptotic signature of endocytic tu-
mors. This knowledge is likely to direct the search for more
human cancers in which endocytic function is subverted.

Studies on Drosophila TSGS have in the past promoted not
only identification of TSGs and an understanding of their basic
biology and, but have also pointed the way to possible thera-
peutic interventions. The seminal discovery in Drosophila

that the TSGs Tsc1 and Tsc2 are mTOR signaling components
led to Rapamycin treatment for Tuberous Sclerosis tumors
(Kenerson et al., 2005; Lee et al., 2005; Franz et al., 2006). In
much the same way, we envisage that the emerging field of en-
docytosis and tumor suppression in Drosophila could lead, in
the years to come, towards useful strategies to develop novel
anticancer drugs aimed at reactivating compromised endo-
cytic function or inactivating potentially carcinogenic cargoes.
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