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Abstract: We propose a homodyne-like detection scheme involving photon-number-resolving
detectors to discriminate between two coherent states affected by either uniform or gaussian phase
noise. A proof-of-principle experiment is performed employing two hybrid photodetectors, whose
outputs are used in post processing to calculate the shot-by-shot photon-number differences. The
performance of the strategy is quantified in terms of the error probability in discriminating the
noisy coherent signals as a function of the characteristic noise parameters.
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1. Introduction

In this paper we propose a hybrid photodetection scheme [1-4] that takes advantage of the
characteristics of both standard homodyne and photon-number-resolving (PNR) detectors. The
detection apparatus exploits the usual interferometric scheme of homodyne detectors, using PNR
detectors instead of pin-photodiodes to directly measure the photon numbers at the two outputs of
the interferometer and evaluate their difference. The interferometric part of the detection scheme
yields information on the phases, while PNR detectors provide direct access to the statistics of
light, thus allowing the gain of much more information on the states than using, e.g., single-
photon detectors [5]. At variance with other existing homodyne-like detection schemes [6-9], the
employment of hybrid photodetectors, which are commercial detectors, allows us to explore a
wide photon-number dynamic range (up to 30 photons). For this reason, the detection apparatus,
though having an upper limit to the measurable light intensity, is also useful to investigate
different regimes of local oscillator (LO) intensity.

In this work we apply the hybrid detector to a typical communication scheme based on coherent
states. We use a strategy exploiting the difference of photocounts and leading to a discrimination
error probability which approaches the minimum value allowed by quantum mechanics when
phase noise affects the channel. This work completes and enriches the current research on optical
communication schemes based on coherent states. In fact, during the last few years many efforts
have been devoted to find optimal discrimination strategies, not only in the case of a binary
coherent-state alphabet, but also in the presence of an M-ary system [10-13]. In particular, in
Ref. [13] Becerra et al. consider the multiple discrimination of weak phase-shifted coherent
states. The implemented receiver allows beating the standard quantum limit for discrimination,
even if the procedure requires a high control degree of the relative phases and turns out to be very
sensitive to phase fluctuations. As we will see, our strategy based on two-channel discriminator,
i.e. the two outputs of the homodyne-like detection scheme, can successfully operate also in the
presence of phase noise.

For what concerns the binary case, it has been recently demonstrated that, whenever a gaus-
sian phase noise is present, a homodyne detection scheme realizes a discrimination strategy
approaching the minimum error probability given by the Helstrom bound [14]. More recently,
we have demonstrated that the use of PNR detectors is crucial for the estimation of phase drifts
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in Kennedy-like receivers, in the regime of low-intensity LO and even in the presence of phase
noise [15].

2. Homodyne detection with PNR detectors and state discrimination

The “imperfection” in a protocol aimed at discriminating between two non-orthogonal quantum
states is quantified by the error probability P, and depends on the employed measurement
apparatus. Given two quantum states p; and po, with a priori probabilities n7; and g, 171 + 19 = 1,
the minimum error probability is given by the Helstrom bound [16]

1 o
P = 5[1 — Trimpr - mopol|. (1)

In our work we consider a standard scheme, in which a binary signal is encoded in two coherent
states P = |B){(B] and pg = |- B)(— B, B € R. Furthermore, we also assume that the propagation
of the signals is affected by phase noise, whose effect can be described by the map

pr o EBe) = fR do F@ U@ AU (9, @)

where U(p) = exp(—ipd’a) is the phase-shift operator, [4,a'] = fand f(p)isa weight
function describing the phase noise distribution. In a uniform phase noise scenario f(¢) = y~! if
¢ € [—y/2,y/2] and f(p) = 0 otherwise. In the case of gaussian phase noise, f(¢) = N (¢; 02)
is the normal distribution of mean value 0 and variance o-. In the presence of phase noise,
by assuming n; = 19 = 1/2, the Helstrom bound (1) is given by PéH) = %(1 - Tr|A|), where
A = 318(p1) — E(Po)].

To be decoded, the input state is mixed at a beam splitter (BS) of transmittance 7 with
the LO |@), @ € R. The output modes ¢ and d of the BS can be monitored by means of PNR
detectors, giving access to the statistics of their photocounts n. and n,4 and, thus, of the difference
A = n. — ng, that is equivalent to a homodyne-like detection. In particular, the distribution
of the aleatory variable A, with the two stochastic variables n. and n,; described by Poisson
distributions, having mean values u. and ug, is given by the Skellam distribution [17]

A
2
Sa(He jtg) = e HeHd (%) V). A€z, 3)

where 15 (x) is the modified Bessel function of the first kind. In the ideal case of the absence of
phase noise, the mean values of the Poisson distributions for an input signal |3 ¢’?) are

e (9) = a + b2 +2a.be cos(¢) and  pa(¢) = a’ + b’ — 2aqba cos(9) , 4)

where we set af. = a?(1 - 1), afi = a1, bf. = 21, and bfl = B2(1 — 7). In order to define a
discrimination strategy, let us assume that p.(0) > z(0) and y () < (). Then we can use
the following strategy: A > 0 = |B) and A < 0 = | — ) (for A = 0 a random decision is made).
Whenever A < 0 (A > 0) given the input | 8) (| — B8)), an error in the inference occurs.

If we take into account phase noise, the mean numbers of photons at the outputs of the BS
are still given by Eqgs. (4), but with the substitution ¢ — ¢ — ¢. In this case, the overall error
probability in the discrimination of | + ) is given by:

PER = fR de ()P (p), (5)

with:

N =

-1 +oo
PP (@) = [ D7 Sa(pe (@), ta(@)) + D Sa(pe(p = 1), palp =) + So[,  (6)

A=—c0 A=1
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Fig. 1. (a) Sketch of the experimental setup. (b) Two typical photon-number distributions
measured by the HPDs: experimental histograms, theoretical Poisson distribution (black
dots), with the same mean value of the data, and the corresponding fidelities. See the text
for details.

where Sy is the value of the Skellam distribution for A = 0, i.e. in the case of inconclusive
measurement.

Given these assumptions, our main goal is to demonstrate that, by exploiting a detection
scheme endowed with PNR detectors and performing the proposed homodyne-like strategy, it
is possible to reach high-performance level in the discrimination protocol. As shown in [14], a
standard homodyne scheme approaches this goal when phase noise affects the signals. In this
case the error probability reads:

1 0 +00
P = 5[ f dx fR def (@)pnalx: fig) + fo dx fR def (@pralx:~Bi@)| . (D)
where we introduced the homodyne probability distribution

1 _ )
Pha(x; £B @) = — e~ X FV2Bcos9)?, ®)

\/7_T

in which the LO is a macroscopic coherent field.

3. Proof-of-principle experiment

In order to test the performance of our strategy, i.e. the employment of PNR detectors in a
homodyne-like measurement with a low-intensity LO and in the presence of phase noise, we
realized a proof-of-principle experiment.

As shown in Fig. 1(a), the second-harmonic pulses (5-ps-pulse duration) emitted at 523 nm by
a mode-locked Nd: YLF laser regeneratively amplified at 500 Hz were sent to a Mach-Zehnder
interferometer to get signal and LO. In order to set the intensities of the two fields, we inserted
two variable neutral density filters (ND) in the two arms and we optimized the spatial and
temporal superposition of signal and LO in order to get almost the best overlap admitted by
the choice of the amplitudes and of the balancing (see below). The length of one arm of the
interferometer was changed in steps by means of a piezoelectric movement (Pz) in order to
modify the LO phase in the whole 2r—range. The light at the two outputs of the second BS
was collected by two multi-mode fibers (MF, 600-um-core diameter) and sent to two hybrid
photodetectors (HPD, mod. R10467U-40, Hamamatsu), which play the role of the PNR detectors.
HPDs are commercial photodetectors, whose technology has been already addressed in Ref. [18].
The output of each detector was amplified (preamplifier A250 plus amplifier A275, Amptek),
synchronously integrated over a 500-ns window (SGI, SR250, Stanford) and digitized (AT-
MIO-16E-1, National Instruments). According to the model already presented in Ref. [19], the



Research Article

Optics EXPRESS

15 . . . : : : . . .
@ (b) )
o....o O..... .: o © :ﬁ. *
10 — S I B % 3 ]
° o4 * . o. .3 ;
Q % .. . . Y Bi
i . ° . LY )
51 °, . . 7 1 ] ., R i
° By o 'y Cd
..00" .M. %3 f
0 :

0 10 20 30 40 50 600 7/2 & 3z/2 27
step ¢ (rad)

Fig. 2. Mean number of photons u. as a function of the step of (a) the piezoelectric

movement and (b) of the relative phase ¢ (black dots). In both panels we use the same

scale for vertical axis. We also report y. calculated according to Eq. (4) with 7 = 0.5 and

the amplitudes of the signal, b, and LO, a, measured separately (red circles). Data refer to

Experiment #2. See the text for details.

detection process consists of two steps: photodetection by the photocathode and amplification.
The first process is described by a Bernoullian convolution, whereas the second one can be well
approximated by the multiplication by a constant gain factor. We have already demonstrated that
the value of the gain can be obtained by means of a self-consistent method [18] based on the
very light to be measured. Once the value of the gain is determined, we have direct access to the
shot-by-shot number of detected photons and can thus evaluate the statistical properties of the
measured states.

In the present work we chose two different configurations: Experiment #1, in which we mixed
a coherent signal with a LO of similar amplitude and Experiment #2, in which the intensity of
the LO is much larger than that of the signal. We set 60 different piezo positions and for each one
we saved 50 000 laser shots. Typical reconstructions of the photon-number statistics registered
by each detector are shown in Fig. 1(b), from which it is possible to appreciate the wide dynamic
range of HPDs. In particular, the data approximately correspond to the constructive (left) and
destructive (right) interference conditions for Experiment #2. In both cases the experimental
data well superimpose to the theoretical Poisson distributions evaluated with the experimental
mean values. This is testified by the high values of fidelity f = ZZ:O P(m) Pypeo(m), where
P(m) and Pyeo(m) are the experimental and theoretical distributions, respectively, and the sum
is extended up to the maximum detected photon number, 72, above which the two distributions
become negligible.

By exploiting the linearity of HPDs it is also possible to extract information about the
phase [15,20]. To explain the method we focus on the output mode ¢. The mean number of
detected photons x., shown in Fig. 2(a) for Experiment #2, describes the interference pattern as
a function of the piezo position. The relative phase ¢ between the two arms of the interferometer
can be retrieved by suitably normalizing u. and by fitting the rescaled data with a cos function.
In Fig. 2(b) u. is plotted as a function of ¢ (black dots). In the same plot, we also show the mean
number of photons (red empty circles) calculated according to Eq. (4) by using the experimental
values b and a of the signal and LO, separately measured. Given the experimental p.(¢), it
is possible to extract the effective portions of LO (a. and a4) and signal (b, and by), both
transmitted and reflected by the BS. In particular, by fitting these experimental data with (4),
we obtain the effective values of the output coherent amplitudes in Experiment #1 (a. = 2.01,
aqg =2.07, b, =1.13, and b; = 1.07) and in Experiment #2 (a, = 2.74, ay = 2.68, b, = 0.87,
and by = 0.85).

To estimate the overlap between signal and LO, we evaluate the fringe visibility vexp = (tmax —
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Fig. 3. Plots of Sp (,uc 0), ud(O)) as a function of A, for both Experiment #1 (a) and
Experiment #2 (b), with the choice ¢ = 0, corresponding to the input |8). The fidelity
between the data, averaged over M = 100 repetitions (dots), and the histograms, representing
the theoretical previsions (3), are f = 99.89% for the Experiment #1 and f = 99.73% for
the #2. For the sake of completeness, we also report the properly theoretical homodyne
probability distribution (8) as a function of x = A/ (V2a) and suitably renormalized (green
dashed line). See the text for details.

Hmin)/ (Hmax + Umin)- As an example, for the data in Fig. 2 (Experiment #2), the experimental
visibility is 58%. Such a value must be compared to the expected theoretical visibility evaluated
as Vineo = 2a b/(a* + b*), which is 63% for Experiment #2. By normalizing the value of vex, to
Viheo» the overlap of signal and LO can thus be calculated as & = vexp/(2 — vexp) = 0.85 [21],
which is a good estimate of the mode matching between the two fields. In the following we show
that, despite the non-unitary value of &, quasi-optimality in the state discrimination process can
be achieved, in a robust way with respect to losses.

Once assigned a phase ¢ € (0,2r] to each piezo position, the set of output photocounts
(and thus the corresponding differences A) given the input signal |3 ¢'?) and the LO |a) can be
obtained. The samples of detected photocounts from the mixtures of coherent states in Eq. (2),
which are characterized by either uniform or gaussian phase noise, are retrieved by selecting
and properly combining the data recorded at different phases. These prepared samples can be
used to evaluate the error probability Pé‘vk) in Eq. (5). In order to estimate the uncertainty of
PéSk), we applied a bootstrap procedure [22,23]. We randomly selected Ny = 1 000 photocounts
from the prepared samples, computed the differences A and evaluated PE.S"‘) according to the
discrimination strategy. Following the bootstrap prescription, we repeated such an operation
M = 100 times and, then, retrieved a standard deviation of PéSk).

In Fig. 3, we show the probability distribution of the photocount differences A obtained
for Experiment #1 (a) and #2 (b) when only |S) is sent, i.e. for ¢ = 0. The experimental
points and error bars represent the average and the standard deviation obtained by means of
the bootstrap procedure. The theoretical expectations (histogram) given by the distributions
(3), evaluated at the experimental values of u.(0) and uy(0), are well-superimposed to the
experimental data, with fidelities f > 99%. In the same figure we also show the corresponding
standard homodyne distribution (8) as a function of A, namely, p;q(A/ (V2a); + B; @)/ (V2a).
The homodyne probability appears closer to the Skellam distribution in the Experiment #2, see
Fig. 3(b), where the intensity of the LO, |]?, is about 10 times larger than that of the signal, | ﬁlz.
On the contrary, in the case of the Experiment #1 it is about 3.4 times, as also reported in Fig. 4.

4. Results

The experimental results are shown in Figs. 4(a)-(b) for the Experiment #1 and in Figs. 4(c)-(d)
for the Experiment #2. The error probabilities have been obtained for different values of the
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Fig. 4. Error probability (in logarithmic scale) obtained by the experimental homodyne-like
photocount differences A (black dots with error bars) as a function of the uniform phase-
noise parameter y (a)-(c) and gaussian phase-noise one o (b)-(d) for the Experiment #1
(a)-(b) and #2 (c)-(d), where 8 and « are the amplitudes of signal and LO, respectively
[see Eq. (4)]. We also plot the theoretical prediction using the Skellam distribution (solid
red lines), the corresponding theoretical standard homodyne detection (green dotted lines),
given by Eq. (7), and the Helstrom bound (black dashed lines).

uniform noise parameter y, and the gaussian noise standard deviation o. The experimental
results (error bars have been evaluated as described above) remarkably agree with the theoretical
prediction (solid red curve) given by Eq. (6).

In Fig. 4 we also compare our discrimination strategy with the theoretical predictions of
standard homodyne detection (green lines in the figures) based on pin-photodiodes (and same
detected energy). As demonstrated in Ref. [14], standard homodyne approaches the Helstrom
bound when the coherent signal is affected by phase noise. In both the considered experiments,
we observe that the error probability provided by our discrimination strategy is very close to
the homodyne one. The performance becomes almost the same when the amplitude of the LO
is significantly larger than that of the signal, see Figs. 4(c)-(d), thus approaching the ultimate
bound imposed by quantum mechanics. Moreover, the values of P, are lower in Experiment #1
than in Experiment #2: this is simply due to the different amplitude values of the signal in the
two cases and the higher the signal intensity the lower the error probability.

The obtained error probabilities display a different behavior when the two phase-noise models
are employed. In order to make a fair comparison between them, we equate the variances of the
two phase-noise distributions, thus obtaining the relationship o~ = y/(2V3) between the two
noise parameters. From Fig. 5, it is clear that, for some values of the uniform noise parameter
v, the error probabilities corresponding to Eqs. (1) and (5) are below those obtained for the
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Fig. 5. Error probabilities PéH) (a) and PéSk) (b) for uniform (solid curves) and gaussian
(dashed curves) phase noise, in Experiment #2. For a fair comparison we set o = y/ 2V3).

gaussian-noise case.

5. Conclusions

We presented a two-channel coherent state discriminator, namely a homodyne-like detection
scheme based on HPDs in the regime of low-intensity signals and LO. With respect to single-
channel setups, which are usually very sensitive to phase noise, the increased complexity of our
experimental scheme allowed us to obtain a discrimination error probability approaching the ulti-
mate limits imposed by quantum mechanics also in the presence of phase noise. In our opinion,
this feature represents a good advance towards the practical realization of optical communica-
tion channels, as they are typically affected by phase noise. In particular, we experimentally
demonstrated that the effectiveness of our detection technique in addressing the shot-by-shot
discrimination protocol is very similar to, and in some cases indistinguishable from, that of the
standard homodyne technique. We characterized this discrimination strategy for both uniform and
gaussian phase noise, showing that there are threshold values of the noise parameters for which
the error probability is minimal. Our results testify how our scheme approaches the performance
of standard homodyne detection, leading to the ultimate quantum limit (Helstrom bound) in the
presence of phase noise. Moreover, our strategy also allows exploiting the advantages given by
the photon-number resolving capability of HPDs. In particular, by detecting the photon statistics
of the output signals, one can simultaneously assess the quantumness of the input states [24],
thus paving the way, e.g. to the implementation of continuous-variable cryptographic schemes
with nonclassical states [25], such as squeezed and sub-Poissonian states. In order to improve
the quality of our detection scheme for other possible applications, now we are considering the
use of the new generation of Si-photomultipliers [26] instead of HPDs.
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