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Summary

Originally discovered as regulators of cargo sorting during
endosomal trafficking, ESCRT (endosomal sorting com-
plexes required for transport) proteins are emerging as flex-
ible machines that shape the behaviour of membranes
throughout the cell. Deregulation of ESCRT activity is ob-
served in neuro-degenerative diseases, virus infection and
cancer. However, the mechanisms of pathogenesis in-
volving ESCRTs have not yet fully come into focus. Here,
we review the current knowledge of ESCRT function in
health and disease and provide educated guesses for future
research and focused therapeutic intervention.
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Introduction

Compartmentalisation is one of the defining features of eu-
karyotic cells. It is thought to have propelled life towards
multi-cellularity and emergence of a nervous system [1, 2].
The plasma membrane and the endo-membranes of a com-
partmentalised cell constitute the infrastructure for most
cellular logistics, which involves incessant trafficking of
countless cargoes and associated macromolecules, ulti-
mately shaping the identity and fate of a cell, as well as
its relationship with neighbours. In this review, we focus
on functions of the ESCRT (endosomal sorting complexes
required for transport) machinery, which is emerging as a
central regulator of membrane remodelling during traffick-
ing and non-trafficking events (fig. 1).

How ESCRTs work during endosomal
sorting

The ESCRT machinery was first identified in yeast by
means of genetic isolation of mutants that cause defective
protein sorting to the vacuole, the functional equivalent of
the lysosome [3, 4]. These mutants, termed “class E-vps
mutants”, possessed enlarged prevacuolar endosome-like
compartments containing un-degraded proteins [5]. Most
of the class E-vps genes were later found to act in succes-

sion to concentrate trafficking cargoes and include them in
forming late endosomes (also termed multivesicular bodies
or MVBs) that eventually fuse with lysosomes for degrad-
ation [6]. We now know from a large body of mechanistic
studies in yeast and other model organisms that the ESCRT
machinery that regulates endosomal sorting is organised
into five distinct protein complexes: ESCRT-0, ESCRT-I,
ESCRT-II, ESCRT-III and the Vps4 AAA-ATPase complex
(Vps: vacuolar protein sorting-associated protein; AAA
ATPases: ATPases Associated with diverse cellular Activit-
ies) (see table 1 for subunit compositions). During sorting,
these complexes are recruited from the cytoplasm sequen-
tially by interaction of specific subunits with the endo-
somal membrane. Ubiquitination of cargoes provides the
key signal for initial cargo binding by ESCRT-0 (reviewed
in [7]). Indeed, the ESCRT-0 subunits Hrs and Stam, as
well as ESCRT-I Vps23/TSG101 and ESCRT-II Vps36,

Figure 1

Cell biological functions of ESCRTs (endosomal sorting
complexes required for transport).
Overview of ESCRT functions throughout the cell. Factors that are
specific for each ESCRT-dependent process (boxed) are listed in
italics.
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contain ubiquitin-binding domains that interact with ubi-
quitinated cargoes. ESCRT-0 is also recruited by interac-
tion between the FYVE domain of Hrs and phosphatidylin-
ositol 3-phosphate (PI3P), which is enriched at the en-
dosomal membrane. ESCRT-0 is thought to concentrate
ubiquitinated cargoes by organising flat coats of clathrin on
the endosomal membrane [8, 9]. ESCRT-0 also summons
ESCRT-I, which retains the cargoes by ubiquitin binding
and hands them to the ESCRT–II complex. The ESCRT-
II complex provides a scaffold for the formation of the
ESCRT-III complex, the business end of the ESCRT ma-
chinery. The Vps32/Snf7/Chmp4 subunit of ESCRT-III
forms multimeric filaments organised in spirals that bend
the endosomal membrane away from the cytoplasm to form
invaginated buds. Thus, the combined activity of ESCRTs
allows sorted cargoes to be corralled and trapped in nascent
intraluminal vesicles (ILVs) of the MVBs, which eventu-
ally pinch off into the endosomal lumen. The deubiquitin-
ating enzyme Doa4 is recruited by ESCRT-III to remove
ubiquitin from cargoes that are included into ILVs. Fin-
ally, the Vps4 ATPase complex binds and fully unfolds the
ESCRT-III complex in an ATP-dependent manner and fa-
vours pinching off the ILV neck, the final step of MVB bio-
genesis [10–18]. The structure of most ESCRT components
has been determined, and detailed extensive knowledge of
the ESCRT mechanism of action in endosomal sorting and
MVB biogenesis is available (reviewed in [19, 20])

ESCRTs activity during trafficking
processes distinct from endosomal
sorting

ESCRT-I, -II and -III and the Vps4 complexes are con-
served across the eukaryotic lineage [21]. In contrast,
ESCRT-0 is present only in a subset of eukaryotes. This in-
dicated early on that they are specialised to couple the core
membrane-remodelling activity of ESCRT-III and Vps4
with cargo sorting. Indeed, evidence indicates that addi-
tional complexes, such as those containing the protein
Tom1 (target of Myb protein 1), might control initial con-
centration of ubiquitinated cargoes in endosomes [22].
Consistent with the accessory role of ESCRT-0, a large

body of studies in the last 25 years revealed that the func-
tion of the ESCRTs at membranes is not limited to endo-
somal sorting and MVB biogenesis. In fact, early work in-
dicated that a number of viruses can recruit ESCRT-III and
Vps4 to bud from the plasma membrane [23, 24], leading
to subsequent realisation that budding of the plasma mem-
brane operated by ESCRTs occurs also in uninfected cells
to form ectovesicles. MVBs can also fuse with the plasma
membrane to release ILVs, in this case referred to as exo-
somes. As in endosomal sorting, deployment of ESCRT-
III and Vps4 in the formation of exosomes and ectoves-
icles (together referred to as exovesicles) appears to depend
either on ESCRT-I and -II, or on Alix, and to require ad-
apters different from ESCRT-0. These data indicated that
MVB and exovesicle biogenesis can profoundly differ and
that multiple pathways of exovesicle formation are likely
to exist [25–30].
MVBs also act as main stations for autophagic trafficking
[31, 32]. Evidences from Caenorhabditis elegans, Droso-
phila and mammalian cells in culture revealed that ESCRTs
are required for both microautophagy and macroautophagy
[33–36]. During macroautophagy, autophagosomes that are
formed de novo to clear long-lived proteins, cytoplasmic
aggregates or damaged organelles fuse with MVBs and
lysosomes to form amphisomes and autolysosomes, re-
spectively, whose content is progressively degraded. Al-
though it recently emerged that ESCRT activity is coordin-
ated with macroautophagic response to starvation [37, 38],
how ESCRT regulate autophagy mechanistically is cur-
rently unclear.
In summary, the membrane trafficking functions regulated
by ESCRTs are crucial for lysosome-mediated cargo de-
gradation, for release of exovesicles and, perhaps indirec-
tly, for autophagy.

The ESCRTs system beyond trafficking

The first evidence of ESCRT functions that are independ-
ent of membrane trafficking indicated that ESCRT-III and
Vps4 act at the plasma membrane to sever microtubules
and release the midbody during cytokinesis. In this case,
the recruitment is operated by the midbody protein Cep55

Table 1: Composition of the ESCRT (endosomal sorting complexes required for transport) complexes in endosomal sorting.

Complex Function Evolutionary origin Yeast Drosophila Human
Vps27 Hrs HRSESCRT-0 Cargo recognition Opisthokonta

Hse1 Stam STAM1, STAM2

Vps23 Tsg101 TSG101

Vps37 VPS37A, B, C, D

Mvb12 Mvb12 MVB12A, MVB12B

ESCRT-I Upstream adapter Eukaryotes

Vps28 Vps28 VPS28

Vps36 Vps36 EAP45

Vs22(Snf8) Vps22 EAP30

ESCRT-II Bridging adapter

Vps25 Vps25 EAP20

Vps2 Vps2 CHMP2A, B

Vps24 Vps24 CHMP3

Vps32 (Snf7) Vps32 (Shrub) CHMP4A, B, C

Vps20 Vps20 VPS20/CHMP6

Vps46 (Did2) Chmp1 CHMP1A, B

ESCRT-III Membrane remodelling/
filament

Archaea

Vps60 (Chm5) Chmp5 CHMP5

Vps4 Vps4 VPS4A, B (SKD1, 2)Vps4 –Vta1 Membrane remodelling/
ATPase Vta1 CG7967 VTA1 (LIP5)
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and ESCRT-III directly recruiting the microtubule-severing
protein spastin. This activity is present also in Archaea and
plants, suggesting that it is the most ancient evolutionar-
ily [39–41]. Very recent studies showed similar recruitment
of spastin during nuclear envelope reformation at the end
of mitosis, albeit with a different recruitment system [42,
43]. However, the roles of ESCRTs at the nuclear mem-
brane began to emerge with the recognition that ESCRTs
are required for budding of the Epstein-Barr virus through
the nuclear membrane [44]. More recently, it was found
that the ESCRT machinery also restores membrane integ-
rity after nuclear pore and nuclear envelope damage [43,
45, 46]. These membrane-repair functions of the ESCRT
machinery are also observed at the plasma membrane [47]
and a likely developmental counterpart of such activity
has been observed in neuron remodelling. Indeed, ESCRTs
have been shown to be required for the membrane scission
that occurs in neuron pruning [48]. ESCRT-dependent
neuronal remodelling events were described previously in
Drosophila development, but had been attributed to en-
dolysosomal trafficking of neuronal receptors [49–51].
Other, less understood, ESCRT functions include control of
centrosome number during mitosis [52–55], transcription-
al gene regulation [56–61], RNA transport [62], and mi-
croRNA biogenesis [63, 64]. Although the mechanistic de-
tails of these processes are unclear, it is reasonable to think
that they might be linked to bending of membranes away
from the cytoplasm, which to date represents the shared to-
pological feature of well-characterised processes operated
by ESCRT. In extreme synthesis, the ESCRT machinery is
modular and invariantly leads to deployment of ESCRT-
III and Vps4, a multipurpose membrane-remodelling com-
plex.

ESCRTs, signalling and tissue
architecture

Because a number of signalling proteins are transmem-
brane or membrane associated, endocytosis and trafficking
to lysosomes are crucial to regulation of signal transduction
(reviewed in [65]). Indeed, studies in cells of multicellular
organisms that followed the initial discovery of ESCRT in
yeast revealed that endosomal sorting complexes are essen-
tial to downregulate signalling, among which is that stim-
ulated by epidermal growth factor (EGF) [66–74]. Sub-
sequently, Drosophila mosaic animals also indicated that
ESCRT function is required to regulate Notch signalling,
which regulates multiple cell fate decisions. The canonical
pathway is activated by binding of ligands to the trans-
membrane Notch receptor, triggering cleavage and trans-
location of an activated fragment, Notch intracellular do-
main, to the nucleus to de-repress transcription of target
genes (reviewed in [75]). Drosophila organs developing in
absence of ESCRT-I, -II or -III activity display increased,
and for the most part ligand-independent, Notch signalling
activity owing to accumulation on the limiting membrane
of endosomes of Notch receptors that fail to be included in-
to MVBs [76–80]. Despite endosomal Notch accumulation,
ESCRT-0 mutant organs of mosaic animals do not show
ectopic Notch signalling activity [67, 68, 81], highlighting

differences in regulation of Notch signalling regulation by
endosomal sorting, when compared with EGFR signalling.
In ESCRT-mutant Drosophila tissues, cell polarisation is
lost, probably because a number of polarity determinants
require endosomal trafficking to be maintained at correct
levels to polarise membranes and cell-cell junctions
[82–86]. Apoptotic response is enhanced as well. However,
it is not clear whether this is an indirect consequence of the
signalling and polarity defects [79, 87, 88]. In epithelial or-
gans of Drosophila lacking ESCRT-I, -II or -III compon-
ents, ectopic activation of signalling and altered cell po-
larity contribute to formation of tumour-like tissue that is
highly over-proliferative, especially when apoptosis is in-
hibited. These traits led to the proposal that ESCRT genes
act as tumour suppressors in metazoans (reviewed in [89]).
Drosophila ESCRT-0 genes, however, do not behave as tu-
mour suppressors, perhaps reflecting the distinct evolution-
ary origin of the complex [81].
Similarly to that of Drosophila, analysis of mouse ESCRT
knock-outs revealed a requirement for cell survival, prolif-
eration and signalling regulation leading to lethality early
in embryogenesis [90–93]. Interestingly, a mouse hypo-
morph mutant of Vps25, encoding an ESCRT-II compon-
ent, allows development to occur and reveals a specific re-
quirement for ESCRTs in downregulating Sonic Hedgehog
and fibroblast growth factor (FGF) signalling during limb
development [94].
Several other signalling pathways have been shown to be
deregulated when ESCRT function is impaired in multiple
model systems. These include JNK (Jun amino-terminal
kinases), JAK/STAT (Janus kinase / signal transducer and
activator of transcription), Hedgehog, Wnt, FGF, Toll, nuc-
lear factor kappa-beta (NFκβ) and transforming growth
factor-beta (TGF-β) signalling [68, 76, 88, 93–101].
Overall, development and cell biology studies in multicel-
lular organisms have taught us that ESCRTs have essential
and pleiotropic functions that deeply impact tissue forma-
tion and homeostasis.

ESCRTs and infection

As introduced above, a number of pathogenic viruses in-
cluding human immunodeficiency virus-1 (HIV-1), hepat-
itis C virus and Ebola virus hijack ESCRTs for their mat-
uration and eventual budding to release infectious particles
from infected cells (table 2). Indeed, plenty of data indicate
that viral proteins, such as the Gag protein of HIV-1, recruit
TSG101 and Alix, which in turn recruit ESCRT-III and
Vps4 proteins, to the neck of the viral particle assembling
at the plasma membrane [23, 102–108]. In the absence of
TSG101 and ALIX, hepatitis C virus, herpes simplex vir-
us type 1 (HSV-1), and to some extent, HIV-1 are still able
to recruit ESCRT-III [102, 109, 110], suggesting that ad-
ditional proteins mediate these interactions. Alternatively,
viral proteins may be able to recruit downstream ESCRT
components; for instance, the matrix protein VP40 of Ebola
virus, in addition to recruiting TSG101, also directly re-
cruits Vps4, with some other ESCRT proteins, to the site of
budding [111].
In addition, a number of reports suggest that several viruses
incorporate their proteins, messenger RNAs or microRNAs
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into exovesicles of their hosts to promote their spread, to
modulate immunity, or to manipulate the microenviron-
ment [112–119]. ESCRT activity is also required for entry
of rotaviruses and human papilloma virus, as these are
taken up by endocytosis, sorted into ILVs and eventually
released in the cytoplasm [120–126]. Finally, a role for
ESCRT-II in the replication of HIV-1 has also been re-
ported. Depletion of ESCRT-II subunits in HIV-1-infected
human HeLa cells affected the cytoplasmic trafficking of
HIV-1 genomic RNA and reduced the expression of the
HIV Gag protein [127, 128]. Similar results were reported
for the hepatitis B virus [129]. Whether the function of
ESCRT-II in this particular aspect of the viral life-cycle
corresponds to that in transport of endogenous mRNA in
Drosophila [62] is currently unclear.
Several non-viral pathogens also exploit the function of
ESCRTs in infecting their hosts. Genome-wide screens in
Drosophila S2 and murine macrophage cells have found
that ESCRT components restrict the growth of mycobacter-
ia by impairing phagosome maturation, raising the possibil-
ity that mycobacteria may disrupt host ESCRT function for
their growth. Indeed, a protein secreted by Mycobacteri-
um tuberculosis binds to Hrs to hinder sorting towards the
lysosome for degradation [130–132]. A subunit of the leth-
al anthrax toxin secreted by Bacillus anthracis is packaged
into ILVs of infected cells, both for a longer half-life and
for exosomal secretion [133]. Finally, Candida albicans, an
opportunistic fungal pathogen that colonises mucosal sur-
faces, requires ESCRT activity for pathogenesis and colon-

isation. In contrast to viruses and other pathogens that hi-
jack the host ESCRT machinery, C. albicans uses its own
ESCRT complex to adapt to the neutral–alkaline pH of the
host environment [134–139].
In summary, viruses and other pathogens clearly exploit
a wide range of the diverse cell biological functions of
ESCRTs, offering multiple points of entry for future innov-
ative therapies.

ESCRTs and cancer

Misexpression of ESCRT subunits has been associated
with several types of human cancer. However, the role of
ESCRT in tumorigenesis remains highly controversial. One
of the most studied ESCRTs in this regard is the ESCRT-
I gene TSG101, which was initially isolated in a search
for novel tumour suppressor genes (TSG101: tumour sus-
ceptibility gene 101). Inactivation of TSG101 in NIH3T3
cells gave rise to metastatic tumours when xenografted in
nude mice [140]. Consistent with this, TSG101 expres-
sion is significantly downregulated in cervical carcinomas
[141]. Despite this, the role of TSG101 as a tumour sup-
pressor has been debated, because it was later found that
conditional knock-out of Tsg101 in mouse mammary epi-
thelia did not promote tumour formation but arrested cell
growth [142, 143]. Although TSG101 expression seems
tightly regulated by an active mechanism [144], a study
evaluating the effect of TSG101 overexpression indicated
that tumour maintenance and progression rather than ini-

Table 2: Involvement of ESCRT (endosomal sorting complexes required for transport) components in disease.

ESCRT complex Subunit Disease/dysfunction References
Infections
ESCRT-0 Hrs Exosomal secretion of hepatitis C virus

Mycobacterium tuberculosisresistance to degradation
[115]
[132]

ESCRT-I/III/VPS4 TSG101, CHMPs, VPS4 Budding of viruses including HIV-1, Ebola. Reviewed in [251]

ESCRT-II EAP20, EAP45 Replication of HIV-1 [127, 128]

Cancer
ESCRT-0 Hrs Tumorigenesis and metastasis of HeLa cells [166]

Cervical cancer [141]

Breast cancer [145, 150]

Lung cancer [146]

Gallbladder adenocarcinoma [148]

TSG101

Ovarian carcinoma [149, 150, 152]

Hepatocellular carcinoma [153, 154]

Breast cancer [155]

Ovarian cancer [156]

ESCRT-I

VPS37A/HCRP1

Renal cell carcinoma [157]

Renal cell carcinoma [158]CHMP1A

Pancreatic carcinoma [159, 160]

CHMP4B Hepatocellular carcinoma [161]

ESCRT-III

CHMP4C Lung cancer [162]

Hepatocellular carcinoma [163]VPS4 VPS4A

Ovarian carcinoma [165]

Neurodegeneration
ESCRT-I VPS37A Hereditary spastic paraplegia [182]

Frontotemporal dementia [167, 168]

Amyotrophic lateral sclerosis [176, 178]

ESCRT-III CHMP2B

Alzheimer’s disease, dementia with Lewy bodies [186, 188–190]

Other diseases
ESCRT-III CHMP4B Progressive childhood posterior subcapsular cataracts [194]

VPS4 VPS4 Crohn’s disease [196]
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tiation might benefit from higher levels of TSG101 [145].
Despite this, the gene has been found to be significantly
overexpressed also in lung cancer [146], gallbladder ad-
enocarcinoma [147], papillary thyroid tumours [148] and
ovarian carcinomas [149]. These tumours might be ad-
dicted to high levels of TSG101, as its depletion was shown
to reduce tumour growth, to slow tumour migration, to halt
cell cycle progression and to trigger apoptosis of cancer
cells [150–152]. TSG101 appears also to be a prognostic
marker in some cancers because its high expression correl-
ates with poor prognosis, decreased survival, high tumour
stage, and increased metastasis and invasion [147, 152].
Besides TSG101, another ESCRT-I gene, VPS37A, was
identified because of its down-regulation in hepatocellular
carcinomas and named human hepatocellular protein 1
(HCRP1) accordingly [72, 153]. Reduced VPS37A/
HCRP1 expression strongly correlates with depth of tu-
mour invasion, lower survival and higher rate of disease
recurrence not only in hepatocellular carcinoma, but also
in breast cancer, renal cell carcinoma, and oral and oro-
pharyngeal cancers [153–157]. Most of the effect of
VPS37A loss has been attributed to reduced EGF receptor
degradation [72, 156], activation of downstream MAPK/
ERK signalling and increased matrix metalloproteinase-2
(MMP2) expression: the loss of VPS37A has been sug-
gested to increase tumour proliferation and invasion, and
in ovarian cancer patients to lower response to cetuximab
treatment [153, 156].
Several subunits of the human ESCRT-III and Vps4 com-
plexes have been also linked to tumour development.
CHMP1A appears significantly downregulated in renal cell
carcinomas [158] and pancreatic tumours [159, 160], in
which it has been suggested to function as a tumour sup-
pressor. Accordingly, non-tumorigenic human embryonic
kidney cells acquire the ability to form xenograft tumours
when CHMP1A is depleted [160]. CHMP1A overexpres-
sion inhibits the proliferation of renal [158] and pancreatic
tumour cells [160]. CHMP1A appears to inhibit tumour
growth in the pancreas by regulating the activation of atax-
ia telangiectasia mutated (ATM) kinase and phosphoryla-
tion of p53 [159, 160]. Recent reports have identified a
strong upregulation (and correlation with poor prognosis)
of CHMP4B in hepatocellular carcinoma, and have sugges-
ted that CHMP4B and CHMP4C might be required to sus-
tain proliferation and resistance to anticancer treatment in
human hepatocellular and lung cancer cell lines, respect-
ively [161, 162]. In a study aimed at characterising mi-
croRNAs in exosomes of hepatocellular carcinoma cells,
it was found that modulation of Vps4A changed exosome
content and activity. Vps4A was also found to act as a
tumour suppressor, by repressing the PI3K/Akt pathway
[163]. Other studies suggested that VPS4A and exosomes
could influence resistance to cancer drugs like cisplatin and
doxorubicin by modulating their efflux [164, 165].
Finally, expression of the ESCRT-0 component HRS is sig-
nificantly increased in human tumour tissues derived from
the stomach, colon, liver and cervix and from melanomas
― suggesting the existence of a tumour-enhancing func-
tion for HRS. Depletion of HRS reduced the tumorigeni-
city and metastatic ability of HeLa cells and upregulated
the protein level of adherens junction component E-cadher-

in [166]. Since HRS functions in the endolysosomal traf-
ficking and degradation of E-cadherin [83, 166], it has been
proposed that, in these tumours, the cargo sorting function
of HRS is hijacked to downregulate E-cadherin and pro-
mote metastasis.
Overall, the involvement of ESCRT in tumorigenesis is
multifaceted and likely to be dependent on the tumour con-
text, reflecting the complexity of the phenotypes observed
in ESCRT mutant organs of Drosophila.

ESCRTs and neurodegeneration

ESCRT loss is observed frequently in many neuropatholo-
gies. Among the best characterised are the form of auto-
somal dominant frontotemporal dementia (FTD) caused
by mutations in CHMP2B, a subunit of ESCRT-III [167,
168]. The mutations lead to loss of the protein C terminus,
which controls autoinhibition and interaction with Vps4
[169–173]. Accordingly, enlarged dysmorphic late endo-
somes have been found in cells of FTD patients [167, 174].
Similar endosomal phenotypes are observed when mutant
CHMP2B is overexpressed in human cells [168]. It has
been proposed that mutant CHMP2B impairs endosome-
to-lysosome fusion by blocking the endosomal recruitment
of the GTPase Rab7, by inhibiting ESCRT-III dissociation
from endosomes, or by preventing the disassembly of the
ESCRT-III complex. Defective autophagy is another mech-
anism by which CHMP2B mutations might cause FTD.
Such a scenario is suggested by the presence of ubiquitin
inclusions positive for the autophagy marker p62, which
are often observed upon failure of autophagic clearance
[173, 175–177]. Overall, the endolysosomal and autophagy
defects are thought to lead to accumulation of protein ag-
gregates, inducing neuronal degeneration, which is a hall-
mark of the disease. CHMP2B mutations have also been
identified in amyotrophic lateral sclerosis patients [176,
178] suggesting that defective ESCRT activity may con-
tribute also to the pathogenesis of amyotrophic lateral
sclerosis.
Mutations in the microtubule-severing protein spastin,
which has been found to be associated with the ESCRT-
III complex during cytokinesis and nuclear membrane re-
formation, cause hereditary spastic paraplegia (HPS) [179].
Spastin function in HPS has been linked to shaping of the
endoplasmic reticulum [180] and, recently, to formation
of lipid droplets [181]. This indicates that either ESCRT-
independent functions of spastin are affected in HPS or
that ESCRTs and spastin might cooperate in membrane and
microtubule remodelling at the endoplasmic reticulum or
in lipid droplets. Underscoring this interesting possibility,
mutations in VPS37 (ESCRT-I) have also been identified in
HPS patients [182].
Although no mutations have been isolated so far, ESCRT-
III function has also been reported to be important for as-
pects of Alzheimer’s disease and of Lewy body dementia
(DLB, an umbrella term for two related diagnoses, Par-
kinson’s disease dementia and dementia with Lewy bod-
ies). Lewy bodies are abnormal aggregates containing dam-
aged alpha-synuclein (α-SYN) and other proteins, and α-
SYN aggregation is a trait associated with the progression
of Parkinson’s disease and DLB [183, 184]. A feature of

Review article: Biomedical intelligence Swiss Med Wkly. 2016;146:w14347

Swiss Medical Weekly · PDF of the online version · www.smw.ch Page 5 of 14



Alzheimer’s disease and of DLB is the prion-like cell-to-
cell spreading of α-SYN aggregates leading to rapid dis-
ease progression [185]. According to recent studies, α-SYN
aggregates are taken up by clathrin-mediated endocytosis,
undergo ESCRT-mediated trafficking through MVBs, and
are degraded in lysosomes [186–188]. Rapid clearance of
α-SYN aggregates and amelioration of the neurodegener-
ative pathology was observed upon CHMP2B overexpres-
sion [186, 189]; on the other hand, depletion of CHMP2B
mediated by small interfering RNAs (siRNA) increased
the exocytosis and intercellular transmission of α-SYN ag-
gregates [186]. In addition, α-SYN aggregates colocalised
with Vps4 [190], and inhibition of Vps4 function using
a dominant-negative construct blocked lysosome-mediated
degradation and increased extracellular secretion of α-
SYN, possibly by means of exosomes [187].
The formation of amyloid-beta aggregates in Alzheimer’s
disease also appears to involve regulation by ESCRT pro-
teins. In fact, it has been recently shown that amyloid-
beta and amyloid protein precursor are sorted into the int-
raluminal vesicles of MVBs. Depletion of Hrs and Tsg101
increases the intracellular accumulation of amyloid-beta
by simultaneously inhibiting lysosomal delivery of amyl-
oid precursor protein and reduced amyloid-beta secretion
through an as yet unknown mechanism [191].
Finally, early work showed that fluorescently-tagged poly-
glutamine aggregates of mutant huntingtin protein required
the function of the ESCRT-III protein CHMP3/Vps24 for
autophagic clearance [192, 193]. However, no follow-up
has further detailed alterations of ESCRT activity in Hunt-
ington’s disease.
Overall these studies clearly suggest that defects in endo-
somal sorting, autophagy, exosome release and spastin-de-
pendent membrane remodelling contribute to key aspects
of the pathology of a broad range of neurodegenerative dis-
eases and that future modulation of ESCRT activity could
provide a major therapeutic benefit.

Other diseases linked to ESCRT
function

Mutations in the ESCRT-III subunit CHMP4B have been
identified in progressive childhood posterior subcapsular
cataracts linked to chromosome 20q [194]. According to
Sagona and colleagues, CHMP4B may protect the lens
from developing cataract by mediating the autophagolyso-
somal degradation of micronuclei during lens differenti-
ation, or by ensuring efficient cytokinesis [195]. Intestinal
epithelial cells of patients with Crohn’s Disease, an in-
flammatory bowel disease, possess significantly upregu-
lated Vps4B expression. This upregulation facilitates apop-
tosis of intestinal epithelial cells by activating the MAPK
signalling pathway [196].

Future challenges and paths to
therapy

In recent years, we have witnessed a dramatic expansion
in our knowledge of ESCRT activities. In fact, the current
landscape of ESCRT-dependent processes covers a large
palette of cellular events involving membrane remodelling,

well beyond endosomal sorting. More are likely to surface
in the next few years. Some of these are likely to explain
the currently unclear involvement of ESCRTs in centro-
some, chromatin and RNA regulation. However, it is
already clear from the wealth of ESCRT functions, that in
the future it will be critical to understand more about the
factors and the modifications that regulate ESCRT activity
in each different process. In this regard, we know that:
1. ESCRT targeting factors greatly differ. ESCRT-0 is

used only for endosomal sorting, Gag for HIV-1 bud-
ding, CEP55 is specific for cytokinesis, syntenin and
ARRDC1 for exo-vesicle secretion, BFRF1, Heh2 and
UFD1 for ESCRT activities at the nuclear envelope and
ALG-2 for plasma membrane wound repair.

2. ESCRT‐III and Vps4 can use ALIX as an alternative
upstream ESCRT in HIV-1 release, cytokinesis, exo-
some formation, plasma membrane repair and Epstein-
Barr virus budding from the nuclear envelope.

3. ESCRT-II appears dispensable as a bridging ESCRT
during exosome biogenesis, plasma membrane repair
and functions at the nuclear envelope.

4. Special ESCRT-III subunits, such as IST1, that assist
cytokinesis and nuclear envelope reformation, or
CHMP7 (also involved in nuclear envelope reforma-
tion) are often used.

5. A number of other components have been identified as
accessory ESCRT-III subunits or regulators of the en-
zymatic activity of VPS4 with unclear specificity. They
include Vta1/LIP5, Vps60/CHMP5, Did2/CHMP1 (re-
viewed in [197]).

Overall, these differences provide us with an initial glimpse
of the functional diversity of ESCRT operations that will
allow therapeutic targeting of distinct ESCRT processes in
the future.
Our knowledge of the ESCRT modifications that might
contribute to specificity and to functional modulation is un-
fortunately less developed. However, pioneering work has
been done on post-translational modification of ESCRTs in
the context of endosomal sorting. For instance, it has been
shown early on that Hrs becomes rapidly phosphorylated
in response to growth factors like HGF (hepatocyte growth
factor), EGF and platelet-derived growth factor (PDGF)
[198, 199] and subsequently ubiquitinated by the E3 ligase
Cbl. Hrs modifications disrupt the interaction of its ubi-
quitin identification motif (UIM) domain with ubiquitin-
ated (Ub-) cargoes and relocate Hrs to the cytosol to fa-
cilitate transfer of Ub-cargoes to downstream Ub-binding
ESCRT proteins. Also, relocation of ubiquitinated Hrs
from endosomal membranes permits replacement by non-
ubiquitinated Hrs to sustain endosomal sorting [200–204].
At the level of ESCRT-I, mahogunin-1 monoubiquitinates
TSG101 to favour endolysosomal cargo degradation
[205–207], while TAL (Tsg101 associated ligase) specific-
ally polyubiquitinates and aims Tsg101 towards degrad-
ation, thus inhibiting endosomal trafficking [208, 209].
Since evidence points to oncogenic alteration of signalling
in tumours, and to toxic build-up of cargoes in neurode-
generation, such modifications provide potential targets for
therapy.
The exact set of cargoes that can initiate modifications
and which other cargo-specific factors can directly regulate
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ESCRT activity remains unresolved. Interesting in this con-
text is the case of members of the Lgd/CC2D1 protein fam-
ily (Lgd in Drosophila, CC2D1A and CC2D1B in mam-
mals). They interact with CHMP4/Vps32 and appear re-
quired for the function of the CHMP4/Vps32 subunit of
ESCRT-III complex. However, at least in Drosophila, Lgd
regulation of ESCRT-III function appears highly specific to
a limited subset of cargoes, as it leads only to alteration of
Notch and BMP signalling [210–217]. Such example re-
minds us also of how little is still our understanding of how
major signalling pathways are regulated by the ESCRTs. A
case in point is that of Notch signalling, which is perturbed
in a wide variety of cancers [218]. In Drosophila, Notch pe-
culiarly appears to require fusion of MVBs to lysosomes to
be ectopically activated by ESCRT impairment [219]. It is
not yet clear whether such a form of regulation applies also
to mammalian or cancer cells. However, pharmacologic-
al inhibition of endosomal acidification appears to reverse
excessive Notch signalling also in mammalian cells [220],
highlighting how complex and cargo-specific ESCRT reg-
ulation of signalling could be in health as well as disease.
In neuropathologies in which ESCRT mutations clearly
lead to cargo accumulation, modifications and factors that
might generally upregulate cellular clearance might have
therapeutic benefits. A favourable strategy to achieve such
a goal might be to activate the transcription factor EB
(TFEB), a key regulator of lysosome biogenesis. TFEB
activity drives autophagosome-lysosome fusion [221].
Phosphorylation of TFEB by the mechanistic target of
rapamycin (mTOR) retains TFEB in the cytosol and pre-
vents its translocation to the nucleus as part of the genetic
circuitry that controls amino acid metabolism. Pharmaco-
logical inhibition of mTOR (e.g., by rapamycin, Torin1
or 2-hydroxypropyl-β-cyclodextrin) causes activation of
TFEB [222–225] and together with TFEB overexpression
has shown promise in models of neurodegenerative dis-
eases characterised by autophagic accumulation of toxic
protein [226–228]. TFEB overexpression appears to alter
also Notch-related development signalling events in Dro-
sophila [229], suggesting that the strategy might also be-
neficially modulate signalling originating from late endo-
somes.
A more complex example of ESCRT modification is that
of Myopic (Mop, HD-PTP in mammals), a member of the
protein tyrosine phosphatase (PTP) family that co-local-
ises with ESCRT-0 on endosomes and promotes receptor
trafficking towards the lysosome [96, 230–234]. Since the
phosphatase activity of Mop is not important for this func-
tion and its human orthologue HD-PTP does not possess
phosphatase activity [235, 236], exactly how Mop regu-
lates the activity of ESCRT-0 is not well understood. It has
been proposed that the PTP domain of HD-PTP/Mop might
act as a phospho-tyrosine binding module preventing de-
phosphorylation or influencing the localisation of ESCRT-0
subunits [236]. Interestingly, HD-PTP activity is also re-
quired in lieu of ESCRT-II at the plasma membrane for
neuron pruning [48], suggesting that interaction between
ESCRTs and Mop might occur at multiple levels of mem-
brane remodelling.
Modifications that specifically affect virus budding have
also emerged recently. The primary defence against in-

vading pathogens, including viruses, is the production of
type-I interferon (IFN); pathogenic viruses have, however,
evolved mechanisms to circumvent this control [237]. IFN
upregulates the production of IFN-stimulated genes (ISGs).
One of these ISGs is the ubiquitin-like ISG15, which has
broad-spectrum antiviral activities [238–240]. Overexpres-
sion of ISG15 in HIV-1-infected human cells inhibited the
replication of HIV-1 and disrupted the interaction of HIV-1
Gag protein with TSG101 by preventing Gag ubiquitina-
tion. [241]. This Gag-TSG101 interaction is crucial for ef-
ficient budding of HIV-1. Another mechanism of inhibition
of HIV-1 budding by ISG15 is the disruption of VPS4 in-
teraction with LIP5/Vta1 by ISGylating CHMP5 (ISGyla-
tion is a ubiquitin-like modification). In the absence of
LIP5/Vta1, VPS4 fails to oligomerise and is retained in
the cytoplasm. This results in failure to disassemble the
ESCRT-III complex required for multiple rounds of scis-
sion, thus blocking virus budding [242–245]. The effect of
ISG15 on host endosomal sorting has not been fully stud-
ied, so it is difficult to predict the level of cytotoxicity
associated with this therapy. Gag-TSG101 interaction is
also specifically inhibited by overexpression of the N-ter-
minal Gag-binding domain of TSG101 (TSG-5’). Because
host endosomal sorting remains relatively intact after
TSG101-5’ overexpression, some authors proposed the de-
velopment of TSG101-5’ derivatives or similarly-acting
Gag-TSG101 inhibitors as specific and potent antiviral
therapies [246–248]. Inhibiting the interaction of Ebola vir-
us VP40 protein with ESCRT subunits has also been pro-
posed as a therapeutic strategy [249]. Based on all these ob-
servations, small molecules have been, and are still being,
developed to disrupt the interaction of viral proteins with
host ESCRT or ESCRT-associated proteins [250]. A greater
understanding of the cofactors that mediate ESCRT-II func-
tion in HIV-1 replication will also aid in the development
of appropriate inhibitors at this step. Finally, understand-
ing if these therapeutic strategies and the underlying mech-
anisms of actions are applicable to other types of ESCRT-
mediated viral infections will be of great benefit to public
health.
In conclusion, the recent explosion of studies documenting
the new functions of ESCRT in membrane remodelling
and the increasing evidence of deregulation of ESCRT in
a wide range of pathologies demand that we step up our
effort towards a deeper and process-specific understanding
of ESCRT function, both in physiology and in disease.
Such understanding will be invaluable for future preventive
medicine and disease treatment.
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Figures (large format)

Figure 1

Cell biological functions of ESCRTs (endosomal sorting complexes required for transport).
Overview of ESCRT functions throughout the cell. Factors that are specific for each ESCRT-dependent process (boxed) are listed in italics.
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