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Practical implementations of quantum technology are limited by unavoidable effects of decoherence 
and dissipation. With achieved experimental control for individual atoms and photons, more complex 

platforms composed by several units can be assembled enabling distinctive forms of dissipation 

and decoherence, in independent heat baths or collectively into a common bath, with dramatic 

consequences for the preservation of quantum coherence. The cross-over between these two regimes 

has been widely attributed in the literature to the system units being farther apart than the bath’s 

correlation length. Starting from a microscopic model of a structured environment (a crystal) sensed 

by two bosonic probes, here we show the failure of such conceptual relation, and identify the exact 

physical mechanism underlying this cross-over, displaying a sharp contrast between dephasing and 

dissipative baths. Depending on the frequency of the system and, crucially, on its orientation with 

respect to the crystal axes, collective dissipation becomes possible for very large distances between 

probes, opening new avenues to deal with decoherence in phononic baths.

Models for quantum dissipation address the interaction of a quantum system with bosonic, fermionic or other 
kinds of environments, where the relevant information about the microscopic structure of the environment is 
encoded in its spectral density1–4. On the other hand, further information is required to properly describe spa-
tially extended multipartite systems: an often used generalization is the independent dissipation of the system’s 
components into separate baths (SB), leading to complete erasure of quantum correlations1,2. Also, collective or 
spatially symmetric decoherence into a common bath (CB)5–24 has been proposed as an alternative scenario in 
the limit of small system size (or components separation) in comparison with environment correlation length or 
with radiating atoms’ transition wave-length2,5,6. A CB opens up outstanding possibilities like superradiance2,10, 
superdecoherence5, and decoherence free/noiseless subspaces11,12, allowing the preservation and also creation of 
entanglement13–18, the emergence of collective synchronization19, with potential applications in quantum compu-
tation7–9,20–23 and metrology24.

Besides artificial methods to engineer collective dissipation mechanisms25,26, the cross-over between CB to 
SB can naturally arise in structured environments. The still open and fundamental question is: how small needs 
to be a multipartite system to dissipate collectively? The CB/SB cross-over when increasing the size of spatially 
extended systems has been phenomenologically modeled in the last decade yielding a smooth change and, gen-
erally, assuming isotropic dispersion relations of bosonic environments27–30 (like it happens for electromagnetic 
radiation in free-space2,6). Assuming a distance dependent transition from collective to independent dissipation, 
important predictions have been reported in the context of quantum error correction31, in the dynamics of pho-
tosynthetic complexes32–34 and in quantum metrology35. Even if a microscopic derivation of the CB/SB cross-over 
is still missing in spatially structured environments, it is usually argued that a common environmental medium 
with significant spatial correlations up to distances ξc will produce both damping for each system unit and a 
cross-damping among them: a collective dissipation is therefore generally associated to systems smaller than the 
correlation length ξc, while units far away will be damped independently in SB. Here we are going to show the fail-
ure of this prediction for a large class of energy-matter exchange dissipation models, particularizing to a specific 
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microscopic model to clarify and illustrate several details: a phonon bath in a crystal probed at different spatial 
locations. We address the cross-over from CB to SB in detail, providing a physical ground for the description of 
intermediate regimes, and assessing the role played by geometric factors, spatial extension of the system-probe 
contact and bath correlations. Our model allows to clarify several issues including: a) why when increasing the 
system size in 1D environments27,28,30,36 there is no asymptotic interpolation between CB and SB, but a periodic 
cross-over; b) why choosing an isotropic environmental dispersion relation will always lead to distance-decaying 
cross-damping, c) why anisotropic dispersion relations (like those in real crystals with symmetries) can lead to 
surprising effects like CB at large distances, also showing d) that in general the correlation length is not related to 
the CB/SB transition. We further e) give a simple intuitive picture of how a bath’s frequency cutoff appears natu-
rally from the fact that the system’s quantum units have a finite spatial extent, and f) we show how the presence of 
static disorder favours SB dissipation.

For clarity we introduce next a particular model displaying all the phenomenology, and leave the discussion 
on the generality of these effects to the last section.

Results

We consider a D-dimensional periodic crystal, in the same spirit that led Rubin37 to introduce a linear harmonic 
chain as a microscopic model of an Ohmic bosonic bath36,38. This model allows to model spatially correlated dis-
sipation and provides a common ground to assess the role of different crystal dimensionality D and geometries, 
including spatial disorder effects, either for point-like and for non-local system-bath interactions. The 
D-dimensional crystal consists on an infinite collection of harmonically coupled masses (� = =m 1) with on-site 
harmonic potential of frequency ω0 (see Fig. 1a for a representation for D =  2). We focus for the sake of simplicity 
in oscillations in one direction corresponding to one phonon polarization (see Methods). The dissipative system 
consists of two probes whose distance Gr  can be tuned, namely two uncoupled harmonic oscillators of frequency 
Ω weakly interacting with the crystal. We start considering point-like contacts at two different spatial locations Gn 
and ′ = +G G Gn n r .

The master equation2 for the reduced density matrix of the two probes may be obtained within the 
Born-Markov approximation and assuming the environment in a Gibbs state at temperature T

∑ρ ρ ρ ρ= − + Γ −∼

=
! " † †t i H r t F F F F( ) [ , ] ( , )( 1

2
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jl
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where = +∼H H HS S LS, with HS and HLS the system Hamiltonian and bath’s Lamb-shift (see equation (9) in 
Methods). The = † †F a a a a{ , , , }j 1 1 2 2  are the annihilation (creation) operators of each probe and Γ jl

D( ) are the cor-
responding damping coefficients (the superscript refers to the dimensionality of the crystal), depending only on 
the distance Gr  owing to environment translational invariance. Self-damping of each oscillator (j =  l) and cross 
terms (| j −  l| =  2) characterize the dissipation with

∫λ π ωΓ = Ω
π
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and non-vanishing terms
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Figure 1. (a) Sketch of a 2D crystal and two locally attached probes, at distance Gr . We pictorially plot the bath’s 
correlation (of spatial extent ξc) centered in one probe (see also Fig. 5c). (b) Cross-talk for the 1D periodic and 
disordered environment as a function of the probes distance. Added random noise in the onsite potential with 
amplitude ∆ ω2 =  0, 0.1, ω0 =  1, g =  3/4, probe frequency Ω resonant with kΩ =  0.164. The normalized cross-talk 
in absence of noise is Γ = Γ Γ = Ωˆx x k x( ) ( )/ (0) cos( )13

(1)
13
(1)  while in presence of disorder it is position dependent 

due to lack of translational invariance, Γ = Γ + Γˆx n n x n n( ) ( , )/ ( , )n 13
(1)

0 0 13
(1)

0 00
. We present Γ x( )n0

 for an arbitrary 
n0 and a given noise realization, with x ∈  [0, 600] and a we have used a finite harmonic chain of 2500 oscillators.
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For a bath at zero temperature, the only nonzero coefficients are the the self-damping Γ = Γ11 33 and cross 
term Γ13.

A crucial point is that if the two probes are attached to a common environmental point (CB case), i.e. 
λ . .= + +G†H a a A h c( )SB n1 2 , we have Γ 11 =  Γ 13 and Γ 22 =  Γ 24

30, whereas for probes attached to two independent 
environments (SB case) we would have Γ 13 =  Γ 24 =  0, i.e. no cross terms. The cross-over between CB and SB 
regimes depending on the probes distance can now be derived from this microscopic model without further 
assumptions. For long times, when the weak dissipation becomes important, only a family of resonant momen-
tum crystal phonons are relevant, such that ω = ΩΩ

G
k( ) . This condition identifies the manifold of phonons medi-

ating an eventual cross-talk between the oscillators. The dependence on probes distance at T =  0 and long times 
is then

∫λ
π

δ ωΓ =
Ω

− ΩG G GG Gr d k kr( )
2 (2 )

cos( ) ( )
(2)

D
D

D
k13

( )
2

2

Note that in the weak damping regime we are considering here, the dissipation rate λ2 is much smaller than 
the frequencies of the problem, which guarantees that at times where the quantum units start ‘feeling’ dissipation, 
the sinc function is well approximated by a delta.

The exceptional 1D case and disorder effects. Notice that an immediate consequence, previously 
observed in refs 27,28,30, but scarcely commented upon, is that for 1D homogeneous environments, irrespective 
of the dispersion relation, we have Γ ∝ Ωx k x( ) cos( )13

(1) , since the frequency resonance constraint exhausts all free-
dom in choosing the crystal momenta in eq. (2). This means that two probes will experience collective dissipation 
not only when attached to the same point of the environment but also when at the anti-nodes of the resonant 
mode36. In this case the relative position or the center of mass of the pair is shielded from decoherence, allowing 
to preserve entanglement among the probes at large distances. Indeed the surprising results is the lack of asymp-
totic cross-damping decay above any distance, being the cross-over between SB and CB periodically predicted. 
Further, if the relative size of cross-damping and self-damping are considered, this result is unchanged when 
increasing the temperature of the thermal bath (this is due to 

G
n k( ) factoring out of the integrals because it depends 

only on the frequency).
The generalization to higher dimensional environment leads to a richer scenario, but before proceeding it is 

interesting to assess the fragility of this phenomenon in experiments considering the effect of static disorder. The 
cross-talk can be understood as the sum of overlaps of resonant crystal normal modes at the probes positions. The 
expression (2) obtained when plane waves are the normal modes, can be in general expressed as

∫λ
ω
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where G Gf n k,  is the spatial profile of eigenmode 
G
k , and now the cross-talk is position dependent 

(Γ ′ ≠ ΓG G Gn n r( , ) ( )D D
13
( )

13
( ) ). The presence of disorder, here modeled by inhomogeneity in the local crystal potentials, 

breaks translational invariance and leads to localized waves. As a consequence the cross-talk, periodic in the 
homogeneous case, now decays with the distance at an average rate depending on the degree of disorder, as shown 
in Fig. 1b. This localization effect39 hinders the periodic cross-over between CB and SB leading to a spatial decay: 
beyond some distance, two independent probes will dissipate into SB.

Isotropic vs. anisotropic cases. When moving to D >  1 a common assumption in several phenomenolog-
ical approaches, either based on spin-boson6,23,27,28,30,35 or boson-boson models29, is the isotropy of the dispersion 
relation of the environment, i.e. its dependence only on the modulus 

G
k . This is the case for electromagnetic 

environment2. The isotropy of the environment dispersion enables some analytical insight and leads to a spatially 
decaying cross-talk in the master equation. For T =  0 and long times the cross-talk dependence on the environ-
ment dimension is

Γ ∝ Γ ∝ Γ ∝Ω Ω Ω
G G G G
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(1)

13
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On the other hand the dispersion in spatially structured media are typically not isotropic. In the case of a cubic 
homogeneous crystal, for instance,
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where we recognize the effect of the spatial symmetries (we discuss later the triangular case). Still the dispersion 
is approximately isotropic for small momenta (Fig. 2a black circle) ω ω ω

⎛
⎝
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integration yields a function decaying with the radial distance between probes (Fig. 2b). Independently on the 
crystal direction probed by the system components, collective dissipation is lost above some distance where the 
crystal will effectively acts as two SB.

Departure from isotropic dispersion relations has deep consequences. Although in general there will be a 
spatial (non-monotonic) decay of Γ Gr( )D

13
( ) , different scenarios may arise like those of Fig. 2c and d. In general the 

anisotropy of the dispersion will translate into a sensitivity of the probes dissipation to the crystal geometry. In 
Fig. 2c we observe for a particular resonance value Ω an interference effect resulting in decay of Γ Gr( )d

13
( )  along all 

directions except for the lattice diagonals y =  ± x where it does not decay. Indeed π= ± −Ω

G
k k k{ , ( )}x x  yields 

π πΓ ∝ − −Gr x x y y x y( ) ( sin( ) sin( ))/( )13
(2) 2 2 , not decaying on the crystal diagonals. Strong anisotropy is also 

displayed in Fig. 2d, for kx =  ± π, ky =  ± π and leading to a periodic cross-term π πΓ ∝Gr r r( ) cos( )cos( )x y13
(2) . Then 

no asymptotic decay of the cross-damping with distance occurs and these high frequency probes are able to 
‘resolve’ the spatial structure of the crystal.

Similar results are found in 3D: resonant momenta for a given Ω will lie in a surface, and cross-talk will 
depend on their interference. For isotropic (low momenta) case we have the form Γ ∝ Ω

G G Gr k r( ) sinc ( )13
(3) , while 

for high momentum we have a similar ‘egg-crate’ in 3D π π πΓ ∝Gr r r r( ) cos( )cos( )cos( )x y z13
(3) . Also the 2D peculiar 

case of Fig. 2c has an analog here with non-decaying crossover along diagonal directions.

Other crystal symmetries. Our predictions are robust also in different geometries as for example in the 
triangular lattice (instead of cubic). In this case diagonalization of HB would be done through plane waves along 
momentum directions corresponding to the correct Bravais lattice. Since the direct lattice has proper vectors (in 
2D now for simplicity) =G ˆv ux1  and = +G ˆ ˆv u u/2 3 /2x y2 , its Bravais lattice has vectors π= −

G
ˆ ˆb u u2 ( / 3 )x y1  

and π=
G

ˆb u4 / 3y2 . The momentum expansion should be done in this directions and the dispersion relation 
results

ω ω= + + +G l l l8(sin ( /2) sin ( /2) sin ( /2))k 0
2 2

1
2

2
2

3

with l1 =  kx, = +l k k/2 3 /2x y2  and = −l k k/2 3 /2x y3 . The behaviour of dissipation displays (see Fig. 3) the 
same regimes of decaying cross-talk for low momenta, and non-decaying cross-talk for higher momenta along 
symmetry-favoured directions.

Short time behaviour. So far we have discussed the long time limit, relevant for the weak coupling regime, 
whereas at short times there is a transient in which the signal travels from one probe to the other at the crystal’s 
fastest group velocity and no cross-damping exist. This is seen in the cross-talk, which expands its spatial struc-
ture at that velocity (see Fig. 4 and Supp. Inf.), reaching its final (momentum dependent) form (displayed for 
t →  ∞  in Figs 1, 2 and 3).

Finite temperature. The damping coefficients typically associated with cooling (Γ 11 and Γ 13) and heating  
(Γ 22 and Γ 24), have a temperature dependence which is encoded in the factors +

G
n k( ) 1 and 

G
n k( ), respectively, 

which for bosonic modes are given by the relation ω+ =
G

Gn k k T2 ( ) 1 coth( /2 )k B� . For weak damping, the reso-
nant filtering of frequencies (which transforms the sinc function into a delta in frequencies), transforms this  G
k-dependent factor in the integral into a purely numeric factor Ω

G
n k( ), weighting the population of bath modes at 

the given frequency Ω. So in comparison with T =  0 where Γ 22 =  Γ 24 =  0, now also these heating terms are present, 
with a factor Ω

G
n k( ), whereas the cooling terms (Γ 11 and Γ 13), go with a factor +Ω

G
n k( ) 1. The spatial behaviour is 

thus unchanged.
If damping is not so weak, at early times there is still the effect of the 

G
k-dependent sinc function and the num-

ber occupations of each mode 
G

n k( ), which add different weightings to each mode inside the integral. These 
weights give more importance to low-frequency modes in the bath, although we have checked that the net effect 
on the damping rates is not too pronounced.

Figure 2. (a) 2D dispersion relation in color code with ω0 =  1 and g =  3/16, so that ω ∈G [1, 2]k . Iso-frequency 
surfaces are shown for the limiting cases discussed in the text: black Ω =  1.01 corresponding to the isotropic 
case, green) Ω = 5/2  and blue Ω =  1.95. Normalized cross-damping term Γ = Γ ΓGˆr r r( , ) ( )/ (0)x y 13

(2)
13
(2)  for (b) 

the isotropic case (low momenta), for (c) directional non-decay (medium momenta) and (d) non-decay (high 
momenta) (see text for details). We plot only one spatial quadrant because of the symmetry of the setting.
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Extended spatial coupling. Considering probes with a finite spatial extension and hence coupled to a 
finite-sized region of the crystal, instead of single atoms, elucidates the meaning and presence of frequency 
(momentum) cut-off ωc in the description of open systems. Even if a crystal presents a natural maximum fre-
quency determined by its periodicity, in open systems the cut-off is often not a property of the environment29, 
depending instead on the probe system. Let us consider probes with extended interaction 

λ= ∑ + ′+ +
!"

" "!" !" !"H g R q Q q Q( )( )SB R n R n R1 2  with 
!"

g R( ) a function decaying for >
!"
R 0 up to each probe size. The  

new cross-term integrand = Φ! ! ! ! !"C r k t C r k t k( , , ) ( , , ) ( )13 13  is modified by a contact form factor 
= Φ! ! ! ! !"C r k t C r k t k( , , ) ( , , ) ( )13 13  and the long times, T =  0, new expression reads

∫λ
π

δ ωΓ =
Ω

Φ − Ω! ! !! !" !r d k kr k( )
2 (2 )

cos( ) ( ) ( )
(4)

D
D

D
k13

( ) 2

2

where Φ
G
k( ) limits the maximum effective wavenumbers. For a system-probe coupling σ∝ −

!" !"
g R R( ) exp( /2 )

2 2 , 
the factor σΦ ∝ −

G G
k k( ) exp( )

2 2  leads to filtered integrals, stemming from the fact that a probe of spatial size σ 
detects an average effect on that area and will be unable to feel the influence of phonons of shorter wavelengths 
(higher momentum than 1/σ). In practice, in order to reach the situation in Fig. 2d each probe needs to have a 
spatial extent smaller than the crystal spacing, so that it senses the highest available phonon momenta (σ →  0, so 

δ=
!"

!" "g R( ) R,0).

Correlation length in the crystal. Does the transition from CB to SB we have seen up to now have to do 
with the correlation length of the environment? The quick answer is no, as can be seen in Fig. 5a and b. The cross- 
and self-damping terms in the dissipation equation (1) come from bath operator spatial correlation functions 

Figure 3. (a) 2D dispersion relation in colour code with ω0 =  1 and g =  0.165, so that ω ∈ .G [1, 1 992]k . Iso-
frequency surfaces are shown for the limiting cases equivalent to those of the cubic crystal of the main text: 
black Ω =  1.01 corresponding to the isotropic case, green Ω =  1.905 directional non-decay, and blue) Ω =  1.99 
non-decay. We have also plotted in red the fundamental (Wigner-Seitz) cell, to which momentum integrals are 
restricted. Normalized cross-damping term Γ = Γ ΓGˆr r r( , ) ( )/ (0)x y 13

(2)
13
(2)  for (b) the isotropic case (low 

momenta), for (c) directional non-decay (medium momenta) and (d) non-decay (high momenta), where we 
have added in red the crystal symmetry directions to show that the cross-damping term conserves the 
symmetry of the problem.

Figure 4. Short-time behaviour of the 2D crystal cross-talk, for the case (c) of Fig. 2 in main text for times (a) 
ω0t =  10,30,70. The long time limit corresponds to (Fig. 2c).
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′G GQ Q t(0) ( )n n  at two times. This time dependence is the one that, for long times, selects a unique wave vector Ω
G
k  

due to resonance with Ω (through the factor ω − ΩG tsinc[( ) ]k ) and therefore follows from a reduced manifold D-1 
of momenta. On the other hand, the correlation in the crystal at two different points comes from functions at 
equal time ′G GQ t Q t( ) ( )n n  and follows from all phonons momenta. In other words cross-damping is caused  
by resonant phonons, while generic correlations in the crystal are caused by interference of all phonons  
thus decaying with distance even in 1D (Fig.  5a). Usually, as in our case, the bath is in a stationary  
(thermal) state, and thus the correlation function is time-independent = G GC r r Q Q( , )x y r0 , with 

∫π ω= ⋅ +
π

π
+

−
−

! ! "! !
! ! "! !Q Q d k k R n k(2 ) cos( )[ ( ) 1/2]/r r R

D D
k. The 2D case (Fig. 5b and c) clearly displays spatial cor-

relations decay at distances of the order of the crystal lattice ξ ≈ ac  (notice that all spatial coordinates are scaled 
with a in the rest of the manuscript), being stronger along crystal directions, while the cross-talk decays on a scale 
given by the resonant normal mode wave-length ≈ Ω

−G
k

1
 (isotropic case) or does not decay at all (anisotropic case).

Discussion

Generality. Our conclusions can be generalized to other system-bath models, e.g. where the environment is 
a non-interacting field which exchanges excitations with the system probes: i.e a collection of free particles with a 
given dispersion relation ε

G
k( ) whose eigenfunctions have a spatial profile G G

f r k( , ), so that the bath Hamiltonian is 
ε= ∑G G G G†H b bB k k k k (or ∫ ε

G
G G G†d k b bD
k k k for continuous spectra); the exchange interaction between bath and system 

probes being . .∝ ∑ + + +! ! ! "! !! !†H f r k a f r R k a b h c[ ( , ) ( , ) ]SB k k1 2 , so probe 1 is located at Gr  and probe 2 at +!
"!

r R. In 
such case and assuming secular and Born-Markov regime, the cross-talk is given by

∫ δ ε εΓ + ∝ + − Ω! ! "! ! ! ! ! "! !
! !⁎r r R d kf r k f r R k g( , ) ( , ) ( , ) ( ) ( ) (5)

D D
k k13

( )

where the function ⋅g ( ) is related to how the probes couple to each mode. The free particles could be Bogoliubov 
bosons on top of a condensate in an optical lattice, electrons in the bulk, phonons in a crystal with disorder (as in 
the main text) or any other free particles which, because of the locality and weakness of the probe-bath coupling 
lead to such master equation with this cross-term. The delta function is a consequence of the fact that the 
system-bath is energy exchanging, and thus that we have dissipation. Note also that we have assumed that different 
bath modes are uncorrelated and stationary, as usual in e.g. a thermal state.

The bath free field can be expressed in terms of the single-particle operators, leading to a correlation function

∫φ φ ε+ ∝ +! ! "! ! ! ! ! "! !
!⁎r t r R t d kf r k f r R k h( , ) ( , ) ( , ) ( , ) ( ) (6)

D
k

(notice that there are two generic functions h and g which are model-dependent). For non-interacting fields it is 
thus clear that CB/SB cross-over distance is unrelated to the correlation length in the medium, simply because the 
former is propagated by resonant free particles, while the latter is propagated by all particles. Other models with 
more complicated interactions than just particle exchange, or even interacting models for the bath, might yield 
different behaviours and are subject of future interest.

Figure 5. We compare here the normalized correlation function C(rx, ry)/C(0, 0) with the cross-damping in 
several cases where their decays do not match at all: (a) Crystal correlation function C(x) in 1D in red, vs. the 
cross-damping term in black of probes with frequency Ω =  2ω0. We have chosen ω0 =  1 and ω=g 3/4 0

2, so that 
again ω ∈G [1, 2]k . Lower Ω would simply resonate with a lower momentum and we would see a cosine with 
longer periodicity. (b) Correlation function for the 2D-crystal in red, compared with the cross-damping along rx 
(with ry =  0) for the isotropic case (black) and high momentum case (blue), as previously shown in Fig. 1b and d, 
respectively, with the same parameters as Fig. 1. (c) C(rx, ry) in colour code, and we have highlighted the 
particular value C(rx, ry) =  0.01 in white to guide the eye. This shape does not change significantly for higher 
temperatures (see Supp. Inf.). Further, the short range is not peculiar of this crystal symmetry: a similar 
behaviour can be observed for the triangular crystal (see Supp. Inf.).
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We comment now on how the phenomenology studied for the D-dimensional crystal translates into this 
gener ic  c l ass  of  mo del s :  a )  in  t he  1D c as e  t he  c ross -d amping  w i l l  b e  of  t he  for m 

εΓ + ∝ +Ω Ω Ω

! ! "! ! ! ! "! !
!⁎r r R f r k f r R k g( , ) ( , ) ( , ) ( )k13

(1) , meaning that the overlap of mode functions (of eigenmode Ω
G
k ) 

between the two probe positions will dictate the decay from CB to SB, i.e. the spatial shape of Ω
G Gf r k( , ), be it local-

ized or periodic, will lead to decay or non-decay respectively; b) the very peculiar behaviour observed in Fig. 2c,d 
requires very well-matched interference of plane waves (thus a translational invariant medium) and thus is not to 
be expected in general; c) the short/long time argument is based on the nature of the sinc function and thus inde-
pendent on the details of the model, hence any possible long-range cross-damping will take a time to build up, 
related with the fastest excitations in the environment; finally, d) also irrespective of the details of the bath model, 
the presence of a probe with finite spatial extension will blur any short-range (high momentum) details, leading 
to a high-momentum cutoff in the integrals defining the coefficients of the master equation.

Dephasing. A further interesting point is to consider the comparison with the case of a dephasing model. In 
that situation the cross-talk will not have any resonance constraint imposed, and thus the two integrals eqs (5) and 
(6) will be similar except for the functions εGh( )k  and εGg ( )k , leading to similar behaviours. Some typical bath’s 
spectral densities (encoding function g(·) and the density of states of the bath) ωD exp(− ω/ωc) favour small 
momenta in the cross-talk for 1D, while for 3D they favour frequencies/momenta near the cut-off frequency 
ωc

5,27. Thus for pure dephasing the CB to SB transition length will be similar to the correlation length of the 
environment.

Experimental implementations. One possible way to experimentally implement the 2D crystal is via 
trapped ions with a tight axial confinement so that they effectively lie on a plane and form a triangular-symmetric 
Coulomb crystal, such as in ref. 40. The major problem in that setting is that axial motion is coupled to radial 
degrees of motion, but this can be overcome if the axial frequency is sufficiently higher than the radial counter-
part. The probe ions would need to be sitting in the same plane thus distorting the modes of the Coulomb crystal. 
Therefore the modelling would be slightly more complicated. although the basic physics would be the same. 
Addressability of the probe ions, e.g. by fluorescence 41, would be a central requirement.

Another possible way of investigation is the intentional deposition of atoms adsorbed in metallic surfaces. 
This has always been considered as a drawback and a source of anomalous heating in ion trap electrodes3,42, but 
could suit our purposes. Adsorbed atoms bound to a metallic surface can have oscillation frequencies in the THz 
regime, very close to Debye frequencies of metals (gold for example has a Debye frequency of around 3.6 THz). 
In this way, by placing intentionally adsorbed atoms at different distances would allow us to check our results. 
Different masses of these atoms would scan the different frequencies as compared to the maximum phonon fre-
quency of the metallic substrate. For this to be possible we should deal with fluorescent adatoms which can be 
addressed and localized by lasers. Investigation of cross-damping could be done by exciting the motion of one 
atom and evaluating the effect on the other. A coupling of the fluorescent transition to the motional degree of 
freedom would probably be needed, though.

Outlook. An immediate consequence of this work is that initial correlations between two dissipating units 
will be highly sensitive to details of the underlying medium, such as crystal symmetries. This suggests a possible 
avenue to use multi-party quantum systems to test/probe media with unknown properties. One could further 
envision the use of a lattice of coupled probes to obtain information of an unknown surface through the decay 
of spatial modes of the probe-lattice. In this direction, recent work43 has shown that a single trapped ion can be 
confined near a metallic surface to extract electric-field noise characteristics through its heating rate. Also, in 
view of recent proposals to use surface acoustic waves as a quantum bus between many different types of quan-
tum systems44, the phenomenon of preferential directions seen in Figs 2 and 4 could be potentially used to build 
substrates with a patterned surface whose symmetry allows for distant units to communicate along diagonal/
triangular directions with a decay only given by static imperfection (disorder) of the material. All these avenues 
are left for future investigation.

Conclusion

Do the separate units of a spatially extended system suffer dissipation and decoherence from common or separate 
baths? We tackled this fundamental issue introducing a microscopic environment model where spatial distances 
and correlations appear naturally. Beside the ineffectiveness of environment spatial correlations to determine this 
transition, we have shown the importance of dimensionality, symmetries and probes extensions. The prediction 
of collective dissipation between distant probes in a 1D homogeneous environment when placed at a distance 
multiple of π Ω−k2 1 opens up interesting possibilities in surface phononic cavities44 and phonon wave-guides45. 
Similar predictions can hold for planar or bulk platforms environments, for probes at relative position now deter-
mined both by their oscillations frequency and the crystal symmetries. Indeed when D >  1, the dispersion is iso-
tropic for Ω ≪ ℓc/ , with c the effective propagation velocity in the medium and A either wavelength of the crystal 
periodicity or the mean distance between disorder patches in an otherwise homogeneous medium3. The anisot-
ropy opens a communication channel (resulting from the interference of a manifold of resonant phonons) 
between the probes, even at large distance (see Figs 2c,d and 3c,d) while the effect is degraded in presence of dis-
order. On the other hand, independent dissipation (SB) will occur for rather distant and ‘slowly oscillating’ 
probes, when the effective dispersion is isotropic (see Figs 2b and 3b) as in the largely studied case of electromag-
netic fields in homogeneous media.

Collective and local dissipation of multipartite systems in crystal environments can be extended to frontline 
platforms that can serve as substrates in quantum technologies, such as metamaterials with gapped spectra or 
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displaying topological modes46,47, and in polaritons configurations48, optomechanical arrays49,50 or cold atoms in 
different phases51. Furthermore, even if disorder in 1D environments has been shown to hinder collective dissi-
pation, there are several open questions in larger dimensions and in presence of phenomena such as Anderson 
localization52.

Methods

Master equation in periodic and disordered environment. We consider a D-dimensional harmonic 
crystal with nearest neighbour interactions: = ∑ + + ∑ −ω

+
G G GG GG GH Q Q( )B n

P Q g
l n n l2 2 2

2n n
2

0
2 2

 where ≡ …Gn n n n( , , )d1 2  
is the site index where each mass lies, and 

→l  are unit lattice vectors, being for a cubic structure 
∈ ....

G
ˆ ˆ ˆl u u u{ , , , }x y D  in each of the D spatial directions. The probes are first considered as point-like coupled to 

the bath at points Gn and ′ = +G G Gn n r , so the system-bath interaction is λ= + ′
G GH q Q q Q( )SB n n1 2 . The overall 

Hamiltonian is given by H =  HB +  HS +  HSB where the extended system consists of the two identical uncoupled 
= Ω +† †H a a a a( )S 1 1 2 2  harmonic probes. Notice that we introduce only one degree of freedom for each site, 

which corresponds also to a model of a scalar field with spatial discrete structure. If we set ω0 =  0, in 3D it also can 
be associated to studying cross-talk mediated by phonons of only one polarization in a realistic crystal, as for 
example gold53, with a linear anisotropic dispersion that saturates for high momenta. Since dissipation into the 
crystal can always be decomposed into three polarizations, we can choose to match the probe-to-probe direction, 
thus separating the problem into the three sets of polarizations, each having an anisotropic dispersion relation, as 
here considered.

The master equation of the system (two probes) density matrix up to the second order in the coupling strength, 
is obtained in the Born-Markov approximation2 and given by

∫ρ τ τ ρ= − − ⊗∼ ∼!" "t d H t H t R t( ) Tr {[ ( ), [ ( ), ( )]]} (7)S
t

B SB SB S0 0

in the interaction picture ρiS, where τ = ′ −t t and β= −R H Zexp( )/B B0  the invariant thermal state of the (crys-
tal) environment. In the crystalline case, the bath Hamiltonian is diagonalized by plane waves, and the 
system-bath Hamiltonian is then

∫ λ
ω

=
Ω

+
G

G
G G G G† †H d k S A S A

2
( ),

(8)
SB

D

k
k k k k

with π= +− ′G G
G

G G
S a e a e(2 ) ( )k

D ikn ikn/2
1 2 . In the case of a crystal with disorder, translational invariance is broken and 

the bath is not any more diagonalized by plane waves, but by the general transformation ∫= π

π

−

G
G G G GQ dk f Qn n k k,  and 

the system operators read = + ′G GG G GS a f a fk n k n k1 , 2 , .
After some standard algebraic operations, and going back to Schrödinger picture, the master equation reduces 

to

$ $

$

∫

∫
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with = 〈 〉G G G†N A Ak k k R0

, and substituting the corresponding operators GSk in the equations. In terms of 

= † †F a a a a{ , , , }i 1 1 2 2 , the dissipative part reads ρ ρ ρ= ∑ Γ −=! " † †r t F F F F( , )( { , })S j l jl j S l l j S, 1
4 1
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always understanding that = − ′G G Gr n n . Correspondingly :
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ω ω
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∫γ λ ω
ω ω

= −
Ω

− Ω −
Ω − ′

.
π

π

−

G
G G

G

G G
G G⁎d k t f f

4
1 cos[ ( )]

( ) (12)
D k

k k
n k n k

2

, ,

In the crystalline case (no static disorder), we have ∝ ⋅
G

G
G

G
f en k

ik n
, , so | | =G Gf 1n k,

2  and =
′

⋅
G G
G G

G G⁎f f en k n k
ik r

, ,
 (which 

leads, throught the symmetry of ωGk to ⋅
G Gk rcos( ) in the main text).
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