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ABSTRACT 25 

Shiga toxin producing Escherichia coli (STEC) are recognized as one of the most dangerous food-borne 26 

pathogens. The production of Shiga toxins together with intimin protein are among the main virulence 27 

factors. However, the ability to form biofilm can protect bacteria against environmental factors (i.e. 28 

exsiccation, UV rays’ exposure, predation, etc.) and sanitization procedures (cleaning, rinsing, chlorination), 29 

increasing their survival on food products and in manufacturing plants. Forty-five isolates collected from 30 

food and fecal samples were genotyped by Pulsed Field Gel Electrophoresis (PFGE) analysis with XbaI 31 

restriction enzyme and investigated by searching for toxins (stx1, stx2) and intimin (eae) genes and 32 

serogroup (O157, O26, O145, O111, O103 and O104). Afterward, the ability to develop biofilm in microtiter 33 

assay and the production of adhesive curli fimbriae and cellulose in agar plates were tested. Our study 34 

demonstrated that biofilm formation has a great variability among STEC strains and can not be related to a 35 

specific pulsotype nor even to serogroup or presence of virulence genes. 36 
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INTRODUCTION 38 

Escherichia coli is a constituent of the natural gastrointestinal microbiota of humans and warm-blooded 39 

animals; hence, it is used as a reliable indicator of fecal contamination for food and water. Most E. coli are 40 

harmless commensal; however, some strains are involved in critical foodborne infections including for 41 

example, hemolytic uremic syndrome (HUS), pyelonephritis, septicemia and gastroenteritis (Kaper, Nataro 42 

and Mobley 2004). These pathogenic strains are characterized by their ability to cause illness through 43 

genetically controlled mechanisms such as toxin production, adhesion and invasion of host cells, interference 44 

with cell metabolism and tissue destruction (Croxen et al. 2013). Shiga-toxin producing E. coli (STEC) are 45 

often associated with sporadic infections and outbreaks linked to the ingestion of contaminated food and 46 

water, direct contact with animals (especially ruminants), or via person-to-person transmission (Kaper, 47 

Nataro and Mobley 2004). In 2013, 6,043 confirmed cases of STEC infections were reported in the EU, with 48 

a notification rate 5.9 % higher than in 2012. Serogroup O157 was the most commonly reported one 49 

followed by O26 (EFSA (European Food Safety Authority) and ECDC (European Centre for Disease 50 

Prevention and Control) 2015). Beyond toxin production, these strains can colonize the host intestinal 51 

epithelium contributing to the pathogenesis of the disease. The ability of colonization was also observed on 52 

biotic and abiotic surfaces often through the formation of complex communities of cells called biofilms (Ryu 53 

and Beuchat 2005; Nesse et al. 2014). Microbial cells in a biofilm are embedded in a layer of extracellular 54 

polysaccharides (EPS) and diverse additional constituents, such as nucleic acids, proteins, glycoproteins and 55 

lipoproteins offering to the cell an improved resistance to the environmental stresses and a protection against 56 

different substances (i.e. antibiotics, sanitizing agents) (Ito et al. 2009; Wang et al. 2013). This phenomenon 57 

worries the food industry du to the potential ineffectiveness of both washing treatment of incoming raw 58 

materials and cleaning and disinfection procedures for the equipment sanification. Furthermore it was 59 

already demonstrated that biofilms can be an ideal environment for the dissemination of stx genes through 60 

bacteriophages (Solheim et al. 2013). The production of adhesive curli fimbriae (Olsén, Jonsson and 61 

Normark 1989) together with cellulose are two of the main colonization factors. Typically, environmental 62 

factors such as temperature below 30°C, microaerophilic conditions, low osmolarity, and nutrient limitation 63 

(nitrogen, phosphate and iron) support the expression of curli (Barnhart and Chapman 2006).  64 

The aim of this work was to characterize potentially pathogenic E. coli strains collected from food (goat’s 65 

milk and milking filters) and fecal samples. Isolates were discriminated by PFGE patterns analysis and 66 

investigated for virulence genes coding for Shiga toxins, intimin and O-serogroup. Since biofilm formation 67 

can be a significant feature for the persistence of STEC strains outside human or animal host, we tested the 68 

ability of the isolates to produce factors involved in the adhesion mechanism in order to understand if these 69 

traits can be associated to specific genotypic profiles. 70 

  71 
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MATERIALS & METHODS 72 

Bacterial strains 73 

Twenty-eight E. coli isolates were collected from 14 fecal samples gathered at Center for HUS Control, 74 

Prevention and Management -Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico (Milano, Italy) 75 

from patients with diarrheic syndrome and hemorrhagic colitis that showed to be positive to stx and/or eae 76 

virulence factors. Besides, 17 potentially pathogenic E. coli isolates where collected from 12 samples of 77 

milking filter and raw goat milk in Lombardy region (Table1).  78 

Detection of virulence factors gene by PCR analysis  79 

After DNA extraction (Sambrook and Russell 2001), the isolates were screened for the presence of stx1, stx2 80 

(Gannon et al. 1992) and eae genes (Gannon et al. 1997) and for the serogroup (Paton and Paton 1998; 81 

Monday, Beisaw and Feng 2007; Bielaszewska et al. 2011). PCR reactions were carried out with T-Gradient 82 

PCR thermal cycler (Biometra GmbH, Göttingen, Germany). After each PCR assay, 10 µl of the 83 

amplification product were analyzed on 1.2% agarose gels containing 0.4 µg/ml ethidium bromide, 84 

visualized with UV illumination, and photographed. Each agarose gel electrophoresis run included DNA 85 

molecular size standards (100bp XL Ladder; MBI Fermentas, St Leon-Rot, Germany). 86 

Genotyping by PFGE analysis 87 

Pulsed-field gel electrophoresis (PFGE) was performed as previously described (Picozzi et al. 2005). Briefly, 88 

DNA was digested with XbaI and separated on 1.2% agarose gel with a CHEF DR II apparatus under the 89 

following conditions: voltage gradient of 6 V/cm, increasing pulse time from 2.4 to 52.4 over a 23h period. 90 

The CDC strain G5244, was included as reference. The gels were stained with ethidium bromide and 91 

photographed. Images were analyzed with BioNumerics software (Applied Maths N.V., Sint-Martens-Latem, 92 

Belgium). The band based Dice similarity coefficient and the unweighted pairs geometric matched analysis 93 

(UPGMA) dendrogram type were used with a position tolerance setting of 0,5% for optimization and 94 

position tolerance of 1,5% for band comparison. Restriction profiles of all the isolates were normalized to the 95 

known molecular size bands of the E. coli G5244 standard strain. Pulsotypes were assigned based on the 96 

difference in the presence or absence of at least one band. 97 

Detection of curli and cellulose 98 

The assay for curli fimbriae expression was performed modifying the method of Kim and Kim (2004). 99 

Briefly, 40 mg L
-1

 of Congo red dye was added to colonization factor antigen (CFA) agar consisting of 1% 100 

Casamino acids, 0.15% Yeast extract, 0.005% MgSO4, 0.0005% MnCl2, 0.002 % Coomassie Blue and 2% 101 

agar at pH 7.4. To evaluate the production of exopolysaccharides (cellulose, PNAG, chitin), 0.005% of the 102 

fluorescent whitener Calcofluor (CF) was added to the agar medium instead of Congo Red and Coomassie 103 

Blue (Tagliabue et al. 2010). Overnight cultures of bacterial strains grown in LB were streaked on Congo red 104 

and Calcofluor agar plates and incubated for 36-48h at 30°C and 18-24h at 37°C. After incubation, curli-105 
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expressing strains (curli
+
) displayed red colonies and non-curli-expressing strains (curli

-
) showed white 106 

colonies. Polysaccharides production was instead verified by the observation of fluorescent colonies under 107 

UV light.  108 

Biofilm formation assays  109 

Biofilm formation in microtiter plates was verified as previously described (O’Toole and Kolter 1998; Dorel 110 

et al. 1999). E. coli strains were grown overnight in M9 salts (3.39% w/v Na2HPO4, 1.5 % KH2PO4, 0.25% 111 

NaCl and 0.5% NH4Cl ) supplemented with 0.5% (w/v) glucose, 0.02% peptone, and 0.01% yeast extract 112 

(M9 Glu-sup medium) (Brombacher et al. 2006) and in TSB medium at 30° and 37°C in flat-bottomed 113 

polystyrene microtiter plates (200µL). The cell densities of the cultures were determined 114 

spectrophotometrically at 600 nm (OD600). Cells attached to the microtiter plates were washed gently with 115 

water and stained for 20 min with 1% crystal violet (CV) in ethanol, thoroughly washed with water and then 116 

dried. For semiquantitative determination of biofilms, CV-stained cells were resuspended in 0.2 ml 95% 117 

ethanol by vigorous pipetting. The OD600 of each sample was determined and normalized to the OD600 of 118 

the corresponding liquid cultures (adhesion units- AU). 119 

 120 

RESULTS AND DISCUSSION 121 

Genotypic characterization 122 

The ability of STEC strains to cause disease in human is mainly due to the production of one or both Shiga 123 

toxins and then, to other virulence factor like eae gene coding for an intimin which mediates the intimate 124 

attachment to epithelial cells and invasion of host intestinal wall (Kaper, Nataro and Mobley 2004). In this 125 

study we analyzed 45 potentially pathogenic E. coli isolated both from food sources and human stools to 126 

compare the distribution of virulence genes and their possible link with the production of biofilm or other 127 

colonization factors. It is accepted that most of STEC infections are mainly due to the ingestion of raw or 128 

undercooked contaminated food of animal origin (EFSA (European Food Safety Authority) and ECDC 129 

(European Centre for Disease Prevention and Control) 2015). Given the growing consumption of goat milk 130 

and its derivatives in Europe and the fact that this animal has already been found to be a natural reservoir of 131 

STEC (Picozzi et al. 2005; Espié et al. 2006), we considered this product as a potential source of pathogenic 132 

strains. 133 

PCR analyses (Table 2) highlighted the presence of Shiga toxin genes in 41 isolates out of 45 (91%). Of the 134 

remaining four, three (7%) showed only the presence of the eae gene and one (2%) showed no amplification 135 

signal for any of the tested virulence genes but was lately ascribed to serogroup O26 and therefore been 136 

considered in the subsequent investigations. Stx1 was the predominant toxin being highlighted in 38 isolates 137 

out of 41 (93%): 16 (42%) were positive only to stx1, only 3 (8%) have been shown to possess both toxins 138 

while none had only the stx2. The prevalence of stx1 is clear even if we separately consider clinical and food 139 
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isolates (93% and 76% respectively). Noteworthy, it is known that both toxins are directly implicated in 140 

systemic infections and hemorrhagic colitis (Kaper, Nataro and Mobley 2004), but also that patients infected 141 

with STEC strains that produce stx2 (often in association with intimin) are more likely to be associated to the 142 

onset of HUS (Tozzi et al. 2003; Johnson, Thorpe and Sears 2006). Taking into consideration also intimin as 143 

virulence factor, 25 isolates out of 45 (56%) presented a positive result for the presence of eae: the 144 

association Stx1/eae was highlighted in ten isolates (22%), Stx1/Stx2/eae in 9 (20%), while only 3 (7%) 145 

presented both Stx2 and eae. Serogroup O157 is the most commonly involved in the onset of hemorrhagic 146 

diarrheas and in particular in HUS syndrome. However, outbreaks were often found to be caused by non-147 

O157 strains including O26, O145, O111, O103 and O104, the serogroup responsible for the main EHEC 148 

outbreak in 2011 (EFSA Panel on Biological Hazrads (BIOHAZ) 2013). Our data showed that the most 149 

frequently recovered serotype is O26 (33%), being identified in 7 out of 17 (41%) food isolates and in 8 out 150 

of 27 (30%) human isolates. Moreover, this was the only serogroup detected among food isolates, 151 

confirming the last EFSA Scientific report where serogroup O26 was the second most reported serogroup in 152 

both food and animal samples, with an increasing trend in the last few years (EFSA (European Food Safety 153 

Authority) and ECDC (European Centre for Disease Prevention and Control) 2015). Five out of seven 154 

isolates showed the presence of Stx1 while one O26 (F93-3) presented an amplification product only for the 155 

eae gene and one (L12-2) resulted to be negative for all the tested virulence factors (L12-2). As concern 156 

human isolates, apart from O26 serogroup, 7 (26%) samples were ascribed to O157 serotype, 1 (4%) to O145 157 

and 1 (4%) to 0111. No isolates showed a positivity for serotype O103 nor for 0104 serotype. Noteworthy, 158 

the presence of all the three virulence genes analyzed was found in 86% (6 out of 7) O157 isolates as well as 159 

for O145 serotype. Anyway, as far as we know, no literature works indicate a possible correlation between a 160 

serogroup and a particular combination of virulence genes. 161 

The PFGE is still considered one of the best molecular technique to type strains especially pathogenic ones,  162 

tracking food-borne infections through specific network like PulseNet international (Swaminathan et al. 163 

2006). In this work the analysis was performed on all isolates, grouping 31 different PFGE profiles at a 164 

similarity level of 55% (Figure 1). As concern food samples, isolates F10-4 and F11-4, sampled from two 165 

different milking filter in two distinct farms, showed a similarity of 100% and the same virulence profile 166 

(Stx1 toxin). Furthermore, they are related also to L12-2 (67%) that, on the other side, presented no virulence 167 

genes but shares the same O26 serogroup with the previous isolates. A 100% homology was also observed 168 

between F80-1 and F80-4 isolates and between F80-2 and F80-3 and this can be explained by the fact that 169 

the isolates were collected from the same milking filter and therefore are likely to be the same strain. This 170 

hypothesis is further sustained by the presence of the same virulence genes. A similar consideration can be 171 

done also for F95-2 and F95-3 PFGE profiles. Moreover, isolates F95-2 and F95-3 are showing a homology 172 

of 78% with F93-3 and a 62% similarity with profiles obtained from fecal samples of a unique patient 173 

(239PCH-A and 239R-A). All these strains were ascribed to O26 serogroup, but human isolates had the three 174 

virulence genes, while F95-2 and F95-3 lack of Stx2 and F93-3 has only the intimin gene. A similarity of 175 

63% was then found for F1-1 and L36-2 profiles that showed also a 55% homology with F90-1. The PCR 176 
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analysis pointed out that all the isolates have both toxins genes but only F1-1 showed an amplification for the 177 

O26 serogroup gene. Most of the clinical isolates constitutes a single pulsotype. An exception is given by 178 

isolates 214R-MCH-B and 214CH that are clustering together at 66% similarity level with 227MCH sharing 179 

the same serogroup (O157) and the same virulence factor profile. Besides, 229B-ACH and 229PRal-AS 180 

present a homology of 85% and the presence of the Stx1 toxin gene but only the latest isolate was ascribable 181 

to serogroup O26. 182 

Biofilm formation on solid surfaces is a very common phenomenon among bacteria and has important 183 

economic and health consequences (Ryu and Beuchat 2005; Nesse et al. 2014). The ability of producing 184 

biofilm was evaluated in the isolates that were distinguishable after PCR and PFGE analysis, at different 185 

temperatures (30° and 37°C) and nutrients availability (minimal and rich medium). Values obtained from 186 

adhesion tests (AU) (Table 3) were compared to the ones obtained from standard strains EB1.3 and PHL628 187 

(Vidal et al. 1998; Prigent-Combaret et al. 2001). Accordingly, AU values above 1 at 30°C and above 2.5 at 188 

37°C are related to an evident staining of the well and therefore to the production of a biofilm. Considering 189 

these thresholds, we found that at 30°C, 9 out of 36 isolates (25%) produced biofilm in M9 medium and 26 190 

(72%) in TSB medium. On the other side, at 37°C only 6 (17%) isolates in M9 and 11(31%) in TSB 191 

evidenced biofilm production. Most of the isolates that showed the ability to produce biofilm at 30°C were 192 

not able to reproduce the same phenomenon at 37°C. Furthermore this seems not to be directly related to 193 

curli fimbriae expression as already demonstrated by other authors (Gualdi et al. 2008; Uhlich et al. 2014). 194 

Overall, 30 isolates (83%) showed an appreciable biofilm production at least at one incubation temperature, 195 

whereas only 2 (6%) (242CH and F90-3) gave valuable AU values for both temperatures and both media. 196 

Only in seven cases in TSB and in 2 in M9, the formation of biofilm was observed independently of 197 

temperature. Among these 30 strains, 12 (33%) were attributable to serogroup O26. However, no particular 198 

correlation with the presence of virulence factors nor with PFGE patterns was observed.  199 

As concern the assays on CR and CF media, 19 (53%) isolates showed a significant expression of phenotype 200 

at least at one temperature and /or medium, while only two isolates (6%) presented undetectable levels of 201 

curli and polysaccharides production. A remarkable contemporary expression of curli fimbriae and 202 

polysaccharides at 30°C and 37°C was noticed both in stool (44%) and in food (55%) isolates, but this was 203 

not always linked to biofilm formation. CR affinity seems to be related to the temperature: among the 27 204 

isolates where the expression of the phenotype is detectable, all (100%) produce curli at 30°C and 17 (63%) 205 

also at 37°C. This result was already observed in a recent work (Uhlich et al. 2014), although in our study we 206 

did not find strong differences between O157 and non-O157 strains. Noteworthy, the greater phenotype 207 

expression was revealed by the analysis of fluorescence on CF plates where 33 strains out of 36 (92%) 208 

presented a production of polysaccharides at 37°C, and 22 (61%) also at 30°C. Also adhesive curli fimbriae 209 

and exopolysaccharide production traits do not present specific correlation with pulsotypes. 210 

Our findings seem to prove that there are no apparent correlations among toxin and intimin genes expression, 211 

serotype, pulsotype and curli and cellulose or other polysaccharide production. STEC strains had already 212 
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been demonstrated to have a great inconstancy in biofilm formation (Chen et al. 2013), and this property is 213 

highly dependent on strain rather than serotype (Wang et al. 2013). However, this topic is worth further 214 

consideration and deepening because of the high phenotypic variability and the potential pathogenicity of 215 

these microorganisms. 216 
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Table 1. List of the E.coli isolates used in this study collected from fecal and food samples in Lombardy region. 

Isolate code Source of isolation Eae/stx genes Isolate Date 

375 

Human stool 

STX1-2-EAE 

214CH 

2011 Human stool 214RACH 

Human stool 214R-MCH-B 

646 
Human stool 

STX1-2-EAE 
224SMA-GS 

2012 
Human stool 224SMA-PS 

684 
Human stool 

STX1-EAE 225R-A 2012 

725 Human stool STX1-2-EAE 226B-B 2012 

756 
Human stool 

STX1-2-EAE 
227MCH 

2012 
Human stool 227Rosa 

773 
Human stool 

STX2-EAE 
228GS 

2012 
Human stool 228P-CH 

783 

Human stool 

STX1-2-EAE 

229B-ACH 

2012 

Human stool 229M-AS 

Human stool 229PRal-ACH 

Human stool 229PRal-AS 

Human stool 229R-ACH 

Human stool 229Rosa-A 

819 Human stool STX2-EAE 231PCH-A 2012 

821 Human stool STX1-2-EAE 232AS-B-LUC 2012 

833 Human stool STX1-2-EAE 233P-CH-A 2012 

901 
Human stool 

STX2-EAE 
239PCH-A 

2012 
Human stool 239R-A 

834 
Human stool 

STX2 
242CH 

2012 
Human stool 242Rossa 

333 

Human stool 

STX2-EAE 

243R-ACH 

2011 Human stool 243Ral-A 

Human stool 243R-AS 

124 Human stool STX1-2-EAE 245A-CH-A- 2010 

1520868 Milking filter n.d. F1-1 2009 

1030908 Milking filter n.d. F10-4 2009 

1041186 Milking filter n.d. F11-4 2009 

1060201 Raw milk n.d. L12-2 2009 

1534025 Milking filter n.d. F27-2 2009 

25022 Raw milk n.d. L36-2 2009 

90809 Milking filter n.d. F69-4 2009 

71519 

Milking filter 

n.d. 

F80-1 

2009 
Milking filter F80-2 

Milking filter F80-3 

Milking filter F80-4 

1351523 
Milking filter 

n.d. 
F90-1 

2009 
Milking filter F90-3 

42403 Milking filter n.d. F93-3 2009 

31700 
Milking filter 

n.d. 
F95-2 

2009 
Milking filter F95-3 

LC Raw milk n.d. ECLC 2012 

 



Table 2. Genetic characterization of E.coli isolates used in this study 

 Virulence factors Somatic antigen Pulsotype 

Isolate stx1 stx2 eae O157 O26 O145 O111 O103 O104  

245A-CH-AS + - - - - - - - - XV 

243R-ACH - + + - + - - - - XI 

243Ral-A - + + - + - - - - XXIX 

243R-AS - + + - + - - - - XXX 

214CH + + + + - - - - - XX 

214RACH + - + - + - - - - XXV 

214R-MCH-B + + + + - - - - - XX 

224SMA-GS + - - - - - - - - XXVI 

224SMA-PS + - - - - - - - - XIII 

225R-A + - + - + - - - - XXVII 

226B-B + + + + - - - - - XXI 

227MCH + + + + - - - - - XX 

227Rosa + - - - - - - - - IX 

228GS + + + - - + - - - IV 

228P-CH + + + + - - - - - V 

229B-ACH + - - - - - - - - XIX 

229M-AS + - + - - - - - - XXII 

229PRal-ACH + - - - + - - - - XVII 

229PRal-AS + - - - - - - - - XIX 

229R-ACH + - + - - - + - - II 

229Rosa-A + - - - - - - - - XII 

231PCH-A + - - - - - - - - XVI 

232AS-B-LUC + - - - - - - - - XXIV 

233P-CH-A + - + - - - - - - XVII 

242CH + + + + - - - - - XIV 

242Rossa + - + + - - - - - XXVIII 

239PCH-A + + + - + - - - - III 

239R-A + + + - + - - - - III 

F1-1 + + - - + - - - - XXIII 

F10-4 + - - - + - - - - I 

F11-4 + - - - + - - - - I 

L12-2 - - - - + - - - - I 

F27-2 + - - - - - - - - VI 

L36-2 + + - - - - - - - XXIII 

F69-4 + - - - - - - - - VI 

F80-1 - - + - - - - - - VII 

F80-2 + - + - - - - - - X 

F80-3 + - + - - - - - - X 

F80-4 - - + - - - - - - VII 

F90-1 + + - - - - - - - XXIII 

F90-3 + - - - - - - - - VIII 

F93-3 - - + - + - - - - III 

F95-2 + - + - + - - - - III 

F95-3 + - + - + - - - - III 

ECLC + - - - - - - - - XXXI 

 



Table 3. Fluorescence (CF) or red color expression (CR) and biofilm formation (AU) of E. coli isolates at different temperatures 

Isolates 

CF 

binding at 

30°C 

CF 

binding at 

37°C 

CR at 

30°C 

CR at 

37°C 
M9 at 

30°C (AU) 

M9 at 

37°C (AU) 

TSB at 

30°C (AU) 

TSB at 

37°C (AU) 

245A-CH-A ± ± ± ± 0,34 0,46 0,52 6,19 

243R-ACH ± + ± ± 0,57 0,31 1,10 0,62 

243Ral-A - ± ± ± 1,73 1,54 1,42 0,55 

243R-AS ± ± ± - 0,70 0,23 1,25 0,96 

214CH - ± - - 0,58 0,00 0,66 0,89 

214RACH + + + + 1,63 1,08 1,61 3,43 

224SMA-GS ± + + + 0,59 0,95 1,30 0,54 

224SMA-PS - - - - 0,67 1,16 1,48 2,97 

225R-A - ± - - 0,61 1,51 1,18 0,14 

226B-B - - ± - 0,55 10,55 2,10 0,11 

227Rosa ± + + + 0,29 0,45 1,35 0,33 

228GS - ± - - 0,30 0,46 0,45 0,29 

228P-CH - - - - 0,20 0,41 0,27 0,29 

229B-ACH ± + ± - 0,30 0,64 1,10 0,39 

229M-AS + + ± + 0,98 1,64 1,21 0,22 

229PRal-ACH ± ± + + 0,41 0,84 12,72 11,20 

229R-ACH ± ± ± - 0,27 0,41 5,08 0,50 

229Rosa-A - ± ± - 0,26 0,82 0,74 0,76 

231PCH-A ± + ± ± 0,40 2,60 0,67 9,46 

232AS-B-LUC ± + ± - 0,63 0,78 1,91 0,67 

233P-CH-A ± + + ± 0,64 0,55 1,33 1,41 

242CH + + + + 1,02 2,88 1,14 10,04 

242Rossa + + + + 2,31 2,30 1,53 0,38 

239PCH-A - ± ± - 0,45 1,21 1,08 0,46 

239R-A - ± ± - 0,39 1,17 1,15 0,18 

F1-1 + + + + 1,11 0,79 0,13 5,37 

F11-4 ± + ± ± 1,87 0,44 1,70 3,05 

L12-2 ± ± ± ± 0,88 1,08 0,49 0,55 

L36-2 + + + + 0,73 5,93 1,38 1,56 

F69-4 - ± - - 0,48 0,45 1,50 0,71 

F80-1 ± + + ± 0,35 1,48 0,65 0,86 

F80-2 ± + + ± 0,65 1,98 1,38 3,25 

F90-3 ± ± - - 9,00 9,48 3,27 4,88 

F93-3 - ± - - 1,49 0,98 0,63 0,65 

F95-2 - ± - - 1,11 0,28 1,17 0,31 

ECLC ± + ± - 0,52 0,41 1,22 0,37 

 




