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Genomic and transcriptomic comparison
between Staphylococcus aureus strains
associated with high and low within herd
prevalence of intra-mammary infection
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Abstract

Background: Staphylococcus aureus (Staph. aureus) is one of the major pathogens causing mastitis in dairy
ruminants worldwide. The chronic nature of Staph. aureus infection enhances the contagiousness risk and diffusion
in herds. In order to identify the factors involved in intra-mammary infection (IMI) and diffusion in dairy cows, we
investigated the molecular characteristics of two groups of Staph. aureus strains belonging to ST8 and ST398,
differing in clinical properties, through comparison of whole genome and whole transcriptome sequencing.

Results: The two groups of strains, one originated from high IMI prevalence herds and the other from low IMI
prevalence herds, present a peculiar set of genes and polymorphisms related to phenotypic features, such as
bacterial invasion of mammary epithelial cells and host adaptation. Transcriptomic analysis supports the high
propensity of ST8 strain to chronicity of infection and to a higher potential cytotoxicity.

Conclusions: Our data are consistent with the invasiveness and host adaptation feature for the strains GTB/ST8
associated to high within-herd prevalence of mastitis. Variation in genes coding for surface exposed proteins and
those associated to virulence and defence could constitute good targets for further research.
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Background
Mastitis is reported as one of the most important dis-
eases for dairy cattle on the basis of great economical
losses caused by affecting animal welfare and milk pro-
duction costs [1]. Staphylococcus aureus is one of the
major cause of intra-mammary infection (IMI) in rumi-
nants worldwide, causing mastitis with diverse degrees
of severity. In dairy cows, Staph. aureus IMI is almost
always subclinical, thus leading to an increasing risk of
contagion and diffusion in the herds [2]. The molecular
pattern of Staph. aureus isolates in diverse farm animal
forms distinct genetic clusters differing in the presence
of pathogenic factors that increase their invasiveness,
even in the presence of a stronger inflammatory

response [3]. In a recent study [4], subtypes of Staph.
aureus were associated with high within-herd IMI, com-
pared to other different subtypes that were associated
with low within-herd prevalence. This study and previ-
ous data [5, 6] confirmed that particular gene patterns,
virulence profiles and specific genotypes could be associ-
ated with diverse clinical outcomes. More recently, two
large European studies [7, 8], demonstrated that the
Repetitive-Sequence PCR RS-PCR genotype B (GTB),
belonging to the Sequence Type ST8 [9, 10], a high conta-
gious and diffusive Staph. aureus involved in bovine IMI,
was the most frequently detected in several European
countries (Austria, Belgium, France, Germany, Italy,
Switzerland). Conversely, the RS-PCR genotype S (GTS),
belonging to ST398 [11, 12], was one of the rare genotypes
found in bovine milk samples. The ST8 was previously
found in both human and dairy cow mastitis [4], suggest-
ing that, after a human-to-cow host jump, a new bovine
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adaptation took place. At the same time, the ST398
showed a host transition from human to animal reservoir,
becoming the most widely disseminated clonal complex in
bovine species and in the milk samples collected in herds
with low prevalence of IMI [13–15].
The existence of subtypes of Staph. aureus differing

in pathogenic properties emphasizes the need to well
define strain characteristics, in order to monitor bac-
teria dissemination and find potential relevant targets
related to their contagiousness. In recent years the
advent of next generation sequencing (NGS) tech-
nologies has improved the estimate of the correlation
of virulence phenotype to genome structure, provid-
ing a more detailed picture of gene patterns involved
into staphylococcal pathogenesis. High-throughput
whole-genome sequencing of Staph. aureus was
prevalently used to monitor outbreaks in hospitals
[16, 17], to evaluate strains transitioning from carrier
to invasive status [18] and to understand aspects of
pathogen biology in detailed epidemiological studies
in human [19–21]. In livestock community, the mo-
lecular basis of virulence in Staph. aureus mastitis
was investigated by using an integrated approach that
includes NGS, microarray and proteomic data [22]
providing the first high-resolution comparison be-
tween gene content and gene expression in two
Staph. aureus strains. More recently, Peton and co-
workers [23] described a fine-tuned characterization
of Staph. aureus Newbond 305, a strain belonging to
ST115 and associated to bovine mastitis, by genomic
and proteomic comparison with the reference strain
RF122. Gene expression analysis by microarray tech-
niques has provided, also, information about global
transcript changes [24, 25] or molecular basis of
virulence [26] in Staph. aureus. Moreover, RNA-seq
was recently used to study (i) the gene expression in
different Staph. aureus strains [27, 28], (ii) the role

of anti-sense transcription [29] and (iii) the identifi-
cation of small non-coding RNAs [30].
To gain further insight into Staph. aureus features,

the aim of this work was the characterization of two
groups of Staph. aureus strains differing in their clinical
outcome. Each strain was comprehensively studied by
comparative genomic and transcriptomic analysis in
order to identify staphylococcal factors that can be
associated with strain virulence and bacterial diffusion
in the herd.

Methods
Bacterial strains
Six bacterial strains, originally isolated from subclinical
cases of bovine IMI in six different Holstein herds (A-F,
Table 1) located in Lombardy region in the northern of
Italy, were used in this study. The average size of the herds
was 106 milking cows (range 38 to 285 cows). Milk sam-
ples were collected aseptically. Samples were kept at 4 °C
and bacteriological assays were performed within 48 h.
Isolates were classified into two groups: Staph. aureus
belonging to low within-herd mastitis prevalence (herds
A, B, C) or high within-herd mastitis prevalence (herds D,
E, F). As described in Table 1, and reported by Cremonesi
and colleagues [4], Staph. aureus isolates had been previ-
ously characterized by RS-PCR, Multi Locus Sequence
Type (MLST) [31], for presence of mecA gene and for
different virulence genes. The strains collected in three
different herds with low mastitis prevalence (between 2
and 4%) were identified by RS-PCR as genotype S (GTS)
and by MLST as ST398 (hereinafter referred as GTS/
ST398). Two out of three were positive for mecA gene.
The strains isolated from three herds with high IMI preva-
lence (between 49 and 62%) were identified by RS-PCR as
genotype B (GTB) and ST8 (hereinafter referred as GTB/
ST8) and none of them harboured the mecA gene coding
for methicillin resistance.

Table 1 Characteristics of the bacterial strains used in this study

Herd IMI prevalence MLST RS-PCR mecA Virulence profile*

GTS/ST398

Strain 1 A 4% ST398 GTS + lukE, cna, fmtb, scn, chp, lukM

Strain 2 B 2% ST398 GTS - clfA, lukE, cna, fmtb, scn, chp, lukM

Strain 3 C 2% ST398 GTS + clfA, lukE, cna, fmtb, lukM

GTB/ST8

Strain 1 D 49% ST8 GTB - clfA, lukE, cna, sea, sed, sej, fmtb, scn, chp

Strain 2 E 54% ST8 GTB - clfA, lukE, cna, sea, sed, sej, fmtb, scn, chp

Strain 3 F 62% ST8 GTB - clfA, lukE, cna, sed, sej, seg, sei, fmtb, chp

Herd Isolation (six different herds named A-F), IMI prevalence, sequence type characterization by MLST, RS-PCR analysis (genotype S, GTS; genotype B, GTB), mecA
detection and virulence genes analysis (*lukE, leucotoxin E gene; cna, collagen adhesin-encoding gene; fmtb, gene encoding for cell wall-associated protein; scn,
staphylococcal complement inhibitor gene; chp, chemotaxis inhibitory protein gene; lukM, leukotoxin M gene; clfA, clumping factor A gene; sea, entero-
toxin A; sed, enterotoxin D; sej, enterotoxin J; seg, enterotoxin G, sei, enterotoxin I)
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Growth conditions
The strains were isolated and grown on Blood Agar
plates and a single colony of the third passage in culture
was transferred into 5 ml of Brain Heart Infusion
medium (BHI). Bacteria were grown overnight at 37 °C.
Cultures were subsequently diluted 1/100 into 40 ml of
BHI and grown at 37 °C. Optical density at 600 nm
(OD600) was performed hourly until mid-exponential
phase (OD600 = 0.4) was achieved. At the appropriate
OD600, bacteria were pelleted by centrifugation at 10
000 g for 2 min; after surnatant removing, the pellet was
resuspended in 500 μl of saline solution (NaCl 0.9%) and
centrifuged at 10 000 g for 2 min. The pellet was imme-
diately used for RNA extraction and stored at −20 °C for
DNA extraction.

Bacterial DNA and RNA extraction
Genomic bacterial DNA was extracted using the proto-
col previously described [32], starting from step 2. Total
RNA was isolated using the NucleoSpin® mRNA kit
(Macherey-Nagel, Germany), according to the manufac-
turer protocol, in combination with TRIzol® lysis. DNAs
and RNAs were quantified using a NanoDrop ND-1000
spectrophotometer (NanoDrop Technologies, Wilming-
ton, DE, USA) and RNAs quality was checked using the
Agilent Bioanalyser 2100 (Agilent, Santa Clara, CA).
Only RNA samples with RNA Integrity Number (RIN)
values higher than 6.5 were used for the analysis. The
isolated DNAs and RNAs were stored at −20 and −80 °C
until use, respectively.

Library preparation and Miseq sequencing
DNA
Libraries were constructed using TruSeq PCR free Kit
(Illumina, San Diego, CA, USA) following the manufac-
turer’s instructions, sequenced in one 2 × 300-cycles
Miseq run (Illumina, San Diego, CA, USA).

RNA
RNA was processed as previously described [27] with
some variations. Briefly, bacterial rRNA was depleted
with RiboZero rRNA removal kit for gram-positive or-
ganisms (Epicentre Illumina, Madison, WI, USA). RNA
quality was assessed for each passage by the Agilent
Bioanalyser 2100 (Agilent, Santa Clara, CA). Libraries
were prepared using TruSeq® RNA Sample Preparation
v2 Kit (Illumina). Samples were sequenced on a Miseq
Instrument (Illumina) in a 1 × 50-cycles run.

Bioinformatics analysis
Staph. aureus NCTC 8325 core gene evaluation and
De-Novo Assembly of GTB/ST8 and GTS/ST398
strains. The quality of the raw sequencing reads was
assessed by using FastQC software (http://

www.bioinformatics.babraham.ac.uk/projects/fastqc/).
Adapter removal and quality trimming has been per-
formed using Trimmomatic [33], with default parame-
ters and nucleotide PHRED quality > 30.
High-quality reads were mapped against the reference

genome of NCTC 8325. BWA has been used as mapping
software to detect common genes between GTS/ST398,
GTB/ST8 and NCTC 8325. GTS/ST398 and GTB/ST8
reads were cross-mapped against NCTC 8325 genome.
We applied quality filters by excluding those reads with
more than four mismatches or those with mapping qual-
ity score (MAPQ) less than 15 in the resulting BAM
files. To select genes present in the three genomes, we
applied filters on coverage and depth. Briefly, only those
genes that present 100% length coverage and a mini-
mum 10X mean depth in the two mapping strains have
been selected (Additional file 1). 2478 genes were se-
lected and used in RNASeq analysis for quantification
and differential expression. To perform the assembly the
short-read assembly tool SPAdes 3.1.1 [34] was used. To
obtain a reference assembly (ra) for each group of strains
(genotype GTS/ST398 and GTB/ST8), the single assem-
blies (three for each group), were merged with CISA
[35]. GTB/ST8 reference assembly (GTB/ST8ra) and
GTS/ST398 reference assembly (GTS/ST398ra) were
annotated with RAST [36]. To overcome false protein
duplication and misassembly issues, we performed a recip-
rocal BLASTp within GTB/ST8ra set and GTS/ST398ra
set separately. Whether a protein presented a perfect
match (100% sequence identity and 100% length identity)
with another one, only one of them was selected.
The protein sequences comparison between the strains

(GTS/ST398, GTB/ST8) and the definition of the “core”
(set of genes shared between GTB/ST8ra and GTS/
ST398ra) and “accessory” (set of unique genes for both
genotypes) genomes was performed by using In Paranoid
4.1 software [37], a BLAST-based algorithm to compute
protein homology analysis between two or more species.
For GTB/ST8 and GTS/ST398 analysis, a cut-off of 0.9
for sequences overlap and the default values for the
other options were used. The functional enrichment
analysis was performed using the Fisher’s test on the
functional categories after Bonferroni multiple testing
correction using R software version 3.0.3.

Genomic comparison with other Staph. aureus reference
strains
For comparative analysis, reference genome sequences of
22 strains available in NCBI were used (Additional file 2).
The genome similarities based on phylogenetic dis-
tances were analyzed using the Gegenees software [38].
A fragmented alignment in TBLASTX mode was per-
formed with settings 500/500 and dendrogram was pro-
duced in SplitsTree 4 [39]. Visualization of genome

Capra et al. BMC Microbiology  (2017) 17:21 Page 3 of 16

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/


comparisons was performed using BLAST Ring Image
Generator [40].

Transcriptomic analysis
Transcriptome reads were mapped against the reference
sequence of Staph. aureus NCTC 8325 genome with
BWA aligner [41]. To generate a high-quality mapping
for each sample, we applied quality filters by excluding
those reads with more than four mismatches or those
with mapping quality score (MAPQ) less than 15. Read
counts for gene relative abundance, differential expres-
sion analysis and statistical analysis were calculated as
previously described [42, 43].
Differential expression analysis was performed on the

gene set belonging to core genome of Staph. aureus
NCTC8325 and the calculation of differential expression
genes was performed with DESeq [44]. Differential
expressed genes were selected with specific filters: 1)
p-value less than 0.01 after Bonferroni correction (padj) 2)
log2FC >1.5 or < -1.5. Functional categories annotation
for each gene was extracted from COG database [45]
and the Fisher’s test was used for enrichment analysis
after Bonferroni correction. All the statistical analyses
were performed using R version 3.0.3. DNA-Seq and
transcriptomic data were visualized using the Inte-
grated Genomics Viewer IGV [46]. Transcriptomic
data are available in Sequence Reads Archive (SRA)
accession number SRX965931.

Real Time PCR qRT-PCR
Primers used for real-time PCR were designed using Pri-
mer Express software V2.0 (Applied Biosystems, Foster
City, CA) and are listed in (Additional file 3). Pyrroline-
5-carboxylate reductase (proC) was used as a reference
gene [47]. Each sample was treated with DNAse and
cDNAs were synthesized using GoScript™ Reverse Tran-
scription System (Promega, Madison, WI) with random
primers following manufacturer instruction. Real-time
PCR was performed with 7900HT Fast Real-Time PCR
System (Applied Biosystems, Carlsbad, California, USA)
using Power SYBR® Green PCR Master Mix (Applied
Biosystems) according to manufacturer protocols. Data
were analyzed with Sequence Detection Systems SDS
Software (version 2.3).

Pathway analysis
Protein sequences from unique GTB/ST8 and GTS/
ST398 and differential expressed genes (DEGs) were
used as queries in KOALA (KEGG Orthology And Links
Annotation) tool for pathways reconstruction [48].

fnbB partial re-sequencing
Primers fnbB-F1 (5′-TTCTGCATGACCTTCTGCAC-3′)
and fnbB-R1 (5′-AGCAAGCGAAACACAAACAA-3′)

were used to amplify a portion from 1222 up to 2656 bp
of fnbB genes (NCBI accession number: CP000253, re-
gion: 2577879......2580632) in all the six strains. PCR was
performed in a final volume of 25 μl, containing ~60 ng of
DNA, 0.8 μM of each primer, 12.5 μl of GoTaq® Long PCR
Master Mix (Promega, Italy), with the following cycling
parameters: 95 °C for 2 min, 30 cycles of 94 °C for 30 s,
56 °C for 30 s and 72 °C for 2 min; and then 72 °C for
10 min. PCR products were loaded in 1.5% agarose gel.
PCR products were purified with Wizard Clean-up
(Promega, Italy), following manufacturer′s instructions.
Purified PCR products were sequenced bi-directionally
(GATC Biotech, Konstanz, Germany) with primer
fnbB-F1 and fnbB-R1. fnbB partial sequences deter-
mined in this study have been submitted to GenBank
with accession numbers KY024702 and KY024703 for
GTB/ST8 and GTS/ST398, respectively.

Results
In this study six strains of Staph. aureus previously de-
scribed [4] as strictly associated with high and low within-
herd IMI prevalence, respectively, were analysed in order
to discover, thanks to comparative genomics and tran-
scriptomics, potential pathogenic factors associated with
the different clinical outcome found in the herds.

Sequencing of GTB/ST8 and GTS/ST398 genotypes
Genome assembly and Comparative Genomics
Genomic diversity between the Staph. aureus GTB/ST8
and GTS/ST398 genotypes was assessed analyzing three
DNA samples for each genotype that were deeply se-
quenced with an average production of 2,908,485 (max
4,630,318 and min 1,399,737) reads per sample. The se-
quencing reads from every sample were assembled obtain-
ing an average of 95 number of large contigs (>500 nt)
from all the samples (mean GTB/ST8: 50; mean GTS/
ST398: 139) (Additional file 4).
Three GTB/ST8 and three GTS/ST398 assemblies

showed a high level of within group similarity, ranging
from 91 to 99% and 95 to 98% respectively, whereas only
a partial similarity (from 78 to 86%) was observed be-
tween the two groups (Fig. 1a).
To create a single reference genome representing each

group, all the single genotype-specific assemblies were
merged together producing two reference assemblies,
one for GTB/ST8 and one for GTS/ST398 with 19
(3.366.835 nt) and 291 (3.284.103 nt) large contigs, re-
spectively. These reference assembly genomes, named
GTB/ST8ra and GTS/ST398ra, respectively, were used
for the genomic analysis in comparison with the ge-
nomes of other 22 Staph. aureus reference strains, fully
sequenced and available in GenBank (Fig. 1b). The two
genotypes GTS/ST398ra and GTB/ST8ra here analysed
clustered better with the Staph. aureus ST398 prototype
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and Staph. aureus TCH1516, respectively, the latter be-
ing a human ST8 reference strain.

GTB/ST8ra and GTS/ST398ra genome comparison
Two thousand six hundred sixty-seven and 2712 Coding
DNA Sequences (CDS) were annotated from the predic-
tion tool for GTB/ST8ra and GTS/ST398ra, respectively.
Predicted proteins were functionally categorized using
the COGs database. As expected, about 50% were anno-
tated with a functional role (48.74% GTB/ST8ra and
48.48% GTS/ST398ra, respectively). Protein homology
analysis revealed that the majority of CDSs (n = 2247)
was shared between the two groups of strains, since up
to 84.25% and 82.85% of the CDSs belonged to the core
genome of GTB/ST8ra and GTS/ST398ra, respectively
(Additional file 5). The COGs distributions were similar
in the two genomes: both GT8/ST8ra and GTS/ST398ra
presented a set of unique genes belonging to “Phages,
Prophages, Transposable elements, Plasmids” and “Viru-
lence, Disease and Defence” categories that were signifi-
cantly enriched (p-value < 0.01) compared to the core
genome. In addition, GTB/ST8ra was significantly
enriched also in “Membrane Transport” genes (Fig. 2,
Additional file 6). For both groups of strains, unique
genes associated to virulence were prevalently attributed

to “Adhesion function” and “Resistance to antibiotics
and toxic compounds and toxin production” (Table 2).

GTB/ST8 and GTS/ST398 transcriptomic comparison
Transcriptomic analysis and qRT-PCR validation
RNA-Seq data covering the Staph. aureus genome were
used to quantitatively compare gene expression levels
between the two groups of strains grown in the expo-
nential phase. Transcriptome reads were aligned against
Staph. aureus NCTC8325 reference genome with an
high read-mapping rate and high coverage for both ge-
notypes (average: 93.25% ± 1.39%) (Additional file 7).
Among the 2479 genes that were in common between
the three genomes (GTS/ST398ra, GTB/ST8ra and
NCTC8325), 237 differential expressed genes (DEGs)
were found between the two groups with a distribution
of 56.1% of the DEGs up-regulated in GTB/ST8 strains
and 43.9% in GTS/ST398 strains (Additional file 8).
Four of these differentially expressed genes were

validated by RT-PCR: SAOUHSC_00773, the LysM do-
main-containing protein; SAOUHSC_01181 an hypothet-
ical proteins; SAOUHSC_01314, DNA-binding response
regulator; SAOUHSC_01450the basic amino acid/poly-
amine antiporter, APA family protein. For each test, qPCR
results confirmed RNA-Seq data: SAOUHSC_01314 not

Fig. 1 a Percentage of similarity between the three GTB/ST8 and the three GTS/ST398strains. b Phylogenesis distances and percentage of similarity
between the two reference assemblies GTB/ST8ra (blue) GTS/ST398ra (red) and other Staph. aureus strains. In brown the NCTC_8325 strain used as
reference for RNASeq data analysis
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expressed in one of the two genotypes resulted in un-
determined CT value, whereas the three differentially
expressed genes SAOUHSC_00773, SAOUHSC_01181,
SAOUHSC_01450 showed fold changes of 0.0538, 9.0972
and 0.1297 in qPCR respectively, comparable with the fold
changes of 0.0694, 91.4000 and 0.0265 obtained from
RNA-Seq (Additional file 9a, b).

Functional analysis of transcriptomic data
The comparison between the number of DEGs and
the total number of genes present in the NCTC8325
reference genome, revealed that genes belonging to
“Amino acid transport and metabolism” category var-
ied significantly between the two genotypes (corrected
p-value 3.86E-05). Other two categories, “Defence
mechanism” and “Inorganic ion transport and metab-
olism” indicated a trend toward enrichment in DEGs
list (Fig. 3).
Within the 42 annotated genes related to “Aminoacid

transport and metabolism” pathway, only 9 were up-
regulated in GTB/ST8 (Table 3). Concerning “Defence
mechanism” we found 34 annotated genes, within 14
and 20 up-regulated in GTB/ST8 and GTS/ST398, re-
spectively. Finally, among the 24 DEGs belonging to
“Inorganic ion transport and metabolism”, 4 and 20
were up-regulated in GTB/ST8 and GTS/ST398, re-
spectively (Table 3).

Virulence and defence pathways analysis: comparison
between genomic and transcriptomic data
Functional and pathway enrichment analysis for inte-
grated regulatory network of the two groups of strains
was performed considering annotated genes from
DNA-Seq and RNA-Seq experiments, grouped in the
three dataset, i.e. gene exclusively present in GTB/
ST8ra, gene exclusively present in GTS/ST398ra and
DEGs (Additional files 5 and 8).
Considering the functional categories belonging to

bacterial invasion of epithelial cells and infection path-
ways, we found genes that were detected by using or (i)
strain genotyping comparison or (ii) transcriptomic ana-
lysis or (iii) by the two combined approaches, as
reported in Fig. 4. For example, from this analysis
Fibronectin-Binding Protein B gene (fnbB), an important
adhesin involved not only in adhesion to cells but also in
internalization by cells, was detected in both groups by
means of a partial alignment between GTB/ST8ra and
GTS/ST398ra protein sequence. In parallel, transcriptomic
analysis revealed a variation in fnbB expression, over-
expressed in GTB/ST8 and down regulated in GTS/ST398
(Additional file 10 a, b, c). The nucleotide sequence be-
tween the two groups of strains was verified by sequencing
a 1285 bp portion of fnbB gene (Additional file 11). The
nucleotide sequence was conserved within each group of
strains and was high polymorphic between the two geno-
types. Overall, GTS/ST398 showed a high polymorphism

Fig. 2 Gene ontology (GO) categories comparison between annotated genes belonging to the core genome (shared GTB/ST8ra&GTS/ST398ra
genes, in green) and unique gene for GTB/ST8ra (blue) and GTS/ST398ra (brown). X axis indicates the percentage value of genes belonging to
each categories reported
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Table 2 Genes associated to virulence resulting different between the two reference genotypes (GTB/ST8ra and GTS/ST398ra)

Sequence annotation (Features) Subcategory Function GTB/ST8ra GTS/ST398ra

fig|6666666.84847.peg.

1289 1 Extracellular adherence protein of broad specificity Eap/Map + −

1290 1 Extracellular adherence protein of broad specificity Eap/Map + −

150 2 Fosfomycin resistance protein FosB + −

1807 1 Virulence-associated cell-wall-anchored protein SasG (LPXTG motif) + −

1812 1 Fibronectin binding protein FnbB + −

2863 1 Adhesin of unknown specificity SdrC + −

2986 2 Arsenate reductase (EC 1.20.4.1) + −

3003 1 Predicted cell-wall-anchored protein SasC (LPXTG motif) + −

311 1 Virulence-associated cell-wall-anchored protein SasG (LPXTG motif) + −

312 1 Virulence-associated cell-wall-anchored protein SasG (LPXTG motif) + −

3121 3 Leukotoxin LukD + −

3122 3 Leukotoxin LukE + −

316 1 Fibronectin binding protein FnbB + −

564 1 Virulence-associated cell-wall-anchored protein SasG (LPXTG motif) + −

582 2 Arsenate reductase (EC 1.20.4.1) + −

583 2 Arsenic efflux pump protein + −

584 2 Arsenical pump-driving ATPase (EC 3.6.3.16) + −

586 2 Arsenical resistance operon repressor + −

618 1 Protein A, von Willebrand factor binding protein Spa + −

930 1 Cadmium resistance protein + −

fig|6666666.84857.peg.

100 2 Predicted cell-wall-anchored protein SasA (LPXTG motif) − +

1028 1 Tetracycline resistance protein TetM − +

1345 2 Adhesin of unknown specificity SdrE − +

1462 1 Two-component sensor histidine kinase BceS − +

1498 4 Protein A, von Willebrand factor binding protein Spa − +

1574 1 TetR family regulatory protein of MDR cluster − +

1856 2 Collagen binding protein Cna − +

2046 1 Fibronectin binding protein FnbB − +

2047 1 Fibronectin binding protein FnbB − +

2308 1 Predicted cell-wall-anchored protein SasC (LPXTG motif) − +

2309 1 Predicted cell-wall-anchored protein SasC (LPXTG motif) − +

267 1 Virulence-associated cell-wall-anchored protein SasG (LPXTG motif) − +

2840 1 Copper-translocating P-type ATPase (EC 3.6.3.4) − +

2903 2 Collagen binding protein Cna − +

317 1 Spectinomycin 9-O-adenylyltransferase − +

334 2 Clumping factor ClfB, fibrinogen binding protein − +

344 1 Adhesin of unknown specificity SdrE − +

352 1 Predicted cell-wall-anchored protein SasA (LPXTG motif) − +

510 1 Adhesin of unknown specificity SdrE − +

512 1 Adhesin of unknown specificity SdrC − +
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compared to reference NCTC8325 strain sequence (83% of
identity), whereas no differences were observed for GTB/
ST8 (100% of identity). Further, the protein translation for
GTS/ST398 resulted in a truncated protein form.
Moreover as shown in Fig. 4, clumping factor B gene

(ClfB) and iron-regulated surface determinant protein A
gene (IsdA) showed differentially expression by tran-
scriptomic profiling (over-expressed and down regulated
in GTB/ST8 and vice versa for GTS/ST398, respectively)
(Additional file 12 a, b). Furthermore, the serine-
aspartate repeat-containing protein C/D/E gene (SdrC/
D/E) and eap/map protein gene (EaP/MaP) differed in
protein sequence exclusively by DNASeq comparison
(Additional file 13 a, b). Finally leukocidin/hemolysin
gene (Hlg/Luc) was seen to be exclusively present and
expressed in the GTB/ST8 strains, whereas the staphylo-
coccal complement inhibitor SCIN (scn) was differen-
tially expressed between the two groups, over-expressed
in GTB/ST8 and down-regulated in GTS/ST398.

Discussion
Staph. aureus IMI clinical outcomes are highly variable
and depend on several factors, including animal genetics,
environmental conditions and strain-dependent factors.
All these conditions should be correctly evaluated in
order to predict the spread of bacterial strains within the
herd. Here we achieved an in-depth characterization
through NGS of six Staph. aureus strains previously
genotyped as GTB/ST8 and GTS/ST398, differing in
virulence properties such as within-herd Staph. aureus
IMI prevalence [4].
These six strains belonged to two distinct clonal com-

plexes and sequence types (CC8/ST8 for GTB/ST8, and
CC398/ST398 for GTS/ST398), with a high intra-group
similarity among the three strains associated to the same
clonal complex (about 97% and 95% for GTB/ST8 and
GTS/ST398, respectively), significantly supporting the
creation of the reference assemblies as representative of
these two lineages. Both genotypes clusterized in groups

Table 2 Genes associated to virulence resulting different between the two reference genotypes (GTB/ST8ra and GTS/ST398ra)
(Continued)

561 1 Spectinomycin 9-O-adenylyltransferase − +

609 2 Extracellular adherence protein of broad specificity Eap/Map − +

63 1 Collagen binding protein Cna − +

(+) presence, (−) absence. The sequence annotation (Features) subcategory were: 1) Adhesion, 2) Resistance to antibiotics and toxic compounds, 3) Toxins and
superantigens and 4) Bacteriocins, ribosomally synthesized antibacterial peptides. For each entry the Function was reported

Fig. 3 Gene ontology (GO) categories comparison between significant DEGs (in grey) and genes expressed in the Staph. aureus NCTC_8325 strain
(in black). ****P ≤ 1e-4
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Table 3 DEGs between GTB/ST8 and GTS/ST398 strains

LocusTag SAOUHSC Function Protein Description padj log2 FC GTB/ST8 GTS/ST398

_01451 1 catalyzes the formation of 2-oxobutanoate from L-threonine; catabolic 1.28E-56 −5.35 ↓ ↑

_01450 1 Amino acid transporters 3.35E-52 −5.25 ↓ ↑

_01452 1 alanine dehydrogenase 1.34E-50 −5.16 ↓ ↑

_01448 1 Permeases of the major facilitator superfamily 1.82E-41 −5.16 ↓ ↑

_02969 1 catalyzes the degradation of arginine to citruline and ammonia 3.51E-22 −4.34 ↓ ↑

_02968 1 catalyzes the formation of ornithine and carbamylphosphate from
citrulline in the arginine catabolic pathway

2.42E-15 −3.62 ↓ ↑

_00108 1 Zinc peptidase 8.34E-11 −6.03 ↓ ↑

_02967 1 arginine/ornithine antiporter, putative 2.00E-09 −2.65 ↓ ↑

_01803 1 Gamma-aminobutyrate permease and related permeases 2.86E-08 2.41 ↑ ↓

_02767 1 peptide ABC transporter, peptide-binding protein, putative 3.75E-08 −2.17 ↓ ↑

_02435 1 Permeases of the major facilitator superfamily 2.63E-07 −2.42 ↓ ↑

_01307 1 Threonine aldolase 1.95E-06 −3.19 ↓ ↑

_02766 1 peptide ABC transporter, permease protein, putative 3.06E-05 −1.95 ↓ ↑

_02763 1 peptide ABC transporter, ATP-binding protein, putative 5.33E-05 −1.97 ↓ ↑

_01825 1 Cysteine sulfinate desulfinase/cysteine desulfurase and related enzymes 5.72E-05 1.95 ↑ ↓

_01320 1 catalyzes the formation of L-aspartate 4-semialdehyde from L-homoserine 5.97E-05 −1.71 ↓ ↑

_00076 1 ornithine cyclodeaminase, putative 6.44E-05 −2.70 ↓ ↑

_01833 1 catalyzes the formation of 3-phosphonooxypyruvate from 3-phospho-
D-glycerate in serine biosynthesis;

7.00E-05 −1.77 ↓ ↑

_02740 1 drug transporter, putative 0.000142 1.65 ↑ ↓

_02697 1 amino acid ABC transporter, ATP-binding protein, putative 0.000231 1.57 ↑ ↓

_02825 1 Lactoylglutathione lyase and related lyases 0.000256 −2.77 ↓ ↑

_00733 1 catalyzes the formation of L-histidinol phosphate in histidine biosynthesis 0.000257 −1.78 ↓ ↑

_01321 1 catalyzes the formation of L-threonine from O-phospho-L-homoserine 0.000283 −1.60 ↓ ↑

_00075 1 siderophore biosynthesis protein SbnA 0.00032 −2.62 ↓ ↑

_02559 1 ureases 0.00039 −2.37 ↓ ↑

_01991 1 ABC transporter, permease protein, putative 0.00047 1.83 ↑ ↓

_01991 1 ABC transporter, permease protein, putative 0.00047 1.83 ↑ ↓

_02765 1 nickel ABC transporter, permease protein, putative 0.000471 −1.75 ↓ ↑

_02433 1 Predicted amino acid racemase 0.000512 −1.60 ↓ ↑

_02764 1 peptide ABC transporter, ATP-binding protein, putative 0.000687 −1.70 ↓ ↑

_02561 1 ureases 0.000724 −1.65 ↓ ↑

_00421 1 Cysteine synthase 0.000785 −1.60 ↓ ↑

_01319 1 catalyzes the formation of 4-phospho-L-aspartate from L-aspartate
and ATP; lysine and threonine sensitive

0.000879 −2.01 ↓ ↑

_00740 1 Permeases of the drug/metabolite transporter (DMT) superfamily 0.001181 1.71 ↑ ↓

_02839 1 L-serine dehydratase, iron-sulfur-dependent, alpha subunit 0.001587 −1.51 ↓ ↑

_01395 1 aspartate-semialdehyde dehydrogenase 0.001826 −1.64 ↓ ↑

_00703 1 quinolone resistance norA protein, putative 0.002597 1.67 ↑ ↓

_02558 1 UreA, with UreB and UreC 0.005062 −2.29 ↓ ↑

_01990 1 amino acid ABC transporter, ATP-binding protein, putative 0.005951 1.50 ↑ ↓

_02932 1 catalyzes the oxidation of choline to betaine aldehyde and betain
aldehyde to glycine betaine

0.006268 −1.53 ↓ ↑
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Table 3 DEGs between GTB/ST8 and GTS/ST398 strains (Continued)

_01394 1 catalyzes the formation of 4-phospho-L-aspartate from L-aspartate and
ATP, in Bacillus, lysine sensitive; regulated by response to starvation,

0.006704 −1.68 ↓ ↑

_00170 1 peptide/nickel transport system substrate-binding protein 0.008873 −1.55 ↓ ↑

_02972 2 immunodominant antigen B IsaB 6.70E-24 5.79 ↑ ↓

_01079 2 neurofilament protein 7.69E-23 −4.51 ↓ ↑

_02127 2 staphopain thiol proteinase 4.50E-18 −3.61 ↓ ↑

_01933 2 type I restriction-modification system, M subunit 5.20E-18 −5.10 ↓ ↑

_02708 2 gamma-hemolysin h-gamma-ii subunit, putative 4.61E-17 −3.60 ↓ ↑

_01115 2 staphylococcal complement inhibitor SCIN 3.05E-15 5.06 ↑ ↓

_01135 2 anti protein (phenol soluble modulin) 2.18E-13 −3.07 ↓ ↑

_01964 2 signal transduction protein TRAP 3.38E-13 3.35 ↑ ↓

_00668 2 ABC transporter permease, putative 3.60E-13 3.99 ↑ ↓

_02420 2 multidrug resistance protein SepA 2.58E-11 3.99 ↑ ↓

_02963 2 clumping factor B, putative 2.92E-11 2.75 ↑ ↓

_02419 2 methicillin resistance protein FmtB 2.69E-10 5.00 ↑ ↓

_00256 2 staphyloxanthin biosynthesis protein, secretory antigen precursor SsaA 1.48E-09 −2.69 ↓ ↑

_02802 2 fibronectin binding protein B, putative 3.09E-09 2.32 ↑ ↓

_02709 2 leukocidin s subunit precursor, putative 1.30E-08 −2.45 ↓ ↑

_02710 2 leukocidin f subunit precursor 1.50E-08 −2.43 ↓ ↑

_01084 2 Heme ABC transporter 7.71E-08 −2.72 ↓ ↑

_01081 2 heme transporter IsdA 2.63E-07 −2.11 ↓ ↑

_01136 2 anti protein (phenol soluble modulin) 3.38E-07 −2.57 ↓ ↑

_01121 2 alpha-hemolysin precursor 4.12E-07 −2.07 ↓ ↑

_02696 2 fmhA protein, putative 4.40E-07 −2.29 ↓ ↑

_01082 2 heme transporter IsdC 1.40E-06 −2.81 ↓ ↑

_00354 2 putative enterotoxin 1.43E-05 3.22 ↑ ↓

_02740 2 drug transporter, putative 0.000142 1.65 ↑ ↓

_02129 2 staphostatin A 0.000392 −2.16 ↓ ↑

_00395 2 homology to known superantigen proteins 0.000545 2.81 ↑ ↓

_02718 2 ABC Transporters 0.000631 −2.09 ↓ ↑

_01932 2 type I restriction-modification enzyme, S subunit, EcoA family, putative 0.000692 2.06 ↑ ↓

_00998 2 fmt protein, putative 0.00072 1.59 ↑ ↓

_00261 2 type VII secretion protein EssB 0.000785 −1.84 ↓ ↑

_00426 2 ABC transporter, substrate-binding protein, putative 0.001147 −1.74 ↓ ↑

_00397 2 type I restriction-modification system, M subunit 0.002795 1.56 ↑ ↓

_02719 2 methicillin resistance protein FmtB 0.00383 −2.08 ↓ ↑

_00249 2 ABC-2 type transport system ATP-binding protein 0.005426 −1.83 ↓ ↑

_01448 3 Permeases of the major facilitator superfamily 1.82E-41 −5.16 ↓ ↑

_02420 3 Permeases of the major facilitator superfamily 2.58E-11 3.99 ↑ ↓

_01085 3 multidrug resistance protein SepA 1.17E-08 −3.16 ↓ ↑

_02687 3 ABC-type Fe3 + -hydroxamate transport system, periplasmic component 8.11E-08 2.50 ↑ ↓

_02435 3 formate/nitrite transporter, putative 2.63E-07 −2.42 ↓ ↑

_01087 3 Permeases of the major facilitator superfamily 9.18E-07 −3.16 ↓ ↑
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that include strains of human origin: GTS/ST398
showed high similarity with the prototype of Staph. aur-
eus ST398, SO385, isolated from human endocarditis
[49], whereas GTB/ST8 to Staph. aureus TCH1516, a
methicillin susceptible ST8 strain, isolated from an ado-
lescent patient with severe sepsis syndrome [50]. Recent
studies on these CCs [4, 13] showed a closed genetic re-
lationship between CC8 isolated from dairy cow mastitis
and human CC8, suggesting human-to-bovine jump.
On the other hand, the presence of CC398 strains was
described only in herds with IMI prevalence lower than
5% [4]. In the present study, a comparison of the gen-
ome sequences of these strains with a core genome (set
of genes shared between GTB/ST8ra and GTS/
ST398ra) revealed about 17% of differences for their
gene content, with a relevant enrichment in genes asso-
ciated with virulence properties. Both groups of strains
showed differences in several genes associated to viru-
lence factors and some of them were present in only
one of the two genotypes.
Furthermore, the transcriptomic profiling for both

groups of strains confirmed the functional enrichment
for genes related to adaptation and propensity to
chronicity. Interestingly, GTB/ST8ra showed higher
expression of signal transduction Target of RNAIII-
activating Protein TRAP, that leads to the activation
of agr system, resulting in the expression of several
virulence factors. As previously described [51, 52], the
protein TRAP activates RNAIII synthesis by RNAIII-

activating protein (RAP) system, increasing the pathogenic
potential of the bacteria.
Contemporary, the integrated pathway analysis be-

tween the two genotypes of Staph. aureus genes involved
in pathogenicity showed an interesting variation in the
microbial surface component recognizing adhesive
matrix molecule (MSCRAMM), whose function includes
adhesion to and invasion in host cells and tissues, evasion
of immune responses and biofilm formation [53]. As well
known, the fnbB gene is a multifunctional MSCRAMM,
which recognizes fibronectin, fibrinogen and elastin and
promoting the internalization of Staph. aureus into epi-
thelial and endothelial cell mediating bacterial invasion
[54, 55]. Most Staph. aureus strains can express two dis-
tinct fibronectin-binding proteins (FnBPA and FnBPB),
which both mediate adhesion to fibrinogen, elastin and
fibronectin. The GTB/ST8 and GTS/ST398 strains, ana-
lysed in this study, presented the two fibronectin-binding
proteins but only fnbB showed changes in genomic and
transcriptomic analyses between these two groups. The
fnbB gene showed high variability between the two geno-
types, revealing a high level of polymorphisms that lead to
a premature stop codon and a truncated form of the pro-
tein for GTS/ST398 strains. Similar results were previ-
ously published by McCarthy and colleagues [56], which
postulated that the truncated FnBPB form could affect
Staph. aureus colonisation and infection. Also Burke and
co-workers found different FnBPB isotypes in diverse STs
Staph. aureus strains, revealing an association between

Table 3 DEGs between GTB/ST8 and GTS/ST398 strains (Continued)

_01086 3 iron compound ABC transporter, permease protein 9.72E-07 −2.74 ↓ ↑

_00105 3 iron compound ABC transporter, permease protein, putative 1.76E-06 −2.81 ↓ ↑

_00074 3 phosphonate ABC transporter, substrate-binding protein, putative 2.13E-06 −1.95 ↓ ↑

_02864 3 periplasmic binding protein, putative 1.36E-05 −2.13 ↓ ↑

_02766 3 ferrous iron transport protein B 3.06E-05 −1.95 ↓ ↑

_02763 3 peptide ABC transporter, permease protein, putative 5.33E-05 −1.97 ↓ ↑

_00423 3 peptide ABC transporter, ATP-binding protein, putative 0.000135 −2.30 ↓ ↑

_02740 3 ABC-type metal ion transport system, ATPase component 0.000142 1.65 ↑ ↓

_01893 3 drug transporter, putative 0.000208 −2.53 ↓ ↑

_02765 3 arsenical pump membrane protein subfamily 0.000471 −1.75 ↓ ↑

_00424 3 nickel ABC transporter, permease protein, putative 0.000582 −2.47 ↓ ↑

_02764 3 ABC transporter, permease protein, putative 0.000687 −1.70 ↓ ↑

_00325 3 peptide ABC transporter, ATP-binding protein, putative 0.000864 −2.44 ↓ ↑

_00104 3 Predicted periplasmic lipoprotein involved in iron transport 0.001514 −2.10 ↓ ↑

_00703 3 amino acid ABC transporter, ATP-binding protein, putative 0.002597 1.67 ↑ ↓

_02865 3 quinolone resistance norA protein, putative 0.004758 −2.19 ↓ ↑

_00102 3 ferrous iron transport protein A 0.00479 −1.91 ↓ ↑

_00103 3 phosphonates ABC transporter, permease protein CC0363, putative 0.008185 −1.78 ↓ ↑

For each Locus Tag, Function: 1) Amino acid transport and metabolism, 2) Defence mechanisms, and 3) Inorganic ion transport and metabolism; Protein
Description, P-value adjusted (padj), log2FoldChange (log2FC) and (↑) up and (↓) down-regulation were reported
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Fig. 4 Bacterial invasion of epithelial cells and infection pathways analysis of Staph. aureus. In grey highlighted DEGs or unique genes for GTB/ST8ra or
GTS/ST398ra. Fibronectin-Binding Protein B FnBPB, clumping factor B ClfB, iron-regulated surface determinant protein A IsdA, serine-aspartate
repeat-containing protein C/D/E SdrC/D/E, staphylococcal complement inhibitor (SCIN) and eap/map protein EaP/Map and leukocidin/hemolysin Hlg/
Luc. Numbers define the dataset from which the genes were found: 1) unique GTB/ST8ra, 2) unique GTS/ST398ra and 3) DEGs from transcriptomic
analysis, and their combination: (1-2: genes with differences in protein sequence; 1-3: genes expressed and present only in GTBra; 1-2-3: genes
differentially expressed and different in protein sequence between the two reference genotypes)
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this gene and the invasiveness [57]. And more, the pres-
ence of protein variations for both groups of strains sug-
gests a different affinity for fibronectin, necessary for the
internalization of Staph. aureus into host cells [23].
In addition, ClfB and SdrC/D/E genes encoding for

MSCRAMMs proteins, whose functions are related to
adhesion and colonization [58, 59], showed differences
by transcriptomic and genomic analyses in both geno-
types, respectively, indicating that surface adhesins are
not only present/absent, but also variable amongst line-
ages of Staph. aureus [56], such as GTB/ST8 and GTS/
ST398. Polymorphisms in these genes are well known
and used to Multilocus Variable Number Tandem Repeat
Fingerprinting (MLVF), a genotyping method for epi-
demiological studies [60]. Other multi-functional proteins,
such as the “Staph. aureus surface G Sas G protein the
iron-dependent adhesion IsdA, IsdB, IsdC”, over-expressed
in GTS/ST398, play a role in biofilm formation [61, 62].
The adhesive properties displayed by MSCRAMM proteins
reside within the cell surface; however, several important
adhesins are also formally secreted from the bacterial cell.
The “Secreted Expanded Repertoire Adhesive Molecules
(SERAM) extracellular adherence protein” (eap) is nearly
ubiquitously distributed amongst Staph. aureus strains and
appears to function as a virulence determinant in animal
models of chronic infection [63]. Eap gene was proposed
as novel target for specific identification of Staph. aureus
[64]. According to our results the sequence alignment of
eap gene from all Staph. aureus genomes published to date
revealed a significant polymorphism in this gene [65]. As
stated by McCarthy et al. [56], the genetic variation in
Staph. aureus surface and immune evasion genes is lineage
associated and carries a range of unique variants in order
to improve the adaptation of this microorganism to differ-
ent host species.
Finally, the staphylococcal complement inhibitor (scn),

over-expressed in GTB/ST8 and down-regulated in
GTS/ST398, produced by the Staph. aureus during the
early phase of infection, helped the microorganism to
survive into the host [66], preventing both chemotaxis
and phagocytosis. The fact that surface and immune
evasion proteins are different between lineages suggests
that they are essential for virulence, opening a window
for further investigations.

Conclusions
In conclusion, our analysis proves that integration of
RNA-Seq and DNA-Seq data well depicts Staph. aureus
strains associated with different within-herd IMI prevalence
in dairy cows. Our results disclosed congruent patterns of
genetic variation in colonization and invasion factors be-
tween GTB/ST8 and GTS/ST398 strains. Notwithstanding,
results highlight a high number of unknown genes differing
between genotypes, whose unknown functionality lacks a

direct association with virulence function. Overall, the fine
genomic characterization of these strains was a first step to-
wards developing strategies able to provide new insights
into mechanisms associated to Staph. aureus mastitis, in-
cluding genomic comparison of a larger set of high and low
diffusive strains, improvement of Staph. aureus reference
strains annotation and new ad hoc bioinformatic tools.

Additional files

Additional file 1: GTS/ST398 and GTB/ST8 reads cross-mapped against
NCTC 8325 genome and selected and used in RNASeq analysis for
quantification and differential expression analysis. (XLSX 183 kb)

Additional file 2: List of the 22 Staph. aureus strains available in NCBI
used in this study for genomic comparative analysis. (DOCX 22 kb)

Additional file 3: Primer list used for Real-Time-PCR experiments.
(DOCX 17 kb)

Additional file 4: Sequencing results for three GTB/ST8 and three GTS/
ST398 strains. A) Assembly statistics for each strain: number of total contig
obtained (N° of contigs), number of contig bigger that 500 nt in size (N° of
contigs > 500), max length of the contig (Max contig length), median
of contig lengths (N50), total genome assembled (Total assembled)
were reported. B) Sequencing mapping GTS/ST398 vs GTB/ST8 and
NCTC8325 statistics for each strain: number of total reads (Raw
reads), number of reads mapped on NCTC8325 reference (Mapping
reads), the percentage (Mapping rate (%)), the average sequencing
depth (Mean Depth (fold)) and the percentage of genome reference
coverage (Coverage (%)) were reported. C) Sequencing mapping GTB/
ST8 vs GTS/ST398 and NCTC8325 statistics for each strain: number of total
reads (Raw reads), number of reads mapped on NCTC8325 reference
(Mapping reads), the percentage (Mapping rate (%)), the average
sequencing depth (Mean Depth (fold)) and the percentage of genome
reference coverage (Coverage (%)) were reported. (DOCX 39 kb)

Additional file 5: List of shared and unique genes for single reference
sequence representing genotype GTB/ST8ra and GTS/ST398ra. The gene
annotation (Category, Subcategory, Subsystem, Role) was reported for
each entry. (XLS 762 kb)

Additional file 6: Functional enrichment analysis of COGs distributions
calculated by using the Fisher’s test and Bonferroni multiple testing
correction for GTB/ST8ra and GTS/ST398ra. (XLSX 17 kb)

Additional file 7: RNA sequencing results for the three GTB/ST8 and th
three GTS/ST398 strains. Mapping vs NCTC8325 statistics for each strain:
number of total reads (Raw reads), number of reads mapped on NCTC8325
reference (Maping reads) and percentage (% Mapping), total CDS detected
(CDS detected) and percentage of CDS vs reference CDS (%CDS detected),
distribution of CDS detected on mRNA (% mRNA), rRNA (% rRNA) and
intergenic region (% Intergenic). (DOCX 30 kb)

Additional file 8: Differential expressed genes (DEGs) between the three
GTB/ST8 and the three GTS/ST398 strains. GTS/ST398 (1_2_3)_all CDS,
GTB/ST8 (1_2_3)_all CDS, log2FoldChange, padj, protein and function
class description were reported for each locus tag. In bold gene
related to defense mechanism in italic gene validate by Real Time
PCR experiment. (XLSX 33 kb)

Additional file 9: a) Real Time Fold Change variation and b) Fold change
average between two reference genotypes GTB-ST8 and GTS-ST398 for
three selected genes: SAOUHSC_00773, SAOUHSC_01181, SAOUHSC_01450.
(DOC 34 kb)

Additional file 10: Fibronectin-Binding Protein B FnBpB comparison
between Staph. aureus GTB/ST8ra and GTS/ST398ra. a) FnBpB protein
sequence for GTB/ST8ra (>fig|6666666.84847.peg.316 and GTS/ST398ra
(>fig|6666666.84857.peg.2046, >fig|6666666.84857.peg.2047) b) Protein
blast between GTB/ST8ra and GTS/ST398ra. c) Integrative Genomics
Viewer (IGV) view comparison between three Staph. GTB/ST8 and three

Capra et al. BMC Microbiology  (2017) 17:21 Page 13 of 16

dx.doi.org/10.1186/s12866-017-0931-8
dx.doi.org/10.1186/s12866-017-0931-8
dx.doi.org/10.1186/s12866-017-0931-8
dx.doi.org/10.1186/s12866-017-0931-8
dx.doi.org/10.1186/s12866-017-0931-8
dx.doi.org/10.1186/s12866-017-0931-8
dx.doi.org/10.1186/s12866-017-0931-8
dx.doi.org/10.1186/s12866-017-0931-8
dx.doi.org/10.1186/s12866-017-0931-8
dx.doi.org/10.1186/s12866-017-0931-8


GTS/ST398 strains mapped on Staph. aureus NCTC 8325 strain with reads
from DNASeq or RNA-Seq experiments. (DOCX 176 kb)

Additional file 11: Sequence alignment for a 1285 bp portion of fnbB
gene (from position 1297up to 2582; NCBI accession number: CP000253,
region: 2577879.....2580632) in all the six strains. In figure, gene sequence
for GTS/ST398 (1-2-3), GTB/ST8 (1-2-3), and the NCTC8325 strain in the
homologous position are presented. (DOCX 670 kb)

Additional file 12: Integrative Genomics Viewer (IGV) view comparison
of a) clumping factor B ClfB and b) protein A IsdA, between Staph. aureus
three GTB/ST8 and three GTS/ST398 strains mapped on Staph. aureus
NCTC 8325 strain with reads from DNASeq or RNASeq experiment.
(DOCX 316 kb)

Additional file 13: Serine-aspartate repeat-containing protein C/D/E
SdrC/D/E and eap, map protein EaP/MaP comparison between Staph.
aureus GTB/ST8ra and GTS/ST398ra. a) SdrC/D/E protein sequenze for
GTB/ST8ra (>fig|6666666.84847.peg.2863) and GTS/ST398ra
(>fig|6666666.84857.peg.510); Eap/Map protein sequence for GTB/
ST8ra (>fig|6666666.84847.peg.1290) and GTS/ST398ra
(>fig|6666666.84857.peg.609). b) Protein blast for SdrC/D/E and Eap/
Map between GTB/ST8ra and GTS/ST398ra. (DOCX 42 kb)

Abbreviations
BHI: Brain heart infusion; CDS: Coding DNA sequence; DNA-Seq: DNA sequencing;
GTB: Genotype B; GTS: Genotype S; IMI: Intra-mammary infection; MLST: Multi
locus sequence type; NGS: Next generation sequencing; RNA-Seq: RNA
sequencing; RS-PCR: Repetitive-sequence PCR; RT-PCR: Real time PCR;
ST: Sequence type; Staph. aureus: Staphylococcus aureus

Acknowledgment
None.

Funding
This research was supported by the Italian Ministry of Education, Universities
and Research for the project “Progetto Bandiera INTEROMICS - Sottoprogetto
1: Sviluppo di Infrastrutture di Bioinformatiche per le applicazioni OMICS in
Biomedicina” and the Lombardy Region: Project N. 1745 - MASTFIELD
“Applicazione di sistemi molecolari innovativi per il controllo in campo
delle mastiti bovine”.

Availability of data and materials
Transcriptomic data have been deposited in Sequence Reads Archive (SRA)
accession number SRX965931. fnbB partial sequences have been deposited
to GenBank with accession numbers KY024702 and KY024703 for GTB/ST8
and GTS/ST398 respectively.

Authors’ contributions
EC, PC, ML and BC conceived the study. ML collected and cultured the samples.
EC and PC performed the DNA and RNA extraction, libraries preparation and
sequencing. AP and SP carried out the genome assemblies, annotations,
performed the (phylo)genomic analyses, and transcriptomic analysis. EC
carried out pathway analysis, wrote the manuscript and generated the
figures. ML, AS and BC read and approved the final manuscript. All authors read
and approved the final manuscript.

Competing interest
The authors declare that they have no competing interests.

Consent to publication
Not applicable.

Ethics approval and consent to participate
Not applicable.

Author details
1Istituto di Biologia e Biotecnologia Agraria, CNR, via Einstein, 26900 Lodi,
Italy. 2Istituto di Tecnologie Biomediche, CNR, Via Fratelli Cervi 93, 20090
Segrate, Milano, Italy. 3Istituto Zooprofilattico Sperimentale della Lombardia e
dell’Emilia, Sezione di Lodi, via Einstein, 26900 Lodi, Italy. 4Parco Tecnologico
Padano, Via Einstein, 26900 Lodi, Italy. 5Scuola di Dottorato in Medicina

Molecolare e Traslazionale, Università di Milano, Segrate, Milan 20009, Italy.
6Istituto Nazionale di Genetica Molecolare “Romeo ed Enrica Invernizzi”, Via
Francesco Sforza 35, 20122 Milan, Italy.

Received: 27 April 2016 Accepted: 12 January 2017

References
1. Halasa T, Huijps K, Østerås O, Hogeveen H. Economic effects of bovine

mastitis and mastitis management: a review. Vet Q. 2007;29:18–31.
2. Bannerman DD, Paape MJ, Lee JW, Zhao X, Hope JC, Rainard P. Escherichia

coli and Staphylococcus aureus elicit differential innate immune responses
following intramammary infection. Clin Diagn Lab Immunol. 2004;11:463–72.

3. Zecconi A, Binda E, Borromeo V, Piccinini R. Relationship between some
Staphylococcus aureus pathogenic factors and growth rates and somatic
cell counts. J Dairy Res. 2005;72:203–8.

4. Cremonesi P, Pozzi F, Raschetti M, Bignoli G, Capra E, Graber HU, Vezzoli F,
Piccinini R, Bertasi B, Biffani S, Castiglioni B, Luini M. Genomic characteristics
of Staphylococcus aureus strains associated with high within-herd prevalence
of intramammary infections in dairy cows. J Dairy Sci. 2015;98(10):6828–38.

5. Fournier C, Kuhnert P, Frey J, Miserez R, Kirchhofer M, Kaufmann T, Steiner
A, Graber HU. Bovine Staphylococcus aureus: association of virulence genes,
genotypes and clinical outcome. Res Vet Sci. 2008;85:439–48.

6. Graber HU, Naskova J, Studer E, Kaufmann T, Kirchhofer M, Brechbühl M,
Schaeren W, Steiner A, Fournier C. Mastitis-related subtypes of bovine
Staphylococcus aureus are characterized by different clinical properties.
J Dairy Sci. 2009;92:1442–51.

7. Cosandey A, Boss R, Luini M, Artursson K, Bardiau M, Breitenwieser F,
Hehenberger E, Lam T, Mansfeld M, Michel A, Mösslacher G, Naskova J,
Nelson S, Podpečan O, Raemy A, Ryan E, Salat O, Zangerl P, Steiner A, Graber
HU. Staphylococcus aureus genotype B and other genotypes isolated from cow
milk in European countries. J Dairy Sci. 2016;99:529–40.

8. Boss R, Cosandey A, Luini M, Artursson K, Bardiau M, Breitenwieser F,
Hehenberger E, Lam T, Mansfeld M, Michel A, Mösslacher G, Naskova J,
Nelson S, Podpečan O, Raemy A, Ryan E, Salat O, Zangerl P, Steiner A,
Graber HU. Bovine Staphylococcus aureus: Subtyping, evolution, and
zoonotic transfer. J Dairy Sci. 2016;99:515–28.

9. Sakwinska O, Giddey M, Moreillon M, Morisset D, Waldvogel A, Moreillon P.
Staphylococcus aureus host range and human-bovine host shift. Appl
Environ Microbiol. 2011;77:5908–15.

10. Kozytska S, Stauss D, Pawlik MC, Hensen S, Eckart M, Ziebuhr W, Witte W,
Ohlsen K. Identification of specific genes in Staphylococcus aureus strains
associated with bovine mastitis. Vet Microbiol. 2010;145:360–5.

11. van Cleef BA, Monnet DL, Voss A, Krziwanek K, Allerberger F, Struelens M,
Zemlickova H, Skov RL, Vuopio-Varkila J, Cuny C, Friedrich AW, Spiliopoulou
I, Paszti J, Hardardottir H, Rossney A, Pan A, Pantosti A, Borg M, Grundmann
H, Mueller-Premru M, Olsson-Liljequist B, Widmer A, Harbarth S, Schweiger A,
Unal A, Kluytmans JA. Livestock associated methicillin-resistant Staphylococcus
aureus in humans, Europe. Emerg Infect Dis. 2011;17:502–5.

12. Hendriksen RS, Mevius DJ, Schroeter A, Teale C, Meunier D, Butaye P, Franco
A, Utinane A, Amado A, Moreno M, Greko C, Stark K, Berghold C, Myllyniemi
AL, Wasyl D, Sunde M, Aarestrup FM. Prevalence of antimicrobial resistance
among bacterial pathogens isolated from cattle in different European countries:
2002–2004. Acta Vet Scand. 2008;50:28.

13. Luini M, Cremonesi P, Magro G, Bianchini V, Minozzi G, Castiglioni B, Piccinini R.
Methicillin-resistant Staphylococcus aureus (MRSA) is associated with low within-
herd prevalence of intra-mammary infections in dairy cows: Genotyping of
isolates. Vet Microbiol. 2015;178:270–4.

14. Spohr M, Rau J, Friedrich A, Klittich G, Fetsch A, Guerra B, Hammerl JA,
Tenhagen BA. Methicillin-resistant Staphylococcus aureus (MRSA) in three
dairy herds in southwest Germany. Zoonoses Public Health. 2011;58:252–61.

15. Vanderhaeghen W, Cerpentier T, Adriaensen C, Vicca J, Hermans K, Butaye P.
Methicillin-resistant Staphylococcus aureus (MRSA) ST398 associated with
clinical and subclinical mastitis in Belgian cows. Vet Microbiol. 2010;144:166–71.

16. Harris SR, Cartwright EJ, Török ME, Holden MT, Brown NM, Ogilvy-Stuart AL,
Ellington MJ, Quail MA, Bentley SD, Parkhill J, Peacock SJ. Whole-genome
sequencing for analysis of an outbreak of meticillin-resistant Staphylococcus
aureus: a descriptive study. Lancet Infect Dis. 2013;13:130–6.

17. Sherry NL, Porter JL, Seemann T, Watkins A, Stinear TP, Howden BP. Outbreak
investigation using high-throughput genome sequencing within a diagnostic
microbiology laboratory. J Clin Microbiol. 2013;51:1396–401.

Capra et al. BMC Microbiology  (2017) 17:21 Page 14 of 16

dx.doi.org/10.1186/s12866-017-0931-8
dx.doi.org/10.1186/s12866-017-0931-8
dx.doi.org/10.1186/s12866-017-0931-8


18. Young BC, Golubchik T, Batty EM, Fung R, Larner-Svensson H, Votintseva AA,
Miller RR, Godwin H, Knox K, Everitt RG, Iqbal Z, Rimmer AJ, Cule M, Ip CL,
Didelot X, Harding RM, Donnelly P, Peto TE, Crook DW, Bowden R, Wilson
DJ. Evolutionary dynamics of Staphylococcus aureus during progression from
carriage to disease. Proc Natl Acad Sci. 2012;109:4550–5.

19. Chua KY, Seemann T, Harrison PF, Monagle S, Korman TM, Johnson PD,
Coombs GW, Howden BO, Davies JK, Howden BP, Stinear TP. The dominant
Australian community-acquired methicillin-resistant Staphylococcus aureus
clone ST93-IV [2B] is highly virulent and genetically distinct. PLoS One.
2011;6:e25887.

20. Castillo-Ramírez S, Corander J, Marttinen P, Aldeljawi M, Hanage WP, Westh H,
Boye K, Gulay Z, Bentley SD, Parkhill J, Holden MT, Feil EJ. Phylogeographic
variation in recombination rates within a global clone of methicillin resistant
Staphylococcus aureus. Genome Biol. 2012;13:R126.

21. Holden MT, Hsu LY, Kurt K, Weinert LA, Mather AE, Harris SR, Strommenger B,
Layer F, Witte W, de Lencastre H, Skov R, Westh H, Zemlicková H, Coombs G,
Kearns AM, Hill RL, Edgeworth J, Gould I, Gant V, Cooke J, Edwards GF,
McAdam PR, Templeton KE, McCann A, Zhou Z, Castillo-Ramírez S, Feil EJ,
Hudson LO, Enright MC, Balloux F, Aanensen DM, Spratt BG, Fitzgerald JR,
Parkhill J, Achtman M, Bentley SD, Nübel U. A genomic portrait of the
emergence, evolution, and global spread of a methicillin-resistant
Staphylococcus aureus pandemic. Genome Res. 2013;23:653–64.

22. Le Maréchal C, Seyffert N, Jardin J, Hernandez D, Jan G, Rault L, Azevedo V,
François P, Schrenzel J, van de Guchte M, Even S, Berkova N, Thiéry R, Fitzgerald
JR, Vautor E, Le Loir Y. Molecular basis of virulence in Staphylococcus aureus
mastitis. PLoS One. 2011;6:e27354.

23. Peton V, Bouchard DS, Almeida S, Rault L, Falentin H, Jardin J, Jan G,
Hernandez D, François P, Schrenzel J, Azevedo V, Miyoshi A, Berkova N,
Even S, Le Loir Y. Fine-tuned characterization of Staphylococcus aureus
Newbould 305, a strain associated with mild and chronic mastitis in
bovines. Vet Res. 2014;45:106.

24. O’Neill AJ, Lindsay JA, Gould K, Hinds J, Chopra I. Transcriptional signature
following inhibition of early-stage cell wall biosynthesis in Staphylococcus
aureus. Antimicrob Agents Chemother. 2009;53:1701–4.

25. Xu HH, Trawick JD, Haselbeck RJ, Forsyth RA, Yamamoto RT, Archer R, Patterson
J, Allen M, Froelich JM, Taylor I, Nakaji D, Maile R, Kedar GC, Pilcher M, Brown-
Driver V, McCarthy M, Files A, Robbins D, King P, Sillaots S, Malone C, Zamudio
CS, Roemer T, Wang L, Youngman PJ, Wall D. Staphylococcus aureus Target
Array: comprehensive differential essential gene expression as a mechanistic
tool to profile antibacterials. Antimicrob Agents Chemother. 2010;54:3659–70.

26. Morrison JM, Miller EW, Benson MA, Alonzo 3rd F, Yoong P, Torres VJ,
Hinrichs SH, Dunman PM. Characterization of SSR42, a novel virulence factor
regulatory RNA that contributes to the pathogenesis of a Staphylococcus
aureus USA300 representative. J Bacteriol. 2012;194:2924–38.

27. Osmundson J, Dewell S, Darst SA. RNA-Seq reveals differential gene
expression in Staphylococcus aureus with single-nucleotide resolution.
PLoS One. 2013;8:e76572.

28. Qin N, Tan X, Jiao Y, Liu L, Zhao W, Yang S, Jia A. RNA-Seq-based transcriptome
analysis of methicillin-resistant Staphylococcus aureus biofilm inhibition by
ursolic acid and resveratrol. Sci Rep. 2014;4:5467.

29. Beaume M, Hernandez D, Farinelli L, Deluen C, Linder P, Gaspin C, Romby P,
Schrenzel J, Francois P. Cartography of Methicillin-Resistant Staph. aureus
Transcripts: Detection, Orientation and Temporal Expression during Growth
Phase and Stress Conditions. PLoS One. 2010;5:e10725.

30. Howden BP, Beaume M, Harrison PF, Hernandez D, Schrenzel J, Seemann T,
Francois P, Stinear TP. Analysis of the small RNA transcriptional response in
multidrug-resistant Staphylococcus aureus after antimicrobial exposure.
Antimicrob Agents Chemother. 2013;7:3864–74.

31. Enright MC, Day NP, Davies CE, Peacock SJ, Spratt BG. Multilocus sequence
typing for characterization of methicillin-resistant and methicillin-susceptible
clones of Staphylococcus aureus. J Clin Microbiol. 2000;38:1008–15.

32. Cremonesi P, Castiglioni B, Malferrari G, Biunno I, Vimercati C, Moroni P,
Morandi S, Luzzana M. Technical note: Improved method for rapid DNA
extraction of mastitis pathogens directly from milk. J Dairy Sci. 2006;89:163–9.

33. Bolger M, Lohse M, Usadel B. Trimmomatic: A flexible trimmer for Illumina
sequence data. Bioinformatics. 2014;30:2114–20.

34. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin
VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N,
Tesler G, Alekseyev MA, Pevzner PA. SPAdes: a new genome assembly
algorithm and its applications to single-cell sequencing. J Comput Biol.
2012;19:455–77.

35. Lin SH, Liao YC. CISA: contig integrator for sequence assembly of bacterial
genomes. PloS One. 2013;8:e60843.

36. Aziz RK, BartelsD BAA, DeJongh M, Disz T, Edwards RA, Zagnitko O. The RAST
Server: rapid annotations using subsystems technology. BMC Genomics.
2008;9:75.

37. Sonnhammer EL, Östlund G. InParanoid 8: orthology analysis between 273
proteomes, mostly eukaryotic. Nucleic Acids Res. 2015;43:D234–9.

38. Agren J, Sundström A, Håfström T, Segerman B. Gegenees: fragmented
alignment of multiple genomes for determining phylogenomic distances
and genetic signatures unique for specified target groups. PLoS One. 2012;
7:e39107.

39. Kloepper TH, Huson DH. Drawing explicit phylogenetic networks and their
integration into SplitsTree. BMC Evol Biol. 2008;8:22.

40. Alikhan NF, Petty NK, Ben Zakour NL, Beatson SA. BLAST Ring Image Generator
(BRIG): simple prokaryote genome comparisons. BMC Genomics. 2011;12:402.

41. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler
Transform. Bioinformatics. 2009;25:1754–60.

42. Peano C, Pietrelli A, Consolandi C, Rossi E, Petiti L, Tagliabue L, De Bellis G,
Landini P. An efficient rRNA removal method for RNA sequencing in GC-rich
bacteria. Microb Inform Exp. 2013;3:1.

43. Peano C, Chiaramonte F, Motta S, Pietrelli A, Jaillon S, Rossi E, Consolandi C,
Champion OL, Michell SL, Freddi L, Falciola L, Basilico F, Garlanda C, Mauri P,
De Bellis G, Landini P. Gene and protein expression in response to different
growth temperatures and oxygen availability in Burkholderia thailandensis.
PLoS One. 2014;9:e93009.

44. Anders S, Huber W. Differential expression analysis for sequence count data.
Genome Biol. 2010;11:R10.

45. Tatusov RL, Galperin MY, Natale DA, Koonin EV. The COG database: a tool
for genome-scale analysis of protein functions and evolution. Nucleic Acids
Res. 2000;28:33–6.

46. Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G,
Mesirov JP. Integrative genomics viewer. Nat Biotechnol. 2011;29:24–6.

47. Theis T, Skurray RA, Brown MH. Identification of suitable internal controls to
study expression of a Staphylococcus aureus multidrug resistance system by
quantitative real-time PCR. J Microbiol Methods. 2007;70:355–62.

48. Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M. KAAS: an automatic
genome annotation and pathway reconstruction server. Nucleic Acids Res.
2007;35:W182–5.

49. Schijffelen MJ, Boel CH, van Strijp JA, Fluit AC. Whole genome analysis of a
livestock-associated methicillin-resistant Staphylococcus aureus ST398 isolate
from a case of human endocarditis. BMC Genomics. 2010;11:376.

50. Highlander SK, Hultén KG, Qin X, Jiang H, Yerrapragada S, Mason Jr EO,
Shang Y, Williams TM, Fortunov RM, Liu Y, Igboeli O, Petrosino J, Tirumalai
M, Uzman A, Fox GE, Cardenas AM, Muzny DM, Hemphill L, Ding Y, Dugan
S, Blyth PR, Buhay CJ, Dinh HH, Hawes AC, Holder M, Kovar CL, Lee SL, Liu
W, Nazareth LV, Wang Q, Zhou J, Kaplan SL, Weinstock GM. Subtle genetic
changes enhance virulence of methicillin resistant and sensitive Staphylococcus
aureus. BMC Microbiol. 2007;7:99.

51. Balaban N, Goldkorn T, Gov Y, Hirshberg M, Koyfman N, Matthews
HR, Nhan RT, Singh B, Uziel O. Regulation of Staphylococcus aureus
pathogenesis via target of RNAIII-activating Protein (TRAP). J Biol Chem.
2001;276:2658–67.

52. Korem M, Gov Y, Kiran MD, Balaban N. Transcriptional Profiling of Target of
RNAIII-Activating Protein, a Master Regulator of Staphylococcal Virulence.
Infect Immun. 2005;73:6220–8.

53. Foster TJ, Geoghegan JA, Ganesh VK, Höök M. Adhesion, invasion and
evasion: the many functions of the surface proteins of Staphylococcus
aureus. Nat Rev Microbiol. 2014;12:49–62.

54. Peacock SJ, Foster TJ, Cameron BJ, Berendt AR. Bacterial fibronectin binding
proteins and endothelial cell surface fibronectin mediate adherence of
Staphylococcus aureus to resting human endothelial cells. Microbiology.
1999;145:3477–86.

55. Sinha B, Francois PP, Nusse O, Foti M, Hartford OM, Vaudaux P, Foster TJ, Lew
DP, Herrmann M, Krause KH. Fibronectin-binding protein acts as Staphylococcus
aureus invasin via fibronectin bridging to integrin alpha5beta1. Cell Microbiol.
1999;1:101–17.

56. McCarthy AJ, Lindsay JA. Genetic variation in Staphylococcus aureus surface
and immune evasion genes is lineage associated: implications for vaccine
design and host-pathogen interactions. BMC Microbiol. 2010;10:173.

57. Burke FM, McCormack N, Rindi S, Speziale P, Foster TJ. Fibronectin-binding
protein B variation in Staphylococcus aureus. BMC Microbiol. 2010;10:160.

Capra et al. BMC Microbiology  (2017) 17:21 Page 15 of 16



58. NíEidhin D, Perkins S, Francois P, Vaudaux P, Höök M, Foster TJ. Clumping
factor B (ClfB), a new surface-located fibrinogen-binding adhesin of
Staphylococcus aureus. Mol Microbiol. 1998;30:245–57.

59. Josefsson E, McCrea KW, Eidhin DN, O’Connell D, Cox J, Hook M, Foster TJ.
Three new members of the serine-aspartate repeat protein multigene family
of Staphylococcus aureus. Microbiology. 1998;144:3387–95.

60. Sabat A, Krzyszton-Russjan J, Strzalka W, Filipek R, Kosowska K, Hryniewicz W,
Travis J, Potempa J. New method for typing Staphylococcus aureus strains:
Multiple-locus variable-number tandem repeat analysis of polymorphism
and genetic relationships of clinical isolates. J Clin Microbiol. 2003;41:1801–4.

61. Roche FM, Meehan M, Foster TJ. The Staphylococcus aureus surface protein
SasG and its homologues promote bacterial adherence to human
desquamated nasal epithelial cells. Microbiology. 2003;149:2759–67.

62. Clarke SR, Mohamed R, Bian L, Routh AF, Kokai-Kun JF, Mond JJ, Tarkowski A,
Foster SJ. The Staphylococcus aureus surface protein isda mediates resistance
to innate defenses of human skin. Cell Host Microbe. 2007;1:199–212.

63. Lee LY, Miyamoto YJ, McIntyre BW, Hook M, McCrea KW, Mc Devitt D, Brown
EL. The Staphylococcus aureus Map protein is an immunomodulator that
interferes with T cell-mediated responses. J Clin Invest. 2002;110:1461–71.

64. Hussain M, von Eiff C, Sinha B, Joost I, Herrmann M, Peters G, Becker K. eap
Gene as novel target for specific identification of Staphylococcus aureus. J
Clin Microbiol. 2008;46:470–6.

65. Joost I, Blass D, Burian M, Goerke C, Wolz C, von Müller L, Becker K, Preissner K,
Herrmann M, Bischoff M. Transcription analysis of the extracellular adherence
protein from Staphylococcus aureus in authentic human infection and in vitro.
J Infect Dis. 2009;199:1471–8.

66. Rooijakkers SH, Ruyken M, van Roon J, van Kessel KP, van Strijp JA, van Wamel
WJ. Early expression of SCIN and CHIPS drives instant immune evasion by
Staphylococcus aureus. Cell Microbiol. 2006;8:1282–93.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

Capra et al. BMC Microbiology  (2017) 17:21 Page 16 of 16


	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Bacterial strains
	Growth conditions
	Bacterial DNA and RNA extraction
	Library preparation and Miseq sequencing
	DNA
	RNA

	Bioinformatics analysis
	Genomic comparison with other Staph. aureus reference strains
	Transcriptomic analysis
	Real Time PCR qRT-PCR
	Pathway analysis
	fnbB partial re-sequencing


	Results
	Sequencing of GTB/ST8 and GTS/ST398 genotypes
	Genome assembly and Comparative Genomics
	GTB/ST8ra and GTS/ST398ra genome comparison

	GTB/ST8 and GTS/ST398 transcriptomic comparison
	Transcriptomic analysis and qRT-PCR validation
	Functional analysis of transcriptomic data

	Virulence and defence pathways analysis: comparison between genomic and transcriptomic data

	Discussion
	Conclusions
	Additional files
	Abbreviations
	Acknowledgment
	Funding
	Availability of data and materials
	Authors’ contributions
	Competing interest
	Consent to publication
	Ethics approval and consent to participate
	Author details
	References

