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We prove the quantization of the Hall conductivity in the presence of weak many-

body interactions in a general weakly interacting gapped fermionic systems on two-

dimensional periodic lattices and we prove Our result applies, among others, to the

interacting Haldane and Hofstadter models. The proof is based on fermionic cluster

expansion techniques combined with exact lattice Ward identities.

1. INTRODUCTION

Two-dimensional condensed matter systems often present remarkable transport proper-

ties. A famous example is the Integer Quantum Hall Effect (IQHE): the Hall conductivity of

thin samples at very low temperatures, exposed to strong transverse magnetic fields, is equal

to an integer times the von Klitzing constant e2/h, [? ]. This measurement is amazingly

sharp: the observation of the Hall plateaux is by now used to measure the fine structure

constant, at a very high level of accuracy. In view of the complexity of the underlying

microscopic Hamiltonians, depending on a number of parameters related to the material

details, the universality of the Hall conductance is quite a remarkable phenomenon. The

Hall conductivity for non interacting fermions has a beautiful topological interpretation [? ],

and the intrinsic robustness of a topological quantity offers a natural qualitative explanation

of the observed universality. The universality of Hall conductivity in presence of disorder

has been established with full mathematical rigor in [? ? ? ? ]. A similar universality

property is also expected to be true also in presence of many body interaction. However,

while in presence of disorder the properties of the many body problem can be deduced by

the single particle Schroedinger equation, in order to take into account the interaction one

has to consider the full N -particle Schroedinger equation; this explain way a mathematical

proof of the quantization of the Hall conductance for interacting electrons remained open [?
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] for years. Effective field theories [? ? ? ? ? ? ], has been used for explaining a possible

“topological” mechanisms underlying both the integral and the fractional QHE; however

one assumes certain properties, like the incompressibility of the “quantum Hall fluid”, which

may be very hard to check from first principles in concrete models. In recent times, the

quantization of the Hall conductivity has been proved using the notion of quasi-adiabatic

evolution of the ground state, under changes of the magnetic fluxes acting on the system, [?

]; again one needs on the assumption that the existence of a gap, which is unproven in most

physically relevant cases (the only case in which is known are perturbations of “topologically

trivial” reference states, see [? ? ], or [? ]).

In this work, we use a quite different approach to prove the quantization of the Hall

conductance for general weakly interacting fermionic systems, under the assumption that the

reference non-interacting system is gapped. In particular, our result implies the quantization

of the Hall conductivity of the interacting version of the Hofstadter and Haldane [? ]

models. This provides a theoretical justification of the numerical [? ] an experimental

[? ] observations in the interacting Haldane model. Our proof does not require any a

priori assumption on the interacting spectrum of the system, but it is based on constructive

renormalization group techniques combined with lattice Ward Identities; crucial assumptions

are the fact that the interaction has to be weak and short ranged. We use the many body

Euclidean formalism and we write a convergent power series expansion for the d.c. Kubo

conductivity, showing that higher orders corrections are exactly vanishing. The idea that

the universality of Hall conductance follows from Ward Identities is well known in physics

, see [? ],[? ], but its implementation was done in continuum effective quantum field

theory models plagued by ultraviolet divergences and by using formal manipulations of

non convergent Feynman graph expansions. In our approach we consider lattice and well

defined Hamiltonian lattice model, in which the continuity equation implies exact Ward

Identities. The convergence of the perturbative expansions is achieved avoiding Feynman

graphs expansion and using constructive Renormalization Group methods. Such methods

used earlier for constructing the ground state of several low-dimensional interacting Fermi

systems, and for proving universality relations among critical exponents, amplitudes and

conductivities [? ? ? ? ? ? ? ? ]. In this paper we apply these ideas for the first time to

the study of the transverse (Hall) conductivity.

An informal statement of our main result is the following.
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Consider a fermionic system on a two-dimensional periodic lattice, with grand canonical

Hamiltonian H0 +UV , where H0 is a quadratic gapped Hamiltonian, V is a density-density

interaction, decaying faster than any power at large distances, and U is its strength. If U is

small enough, then the interacting correlation functions are analytic in U and decay faster

than any power at large distances, uniformly in the system size and in the temperature.

The conductivity matrix, defined by the Green-Kubo formula, is analytic as well, and its

infinite volume and zero temperature limit is independent of U . In particular, the longitudinal

conductivity is zero, while the transverse one is quantized.

The rest of the paper is devoted to the proof of the main result. In section 2 we define

the general class of Hamiltonians we consider. In section 3 we define the current observable

and the conductivity, and state our main result in a mathematically precise way. In section

4 we prove our main result, under the assumption of analyticity and smoothness of the

multipoint current correlations, by making use of Ward Identites, which are nothing but the

restatement of the continuity equation for the current at the level of correlation functions.

In section 5 we prove the analyticity and smoothness of the correlations, by using multiscale

fermionic cluster expansion techniques. Strictly speaking, the content of section 5 is a

straightforward adaptation of previous results, but we include it here in order to make the

paper self-contained. In the appendices we collect some auxiliary results, some of which

are already known, but are included here for completeness: in appendix A we show for

completeness that in the non interacting case we recover the usual formula for the Chern

number; in appendix B we apply our main result to the interacting Haldane model, and show

that it displays a non-trivial Hall phase diagram; in appendix ?? we collect a few technical

aspects of the derivation of the Ward Identities.

2. THE MODEL

Lattice fermionic operators. Let L ∈ N, and let ΛL be a finite Bravais lattice, generated

by two linearly independent vectors ℓ⃗1, ℓ⃗2 ∈ R2:

ΛL =
{
x⃗ | x⃗ = n1ℓ⃗1 + n2ℓ⃗2, ni ∈ Z, 0 ≤ ni ≤ L− 1

}
. (2.1)

The number of sites of ΛL is |ΛL| = L2. With each site x⃗ ∈ Λ, we associate fermionic

creation and annihilation operators ψ±
x⃗,σ, with σ ∈ I, and I a finite set of indices, which

can be thought of as “color” labels, possibly corresponding to the spin, or to different

sublattices. In particular, the fermion labeled by σ can be thought of as living on a physical

lattice obtained by translating ΛL by a fixed amount r⃗σ ∈ R (possibly equal to 0⃗, in the case

that, e.g., σ is a spin index).

The fermionic operators satisfy the usual canonical anticommutation relations:

{ψε
x⃗,σ, ψ

ε′

y⃗,σ′} = δε,−ε′ δx⃗,y⃗ δσ,σ′ , (2.2)
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where ε, ε′ = ±, x⃗, y⃗ ∈ ΛL, σ, σ
′ ∈ I, and δ·,· is the Kronecker delta. We impose periodic

boundary conditions on ΛL, that is we identify the fermionic operators obtained by trans-

lating x⃗ by an integer multiple of Lℓ⃗i. We let G⃗1, G⃗2 be a basis of the reciprocal lattice Λ∗
L

of Λ, i.e., G⃗i · ℓ⃗j = 2πδi,j, and we define the finite-volume Brillouin zone as

BL :=
{
k⃗ | k⃗ =

n1

L
G⃗1 +

n2

L
G⃗2, ni ∈ Z, 0 ≤ ni ≤ L− 1

}
(2.3)

We let the Fourier transforms of the fermionic operators be:

ψ±
x⃗,σ =

1

L2

∑
k⃗∈BL

e±ik⃗·x⃗ψ̂±
k⃗,σ

, ∀x⃗ ∈ ΛL , ⇐⇒ ψ̂±
k⃗,σ

=
∑
x⃗∈ΛL

e∓ik⃗·xψ±
x⃗,σ , ∀k⃗ ∈ BL .

(2.4)

Note that, with this definition, the fermionic operators in momentum space are periodic

over the first Brillouin zone, that is ψ̂±
k⃗,σ

= ψ̂±
k⃗+G⃗i,σ

, i = 1, 2. Moreover,

{ψ̂ε
k⃗,σ
, ψ̂ε′

k⃗′,σ′} = L2δε,−ε′δk⃗,⃗k′δσ,σ′ . (2.5)

The Hamiltonian. The grand-canonical Hamiltonian of the system is assumed to be of

the form:

HL − µNL = H(0)
L + UVL − µNL , (2.6)

with

H(0)
L =

∑
x⃗,y⃗∈ΛL

∑
σ,σ′∈I

ψ+
x⃗,σH

(0)
σσ′(x⃗− y⃗)ψ−

y⃗,σ′ ,

VL =
∑

x⃗,y⃗∈ΛL

∑
σ,σ′∈I

nσ
x⃗ vσσ′(x⃗− y⃗)nσ′

y⃗ , where nσ
x⃗ = ψ+

x⃗,σψ
−
x⃗,σ , (2.7)

and NL =
∑
x⃗∈ΛL

∑
σ∈I

nσ
x⃗ .

The operator H(0)
L is called the free Hamiltonian, while UVL is the many-body interaction,

and U plays the role of the interaction strength. The constant µ is the chemical potential,

or Fermi level.

We assume the hopping function H
(0)
σσ′(x⃗) to be periodic on ΛL, and such that H

(0)
σσ (⃗0) = 0.

In order for the free Hamiltonian to be self-adjoint, we require
[
H

(0)
σσ′(x⃗)

]∗
= H

(0)
σ′σ(−x⃗).

Moreover, we assume that it decays faster than any power at large distances:

∥H(0)(x⃗)∥ ≤ CN

1 + |x⃗|N
, ∀N ≥ 0 . (2.8)

As a consequence of these assumptions, we see that the Bloch Hamiltonian

Ĥ(0)(k⃗) :=
∑
x⃗∈ΛL

eik⃗·x⃗H(0)(x⃗) , (2.9)
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is a self-adjoint matrix, so that the spectrum σ(Ĥ(0)(k⃗)) = {εσ(k⃗)}σ∈I is real. The functions
k⃗ 7→ εσ(k⃗) are called the energy bands. We let

e0 = sup
L

sup
k⃗∈BL

||Ĥ(0)(k⃗)||, (2.10)

which sets the energy scale. Note also that the infinite volume limit of Ĥ(0)(k⃗) is infinitely

differentiable in k⃗.

Concerning the interaction, we assume, similarly, that vσσ′(x⃗) is periodic function on ΛL,

such that vσσ (⃗0) = 0, vσσ′(x⃗− y⃗) = vσ′σ(y⃗ − x⃗) and

∥v(x⃗)∥ ≤ CN

1 + |x⃗|N
, ∀N ≥ 0 . (2.11)

In particular, the infinite volume limit of

v̂σσ′(p⃗) =
∑
x⃗∈ΛL

eip⃗·x⃗vσσ′(x⃗) (2.12)

is infinitely differentiable in p⃗.

Finally, concerning the choice of the Fermi level, we assume the following gap condition:

δµ := lim
L→∞

δL,µ > 0, where δL,µ := inf
k⃗∈BL

dist(µ, σ(Ĥ(0)(k⃗))) . (2.13)

... sono arrivato qui ....

Gibbs state and Euclidean correlation functions. The grand-canonical Gibbs state

associated to this model is denoted by ⟨·⟩β,µ,L. Given a self-adjoint operator O on the

fermionic Fock space F , an observable, its expectation value is:

⟨O⟩β,µ,L :=
TrF e

−β(HL−µNL)O

TrF e−β(HL−µNL)
(2.14)

where F is the fermionic Fock space.

In the following, we will not write explicitly the µ-dependence of the finite volume Gibbs

state: ⟨·⟩β,µ,L ≡ ⟨·⟩β,L (keeping in mind that µ satisfies Eq. (??)). Also, we shall denote by

⟨·⟩(0)β,L the non-interacting Gibbs state, correspoding to the choice U = 0 in Eq. (2.7).

Let Ox0 be the imaginary time evolution of O, namely

Ox0 := ex0(HL−µNL)Oe−x0(HL−µNL) , x0 ∈ [0, β) . (2.15)

Given n observables O
(1)
x0,1 , . . . , O

(n)
x0,n , we define their time-ordered average as:

⟨TO(1)
x0,1

· · ·O(n)
x0,n

⟩β,L :=
TrF e

−β(HL−µNL)T
{
Ox0,1 · · ·Ox0,n

}
TrF e−β(HL−µNL)

; (2.16)
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T is the usual fermionic time-ordering, acting on a product of fermionic operators as (omit-

ting the x⃗, σ labels for simplicity):

T
{
ψε1
x0,1

· · ·ψεn
x0,n

}
= sgn(π)ψ

επ(1)
x0,π(1) · · ·ψ

επ(n)
x0,π(n) , (2.17)

where π is a permutation of {1, . . . , N} with sign sgn(π) ∈ {−1,+1}, such that x0,π(1) ≥
. . . ≥ x0,π(n); if some fields are evaluated at the same time, the ambiguity is solved by normal

ordering.

Also, we denote by ⟨TO
(1)
x0,1 ; · · · ; O

(n)
x0,n⟩β,L the time-ordered truncated correlation func-

tion, or cumulant, of O
(i)
x0,i , i = 1, . . . , n. Given a general state ⟨·⟩, the time-ordered cumulant

is defined as [? ] I think this is only valid for even observables, clarify :

⟨TO(1)
x0,1

; O(2)
x0,2

; · · · ; O(n)
x0,n

⟩ := ∂n

∂t1 · · · ∂tn
log

{
1 +

∑
I⊆{1,2,...,n}

t(I)⟨TO(I)⟩
}∣∣∣

t=0
, (2.18)

where: the sum in the right-hand side is over all subsets I = {i1, . . . , ik} of {1, 2, . . . , n}, with
i1 < i2 < . . . < ik; t(I) :=

∏k
i=1 ti; and O(I) := O

(i1)
x0,1 . . . O

(ik)
x0,ik

. For n = 1, this definition

reduces to ⟨O(1)
x0,1⟩. For n = 2 one gets ⟨TO

(1)
x0,1 ; O

(2)
x0,2⟩ = ⟨TO

(1)
x0,1O

(2)
x0,2⟩ − ⟨O(1)

x0,1⟩⟨O
(2)
x0,2⟩, and

so on. Again, in case two observables are evaluated at equal times, the ambiguity is solved

by putting them into normal order.

Notice that this definition also applies to observables that depend on more than one time

variable (e.g., O(i) = O′
y0
O′′

z0
). In case all observables depend on just one time variable and

all times are different, it is easy to see that Eq. (2.18) reduces to:

⟨TO(1)
x0,1

; O(2)
x0,2

; · · · ; O(n)
x0,n

⟩ := ⟨O(π(1))
x0,π(1)

; O(π(2))
x0,π(2)

; · · · ; O(π(n))
x0,π(n)

⟩ , (2.19)

where the permutation π is such that x0,π(1) > . . . > x0,π(n).

Finally, we introduce the notion of Fourier transform for the correlations of the Gibbs

state ⟨·⟩β,L, in the imaginary time variables. Let p0,i ∈ 2π
β
Z, i = 1, . . . , n; that is,

{p0,i} are (bosonic) Matsubara frequencies. The Fourier transform of the correlation

⟨TO
(1)
x0,1 ; · · · ; O

(n)
x0,n⟩β,L is defined as:∫

[0,β)n

[ n∏
i=1

dx0,i
]
eip0,1x0,1+...+ip0,nx0,n⟨TO(1)

x0,1
; · · · ; O(n)

x0,n
⟩β,L

= βδβ(
∑
i

p0,i)
1

β
⟨T Ô(1)

p0,1
; · · · ; Ô(n−1)

p0,n−1
; Ô

(n)
−p0,1−...−p0,n−1

⟩β,L (2.20)

with δβ(p0) the Kronecker delta of p0 ∈ 2π
β
Z and Ô

(i)
p0 :=

∫ β

0
dx0 e

ip0x0 O
(i)
x0 . The second line

in Eq. (2.20) is implied by translation invariance in the imaginary-time variable:

⟨TO(1)
x0,1

; · · · ; O(i)
x0,i

; · · · ; O(n)
x0,n

⟩β,L = ⟨TO
(1)
x0,1−x0,n

; · · · ; O(i)
x0,i−x0,n

; · · · ; O(n)
0 ⟩β,L , (2.21)

which follows from the ciclicity of the trace. Notice that, as β → ∞, the combination βδβ(·)
in Eq. (2.20) formally converges to (2π)−1δ(·), where δ(·) is the Dirac delta function on R.
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3. LINEAR RESPONSE THEORY

Here we shall discuss the transport properties of our general interacting gapped sys-

tems, in the linear response approximation. In Section 3A, we define the current operator,

and we discuss the associated conservation laws. Then, in Section 4A, we introduce the

current-current correlations, and prove their analyticity for weak enough electron-electron

interactions. The transport coefficients we are interested in are defined according to Green-

Kubo formula, introduced in Section 3B; our main result, discussed in Section 3C and

proven in Section 4, is a rigorous statement on the universality properties of the Green-

Kubo conductivity matrix.

A. Current operator

In the following, we will be interested in the response of the system to an external time-

dependent field, constant in space. Here we define the current operator, and prove a crucial

conservation law.

For x⃗ ∈ ΛL, let x⃗
(σ) := x⃗ + δ⃗(σ) ∈ Λ

(σ)
L (see Section ??). The current operator is defined

as:

J⃗ := i
[
HL,

∑
σ∈I

∑
x⃗∈ΛL

x⃗(σ)n
(σ)
x⃗

]
= i

[
H(0)

L ,
∑
σ∈I

∑
x⃗∈ΛL

x⃗(σ)n
(σ)
x⃗

]
, (3.1)

where the second line follows from the fact that the operator n
(σ)
x⃗ commutes with the inter-

action term VL in Eq. (2.7). Notice that the second argument of the commutator is simply

the second quantization of the position operator. More explicitly, one finds:

J⃗ = i
∑

x⃗,y⃗∈ΛL

∑
σ,σ′∈I

(y⃗(σ
′) − x⃗(σ))ψ+

x⃗,σH
(0)
σσ′(x⃗− y⃗)ψ−

y⃗,σ′

=
i

2

∑
x⃗,y⃗∈ΛL

∑
σ,σ′∈I

(y⃗(σ
′) − x⃗(σ))

[
ψ+
x⃗,σH

(0)
σσ′(x⃗− y⃗)ψ−

y⃗,σ′ − ψ+
y⃗,σ′H

(0)
σ′σ(y⃗ − x⃗)ψ−

x⃗,σ

]
(3.2)

where in the second line we rewrote the outcome of the commutator in a more symmetric

form, using that Hσσ′(x⃗− y⃗) = Hσ′σ(y⃗ − x⃗). Let us introduce the shorthand notation:

Jx⃗(z⃗, σ, σ
′) := i

[
ψ+
x⃗,σH

(0)
σσ′(−z⃗)ψ−

x⃗+z⃗,σ′ − ψ+
x⃗+z⃗,σ′H

(0)
σ′σ(z⃗)ψ

−
x⃗,σ

]
; (3.3)

notice that

Jx⃗(z⃗, σ, σ
′) = −Jx⃗+z⃗(−z⃗, σ′, σ) . (3.4)
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Physically, Jx⃗(z⃗, σ, σ
′) corresponds to the bond current flowing on the bond between x(σ) and

(x⃗+ z⃗)(σ
′). We rewrite Eq. (3.2) as:

J⃗ =
1

2

∑
z⃗∈ΛL

∑
σ,σ′∈I

(z⃗ + δ⃗(σ) − δ⃗(σ
′))

∑
x⃗∈ΛL

Jx⃗(z⃗, σ, σ
′) . (3.5)

In Eq. (3.5), the factor 1/2 takes into account the fact that we are summing twice over the

same bonds.

Let us consider the imaginary time evolution of the σ-density, n
(σ)
(x0,x⃗)

:=

e(HL−µNL)x0n
(σ)
x⃗ e−(HL−µNL)x0 . We define:

J̃0,(x0,p⃗) :=
∑
σ∈I

∑
x⃗∈ΛL

eip⃗·x⃗
(σ)

n
(σ)
(x0,x⃗)

. (3.6)

We have:

∂x0 J̃0,(x0,p⃗) =
[
H(0)

L , J̃0,(x0,p⃗)

]
(3.7)

=
∑

x⃗,y⃗∈ΛL

∑
σ,σ′∈I

[
eip⃗·y⃗

(σ′) − eip⃗·x⃗
(σ)]

ψ+
x⃗,σH

(0)
σσ′(x⃗− y⃗)ψ−

y⃗,σ′

=
1

2

∑
x⃗,y⃗∈ΛL

∑
σ,σ′∈I

[
eip⃗·y⃗

(σ′) − eip⃗·x⃗
(σ)][

ψ+
x⃗,σH

(0)
σσ′(x⃗− y⃗)ψ−

y⃗,σ′ − ψ+
y⃗,σ′H

(0)
σ′σ(y⃗ − x⃗)ψ−

x⃗,σ

]
,

where in the last step follows by symmetrization. In terms of the bond currents (3.3), Eq.

(3.7) reads:

∂x0 J̃0,(x0,p⃗) =
−i
2

∑
z⃗∈ΛL

∑
σ,σ′

[
eip⃗·(z⃗+δ⃗(σ

′)−δ⃗(σ)) − 1
]
eip⃗·δ⃗

(σ)
∑
x⃗∈ΛL

eip⃗·x⃗J(x0,x⃗)(z⃗, σ, σ
′)

≡ 1

2
p⃗ ·

∑
z⃗∈ΛL

∑
σ,σ′∈I

(z⃗ + δ⃗(σ) − δ⃗(σ
′)) ηp⃗(z⃗, σ, σ

′) J̃(x0,p⃗)(z⃗, σ, σ
′) , (3.8)

where J(x0,x⃗)(· · · ) is the imaginary time evolution of Jx⃗(· · · ), and:

ηp⃗(z⃗, σ, σ
′) :=

[eip⃗·(z⃗+δ⃗(σ
′)−δ⃗(σ)) − 1]

ip⃗ · (z⃗ + δ⃗(σ′) − δ⃗(σ))
eip⃗·δ⃗

(σ)

, J̃(x0,p⃗)(z⃗, σ, σ
′) :=

∑
x⃗∈ΛL

eip⃗·x⃗J(x0,x⃗)(z⃗, σ, σ
′) .

(3.9)

Notice that:

ηp⃗(−z⃗, σ′, σ) = e−ip⃗·z⃗ηp⃗(z⃗, σ, σ
′) , J̃(x0,p⃗)(−z⃗, σ′, σ) = −eip⃗·z⃗J̃(x0,p⃗)(z⃗, σ, σ

′) . (3.10)

Again, the factor 1/2 in Eq. (3.7) keeps into account the fact that we are summing twice

over the same bonds.

The relation Eq. (3.8) is a conservation law for a space-time lattice current, with com-

ponents J̃µ,(x0,p⃗), µ = 0, 1, 2, with J̃0,(x0,p⃗) given by Eq. (3.6), and

J̃i,(x0,p⃗) =
1

2

∑
z⃗∈ΛL

∑
σ,σ′∈I

(z⃗i + δ⃗
(σ)
i − δ⃗

(σ′)
i ) ηp⃗(z⃗, σ, σ

′) J̃(x0,p⃗)(z⃗, σ, σ
′) , i = 1, 2 ; (3.11)
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with these notations, Eq. (3.8) takes the compact form

∂x0 J̃0,(x0,p⃗) = p⃗ · ⃗̃J(x0,p⃗) . (3.12)

It is important to notice that, being ηp⃗(z⃗, σ, σ
′) analytic in p⃗ ∈ B, and using that

limp⃗→0⃗ ηp⃗(z⃗, σ, σ
′) = 1, we have:

∂x0 J̃0,(x0,p⃗) = p⃗ · J⃗x0 +O(|p⃗|2) , as p⃗→ 0, (3.13)

where J⃗x0 is the imaginary time evolution of the current operator defined in Eq. (3.1).

B. Green-Kubo formula

The ground-state conductivity matrix of the system is defined according to Green-Kubo

formula in the euclidean formalism, see for instance [? ] or [? ]

σij := lim
p0→0+

− 1

A

1

p0

[
K̂ij(p0, 0⃗)− K̂ij(0)

]
, i = 1, 2 , (3.14)

where A is the area of the fundamental cell, A = |ℓ⃗1 ∧ ℓ⃗2|. The labels i, j refer to the basis

e⃗1 = (1, 0), e⃗2 = (0, 1). If the infinite-volume current-current correlation function K̂ij(p) is

differentiable in p0 = 0, this definition reduces to:

σij = − 1

A

∂

∂p0
K̂ij(p0, 0⃗)

∣∣
p0=0

, i = 1, 2 . (3.15)

This is the case for the class of systems we are considering, because of the gap in the spectrum

of the noninteracting theory and thanks to fermionic cluster expansion; see Proposition 4.1.

In App. A we show that the above formula in the non interacting case reduces to the usual

formula for Chern numbers; and in the interacting case we prove that all the interaction

corrections vanishes. The above formula is taken as our starting point; the problem of a

deriving it from linear response theory in our interacting model, or the proof that the limit

of zero frequency does not depend from the path (that is , that the limit along the imaginary

line is the same as along a line in the complex plane parallel to the real axis), is not addressed

here.

C. Main result

For gapped systems it is well-known that, in the absence of interactions, the off-diagonal

part of the conductivity matrix, the Hall conductivity, has a topological interpretation [? ];

this remarkable observation implies, in particular, that σ12 can only take integer values (in

units e2 = h = 1). In Appendix A we review this fact by showing that, for noninteracting
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systems, the definition (3.14) agrees with the sum of the Chern numbers of the occupied

bands.

In the presence of many-body interactions, it has been recently proven that, under suitable

assumptions of the spectrum of the interacting system, the Hall conductivity σ12 is still

quantized, [? ]. More precisely, in [? ] the Authors assume that the interacting spectrum is

gapped, and that the interacting ground state is nondegenerate. These assumptions can be

very hard to check in concrete systems, in the infinite volume limit.

Here we give a new proof of the quantization of σ12, for the class of interacting systems

introduced in Section 2. More generally, in our main result, Theorem 3.1, we prove that the

ground-state conductivity matrix of the class of systems introduced in Section 2 is universal:

it does not depend on weak many-body interaction.

Theorem 3.1 [Universality of the conductivity matrix.]

Let σij be the conductivity matrix, as defined in Eq. (3.14). Assume that the chemical

potential µ is in a gap of the noninteracting Hamiltonian,

µ /∈ σ(Ĥ(0)(k⃗)) , ∀k⃗ ∈ B . (3.16)

Then, there exists U0 > 0 such that, for |U | < U0:

1. the zero temperature, infinite-volume conductivity matrix (σij)i,j=1,2 is analytic in U ;

2. the zero temperature, infinite-volume conductivity matrix is given by:

σij = σ
(0)
ij , ∀i, j = 1, 2 , (3.17)

where σ
(0)
ij = σij

∣∣
U=0

.

Remark 1 1. A consequence of this theorem is that, in the analyticity domain:

σ11 = σ22 = 0 , σ12 ∈ Z . (3.18)

This result proves the stability of the Integer Quantum Hall effect in presence of weak

many-body interactions.

2. Our methods are different from those of [? ]; our analysis is based on fermionic cluster

expansion, and on Ward identities. In particular, we stress that, with respect to [? ]

we only assume the existence of a gap for the noninteracting theory, and that the

many-body interaction is weak (uniformly in temperature and system size).

The main advantage of our result with respect to [? ] is that it does not rely on

assumptions for the interacting spectrum. This makes the result useful in concrete situations,

where the assumptions of [? ] might be hard to check. The application of Theorem 3.1 to

the Haldane model is spelled out explicitly in Appendix ???.
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4. PROOF OF THEOREM 3.1

A. Current-current correlation functions

The current-current correlation functions play a crucial role in linear response theory.

Here we define them, and prove that they are analytic for weak many-body interactions,

see Proposition 4.1. Then, we derive some crucial identities between then, called Ward

identities, which follow from the conservation law Eq. (3.8). Finally, we prove a suitable

decomposition formula for the correlation functions.

Let r, s ∈ N, n = r + s. Specify that r, s ≥ 0 and n ≥ 1. If n = 1 the correlation is

independent of momentum, and it is defined as the average of the corresponding operator

at p = 0. Let pi = (pi,0, p⃗i) ∈ (2π/β)Z× BL, for i = 1, . . . , n− 1. We define:

K̂β,L
µ1,...,µs,σ1,...,σr

(p1, . . . ,pn−1)

:=
1

βL2
⟨T Ĵµ1,p1 ; · · · ; Ĵµs,ps ; n̂

(σ1)
ps+1

; · · · ; n̂(σr)
−p1−...−pn−1

⟩β,L , (4.1)

where:

n̂(σ)
p :=

∫ β

0

dx0 e
ip0x0 ñ

(σ)
(x0,p⃗)

, Ĵµ,p :=

∫ β

0

dx0 e
ip0x0 J̃µ,(x0,p⃗) , (4.2)

with ñ
(σ)
(x0,p⃗)

= e(HL−µNL)x0 n̂
(σ)
p⃗ e−(HL−µNL)x0 and J̃µ,(x0,p⃗) defined in Eq. (3.6), (3.11) (for

µ = 0, µ = 1, 2, respectively). Also, we set, for pi ∈ R× B:

K̂µ1,...,µs,σ1,...,σr(p1, . . . ,pn−1) := lim
β,L→∞

K̂β,L
µ1,...,µs,σ1,...,σr

(p1, . . . ,pn−1) . (4.3)

Analyticity of the correlations. The current-current correlation functions allow to

describe the linear response of the system. In particular, as we shall see, the conductivity

matrix can be computed in terms of the two-point current-current correlation function. The

following proposition proves some crucial regularity properties of the interacting current-

current correlations.

Proposition 4.1 [Existence and regularity of the interacting correlations.] Let

β > 0, L ∈ N, s, r ∈ N, n = s+ r. Let pi ∈ (2π/β)Z×BL for i = 1, . . . , n− 1. There exists

U0 > 0, independent of β, L, such that, for |U | < U0:

1. the current-current correlations K̂β,L
µ1,...,µs,σ1,...,σr

(p1, . . . ,pn−1) are analytic in U ;

2. the limit K̂µ1,...,µs,σ1,...,σr(p1, . . . ,pn−1) = limβ→∞ limL→∞ K̂β,L
µ1,...,µs,σ1,...,σr

(p1, . . . ,pn−1)

exists, it is C2 in p⃗i ∈ B and C∞ in p0,i, for all i = 1, . . . , n− 1.

Remark 2 1. The proposition is proven in Appendix 5; its proof follows from standard

fermionic cluster expansion methods, and from the Gram-Hadamard inequality. Notice

that, in general, the analyticity radius U0 depends on δµ > 0, (see discussion after Eq.

??).
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2. The p⃗i regularity is constrained by the properties of the interaction potential, (2.11).

In general, the correlations cannot be more regular than vσσ′(p⃗).

Ward Identities. The WI are exact identities for the correlation functions of the model,

which ultimately follow from the continuity equation, Eq. (3.12). This is the content of the

next proposition, whose proof is deferred to Appendix ??.

Proposition 4.2 [Ward Identities.] Let β > 0, L ∈ N, and let |U | < U0. Let n ∈ N. Let
pi ∈ (2π/β)Z× BL for i = 1, . . . , n− 1. We have:

−ip1,0K̂β,L
0,σ (p1, . . . ,pn−1) =

∑
i=1,2

p1,iK̂
β,L
i,σ (p1, . . . ,pn−1) (4.4)

−ip1,0K̂β,L
0,µ,σ(p1, . . . ,pn−1) =

∑
i=1,2

p1,iK̂
β,L
i,µ,σ(p1, . . . ,pn−1) + Ŝβ,L

0,µ,σ(p1, . . . ,pn−1)

with

Ŝβ,L
µ,ν,σ(p1,p2, . . . ,pn−1) := − 1

L2

⟨
T
[
J̃µ,(0,p⃗1), J̃ν,(0,p⃗2)

]
; n̂(σ1)

p3
; · · · ; n̂(σr)

−p1−...−pn−1

⟩
β,L

. (4.5)

Remark 3 1. The second term appearing in the right-hand side of Eq. (4.4), called the

Schwinger term, it is due to the fact that the theory is defined on a lattice; it would be

absent for a continuum quantum field theory.

2. Using that K̂β,L
µ1,µ2,σ

(p1,p2, . . . ,pn−1) = K̂β,L
µ2,µ1,σ

(p2,p1, . . . ,pn−1), we also have:

−ip2,0K̂β,L
µ,0,σ(p1, . . . ,pn−1) =

∑
i=1,2

p2,iK̂
β,L
µ,i,σ(p1, . . . ,pn−1) + Ŝβ,L

0,µ,σ(p2,p1, . . . ,pn−1) .

(4.6)

3. Clearly, Ŝβ,L
µ,µ,σ(p1, . . . ,pn−1) = 0. Also, notice that Ŝβ,L

µ,ν,σ(p1,p2, . . . ,pn−1) is constant

in p1,0, p2,0.

4. Similar identities can be derived for the truncated expectations of an arbitrary number

of Ĵµ’s, and gauge-invariant observables (i.e., the many-body interaction).

The Ward identities have important consequences on the momentum-dependence of the

current-current correlations. The following corollary will play a crucial role in the proof of

our main result.

Corollary 4.1 [Consequences of the Ward identities.] Let |U | < U0. Let j, j
′ ∈ {1, 2}.

The zero temperature, infinite volume correlations satisfy the following relations:

K̂j,σ((p0, 0⃗),p2, . . . ,pn−1) = −ip0
∂

∂pj
K̂0,σ((p0, p⃗),p2, . . . ,pn−1)

∣∣
p⃗=0⃗

for n ≥ 2 ,

K̂j,j′,σ((p0, 0⃗), (−p0, 0⃗),p3, . . . ,pn−1) +
∂

∂p1,j
Ŝ0,j′,σ((p0, p⃗1), (−p0, p⃗2),p3, . . . ,pn−1)

∣∣
p⃗1=p⃗2=0

= p20
∂2

∂p1,j∂p2,j′
K̂0,0,σ((p0, p⃗1), (−p0, p⃗2),p3, . . . ,pn−1)

∣∣
p⃗1=p⃗2=0⃗

. for n ≥ 3 . (4.7)
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Remark 4 1. Thus, gauge invariance and differentiability imply nontrivial relations

among correlation functions and their derivatives. In particular, as p0 → 0, we see

that the left-hand side of the first of Eq. (4.7) is linearly vanishing, while the left-hand

side of the second of Eq. (4.7) is quadratically vanishing.

2. These relations are proven in a very simple way starting from the WIs (4.4) (see below).

These are just two special examples of relations among correlations and derivatives of

correlations that can be obtained starting from the WIs; however, these are the only

two relations that will play a role in the proof of our main result.

3. Similar consequences of the Ward identities have been used by Coleman and Hill in [?

], to prove that all contributions beyond one-loop to the topological mass of QED2+1

vanish.

Proof of Corollary 4.1. Consider the limit β → ∞, L → ∞. By Proposition 4.1, the

limits of correlations exist and are smooth in their arguments. Let n ≥ 2. Differentiating

the first of Eq. (4.4) with respect to p1,j, j = 1, 2, we get:

K̂j,σ(p1, . . . ,pn−1) = −
∑
i=1,2

p1,i
∂

∂p1,j
K̂i,σ(p1, . . . ,pn−1)− ip1,0

∂

∂p1,j
K̂0,σ(p1, . . . ,pn−1) ;

(4.8)

setting p⃗1 = 0⃗, the first of Eq. (4.7) follows. Let now n ≥ 3, and consider the second of

(4.4), with µ = j′ = 1, 2. Differentiating with respect to p1,j, j = 1, 2, we have:

K̂j,j′,σ(p1, . . . ,pn−1) +
∂

∂p1,j
Ŝ0,j′,σ(p1, . . . ,pn−1)

= −ip1,0
∂

∂p1,j
K̂0,j′,σ(p1, . . . ,pn−1)−

∑
i=1,2

p1,i
∂

∂p1,j
K̂i,j′,σ(p1, . . . ,pn−1) (4.9)

Similarly, consider Eq. (4.6), with µ = 0. Differentiating with respect to p2,j′ , we find:

K̂0,j′,σ(p1, . . . ,pn−1) = −ip2,0
∂

∂p2,j′
K̂0,0,σ(p1, . . . ,pn−1)

−
∑
i=1,2

p2,i
∂

∂p2,j′
K̂0,i,σ(p1, . . . ,pn−1) . (4.10)

Setting p⃗2 = p⃗1 = 0, and plugging (4.10) into (4.9) we get:

K̂j,j′,σ(p1, . . . ,pn−1)
∣∣
p⃗1=p⃗2=0

+
∂

∂p1,j
Ŝ0,j′,σ(p1, . . . ,pn−1)

∣∣
p⃗1=p⃗2=0

= −p1,0p2,0
∂2

∂p1,j∂p2,j′
K̂0,0,σ(p1, . . . ,pn−1)

∣∣
p⃗1=p⃗2=0⃗

. (4.11)

Choosing p1,0 = −p2,0 = p0, the second of Eq. (4.7) follows.
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Decomposition of the correlations. For U in the analyticity domain, we can expand

the current-current correlations as follows:

K̂β,L
µ,ν,σ(p1, . . . ,pn−1) =

∑
k≥0

Uk

k!
K̂β,L,(k)

µ,ν,σ (p1, . . . ,pn−1) , (4.12)

where

K̂β,L,(k)
µ,ν,σ (p1, . . . ,pn−1) =

1

βL2
⟨Ĵµ,p1 ; Ĵν,p2 ; n̂

(σ1)
p3

; · · · ; n̂(σr)
−p1−...−pn−1

; Ṽ ; k
L ⟩(0)β,L . (4.13)

This formula follows from the well-known cumulant expansion of the interacting Gibbs state

with respect to the noninteracting one, that we prove for completeness in Appendix ??. In

Eq. (4.13), Ṽ ; k
L is a shorthand notation for ṼL ; ṼL ; · · · ; ṼL︸ ︷︷ ︸

k times

, with

ṼL :=

∫
[0,β)

dx0 e
(H(0)

L −µNL)x0VLe
−(H(0)

L −µNL)x0 (4.14)

=

∫
[0,β)

dx0

∫
[0,β)

dy0
∑

x⃗,y⃗∈ΛL

∑
σ,σ′∈I

n
(σ)
(x0,x⃗)

vσσ′(x⃗− y⃗) δperβ (x0 − y0)n
(σ′)
(y0,y⃗)

≡ 1

βL2

∑
q∈ 2π

β
Z×BL

∑
σ,σ′∈I

n̂(σ)
q v̂σσ′(q⃗) n̂

(σ′)
−q ; (4.15)

in the second line we inserted a periodic Dirac delta function:

δperβ (x0 − y0) =

{
1 if x0 = nβ + y0, n ∈ Z
0 otherwise,

(4.16)

and the last line of Eq. (4.14) is obtained by writing:

δperβ (x0 − y0) =
1

β

∑
q0∈ 2π

β
Z

eiq0(x0−y0) , n̂
(σ)
(q0,q⃗)

=

∫
[0,β)

dx0 e
iq0x0ñ

(σ)
(x0,q⃗)

, (4.17)

and exchanging the sum over q0 with the integrals.

With the next proposition, we prove a crucial identity for the k-th order contribution to

the interacting current-current correlation.

Proposition 4.3 [Schwinger-Dyson equation.] Let β > 0, L ∈ N. Let k ∈ N, k ≥ 1.

Let p ∈ 2π
β
Z× BL. We have:

K̂β,L,(k)
µ,ν (p) =

1

βL2

∑
q∈ 2π

β
Z×BL

∑
σ,σ′∈I

v̂σσ′(q⃗)K̂
β,L,(k−1)
µ,ν,σ,σ′ (p,−p,q)

+2
k−1∑
m=0

(
k − 1

m

) ∑
σ,σ′∈I

v̂σσ′ (⃗0)K̂β,L,(m)
µ,ν,σ (p,−p)K̂

β,L,(k−1−m)
σ′

+2
k−1∑
m=0

(
k − 1

m

) ∑
σ,σ′∈I

v̂σσ′(p⃗)K̂β,L,(m)
µ,σ (p)K̂

β,L,(k−1−m)
ν,σ′ (−p) .
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The proof of this proposition relies on the following well-known property of the cumulants,

whose proof is deferred to Appendix ??.

Lemma 4.1 [Decomposition lemma.] Let n ≥ 1. Given a state ⟨·⟩, and a set of n + 1

time-dependent observables O(1), . . . , O(n+1), the following identity holds:

⟨TO(1) ; O(2) ; · · · ; O(n)O(n+1)⟩ = ⟨TO(1) ; O(2) ; · · · ; O(n) ; O(n+1)⟩

+
∗∑

{i1,...,ip}
{j1,...jq}

⟨TO(i1) ; O(i2) ; · · · ; O(ip) ; O(n)⟩⟨TO(j1) ; O(j2) ; · · · ; O(jq) ; O(n+1)⟩(4.18)

where the sum is over all partitions of {1, . . . , n − 1} into two disjoint subsets, {i1, . . . , ip}
and {j1, . . . , jq}, with p+ q = n− 1 and i1 < . . . < iq, j1 < . . . < jq.

Proof of Proposition 4.3. For k ≥ 1, we rewrite the k-th order contribution to the

expansion of K̂β,L
µ,ν (p) as:

K̂β,L,(k)
µ,ν (p) =

1

(βL2)2

∑
q∈ 2π

β
Z×BL

∑
σ,σ′∈I

v̂σσ′(q⃗)⟨T Ĵµ,p ; Ĵν,−p ; Ṽ ; k−1
L ; n̂(σ)

q n̂
(σ′)
−q ⟩

(0)
β,L . (4.19)

Using Lemma 4.1, we get:

⟨T Ĵµ,p ; Ĵν,−p ; Ṽ ; k−1
L ; n̂(σ)

q n̂
(σ′)
−q ⟩

(0)
β,L =

=
1

2
⟨T Ĵµ,p ; Ĵν,−p ; Ṽ ; k−1

L ; n̂(σ)
q ; n̂

(σ′)
−q ⟩

(0)
β,L

+
k−1∑
m=0

(
k − 1

m

)
⟨T Ĵµ,p ; Ĵν,−p ; Ṽ ;m

L ; n̂(σ)
q ⟩(0)β,L⟨T Ṽ ; k−1−m

L ; n̂
(σ′)
−q ⟩

(0)
β,L

+
k−1∑
m=0

(
k − 1

m

)
⟨T Ĵµ,p ; Ṽ ;m

L ; n̂(σ)
q ⟩(0)β,L⟨T Ĵν,−p ; Ṽ ; k−1−m

L ; n̂
(σ′)
−q ⟩

(0)
β,L

+terms obtained replacing q → −q, σ ↔ σ′. (4.20)

The translation invariance of the Gibbs state implies that:

⟨T Ĵµ,p ; Ĵν,−p ; Ṽ ;m
L ; n̂(σ)

q ⟩(0)β,L = δβ(q0)δ
per
L (q⃗)⟨T Ĵµ,p ; Ĵν,−p ; Ṽ ;m

L ; n̂
(σ)
0 ⟩(0)β,L

⟨T Ĵµ,p ; Ṽ ;m
L ; n̂(σ)

q ⟩(0)β,L = δβ(q0 + p0)δ
per
L (q⃗ + p⃗)⟨T Ĵµ,p ; Ṽ ;m

L ; n̂
(σ)
−p⟩

(0)
β,L

⟨T Ṽ ;m
L ; n̂

(σ)
−q⟩

(0)
β,L = δβ(q0)δ

per
L (q⃗)⟨T Ṽ ;m

L ; n̂
(σ)
0 ⟩(0)β,L , (4.21)

where δβ(q0) is the Kronecker delta for q0 ∈ 2π
β
Z, and δperL (q⃗) is the periodic Kronecker delta:

δperL (q⃗) =

{
1 if q⃗ ∈ Λ∗

A

0 otherwise.
(4.22)
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The claim (4.18) immediately follows after plugging (4.20) into (4.19), and imposing mo-

mentum conservation as in (4.21).

....

Here we prove our main result, Theorem 3.1. The proof is based on a combination

of the three results discussed in Section 4A, namely: the analyticity of the correlation

functions (Proposition 4.1); Ward identities (Proposition 4.2); and the Schwinger-Dyson

formula (Proposition 4.3).

Proof of Theorem 3.1. The analyticity of the conductivity matrix immediately follows

from Proposition 4.1 and from the definition (3.14). Also, the vanishing of the longitudi-

nal conductivity is an immediate consequence of the differentiability of the current-current

correlations. In fact:

K̂β,L
ii (p0, 0⃗) =

1

βL2

∫
[0,β)

dx0

∫
[0,β)

dy0 e
ip0(x0−y0)⟨T Ji,x0 ; Ji,y0⟩β,L

=
1

βL2

∫
[0,β)

dx0

∫
[0,β)

dy0 e
ip0(x0−y0)⟨T Ji,y0 ; Ji,x0⟩β,L

= K̂β,L
ii (−p0, 0⃗) ; (4.23)

thus, being K̂ij(p) := limβ,L→∞ K̂β,L
ij (p) differentiable in p = 0,

σii = − 1

A

∂

∂p0
K̂ii(p0, 0⃗) = 0 . (4.24)

Suppose now i ̸= j. Consider the Taylor expansion in U of σij, in the analyticity domain

|U | < U0. We have:

σij = σ
(0)
ij +

∑
k≥1

Uk

k!
σ
(k)
ij , for |U | < U0, (4.25)

where
{
σ
(k)
ij

}
k≥0

are the Taylor coefficients of σij. Being the series convergent, to prove

Theorem 3.1 it is sufficient to show that:

σ
(k)
ij = 0 , for all k ≥ 1. (4.26)

To prove this, we write explicity the k-th order in the expansion for σij, starting from the

definition (3.14) and using Proposition 4.3. We have:

σ
(k)
ij = − 1

A
lim
p0→0

∂

∂p0
K̂

(k)
ij (p0, 0⃗) ≡ I + II + III , (4.27)
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where:

I := − 1

A
lim
p0→0

∫
dq

(2π)|B|
∑
σ,σ′∈I

v̂σσ′(q⃗)
∂

∂p0
K̂

(k−1)
i,j,σ,σ′

(
(p0, 0⃗), (−p0, 0⃗),q

)
(4.28)

II := − 2

A
lim
p0→0

k−1∑
m=0

(
k − 1

m

) ∑
σ,σ′∈I

v̂σσ′ (⃗0)
∂

∂p0
K̂

(m)
i,j,σ

(
(p0, 0⃗), (−p0, 0⃗)

)
K̂

(k−1−m)
σ′

III := − 2

A
lim
p0→0

k−1∑
m=0

(
k − 1

m

) ∑
σ,σ′∈I

v̂σσ′(p⃗)
∂

∂p0

[
K̂

(m)
i,σ (p0, 0⃗)K̂

(k−1−m)
j,σ′ (−p0, 0⃗)

]
The idea is to use Corollary 4.1 to prove that the three contributions are separately zero.

Let us start with I. In order to be in the position to apply Corollary 4.1, the preliminary

remark is that:

∂

∂p0
K̂

(k−1)
i,j,σ,σ′

(
(p0, 0⃗), (−p0, 0⃗),q

)
=

∂

∂p0

[
K̂

(k−1)
i,j,σ,σ′

(
(p0, 0⃗), (−p0, 0⃗),q

)
+

∂

∂p1,i
Ŝ
(k−1)
0,j,σ,σ′

(
(p0, p⃗1), (−p0, p⃗2),q

)∣∣
p⃗1=p⃗2=0⃗

]
.(4.29)

Eq. (4.29) simply follows from the fact that Ŝµ,ν,σ,σ′(p1,p2,p3) is constant in p1,0 and p2,0
(recall the definition (4.5)). We are now in the position to use the second of Eq. (4.7). We

get:

I = − 1

A
lim
p0→0

∫
dq

(2π)|B|
∑
σ,σ′∈I

v̂σσ′(q⃗)
∂

∂p0

[
p20

∂2

∂p1,i∂p2,j
K̂

(k−1)
0,0,σ,σ′(p1,p2,q)

∣∣
p1=−p2=(p0 ,⃗0)

]
= − 1

A
lim
p0→0

∫
dq

(2π)|B|
∑
σ,σ′∈I

v̂σσ′(q⃗)
[
2p0

∂2

∂p1,i∂p2,j
K̂

(k−1)
0,0,σ,σ′(p1,p2,q)

∣∣
p1=−p2=(p0 ,⃗0)

+p20
∂3

∂p1,0∂p1,i∂p2,j
K̂

(k−1)
0,0,σ,σ′(p1,p2,q)

∣∣
p1=−p2=(p0 ,⃗0)

−p20
∂3

∂p2,0∂p1,i∂p2,j
K̂

(k−1)
0,0,σ,σ′(p1,p2,q)

∣∣
p1=−p2=(p0 ,⃗0)

]
= 0 , (4.30)

where in the last step we used that

...

Hence, (??) is given by a sum of contributions proportional to, using the shorthand
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notations
∫
(β,L)

dx :=
∫ β

0

∑
x⃗∈ΛL

, vσσ′(x) := δperβ (x0)vσσ′(x⃗):

1

(βL2)2

∑
q∈ 2π

β
Z×BL

v̂σσ′(q⃗)

∫
(β,L)

dx1dx2

∫
(β,L)

dy1 · · · dy2k−2

∫
(β,L)

dw1dw2 (4.31)

·eip(x1−x2)eiq(w1−w2)vσ1σ2(y1 − y2) · · · vσ2k−3σ2k−2
(y2k−3 − y2k−2)

·⟨T Jx1(z⃗1, σ̃1, σ̃2) ; Jx2(z⃗2, σ̃3, σ̃4) ; n
(σ1)
y1

n(σ2)
y2

; · · · ; n(σ2k−3)
y2k−3

n(σ2k−2)
y2k−2

; n(σ)
w1

; n(σ′)
w2

⟩(0)β,L

=
1

βL2

∫
(β,L)

dx1dx2

∫
(β,L)

dy1 · · · dy2k−2

∫
(β,L)

dw1dw2

·eip(x1−x2)vσσ′(w1 −w2)vσ1σ2(y1 − y2) · · · vσ2k−3σ2k−2
(y2k−3 − y2k−2)

·⟨T Jx1(z⃗1, σ̃1, σ̃2) ; Jx2(z⃗2, σ̃3, σ̃4) ; n
(σ1)
y1

n(σ2)
y2

; · · · ; n(σ2k−3)
y2k−3

n(σ2k−2)
y2k−2

; n(σ)
w1

; n(σ′)
w2

⟩(0)β,L .

Expanding the expectation in connected Feynman diagrams, and using the estimate (??)

together with |Hσσ′(z⃗)| ≤ C and the decay properties (2.11) of vσσ′(x⃗), it is easy to see that

the last integral in (4.31) is absolutely convergent.

...

Consider now II. Proceeding as before, and using again the second of Eq. (4.7), we get:

II = − 2

A
lim
p0→0

k−1∑
m=0

(
k − 1

m

)∑
σ,σ′

v̂σσ′ (⃗0)
∂

∂p0

[
p20

∂2

∂p1,i∂p2,j
K̂

(m)
0,0,σ(p1,p2)

∣∣
p1=−p2=(p0 ,⃗0)

]
K̂

(k−1−m)
σ′

= 0 . (4.32)

Finally, consider III. From the first of Eq. (4.7), we have that:

K̂
(m)
i,σ (p0, 0⃗) = −ip0

∂

∂pi
K̂

(m)
0,σ (p)

∣∣
p⃗=0⃗

K̂
(k−1−m)
j,σ′ (−p0, 0⃗) = ip0

∂

∂pi
K̂

(k−1−m)
j,σ′ (−p0, p⃗)

∣∣
p⃗=0⃗

; (4.33)

plugging these two identities in III, we get

III = 0 . (4.34)

This concludes the proof of (4.26), and of Theorem 3.1.

5. ANALYTICITY

In this section we prove Proposition 4.1, concerning analyticity in U and smoothness in p

of the multi-point current/density correlation functions. Roughly, the strategy will consist

in: (i) reformulating the correlation functions in terms of a Grassmann integral, in the

limit where a suitable cutoff function is removed; (ii) proving analyticity of the Grassmann

integral, uniformly in the cutoff parameter; (iii) using Vitali’s uniform convergence theorem

for analytic functions, to conclude that the correlations themselves are analytic.
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A. Grassmann representation

Let us preliminarily recall a few known facts about perturbation theory for the free energy

and correlations of interacting fermionic systems, which we need for justifying their Grass-

mann representation. We first discuss the free energy, which is simpler. Using Duhamel’s

expansion, we can rewrite the (a priori formal) series expansion of the interacting partition

function in the parameter U as:

TrFe
−β(HL−µNL)

TrFe−β(H(0)
L −µNL)

= 1 +
∑
n≥1

(−U)n
∫ β

0

dt1 · · ·
∫ tn−1

0

dtn
TrFe

−β(H(0)
L −µNL)VL(t1) · · · VL(tn)

TrFe−β(H(0)
L −µNL)

(5.1)

where VL(t) = et(H
(0)
L −µNL)VLe

−t(H(0)
L −µNL) is the non-interacting (U = 0) version of the

imaginary time evolution of VL, cfr. Eq.(2.15). Symmetrizing over the permutations of

t1, . . . , tn, this can be rewritten as

TrFe
−β(HL−µNL)

TrFe−β(H(0)
L −µNL)

= 1 +
∑
n≥1

(−U)n

n!

∫ β

0

dt1 · · ·
∫ β

0

dtn⟨TVL(t1) · · · VL(tn)⟩0β,L, (5.2)

where ⟨TVL(t1) · · · VL(tn)⟩0β,L is defined by the analogue of Eq.(2.16) with U = 0. Since

H(0)
L − µNL is quadratic in the fermionic creation/annihilation operators, ⟨·⟩0β,L can be

computed via the fermionic Wick rule, which is the following. In order to evaluate

⟨TVL(t1) · · · VL(tn)⟩0β,L (where the times ti are all different from each other, as we can sup-

pose with no loss of generality), recall that each VL(t) is a linear combination of quartic

monomials in the (imaginary time evolution of the) creation/annihilation operators, so that

the product VL(t1) · · · VL(tn) itself is a linear combination of monomials, all of order 4n.

For each such monomial, consider all possible pairings of the creation/annihilation opera-

tors such that each annihilation operator ψ−
x⃗,σ(t) is paired with a creation operator ψ+

x⃗′,σ′(t′).

Then associate each pairing with a value, given by the sign of the permutation required

to move every creation operator to the immediate right of the annihilation operator it is

paired with, times the product over the pairs of the corresponding propagators, where the

propagator corresponding to the pair (ψ−
x⃗,σ(t), ψ

+
x⃗′,σ′(t′)) is

gβ,Lσ,σ′(t− t′, x⃗− x⃗′) = ⟨Tψ−
x⃗,σ(t)ψ

+
x⃗′,σ′(t

′)⟩0
β,L

(5.3)

=
1

L2

∑
k⃗∈BL

e−ik⃗(x⃗−x⃗′)
[
e−(t−t′)(Ĥ(0)(k⃗)−µ)

( 1(t > t′)

1 + e−β(Ĥ(0)(k⃗)−µ)
− 1(t ≤ t′) e−β(Ĥ(0)(k⃗)−µ)

1 + e−β(Ĥ(0)(k⃗)−µ)

)]
σ,σ′

.

In the following, we denote by gβ,L(t, x⃗) the matrix whose elements are gβ,Lσ,σ′(t, x⃗). Note

that, if 0 < t < β, then gβ,L(t − β, x⃗) = −gβ,L(t, x⃗). Therefore, it is natural to extend

gβ,L(t, x⃗), which is a priori defined only on the time interval (−β, β), to the whole real line,

by anti-periodicity in the imaginary time, i.e., via the rule gβ,L(t+ nβ, x⃗) = (−1)ngβ,L(t, x⃗).
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The resulting extension can be expanded in Fourier series w.r.t. t, so that, for all t ̸= nβ,

gβ,L(t, x⃗) =
1

βL2

∑
k0∈Bβ

k⃗∈BL

e−ik⃗·x⃗−ik0t ĝβ,L(k0, k⃗) (5.4)

with Bβ = 2π
β
(Z+ 1

2
) and

ĝβ,L(k0, k⃗) :=
1

−ik0 + Ĥ(0)(k⃗)− µ
. (5.5)

If, instead, t = nβ, then gβ,L(nβ, x⃗) = (−1)n limt→0− g
β,L(t, x⃗). Note that, by the very

definition of the propagator and the canonical anti-commutation relations, gβ,Lσ,σ′(0+, x⃗) −
gβ,Lσ,σ′(0−, x⃗) = δx⃗,⃗0δσ,σ′ , so that the only discontinuity points of gβ,L(t, x⃗) are (nβ, 0⃗).

In the following we will also need a variant of gβ,L(t, x⃗), to be denoted by ḡβ,L(t, x⃗), which

coincides with gβ,L(t, x⃗), ∀(t, x⃗) ̸= (nβ, 0⃗), and with the arithmetic mean of gβ,L(0+, 0⃗) and

gβ,L(0−, 0⃗) at the discontinuity points:

ḡβ,L(x)
∣∣
x=(nβ,x⃗)

=
gβ,L(0+, 0⃗) + gβ,L(0−, 0⃗)

2
. (5.6)

The function ḡβ,L(x) is a natural object to introduce, in that it is the limit as M → ∞ of a

regularization of gβ,L(x) obtained by cutting off the ultraviolet modes |k0| > 2M in the right

side of (5.4). More specifically, if we take a smooth even compact support function χ0(t),

equal to 1 for |t| < 1 and equal to 0 for |t| > 2, and we define

ḡβ,L,M(x) =
1

βL2

∑
k∈Bβ×BL

e−ik·xχ0(2
−Mk0/δµ)ĝ

β,L(k), (5.7)

then

ḡβ,L(x) = lim
M→∞

ḡβ,L,M(x). (5.8)

These propagators can be used to re-express the formal perturbation theory in (5.2) in

terms of the limit of a regularized theory with finitely many degrees of freedom, which

is advantageous for performing rigorous bounds on the convergence of the series. More

precisely, we note that (5.2), as an identity between (a priori formal) power series, can be

equivalently rewritten as

TrFe
−β(HL−µNL)

TrFe−β(H(0)
L −µNL)

= lim
M→∞

[
1+

∑
n≥1

(−U)n

n!

∫ β

0

dt1 · · ·
∫ β

0

dtn Ē(M)
β,L

(
V̄L(t1) · · · V̄L(tn)

)]
, (5.9)

where

V̄L(t) =
∑

x⃗,y⃗∈ΛL

∑
σ,σ′∈I

(
ψ+
(t,x⃗),σψ

−
(t,x⃗),σ +

1

2

)
vσσ′(x⃗− y⃗)

(
ψ+
(t,y⃗),σ′ψ

−
(t,y⃗),σ′ +

1

2

)
(5.10)
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and Ē(M)
β,L (·) acts linearly on normal-ordered polynomials in ψ±

(t,x⃗),σ, the action on a normal-

ordered monomial being defined by the fermionic Wick rule with propagator

Ē(M)
β,L (ψ−

(t,x⃗),σψ
+
(t′,x⃗′),σ′) = ḡβ,L,Mσ,σ′ (t− t′, x⃗− x⃗′).

In order to check that the right side of (5.9) coincides order by order with the right side of

(5.2), it is enough to note the following (assume, again without loss of generality, that the

times t1, . . . , tn are all distinct):

• all the pairings contributing to ⟨TVL(t1) · · · VL(tn)⟩0β,L without tadpoles (i.e., with-

out contractions of two fields at the same space-time point) give the same contribu-

tion as the corresponding pairing in limM→∞ Ē(M)
β,L

(
V̄L(t1) · · · V̄L(tn)

)
, simply because

gβ,L(x) = ḡβ,L(x), ∀x ̸= (βn, 0⃗);

• in the pairings contributing to ⟨TVL(t1) · · · VL(tn)⟩0β,L that contain tadpoles, every tad-

pole corresponds to a factor ⟨ψ+
(t,x⃗),σψ

−
(t,x⃗),σ⟩

0

β,L
= −gβ,Lσ,σ (0

−, 0⃗), while the corresponding

tadpole in limM→∞ Ē(M)
β,L

(
V̄L(t1) · · · V̄L(tn)

)
contributes a factor

lim
M→∞

Ē(M)
β,L

(
ψ+
(t,x⃗),σψ

−
(t,x⃗),σ

)
= −ḡβ,Lσ,σ (0, 0⃗) = −1

2

[
gβ,Lσ,σ (0

+, 0⃗)) + gβ,Lσ,σ (0
−, 0⃗)

]
.

The difference between the two is

−ḡβ,Lσ,σ (0, 0⃗) + gβ,Lσ,σ (0, 0⃗) = −1

2

[
gβ,Lσ,σ (0

+, 0⃗))− gβ,Lσ,σ (0
−, 0⃗)

]
= −1

2
,

which is compensated exactly by the +1
2
’s appearing in the definition (5.10).

A concise way of rewriting the series in brackets in (5.9) is in terms of Grassmann integrals:

1 +
∑
n≥1

(−U)n

n!

∫ β

0

dt1 · · ·
∫ β

0

dtn Ē(M)
β,L

(
V̄L(t1) · · · V̄L(tn)

)
=

∫
P≤M(dΨ)e−UVβ,L(Ψ), (5.11)

where Vβ,L(Ψ) and
∫
P≤M(dΨ) are, respectively, an element of a finite Grassmann algebra,

and a linear map from the even part of the same algebra to the real numbers, defined as

follows. Let B∗
β = Bβ ∩ {k0 : χ0(2

−Mk0) > 0}, with Bβ defined after (5.4), and B∗
β,L =

B∗
β × BL. We consider the finite Grassmann algebra generated by the Grassmann variables

{Ψ̂±
k,σ}σ∈Ik∈B∗

β,L
and we let

VL,β(Ψ) =
∑

x⃗,y⃗∈ΛL
σ,σ′∈I

∫ β

0

dt
(
Ψ+

(t,x⃗),σΨ
−
(t,x⃗),σ +

1

2

)
vσσ′(x⃗− y⃗)

(
Ψ+

(t,y⃗),σ′Ψ
−
(t,y⃗),σ′ +

1

2

)
, (5.12)

where

Ψ±
x,σ =

1

βL2

∑
k∈B∗

β,L

e±ikxΨ̂±
k,σ . (5.13)
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Moreover,
∫
P≤M(dΨ) acts on a generic even monomial in the Grassmann variables as follows:

it gives non zero only if the number of Ψ̂+
k,σ variables is the same as the number of Ψ̂−

k,σ

variables, in which case∫
P≤M(dΨ)Ψ̂−

k1,σ1
Ψ̂+

p1,σ′
1
· · · Ψ̂−

km,σm
Ψ̂+

pm,σ′
m
= det[C(ki, σi;pj, σ

′
j)]i,j=1,...,m, (5.14)

where C(k, σ;p, σ′) = βL2δk,pχ0(2
−Mk0/δµ)ĝ

β,L
σ,σ′(k). In particular,∫

P≤M(dΨ)Ψ−
xΨ

+
y = ḡβ,L,M(x− y). (5.15)

If needed,
∫
P≤M(dΨ) can be written explicitly in terms of the usual Berezin integral

∫
dΨ,

which is the linear functional on the Grassmann algebra acting non trivially on a monomial

only if the monomial is of maximal degree, in which case∫
dΨ

∏
k∈B∗

β,L

∏
σ∈I

Ψ̂−
k,σΨ̂

+
k,σ = 1.

The explicit expression of
∫
P≤M(dΨ) in terms of

∫
dΨ is∫

P≤M(dΨ)
(
·
)
=

1

Nβ,L,M

∫
dΨexp

{
− 1

βL2

∑
k∈B∗

β,L

χ−1
0 (2−Mk0)Ψ̂

+
k,·
[
ĝβ,Lk

]−1
Ψ̂−

k,·

}(
·
)
,

with Nβ,L,M =
∏

k∈B∗
β,L

[βL2χ0(2
−Mk0/δµ)]

|I| det ĝβ,Lk , (5.16)

which motivates the appellation “Gaussian integration” that is usually given to the reference

“measure” P≤M(dΨ). Because of (5.15), P≤M(dΨ) is also called the Gaussian integration

with propagator ḡβ,L,M .

It is straightforward to check that the definitions above are given in such a way that the

two sides of (5.11) coincide, order by order in U . Note, by the way, that (5.11) is a (finite)

polynomial in U , for every finite β, L,M , simply because the Grassmann algebra entering

the definition of the right side of (5.11) is finite.

Summarizing,
TrFe

−β(HL−µNL)

TrFe−β(H(0)
L −µNL)

= lim
M→∞

∫
P≤M(dΨ)e−UVβ,L(Ψ), (5.17)

as an identity between (a priori formal) power series in U . In a similar way, one can show

(details left to the reader) that the power series expansion for the truncated multipoint

current-density correlations can be rewritten as

⟨TJx1(z⃗1, σ1, σ
′
1); · · · ; Jxm(z⃗m, σm, σ

′
m);n

(σm+1)
xm+1

; · · · ;n(σm+n)
xm+n

⟩
β,L

= (5.18)

= lim
M→∞

∂m+n

∂A
σ1σ′

1
x1 (z⃗1) · · · ∂ϕσm+n

xm+n

log

∫
P≤M(dΨ)e−UVβ,L(Ψ)+(ϕ,n)+(A,J)

∣∣∣
A=ϕ=0

,
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where

(ϕ, n) =

∫ β

0

dt
∑
x⃗,σ

ϕσ
(t,x⃗)

(
Ψ+

(t,x⃗),σΨ
−
(t,x⃗),σ +

1

2

)
, (5.19)

(A, J) =

∫ β

0

dt
∑
x⃗,z⃗

∑
σ,σ′

Aσσ′

(t,x⃗)(z⃗)
[
iΨ+

(t,x⃗),σH
(0)
σσ′(−z⃗)Ψ−

(t,x⃗+z⃗),σ′ − iΨ+
(t,x⃗+z⃗),σ′H

(0)
σ′σ(z⃗)Ψ

−
(t,x⃗),σ

]
.

The goal of the incoming discussion is to show that (5.17) and (5.18) are not just identities

between formal power series, but rather between analytic functions of U . In order to prove

this, it suffices to prove the uniform analyticity in M , as M → ∞, and the existence of the

limit as M → ∞ of the regularized free energy per site and correlations, as the following

elementary lemma shows.

Lemma 5.1 Assume that, for any finite β and L, there exists εβ,L > 0 such that the regu-

larized free energy per site

fβ,L,M = − 1

βL2
log

∫
P≤M(dΨ)e−UVβ,L(Ψ) (5.20)

and the regularized truncated correlations

Kβ,L,M(x1, z⃗1, σ1, σ
′
1; . . . ;xm+n, σm+n) = (5.21)

=
∂m+n

∂A
σ1σ′

1
x1 (z⃗1) · · · ∂ϕσm+n

xm+n

log

∫
P≤M(dΨ)e−UVβ,L(Ψ)+(ϕ,n)+(A,J)

∣∣∣
A=ϕ=0

are analytic functions of U in the domain Dβ,L = {U : |U | < εβ,L}, uniformly inM asM →
∞. Moreover, assume that in any compact subset of Dβ,L the sequences {fβ,L,M}M≥1 and

{Kβ,L,M(x1, z⃗1, σ1, σ
′
1; . . . ;xm+n, σm+n)}M≥1 converge uniformly as M → ∞. Then (5.17)

and (5.18) are valid as identities between analytic functions of U in Dβ,L.

Remark 5 In the following we will prove the assumption of this lemma, and actually much

more: namely, we will prove the analyticity of fβ,L,M and Kβ,L,M(x1, z⃗1, σ1, σ
′
1; . . . ;yn, σ

′′
n),

uniformly in β, L,M (not just in M). We will also prove that these functions converge

not only as M → ∞, but also as L → ∞ and β → ∞, which in turn implies that the

limiting correlations in the thermodynamic and zero temperature limits are analytic as well,

as claimed in Proposition 4.1.

Proof of Lemma 5.1. Let us start by proving (5.17), which is equivalent to

TrFe
−β(HL−µNL)

TrFe−β(H(0)
L −µNL)

= lim
M→∞

e−βL2fβ,L,M . (5.22)

The first key remark is that, if β, L are finite, the left side of this equation is an entire

function of U , as it follows from the fact that the Fock space generated by the fermion
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operators ψ±
x⃗,σ, with x⃗ ∈ ΛL, σ ∈ I, is finite dimensional. On the other hand, by assumption,

fβ,L,M is analytic in Dβ,L and uniformly convergent as M → ∞ in every compact subset of

Dβ,L. Hence, by Weierstrass’ convergence theorem for analytic functions, the limit fβ,L =

limM→∞ fβ,L,M is analytic in Dβ,L and its Taylor coefficients coincide with the limits as

M → ∞ of the Taylor coefficients of fβ,L,M . Moreover, by construction, as discussed after

(5.9), the Taylor coefficients of e−βL2fβ,L coincide with the Taylor coefficients of the left side

of (5.22), which implies the validity of (5.22) as an identity between analytic functions in

Dβ,L, simply because the left side is entire in U , the right side is analytic in Dβ,L and the

Taylor coefficients at the origin of the two sides are the same. By taking the logarithm at

both sides, we also find that

fβ,L = − 1

βL2
log

TrFe
−β(HL−µNL)

TrFe−β(H(0)
L −µNL)

as an identity between analytic functions in Dβ,L. In particular, the left side of (5.22) does

not vanish on Dβ,L.

In order to prove the analogous claim for the correlation functions, we note that the trun-

cated correlations ⟨TJx1(z⃗1, σ1, σ
′
1); · · · ; Jxm(z⃗m, σm, σ

′
m);n

(σm+1)
xm+1 ; · · · ;n(σm+n)

xm+n ⟩β,L are linear

combination of ratios of entire functions, simply because they are linear combinations of

products of non-truncated functions, each of which is a ratio of entire functions. The de-

nominator in these ratios is proportional to a power of the left side of (5.22) that, as observed

earlier, does not vanish on Dβ,L. Therefore, the truncated correlations are analytic in Dβ,L,

which allow us to repeat the same argument used above for the free energy, to conclude the

validity of (5.18) as well, as an identity between analytic functions in Dβ,L.

B. Uniform analyticity of the regularized correlation functions

In this section, we prove the uniform analyticity of the regularized free energy per site

and regularized correlations, in a domain D independent not only of M , but also of β, L.

Later, we will discuss the existence of the limit asM,L, β → ∞ of the regularized functions,

thus proving the assumptions of Lemma 5.1, as well as the existence and analyticity of the

infinite volume and zero temperature limits. Throughout the proof, C,Ci, c, ci, . . . , stand

for unspecified constants, independent of β, L,M and of δµ, unless specified otherwise. The

key result proved in this section is the following.

Lemma 5.2 There exists ε0 = ε0(δµ) > 0 such that the regularized free energy fβ,L,M and

correlations Kβ,L,M(x1, z⃗1, σ1, σ
′
1; . . . ;xm+n, σm+n) are analytic in the common analyticity

domain D0 = {U : |U | ≤ ε0}. Moreover, the regularized correlations are translation

invariant and they satisfy the cluster property with faster-than-any-power decay rate, i.e.,

for any collection of integers m = {mi,j,mk}i,j=1,...,m+n
k=1,...,m ≥ 0, there exists a constant Cm =
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Cm(δµ) such that

1

βL2

∫
Λm+n
β,L

dx
∑
z⃗∈Λm

L

∣∣Kβ,L,M(x1, z⃗1, σ1, σ
′
1; . . . ;xm+n, σm+n)

∣∣ dm(x, z⃗) ≤ Cm. (5.23)

Here x = {x1, . . . ,xm+n}, z⃗ = {z⃗1, . . . , z⃗m}, Λβ,L = (0, β) × ΛL,
∫
Λβ,L

dx is a shorthand for∫ β

0
dx0

∑
x⃗∈ΛL

, and dm,m′(x, z⃗) = |xi − xj|mi,j |z⃗i|mi
L , where, if |x0|β = minnZ |x0 + nβ| is the

distance on the one-dimensional torus of size β and |x⃗|L = minn⃗∈Z2 |x⃗+ n⃗L| is the distance

on the periodic lattice of size L, we denoted |x| = e0|x0|β + |x⃗|L, with e0 the energy scale

defined in (2.10).

Proof of Lemma 5.2. The proof is long and, therefore, we split it into three main steps:

we first define the multiscale decomposition of the Grassmann integral, which we intend to

perform in an iterative fashion; next, we explain in detail how to integrate the first scale;

finally, we explain the iterative procedure, whose output is conveniently organized in the

form of a tree expansion.

Multiscale decomposition. In order to prove the analyticity of the regularized free energy

and correlations, we perform the Grassmann integration in a multiscale fashion, by rewriting

the propagator ḡβ,L,M as a sum of smooth “single scale” propagators g(h), h = 0, 1, . . . ,M ,

each decaying faster than any power on a specific time scale ∼ 2h:

ḡβ,L,M(x) =
M∑
h=0

g(h)(x), g(h)(x) =
1

βL2

∑
k∈B∗

β,L

e−ik·x fh(k0)

−ik0 + Ĥ(0)(k⃗)− µ
. (5.24)

Here fh(k0) = χ0(2
−hk0/δµ) − χ0(2

−h+1k0/δµ) for h ≥ 1 and f0(k0) = χ0(k0/δµ). For later

use, note that the single scale propagator g(h)(x) satisfies the bound

|g(h)(x)| ≤ CK

1 + (2hδµ|x0|β + (δµ/e0)|x⃗|L)K
, ∀0 ≤ h ≤M, ∀K ≥ 0 . (5.25)

In particular,

∥g(h)∥1,n :=

∫
dx ∥g(h)(x)∥ · |x|n ≤ Cnδ

−3−n
µ 2−h. (5.26)

where
∫
dx ≡

∫
Λβ,L

dx is a shorthand for
∫ β

0
dx0

∑
x⃗∈ΛL

. If n = 0, we shall denote ∥g(h)∥1 =
∥g(h)∥1,0. Moreover, g(h)(x) admits a Gram decomposition, which will be useful in deriving

combinatorially optimal bounds on the generic order of perturbation theory:

g(h)(x− y) =
(
Ah,x, Bh,y

)
≡

∫
dzA∗

h,x(z) ·Bh,y(z) , (5.27)

with

Ah,x(z) =
1

βL2

∑
k∈B∗

β,L

√
fh(k0)

k20 + (Ĥ0(k⃗)− µ)2
eik(x−z) ,

Bh,x(z) =
1

βL2

∑
k∈B∗

β,L

√
fh(k0) (ik0 + Ĥ0(k⃗)− µ)eik(x−z) ,
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and

||Ah,x||2 := (Ah,x, Ah,x) ≤ C(δµ2
h)−3 , ||Bh||2 ≤ C(δµ2

h)3 . (5.28)

The decomposition (5.24) of the propagator allows us to compute the regularized Grassmann

generating function,

WM(ϕ,A) = log

∫
P≤M(dΨ)e−UVβ,L(Ψ)+(ϕ,n)+(A,J) , (5.29)

in an iterative way, by first integrating the degrees of freedom corresponding to g(M), then

those corresponding to g(M−1), and so on. Technically, we make use of the so-called addition

formula for Grassmann Gaussian integrations: if g1, g2 are two propagators and g := g1+g2,

then the Gaussian integration Pg(dψ) with propagator g can be rewritten as Pg(dψ) =

Pg1(dψ1)Pg2(dψ2), in the sense that for every polynomial f∫
Pg(dψ)f(ψ) =

∫
Pg1(dψ1)

∫
Pg2(dψ2)f(ψ1 + ψ2) . (5.30)

In our context, we rewrite P≤M(dΨ) =
∏M

h=0 Ph(dΨ
(h)), where Ph(dΨ

(h)) is the Gaussian

integration with propagator g(h), so that

eWM (ϕ,A) =

∫
P0(dΨ

(0)) · · ·Ph(Ψ
(h))e−V(h)(Ψ(≤h),ϕ,A), (5.31)

where Ψ(≤h) :=
∑h

j=0 Ψ
(j), so that

V(h)(Ψ, ϕ, A) = − log

∫
Ph+1(dΨ

(h+1)) · · ·PM(Ψ(M))e−UVβ,L(Ψ+Ψ(h+1)+···+Ψ(M))+(ϕ,n)+(A,J).

(5.32)

and V(M)(Ψ, ϕ, A) = UVβ,L(Ψ)− (ϕ, n)− (A, J).

The first integration step. In order to compute the sequence V(h) iteratively, let us start

by explaining in detail the first step:

V(M−1)(Ψ, ϕ, A) = − log

∫
PM(dΨ(M))e−V(M)(Ψ+Ψ(M),ϕ,A) . (5.33)

The logarithm in the right side can be expressed as a series of truncated expectations:

log

∫
PM(dΨ(M))e−V(M)(Ψ+Ψ(M),ϕ,A) = (5.34)

=
∑
s≥1

(−1)s

s!
ET
M

(
V(M)(Ψ + Ψ(M), ϕ, A); · · · ;V(M)(Ψ + Ψ(M), ϕ, A)︸ ︷︷ ︸

s times

)
, (5.35)

where

ET
M(X1(Ψ

(M)); · · · ;Xs(Ψ
(M))) =

∂s

∂λ1 · · · ∂λs
log

∫
PM(dΨ(M))eλ1X1(Ψ(M))+···+λsXs(Ψ(M))

∣∣
λi=0

,

(5.36)
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and the Xi’s are all even elements of the Grassmann algebra generated by the field Ψ(M)

we are integrating over and by the “external” Grassmann field Ψ. The functional ET
M is

multilinear in its arguments, the action on a collection of monomials being defined by the

truncated Wick rule with propagator g(M), which is similar to the usual fermionic Wick rule,

modulo the extra condition that, if the number s of monomials involved is ≥ 2, then the

pairings one has to sum over are only those for which the collection of monomials X1, . . . ,

Xs is connected (this means that for all I ( {1, . . . , s}, there exists at least one contracted

pair involving one variable in the group {Xi}i∈I and one in {Xi}i∈Ic).

A convenient representation of the truncated expectation, due to Battle, Brydges and

Federbush [? ? ? ], is the following (for a proof, see, e.g., [? ? ]). For a given (ordered) set

of indices P = (f1, . . . , fp), with fi = (xi, σi, εi), let

ΨP := Ψ
ε(f1)
x(f1),σ(f1)

· · ·Ψε(fp)

x(fp),σ(fp)
, (5.37)

where x(fi) = xi, etc. It is customary to represent each variable Ψ
ε(f)
x(f),σ(f) as an oriented

half-line, emerging from the point x(f) and carrying an arrow, pointing in the direction

entering or exiting the point, depending on whether ε(f) is equal to − or +, respectively;

moreover, the half-line carries the labels σ(f) ∈ I. Given n sets of indices P1, . . . , Pn, we

can enclose the points x(f) belonging to the set Pj in a box: in this way, assuming that all

the points x(f), f ∈ ∪iPi, are distinct, we obtain n disjoint boxes. Given these definitions,

if
∑s

i=1 |Pi| is even we can write

ET
M(ΨP1 ; . . . ; ΨPs) =

∑
T∈TM

αT

∏
ℓ∈T

g
(M)
ℓ

∫
dPT (t) detG

(M)
T (t) , (5.38)

where:

• any element T of the set TM = TM(P1, . . . , Ps) is a set of lines forming an anchored

tree between the boxes P1, . . . , Ps, i.e., T is a set of lines that becomes a tree if one

identifies all the points in the same box; each line ℓ corresponds to a pair of half-

lines indexed by two distinct variables f, f ′ ∈ ∪iPi such that ε(f) = −ε(f ′) (i.e., the

directions of the two half-lines have to be compatible); if ℓ is obtained by contracting

f and f ′, we shall write ℓ = (f, f ′), with the convention that ε(f ′) = −ε(f) = +.

• αT is a sign (irrelevant for the subsequent bounds), which depends on the choice of

the anchored tree T ;

• if ℓ = (f, f ′), then g
(M)
ℓ stands for g

(M)
σ(f),σ(f ′)(x(f)− x(f ′));

• if t = {ti,i′ ∈ [0, 1], 1 ≤ i, i′ ≤ n}, then dPT (t) is a probability measure (depending on

the anchored tree T ) with support on a set of t such that ti,i′ = ui ·ui′ for some family

of vectors ui ∈ Rs of unit norm;
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• if 2N =
∑s

i=1 |Pi|, then G(M)
T (t) is a (N−s+1)×(N−s+1) matrix (depending both on

the sets Pi and on the anchored tree T ), whose elements are given by [G
(M)
T (t)]f,f ′ =

ti(f),i(f ′)g
(M)
(f,f ′), where f, f ′ ∈ ∪iPi \ ∪ℓ∈T{f−

ℓ , f
+
ℓ } (with ℓ = (f−

ℓ , f
+
ℓ )), and i(f) ∈

{1, . . . , s} is the index such that f ∈ Pi(f).

If s = 1 the sum over T is empty, but we can still use the Eq.(5.38) by interpreting the

r.h.s. as equal to 1 if P1 is empty and equal to detGT (1) otherwise.

In order to use (5.38) in (5.33)-(5.34), we first rewrite V(M) as

V(M)(Ψ, ϕ, A) = EM(ϕ) +
4∑

ρ=1

∑
σ,σ′∈I

∫
dxdyKρ

σσ′(x,y)
[
ϕσ
x

]δρ,1[Aσσ′

x,y

]δρ,2ΨP ρ , (5.39)

where EM(ϕ) = βL2

4
U
∑

σ νσ − 1
2

∑
σ

∫
dxϕσ

x, with νσ =
∑

x⃗∈ΛL

∑
σ′∈I vσσ′(x⃗). Moreover,

Aσσ′
x,y = Aσσ′

x (y⃗ − x⃗)− Aσ′σ
y (x⃗− y⃗),

K1
σσ′(x,y) = −δσ,σ′δ(x− y) , K2

σσ′(x,y) = −iδ(x0 − y0)H
(0)
σσ′(x⃗− y⃗) , (5.40)

K3
σσ′(x,y) = Uνσδσ,σ′δ(x− y) , K4

σσ′(x,y) = Uδ(x0 − y0)vσσ′(x⃗− y⃗) , (5.41)

and

P 1 = P 2 = P 3 =
(
(x, σ,+), (y, σ′,−)

)
, (5.42)

P 4 =
(
(x, σ,+), (x, σ,−), (y, σ′,+), (y, σ′,−)

)
. (5.43)

Plugging (5.39) into (5.33)-(5.34), we obtain

V(M−1)(Ψ, ϕ, A) = EM(ϕ)−
∑
s≥1

(−1)s

s!

∑
ρ1,...,ρs

σ1,σ′
1,...,σs,σ′

s

∫
dx1dy1 · · · dxs dys ×

×
[ ∏
i : ρi=1

ϕσi
xi

][ ∏
i : ρi=2

A
σiσ

′
i

xi,yi

][ s∏
i=1

Kρi
σiσ′

i
(xi,yi)

]
ET
M

(
(Ψ + Ψ(M))P ρ1

1
; · · · ; (Ψ + Ψ(M))P ρs

s

)
.

The truncated expectation in the right side can be further rewritten as

ET
M

(
(Ψ+Ψ(M))P ρ1

1
; · · · ; (Ψ+Ψ(M))P ρs

s

)
=

∑
P⊆∪iP

ρi
i

αPΨPET
M

(
Ψ

(M)

P
ρ1
1 \Q1

; · · · ; Ψ(M)

P ρs
s \Qs

)
, (5.44)

where αP is a sign, and Qi = P ∩ P ρi
i , so that, applying (5.38), we find

V(M−1)(Ψ, ϕ, A) = EM(ϕ)−
∑
s≥1

(−1)s

s!

∑
ρ, σ

∫
dx dy

[ ∏
i : ρi=1

ϕσi
xi

][ ∏
i : ρi=2

A
σiσ

′
i

xi,yi

]
×

×
[ s∏
i=1

Kρi
σiσ′

i
(xi,yi)

] ∑
P⊆∪iP

ρi
i

ΨP

∑
T∈TM

αP,T

∏
ℓ∈T

g
(M)
ℓ

∫
dPT (t) detG

(M)
T (t) , (5.45)
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where ρ, σ, x and y are shorthands for (ρ1, . . . , ρs), (σ1, σ
′
1, . . . , σs, σ

′
s), (x1, . . . ,xs) and

(y1, . . . ,ys), respectively, and αP,T = αPαT . Eq.(5.45) can be equivalently rewritten as

V(M−1)(Ψ, ϕ, A) = EM(ϕ) + (5.46)

+
∑
n≥0

∑
s1,s2≥0

∑
σ,ε

∫
dxdydzW

(M−1)
2n,s1,s2,σ,ε

(x,y, z)
[ s1∏

i=1

ϕσi
xi

] [ s1+s2∏
i=s1+1

A
σiσ

′
i

xi,yi

][ 2n∏
i=1

Ψεi
zi,σ′′

i

]
,

with

W
(M−1)
2n,s1,s2,σ,ε

(x,y, z) =
∗∑

s3≥0
s4≥n−1

(−1)s−1

s1!s2!s3!s4!

∑
σi,σ

′
i:

i>s1+s2

∫ [ ∏
i>s1+s2

dxidyi

]
× (5.47)

×
[ s∏
i=1

K ρ̄i
σiσ′

i
(xi,yi)

] ∑
P⊆∪iP

ρ̄i
i :

|P |=2n

δ(P − Pext)
∑

T∈TM

αP,T

∏
ℓ∈T

g
(M)
ℓ

∫
dPT (t) detG

(M)
T (t) ,

where s = s1 + s2 + s3 + s4, the ∗ on the sum indicates the constraint that s ≥ 1, and ρ̄i is

equal to 1 if i ≤ s1, is equal to 2 if 0 < i− s1 ≤ s2, is equal to 3 if 0 < i− s1 − s2 ≤ s3, and

is equal to 4 otherwise. Moreover, Pext = ((z1, σ
′′
1 , ε1), . . . , (z2n, σ

′′
2n, ε2n)), and δ

(
P −Pext) is

a shorthand for the product of delta functions
∏

fi∈P δ(x(fi)− zi)δσ(fi),σ′′
i
δε(fi),εi , where the

labeling P = (f1, . . . , f2n) is understood. Note that, in the case that n = s1 = s2 = 0, in the

right side of (5.46) there are neither sums over σ, ε nor integrals over x,y, z, and W
(M−1)
0,0,0 is

a constant, given by (5.46), with the understanding that the meaningless factors or sums or

integrals should be replaced by one.

We are finally in the position of proving the analyticity of the integral kernels of V(M−1).

By using (5.46) we obtain

1

βL2

∫
dxdydz

∣∣W (M−1)
2n,s1,s2,σ,ε

(x,y, z)
∣∣ ≤ (5.48)

≤
∗∑

s3≥0
s4≥n−1

|I|2s3+2s4

s1!s2!s3!s4!

[ 4∏
j=1

||Kj||sj1
](2s+ 2s4

2n

)
(Css!)||g(M)||1 · || detG(M)

T ||∞ ,

where: |I|2s3+2s4 bounds the number of terms in the sum over σi, σ
′
i; ||Kj||1 = supσ,σ′∫

dx|Kj
σσ′(x,0)|;

(
2s+2s4

2n

)
bounds the number of terms in the sum over P ; (Css!) bounds

the number of terms in the sum over T . Recalling (5.26) for n = 0 and the definitions

(5.40)-(5.41), from which ||Kj||1 ≤ C|U |δj,3+δj,4 , we find that (5.48) implies

1

βL2

∫
dxdydz

∣∣W (M−1)
2n,s1,s2,σ,ε

(x,y, z)
∣∣ ≤ ∗∑

s3≥0
s4≥n−1

Cs|U |s3+s4(δ−3
µ 2−M)s−1|| detG(M)

T ||∞ . (5.49)

In order to bound detG
(M)
T , we use the Gram-Hadamard inequality, stating that, if M is a

square matrix with elements Mij of the form Mij = (Ai, Bj), where Ai, Bj are vectors in a
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Hilbert space with scalar product (·, ·), then

| detM | ≤
∏
i

||Ai|| · ||Bi|| . (5.50)

where || · || is the norm induced by the scalar product. In our case, [G
(M)
T (t)]f,f ′ = ui(f) ·

ui(f ′)(AM,x(f), BM,x(f ′)), so that, using (5.28) and recalling that G
(M)
T is a (s4−n+1)× (s4−

n+ 1) matrix,

|| detG(M)
T ||∞ ≤ Cs4−n+1. (5.51)

Plugging this last ingredient into (5.49), we finally obtain

1

βL2

∫
dxdydz

∣∣W (M−1)
2n,s1,s2,σ,ε

(x,y, z)
∣∣ ≤

∗∑
s3≥0

s4≥n−1

Cs|U |s3+s4(δ−3
µ 2−M)s−1

≤ Cn|U |[n−1]+(δ−3
µ 2−M)[s1+s2+n−2]+ , (5.52)

where [·]+ = max{·, 0} denotes the positive part. Eq.(5.52) proves the analyticity of the

kernels of V(M) for U small enough, uniformly in M (but not in δµ, in general). Moreover,

the kernels W
(M−1)
2n,s1,s2,σ,ε

(x,y, z) decay faster than any power, on scale δ−1
µ , in the relative

distances between the coordinates xi,yi, zi. In order to prove this, we multiply the argument

of the integral in the left side of (5.48) by a product of factors of the form |xi − xj|mi,j , or

|xi − yj|m
′
i,j , etc. We denote by m =

∑
i,j(mi,j + m′

i,j + · · · ) the sum of these exponents.

Again, we use the representation (5.46), and we decompose each factor “along the anchored

tree T”, that is we bound it by using

|xi − xj| ≤
∑
ℓ∈T

|x(f−
ℓ )− x(f+

ℓ )|+
s∑

i=1

di, (5.53)

where di = maxf,f ′∈PT,i
|x(f)− x(f ′)| and PT,i = ∪ℓ∈T{f−

ℓ , f
+
ℓ } ∩ P

ρ̄i
i . In this way, the right

side of (5.48) is replaced by a sum of terms, each of which is obtained by replacing some

of the factors ||Kj||1 and ||g(M)||1 by ||Kj||1,ni
= supσ,σ′

∫
dx|Kj

σσ′(x,0)| |x|ni ≤ Cni
and

by ||g(M)||1,n′
i
, respectively. Recall that, by (5.26), the dimensional estimate of ||g(M)||1,n′

i

differs from that of ||g(M)||1 just by a factor δ
−n′

i
µ . Moreover, the total sum of the expo-

nents ni, n
′
i, etc., equals the exponent m introduced earlier. Therefore, the product of the

extra factors δ
−n′

i
µ is smaller than δ−m

µ . All in all, the dimensional estimate on the kernels

W
(M−1)
2n,s1,s2,σ,ε

(x,y, z), multiplied by the extra factors |xi − xi|mi,j , etc, is the same as (5.52),

up to an extra factor Cmδ
−m
µ , for all m ≥ 0.

The iterative integration procedure and the tree expansion.

We are now in the position of iterating the procedure used above for computing the

integral over the scale M . By using (5.32) and the definition of truncated expectation ET
h
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(which is the same as (5.36), with M replaced by h), we obtain

V(h−1)(Ψ, ϕ, A) = − log

∫
Ph(dΨ

(h))e−V(h)(Ψ+Ψ(h),ϕ,A) = (5.54)

=
∑
s≥1

(−1)s

s!
ET
h

(
V(h)(Ψ + Ψ(h), ϕ, A); · · · ;V(h)(Ψ + Ψ(h), ϕ, A)︸ ︷︷ ︸

s times

)
.

Eq.(5.54) can be graphically represented as in Fig.1. The tree in the left side, consisting

FIG. 1: The graphical representation of V(h−1).

of a single horizontal branch, connecting the left node (called the root and associated with

the scale label h − 1) with a big black dot on scale h, represents V(h−1). In the right side,

the term with s final points represents the corresponding term in the right side of (5.54): a

scale label h − 1 is attached to the leftmost node (the root); a scale label h is attached to

the central node (corresponding to the action of ET
h ); a scale label h + 1 is attached to the

s rightmost nodes with the big black dots (representing V(h)).

Iterating the graphical equation in Fig.1 up to scale M , and representing the endpoints

on scale M + 1 as simple dots (rather than big black dots), we end up with a graphical

representation of V(h) in terms of Gallavotti-Nicolò trees, see Fig.2, defined in terms of the

following features.

1. Let us consider the family of all trees which can be constructed by joining a point r,

the root, with an ordered set of N ≥ 1 points, the endpoints of the unlabeled tree, so

that r is not a branching point. N will be called the order of the unlabeled tree and

the branching points will be called the non trivial vertices. The unlabeled trees are

partially ordered from the root to the endpoints in the natural way; we shall use the

symbol < to denote the partial order. Two unlabeled trees are identified if they can

be superposed by a suitable continuous deformation, so that the endpoints with the

same index coincide. It is then easy to see that the number of unlabeled trees with N

end-points is bounded by 4N (see, e.g., [? , Appendix A.1.2] for a proof of this fact).

We shall also consider the labeled trees (to be called simply trees in the following);

they are defined by associating some labels with the unlabeled trees, as explained in

the following items.

2. We associate a label 0 ≤ h ≤ M − 1 with the root and we denote by T̃M ;h,N the

corresponding set of labeled trees with N endpoints. Moreover, we introduce a family



32

FIG. 2: A tree τ ∈ T̃M ;h,N with N = 9: the root is on scale h and the endpoints are on scale M+1.

of vertical lines, labeled by an integer taking values in [h,M + 1], and we represent

any tree τ ∈ T̃M ;h,N so that, if v is an endpoint, it is contained in the vertical line

with index hv = M + 1, while if it is a non trivial vertex, it is contained in a vertical

line with index h < hv ≤M , to be called the scale of v; the root r is on the line with

index h. In general, the tree will intersect the vertical lines in set of points different

from the root, the endpoints and the branching points; these points will be called

trivial vertices. The set of the vertices will be the union of the endpoints, of the trivial

vertices and of the non trivial vertices; note that the root is not a vertex. Every vertex

v of a tree will be associated to its scale label hv, defined, as above, as the label of the

vertical line whom v belongs to. Note that, if v1 and v2 are two vertices and v1 < v2,

then hv1 < hv2 .

3. There is only one vertex immediately following the root, called v0 and with scale label

equal to h+ 1.

4. Given a vertex v of τ ∈ T̃M ;h,N that is not an endpoint, we can consider the subtrees

of τ with root v, which correspond to the connected components of the restriction of

τ to the vertices w ≥ v. If a subtree with root v contains only v and one endpoint on

scale hv + 1, it is called a trivial subtree.

5. With each endpoint v we associate one of the terms contributing to V(M)(Ψ, ϕ, A), see

(5.39). In order to distinguish between the various terms in the right side of (5.39),

we introduce a type label ρv ∈ {0, 1, 2, 3, 4}. If ρv = 0, then we associate the endpoint

with a contribution EM(ϕ), while, if 1 ≤ ρv ≤ 3, then we associate the endpoint with



33

a contribution Kρv
σvσ′

v
(xv,yv)

[
ϕσv
xv

]δρv,1[Aσvσ′
v

xv ,yv

]δρv,2ΨIv .

The field labels attached to the endpoints v of τ are denoted by Iv. If ρv = 0,

then Iv = ∅; if ρv = 1, 2, 3, then Iv =
(
(xv, σv,+), (yv, σ

′
v,−)

)
; if ρv = 4, then

Iv =
(
(xv, σv,+), (xv, σv,−), (yv, σ

′
v,+), (yv, σ

′
v,−)

)
. Moreover, given any vertex v ∈ τ ,

we denote by Iv the set of field labels associated with the endpoints following the vertex v;

given f ∈ Iv, x(f), σ(f) and ε(f) denote the space-time point, the σ index and the ε index

of the Grassmann variable with label f . In the following, the “sum” over the field labels

associated with the endpoints should be understood as
∑

σv0

∫
dxv0

, where v0 is the leftmost

vertex of τ , σv = ∪f∈Iv{σ(f)} and xv = ∪f∈Iv{x(f)}.

In terms of trees, the effective potential V(h), −1 ≤ h ≤ M (with V(−1) identified with

WM), can be written as

V(h)(Ψ(≤h)) =
∞∑

N=1

∑
τ∈T̃M ;h,N

Ṽ(h)(τ,Ψ(≤h)) , (5.55)

where, if v0 is the first vertex of τ and τ1, . . . , τs (s = sv0) are the subtrees of τ with root v0,

Ṽ(h)(τ,Ψ(≤h)) is defined inductively as:

Ṽ(h)(τ,Ψ(≤h)) =
(−1)s−1

s!
ET
h+1

[
Ṽ(h+1)(τ1,Ψ

(≤h+1)); . . . ; Ṽ(h+1)(τs,Ψ
(≤h+1))

]
. (5.56)

where, if τ is a trivial subtree with root on scaleM , then Ṽ(M)(τ,Ψ(≤M)) = V(M)(Ψ(≤M)) (for

lightness of notation, we are dropping the arguments (ϕ,A), which are implicitly understood

here and in the following).

For what follows, it is important to specify the action of the truncated expectations

on the branches connecting any endpoint v to the closest non-trivial vertex v′ preced-

ing it. In fact, if τ has only one end-point, it is convenient to rewrite Ṽ(h)(τ,Ψ(≤h)) =

ET
h+1ET

h+2 · · · ET
M(V(Ψ(≤M))) ≡ Ṽ(h)(Ψ(≤h)) as:

Ṽ(h)(Ψ(≤h)) = V(M)(Ψ(≤h)) + ET
h+1 · · · ET

M

(
V(M)(Ψ(≤M))− V (M)(Ψ(≤h))

)
. (5.57)

The second term in the right side can be evaluated explicitly and gives:

ET
h+1 · · · ET

M

(
V(M)(Ψ(≤M))− V (M)(Ψ(≤h))

)
= e[h+1,M ] +

∑
σ,σ′

∫
dxdy k

[h+1,M ]
σσ′ (x,y)Ψ+

x,σΨ
−
y,σ′ ,

(5.58)

where, denoting g[h+1,M ](x) =
∑M

h′=h+1 g
(h′)(x),

e[h+1,M ] = e[h+1,M ](ϕ,A) = −
∑
σ,σ′

∫
dxdy

{[
K1

σσ′(x,y)ϕσ
x +K2

σσ′(x,y)Aσσ′

x,y +K3
σσ′(x,y)

]
·

·g[h+1,M ]
σ′σ (0) +K4

σσ′(x,y)
[
g
[h+1,M ]
σσ′ (x− y)g

[h+1,M ]
σ′σ (y − x)− g[h+1,M ]

σσ (0)g
[h+1,M ]
σ′σ′ (0)

]}
,
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and

k
[h+1,M ]
σσ′ (x,y) = 2Ug

[h+1,M ]
σσ′ ((0, x⃗− y⃗))δ(x0 − y0)

[
vσσ′(x⃗− y⃗)− νσδσσ′δ(x⃗− y⃗)

]
. (5.59)

Therefore, it is natural to shrink all the branches of τ ∈ T̃M ;h,n consisting of a subtree τ ′ ⊆ τ ,

having root r′ on scale h′ ∈ [h,M ] and only one endpoint on scale M + 1, into a trivial

subtree, rooted in r′ and associated with a factor Ṽ(h′)(Ψ(≤h′)), which has the same structure

as the right side of (5.39), with EM(ϕ) replaced by Eh′(ϕ,A) = EM(ϕ) + e[h′+1,M ](ϕ,A),

K3
σσ′(x,y) replaced by K3

h′+1;σσ′(x,y) := K3
σσ′(x,y) + k

[h′+1,M ]
σσ′ (x,y), and Ψ replaced by

Ψ(≤h′). Note that k
[h+1,M ]
σσ′ (x,y) is bounded proportionally to U , and decays faster than any

power, uniformly in M , in the sense that

∥k[h+1,M ]∥1,n = sup
σ,σ′

∫
dx|k[h+1,M ]

σσ′ (x,0)| · |x|n ≤ Cn2
−h|U |, ∀n ≥ 0 . (5.60)

In particular, the (1, n)-norm of K3
h′ is bounded uniformly in h′ and M , proportionally to

|U |. By shrinking all the linear subtrees in the way explained above, we end up with an

alternative representation of the effective potentials, which is based on a slightly modified

tree expansion. The set of modified trees with N endpoints contributing to V(h) will be

denoted by TM ;h,N ; every τ ∈ TM ;h,N is characterized in the same way as the elements of

T̃M ;h,N , but for two features: (i) the endpoints of τ ∈ TM ;h,N are not necessarily on scale

M + 1; (ii) every endpoint v of τ is attached to a non-trivial vertex on scale hv − 1 and is

associated with the factor Ṽ(hv−1)(Ψ(≤hv−1)). See Fig.3. In terms of these modified trees,

FIG. 3: A tree τ ∈ TM ;h,N with N = 9: the root is on scale h and the endpoints are on scales

≤ M + 1.
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(5.56) is changed into

V(h)(Ψ(≤h)) =
∞∑

N=1

∑
τ∈TM ;h,N

V(h)(τ,Ψ(≤h)) , (5.61)

where

V(h)(τ,Ψ(≤h)) =
(−1)s−1

s!
ET
h+1

[
V(h+1)(τ1,Ψ

(≤h+1)); . . . ;V(h+1)(τs, ψ
(≤h+1))

]
(5.62)

and, if τ is a trivial subtree with root on scale k ∈ [h,M ], then V(k)(τ,Ψ(≤k)) = Ṽ(Ψ(≤k)).

Using its inductive definition Eq.(5.62), the right hand side of Eq.(5.61) can be further

expanded (it is a sum of several contributions, differing for the choices of the field labels

contracted under the action of the truncated expectations ET
hv

associated with the vertices

v that are not endpoints), and in order to describe the resulting expansion we need some

more definitions (allowing us to distinguish the fields that are contracted or not “inside the

vertex v”).

We associate with any vertex v of the tree a subset Pv of Iv, the external fields of v. These

subsets must satisfy various constraints. First of all, if v is not an endpoint and v1, . . . , vsv
are the sv ≥ 1 vertices immediately following it (such that, in particular, hvi = hv + 1),

then Pv ⊆ ∪iPvi ; if v is an endpoint, Pv = Iv. If v is not an endpoint, we shall denote by

Qvi the intersection of Pv and Pvi ; this definition implies that Pv = ∪iQvi . The union Iv of

the subsets Pvi \Qvi is, by definition, the set of the internal fields of v, and is non empty if

sv > 1. Given τ ∈ TM ;h,N and the set of field labels Iv associated with the endpoints v of τ ,

there are many possible choices of the subsets Pv associated with the vertices that are not

endpoints, which are compatible with all the constraints. We shall denote by Pτ the family

of all these choices and by P the elements of Pτ . With these definitions, we can rewrite

V(h)(τ,Ψ(≤h)) as:

V(h)(τ,Ψ(≤h)) =
∑
σv0

∫
dxv0

∑
P∈Pτ

K
(h+1)
τ,P Ψ

(≤h)
Pv0

, (5.63)

where K
(h+1)
τ,P is defined inductively by the following equation, which is valid for any v ∈ τ

that is not an endpoint,

K
(hv)
τ,P =

1

sv!

sv∏
i=1

[K
(hvi)

τi,Pi
] ET

hv
[Ψ

(hv)
Pv1\Qv1

, . . . ,Ψ
(hv)
Pvsv

\Qvsv
] . (5.64)

Here τ1, . . . , τsv are the subtrees with root v, vi are their leftmost vertices (such that, in

particular, hvi = hv + 1), and Pi = {Pw, w ∈ τi}. Moreover, if vi is an endpoint, then

K
(hvi )

τi,Pi
= Kvi , with

Kv =

Ehv−1(ϕ,A) if ρv = 0 ,

Kρv
hv;σvσ′

v
(xv,yv)

[
ϕσv
xv

]δρv,1[Aσvσ′
v

xv,yv

]δρv,2 if ρv > 0 ,
(5.65)
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where Kρv
hv ;σvσ′

v
should be identified with Kρv

σvσ′
v
in the case that ρv = 1, 2, 4. Combining

(5.61) with (5.63) and (5.64), and using the determinant representation of the truncated

expectation, see (5.38), we finally get:

V(h)(Ψ(≤h)) = Eh(ϕ,A) +
∞∑

N=1

∗∑
τ∈TM ;h,N

∑
σv0

∫
dxv0

∑
P∈Pτ

∑
T∈T

W
(h)
τ,P,T (xv0

, σv0
)Ψ

(≤h)
Pv0

, (5.66)

where the ∗ on the sum over τ indicates the constrain that there are no endpoints of type

0, and T is the set of the tree graphs on xv0
obtained by putting together an anchored tree

graph Tv for each non-trivial vertex v and by adding a line (which is by definition the only

element of Tv) for the couple of space-time points belonging to the set xv for each endpoint

v. Moreover,

Wτ,P,T (xv0 , σv0
) = αT

[ ∏
v e.p.

Kv

] ∏
v not
e.p.

1

sv!

∫
dPTv(tv) detG

(hv)
Tv

(tv)
∏
ℓ∈Tv

g
(hv)
ℓ , (5.67)

where αT is a sign and G
(hv)
Tv

(tv) is a matrix analogous to the one defined after (5.38), with

g(M) replaced by g(hv). Note that Wτ,P,T depends on M only through: (i) the choice of the

scale labels, and (ii) the (weak) M -dependence of the endpoints v of type ρv = 3, whose

value is K3
hv ;σvσ′

v
= K3

σvσ′
v
+ k

[hv ,M ]
σvσ′

v
, with k

[hv ,M ]
σvσ′

v
as in (5.59). From (5.66) and (5.67) we see

that V(h)(Ψ) can be rewritten as in (5.46), with M − 1 replaced by h, and

W
(h)
2n,s1,s2,σ,ε

(x,y, z) =
∑
N≥1

∗∗∑
τ∈TM ;h,N

∑
σv0

∫
dxv0

∑
P∈Pτ :

|Pv0 |=2n

δ(I1v0 − I1ext)δ(I
2
v0
− I2ext)δ

(
Pv0 − Pext)×

×
[ ∏
v e.p.

Kρv
hv ;σvσ′

v
(xv,yv)

]∑
T∈T

αT

∏
v not
e.p.

1

sv!

∫
dPTv(tv) detG

(hv)
Tv

(tv)
∏
ℓ∈Tv

g
(hv)
ℓ , (5.68)

where the ∗∗ on the sum over τ indicates the constraint that τ has s1 endpoints of type 1, s2
of type 2, and no endpoints of type 0. Note also that, in order for |Pv0 | to be equal to 2n, the

number of endpoints of type 3 and 4 must be ≥ n−1, that is N ≥ s1+s2+n−1. Moreover,

I1ext =
(
(x1, σ1), . . . , (xs1 , σs1)

)
, I2ext =

(
(xs1+1,ys1+1, σs1+1, σ

′
s1+1), . . . , (xs2 ,ys2 , σs2 , σ

′
s2
)
)
,

Pext =
(
(z1, σ

′′
1 , ε1), . . . , (z2n, σ

′′
2n, ε2n)

)
, and the functions δ(I1v0 − I1ext), etc, are shorthands

of products of delta functions, in the same sense as δ(P −Pext) in (5.47). Using the explicit

expression (5.68), we obtain a bound analogous to (5.48):

1

βL2

∫
dxdydz

∣∣W (h)
2n,s1,s2,σ,ε

(x,y, z)
∣∣ ≤ (5.69)

≤
∑
N≥1:

N≥s1+s2+n−1

CN

∗∗∑
τ∈TM ;h,N

∑
P∈Pτ :

|Pv0 |=2n

[ ∏
v e.p.

∥Kρv∥1
]∑
T∈T

[ ∏
v not
e.p.

1

sv!

∥∥detG(hv)
Tv

∥∥
∞

∏
ℓ∈Tv

∥g(hv)
ℓ ∥1

]
.

Now: (i) the contribution of the endpoints is bounded as ∥Kρv∥1 ≤ C|U |δρv,3+δρv,4 , (ii) the

1-norm of the propagators is bounded as in (5.26), that is ∥g(hv)
ℓ ∥1 ≤ Cδ−3

µ 2−h, and (iii) the
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determinant, recalling the Gram representation of the propagator (5.27), can be bounded

by using the Gram–Hadamard inequality (5.50) in a way analogous to (5.51), that is

∥detG(hv)
Tv

∥∞ ≤ C
∑sv

i=1 |Pvi |−|Pv |−2(sv−1) , (5.70)

where v1, . . . , vsv are the vertices immediately following v on τ . Plugging these bounds into

(5.69), and using the fact that
∑

v not. e.p.(
∑sv

i=1 |Pvi| − |Pv|) ≤ 4(N − s1 − s2), we obtain

∑
N≥1:

N≥s1+s2+n−1

CN |U |N−s1−s2

∗∗∑
τ∈TM ;h,N

∑
P∈Pτ :

|Pv0 |=2n

∑
T∈T

[ ∏
v not
e.p.

1

sv!
(Cδ−3

µ 2−hv)sv−1
]
. (5.71)

Using the following relation, which can be easily proved by induction,∑
v not
e.p.

hv(sv − 1) = h(N − 1) +
∑
v not
e.p.

(hv − hv′)(n(v)− 1) , (5.72)

where v′ is the vertex immediately preceding v on τ and n(v) the number of endpoints

following v on τ , we find that Eq.(5.71) can be rewritten as

∑
N≥1:

N≥s1+s2+n−1

∗∗∑
τ∈TM ;h,N

∑
P∈Pτ :

|Pv0 |=2n

∑
T∈T

CNδ−3(N−1)
µ |U |N−s1−s22−h(N−1)

[ ∏
v not
e.p.

1

sv!
2(hv−hv′ )(n(v)−1)

]
.

(5.73)

where, by construction, if N > 1, then n(v) > 1 for any vertex v of τ ∈ TM ;h,N that is not an

endpoint (simply because every endpoint v of τ is attached to a non-trivial vertex on scale

hv − 1, see the discussion after (5.59) and item (ii) after (5.60)). If N = 1, the only tree

contributing to the sum in (5.73) is trivial, with four possible type labels attached to the

endpoint. The corresponding contribution to (5.73) is (const.)|U |δs1+s2,0 . The contribution

to (5.73) from the terms with N ≥ 2 can be bounded as follows: first of all, the number of

terms in
∑

T∈T is bounded by CN
∏

v not e.p. sv! (see, e.g., [? , Appendix A.3.3]); moreover,

|Pv| ≤ 4n(v) and n(v)− 1 ≥ max{1, n(v)
2
}, so that n(v)− 1 ≥ 1

2
+ |Pv|

16
, and, therefore,

1

βL2

∫
dxdydz

∣∣W (h)
2n,s1,s2,σ,ε

(x,y, z)
∣∣ ≤ ∑

N≥1:
N≥s1+s2+n−1

CNδ−3(N−1)
µ |U |N−s1−s22−h(N−1) ×

×
∗∗∑

τ∈TM ;h,N

( ∏
v not e.p.

2−
1
2
(hv−hv′ )

) ∑
P∈Pτ :

|Pv0 |=2n

( ∏
v not
e.p.

2−|Pv |/16
)
. (5.74)

Now, the sums over τ and P in the second line can be both bounded by (const.)N , see [?

, Lemma A.2 in Appendix A.1 and Appendix A.6.1], which implies the uniform analyticity

of the kernels of the effective potentials on scale h, for all −1 ≤ h < M , provided U is small

enough, namely |U | ≤ (const.)δ3µ. Note that the regularized free energy and correlation
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functions are nothing but the constant part and the kernels of the effective potential with

h = −1. Therefore, the regularized free energy is analytic in |U |, uniformly in β, L,M .

Similarly, the regularized correlation functions are uniformly analytic and satisfy (5.23),

uniformly in β, L,M , form = 0 and |U | small enough. The proof of (5.23) for general choices

of m follows similarly, by combining the previous strategy with the idea of decomposing the

factors |xi − xj| along the tree T , as in (5.53) and following discussion. This concludes the

proof of (5.23).

C. Proof of Proposition 4.1

We are left with proving the existence of the limit as β, L,M → ∞ of the regularized

free energy and correlation functions. In order to prove it, we show that these regularized

functions form a Cauchy sequence. Let us start by showing that, for fixed β, L, andM ′ > M ,

for all 0 < θ < 1, there exists Cθ > 0 such that

∥Kβ,L,M
m,n −Kβ,L,M ′

m,n ∥1,r ≤ Cθ2
−θM , (5.75)

where

∥Kβ,L,M
m,n ∥1,r =

1

βL2
sup
σ

sup
m:

|m|=r

∫
Λm+n
β,L

dx
∑
z⃗∈Λm

L

∣∣Kβ,L,M(x1, z⃗1, σ1, σ
′
1; . . . ;xm+n, σm+n)

∣∣ dm(x, z⃗) .
(5.76)

As already remarked above, the regularized correlation function are the kernels of the effec-

tive potential on scale −1. Therefore, both Kβ,L,M and Kβ,L,M ′
can be expressed in terms

of the tree expansion described above. As already remarked after (5.67), the expansions for

Kβ,L,M and Kβ,L,M ′
differ among each other only because of: (i) the choice of the scale labels

(the trees contributing to Kβ,L,M , resp. Kβ,L,M ′
, have endpoints on scales ≤ M + 1, resp.

≤M ′+1); (ii) the dependence on the ultraviolet cutoff of the endpoints of type 3, whose value

is K3
hv ;σvσ′

v
= K3

σvσ′
v
+ k

[hv ,M ]
σvσ′

v
in the trees contributing to Kβ,L,M , and similarly for Kβ,L,M ′

.

This means that the difference Kβ,L,M −Kβ,L,M ′
can be expressed as a sum over trees whose

root is on scale −1 and: (A) either there is at least one endpoint on scale > M + 1, or (B)

there is one endpoint of type 3 associated with a difference k
[hv ,M ]
σvσ′

v
− k

[hv ,M ′]
σvσ′

v
= k

[M+1,M ′]
σvσ′

v
.

The contributions from the case (A) can be bounded as in (5.73), with h = −1 and the

extra constraint that there is at least one endpoint on scale > M + 1. This means that the

factor
∏

v not
e.p.

2(hv−hv′ )(n(v)−1) is smaller than 2−M . The idea is then to split this term into

two factors, in the form
[∏

v not
e.p.

2θ(hv−hv′ )(n(v)−1)
]
×

[∏
v not
e.p.

2(1−θ)(hv−hv′ )(n(v)−1)
]
. The first

factor is smaller than 2−θM , while the sum over the scale and field labels of the second factor

can be bounded exactly in the same away as it was explained after (5.74).

Concerning case (B), it is enough to note that the norm of k
[M+1,M ′]
σvσ′

v
is proportional to

2−M , see (5.60), which implies that the overall contribution from these trees is smaller than

the norm of Kβ,L,M by a factor 2−M .



39

In conclusion, we obtain (5.75). By Vitali’s uniform convergence theorem for analytic

functions, we conclude that the limit as M → ∞ of the regularized correlations is analytic,

and its Taylor coefficients are the M → ∞ limit of the coefficients of the regularized corre-

lations. The same argument is valid for the limit as β, L → ∞, see [? , Appendix D] for a

thorough discussion of this limit. Of course, the same claims are valid for the regularized

free energy, too.

Finally, the statement of Proposition 4.1 follows from the remark that that the correlation

functions in momentum space can be expressed as the Fourier transforms of their space-time

counterparts, and that their derivatives of order r are controlled by the (1, r) norms (5.76)

of the space-time correlation functions, which are finite and bounded uniformly in β, L,M ,

as we just proved.

APPENDIX A: EQUIVALENCE OF DEFINITIONS OF CONDUCTIVITY

In this appendix we show that, in the absence of interactions, our definition of conduc-

tivity Eq. (3.14) is equivalent to the Kubo formula (in units e = ~ = 1):

σ
(0)
ij = i

∑
α

εα(k⃗)<µ

∫
B

dk⃗

(2π)2
TrPα(k⃗)[∂iPα(k⃗), ∂jPα(k⃗)] , (A.1)

where µ is the Fermi energy, and Pα(k⃗) = |vα(k⃗)⟩⟨vα(k⃗)| is the projector over the α-th Bloch

band; the Bloch function vα(k⃗) satisfies Ĥ(0)(k⃗)vα(k⃗) = εα(k⃗)vα(k⃗), with εα(k⃗) the α-th

energy band. Of course, vα(k⃗) is defined only up to a phase, while Pα(k⃗) is free from this

ambiguity. It is well-known that the integral in (A.1) can only take integer values, and that

the corresponding integer has a topological meaning [? ]; it is the Chern number of the Bloch

bundle associated to the α-th band. The equivalence of (3.14) with (A.1) is a well-known

fact, and we review it for completeness.

The starting point is to rewrite the current operator in Fourer space as follows:

J⃗ = i
[
HL,

∑
σ∈I

∑
x⃗∈ΛL

x⃗(σ) n
(σ)
x⃗

]
, x⃗(σ) = x⃗+ δ⃗(σ) ,

=
i

L2

∑
k⃗∈BL

ψ+

k⃗,σ

[
(−i)∇k⃗H

(0)
σσ′(k⃗) + δ⃗(σ) − δ⃗(σ

′)
]
ψ−
k⃗,σ′ (A.2)

It turns out that the δ⃗(σ) factors in (A.2) can be reabsorbed by conjugating the Bloch

Hamiltonian and the fermionic fields with a suitable unitary transformation. Let us define

U(k⃗) = diag
(
e−ik⃗·δ⃗(1) , · · · , e−ik⃗·δ⃗(N))

; then, we can rewrite the current as:

J⃗ =
1

L2

∑
k⃗∈BL

ψ̃+

k⃗,σ
∇k⃗H̃

(0)
σσ′(k⃗)ψ̃

−
k⃗,σ′ (A.3)
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where H̃(0)(k⃗) = U(k⃗)H(0)(k⃗)U(k⃗)∗, ψ̃− = U(k⃗)ψ−
k⃗
, ψ̃+ = ψ+

k⃗
U(k⃗)∗. Of course, σ

(
H(0)(k⃗)

)
=

σ
(
H̃(0)(k⃗)

)
. Instead, the eigenvectors of H̃(0)(k⃗) are ṽα(k⃗) = U(k⃗)vα(k⃗).

In the absence of interactions, the Green-Kubo conductivity matrix is:

σ
(0)
ij = − 1

A

∂

∂p0
lim

β,L→∞

1

βL2

∫ β

0

dx0

∫ β

0

dy0 e
ip0(x0−y0)

⟨
T Jx0,i ; Jy0,j

⟩(0)
β,L

. (A.4)

We write:

1

βL2

∫ β

0

dx0

∫ β

0

dy0 e
ip0(x0−y0)

⟨
T Jx0,i ; Jy0,j

⟩(0)
β,L

=
1

2L2

∫ β

0

dx0 e
ip0x0

⟨
Jx0,iJj

⟩(0)
β,L

(A.5)

+
1

2L2

∫ 0

−β

dx0 e
ip0x0

⟨
JjJx0,i

⟩(0)
β,L

,

where we used that, by the ciclicity of the trace, ⟨Ji⟩(0)β,L = 0. Let us consider the first term

in Eq. (A.5). We get, by Wick’s rule:

1

2L2

∫ β

0

dx0 e
ip0x0

⟨
Jx0,iJj

⟩(0)
β,L

=

−1

2L2

∑
k⃗∈BL

∫ β

0

dx0 e
ip0x0tr

{
g̃β,L(x0, k⃗) ∂kiH̃

(0)(k⃗) g̃β,L(−x0, k⃗) ∂kjH̃(0)(k⃗)
}

where g̃β,L(x0, k⃗) is the fermionic propagator of the transformed operators ψ̃± (see Eq. (??)):

g̃β,L(x0, k⃗) = U(k⃗)gβ,L(x0, k⃗)U(k⃗)
∗

= e−x0(H̃(0)(k⃗)−µ)
[ 1(x0 > 0)

1 + e−β(H̃(0)(k⃗)−µ)
− 1(x0 ≤ 0)

e−β(H̃(0)(k⃗)−µ)

1 + e−β(H̃(0)(k⃗)−µ)

]
. (A.6)

Plugging (A.6) into (A.5) and integrating over x0 we find:

1

2L2

∫ β

0

dx0 e
ip0x0

⟨
Jx0,iJj

⟩(0)
β,L

=
1

2L2

∑
k⃗∈B

∑
α,γ

[
eβ(ip0−εα(k⃗)+εγ(k⃗)) − 1

]
ip0 − εα(k⃗) + εγ(k⃗)

· 1

1 + e−β(εα(k⃗)−µ)

1

1 + eβ(εγ(k⃗)−µ)

·⟨ṽα(k⃗), ∂kiH̃(0)(k⃗) ṽγ(k⃗)⟩⟨ṽγ(k⃗), ∂kjH̃(0)(k⃗) ṽα(k⃗)⟩ . (A.7)

In the same way, the second term in the right-hand side of Eq. (A.5) is:

1

2L2

∫ 0

−β

dx0 e
ip0x0

⟨
JjJx0,i

⟩(0)
β,L

(A.8)

=
1

2L2

∑
k⃗∈B

∑
α,γ

[
eβ(−ip0−εα(k⃗)+εγ(k⃗)) − 1

]
−ip0 − εα(k⃗) + εγ(k⃗)

· 1

1 + e−β(εα(k⃗)−µ)

1

1 + eβ(εγ(k⃗)−µ)

·⟨ṽα(k⃗), ∂kjH̃(0)(k⃗) ṽγ(k⃗)⟩⟨ṽγ(k⃗), ∂kiH̃(0)(k⃗) ṽα(k⃗)⟩ . (A.9)
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Therefore, introducing the shorthand notation
[
∂kiH̃

(0)(k⃗)
]
αγ

:= ⟨ṽα(k⃗), ∂kiH̃(0)(k⃗) ṽγ(k⃗)⟩,
we get:

lim
β→∞

1

2L2

∫ β

0

dx0 e
ip0x0

⟨
Jx0,iJj

⟩(0)
β,L

+ lim
β→∞

1

2L2

∫ 0

−β

dx0 e
ip0x0

⟨
JjJx0,i

⟩(0)
β,L

=
1

L2

∑
k⃗∈BL

∑
α,γ

εα(k⃗)>µ

εγ(k⃗)<µ

1

ip0 − εγ(k⃗) + εα(k⃗)

[
∂kjH̃

(0)(k⃗)
]
αγ

[
∂kiH̃

(0)(k⃗)
]
γα

+

+
1

L2

∑
k⃗∈BL

∑
α,γ

εα(k⃗)>µ

εγ(k⃗)<µ

1

−ip0 − εγ(k⃗) + εα(k⃗)

[
∂kiH̃

(0)(k⃗)
]
αγ

[
∂kjH̃

(0)(k⃗)
]
γα
. (A.10)

Plugging this computation in (A.4), we obtain:

σ
(0)
ij =

∫
dk⃗

(2π)2

∑
α,γ

εα(k⃗)>µ

εγ(k⃗)<µ

i

(εγ(k⃗)− eα(k⃗))2

·
{[
∂kiH̃

(0)(k⃗)
]
αγ

[
∂kjH̃

(0)(k⃗)
]
γα

−
[
∂kjH̃

(0)(k⃗)
]
αγ

[
∂kiH̃

(0)(k⃗)
]
γα

}
, (A.11)

where we used that A|B| = (2π)2. Then, since[
∂iH̃

(0)(k⃗)
]
αγ

= (εγ(k⃗)− εα(k⃗))⟨ṽα(k⃗), ∂ki ṽγ(k⃗)⟩ for α ̸= γ, (A.12)

we can rewrite the integrand in Eq. (A.11) as:

i
∑
α,γ

εα(k⃗)>µ

εγ(k⃗)<µ

⟨ṽα(k⃗), ∂ki ṽγ(k⃗)⟩⟨ṽγ(k⃗), ∂kj ṽα(k⃗)⟩ − ⟨ṽα(k⃗), ∂kj ṽγ(k⃗)⟩⟨ṽγ(k⃗), ∂ki ṽα(k⃗)⟩

= i
∑

γ: εγ(k⃗)<µ

[
− ⟨∂kj ṽα(k⃗), ∂ki ṽγ(k⃗)⟩+ ⟨∂kj ṽγ(k⃗), P̃≤µ(k⃗)∂ki ṽγ⟩

]
− (i↔ j)

= i
∑

γ: εγ(k⃗)<µ

[
⟨∂ki ṽγ(k⃗), ∂kj ṽγ(k⃗)⟩ − ⟨∂kj ṽγ(k⃗), ∂ki ṽγ(k⃗)⟩

]
; (A.13)

using that Pγ(∂Pγ)Pγ = 0, we get:

⟨∂kj ṽγ(k⃗), ∂ki ṽγ(k⃗)⟩ = ⟨∂kj P̃γ(k⃗)ṽγ(k⃗), ∂kiP̃γ(k⃗)ṽγ(k⃗)⟩
= TrP̃γ(k⃗)∂kj P̃γ(k⃗)∂kiP̃γ(k⃗) + ⟨∂kjvγ(k⃗), P̃γ(k⃗)∂kivγ(k⃗)⟩ . (A.14)

The last term is symmetric with respect to i ↔ j and hence it does not contribute to σ
(0)
ij .

Thus, we found (A.1) with P̃γ(k⃗) instead of Pγ(k⃗). To drop the tilde, notice first that

∂kiP̃γ(k⃗) = U(k⃗)∂kiPγ(k⃗)U(k⃗)
∗ + U(k⃗)[Ai, Pγ(k⃗)]U(k⃗)

∗ (A.15)
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where Ai = U(k⃗)∗∂kiU(k⃗) is a diagonal matrix, independent of k⃗. Therefore,

Tr P̃γ(k⃗)[∂kiP̃γ(k⃗), ∂kj P̃γ(k⃗)] = TrPγ(k⃗)[∂kiPγ(k⃗), ∂kjPγ(k⃗)]

+TrPγ(k⃗)
[
[Ai, Pγ(k⃗)], ∂kjPγ(k⃗)

]
+ TrPγ(k⃗)

[
∂kiPγ(k⃗), [Aj, Pγ(k⃗)],

]
+TrPγ(k⃗)

[
[Ai, Pγ(k⃗)], [Aj, Pγ(k⃗)]

]
. (A.16)

It is easy to see that the last term in (A.16) is zero for all k⃗. Consider the second term in

(A.16). We have:

TrPγ(k⃗)
[
[Ai, Pγ(k⃗)], ∂kjPγ(k⃗)

]
= −TrPγ(k⃗)Ai(1− Pγ(k⃗))∂kjPγ(k⃗)− TrPγ(k⃗)∂kjPγ(k⃗)(1− Pγ(k⃗))Ai

= −∂kjTrAiPγ(k⃗) , (A.17)

where we used again that Pγ(∂Pγ)Pγ = 0. Being Pγ(k⃗) periodic over B and Ai constant, the

integral of (A.17) vanishes. The same is true for the third term in (A.16). Therefore, the

only nontrivial contribution to σ
(0)
ij comes from the first term of (A.16); this concludes the

check of (A.1).

APPENDIX B: THE HALDANE MODEL

An interesting model that falls into the general class of two-dimensional systems discussed

here is the Haldane model, [? ]; as we shall see later, this model has remarkable transport

properties.

The model. The Haldane model describes fermions hopping on the honeycomb lattice,

exposed to a suitable external magnetic field. Let ΛL be the triangular lattice, generated by

the basis vectors

ℓ⃗1 =
1

2
(3,−

√
3) , ℓ⃗2 =

1

2
(3,

√
3) . (B.1)

The reciprocal lattice Λ∗
L of ΛL is the triangular lattice generated by the vectors

G⃗1 =
2π

3
(1,−

√
3) , G⃗2 =

2π

3
(1,

√
3) . (B.2)

The physical lattice of the Haldane model is an hexagonal lattice, which can be obtained

as the superposition of two triangular lattices. Thus, the internal degrees of freedom are

labelled by σ ∈ {A,B}, where A, B label the sublattices Λ
(σ)
L = ΛL + δ⃗(σ), with δ⃗(A) = 0⃗,

δ⃗(B) = δ⃗1 = (1, 0) (we neglect the spin for simplicity). The full honeycomb lattice is

Λ
(A)
L ∪ Λ

(B)
L . In other words, we can think of the honeycomb lattice as a triangular lattice,

where the sites corresponding to “dimers”, given by the pairs (x⃗, x⃗+ δ⃗1), with x⃗ ∈ Λ
(A)
L . To

each dimer, we associate the pair of fermionic operators (ψ±
x⃗,A , ψ±

x⃗,B). Each site x⃗ ∈ Λ
(A)
L

has three nearest-neighbours x⃗+ δ⃗j, j = 1, 2, 3, with:


