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We consider a system of fermions with a quasi-random almost-Mathieu disorder

interacting through a many-body short range potential. We establish exponential

decay of the zero temperature correlations, indicating localization of the interacting

ground state, for weak hopping and interaction and almost everywhere in the fre-

quency and phase; this extends the analysis in [18] to chemical potentials outside

spectral gaps. The proof is based on Renormalization Group and it is inspired by

techniques developed to deal with KAM Lindstedt series.

1. INTRODUCTION AND MAIN RESULTS

A. Introduction

It is due to Anderson [1] the discovery that disorder can produce localization of inde-

pendent quantum particles, consisting in the exponential decay from some point of the

eigenfunctions of the one-body Schroedinger operator. The mathematical understanding of

Anderson localization required the development of powerful techniques and it was finally

rigorously established in the case of random [? ], [? ] and quasi-random (or quasi-periodic)

disorder [15],[27], [16],[17].

A natural question is what happens to localization in presence of a many-body interaction,

which is always present in real systems. The interplay of disorder and interaction is believed

to have deep consequences on the ground state and low temperature properties [5], [? ],

[6] and in the non equilibrium dynamics, like lack of thermalization and memory of initial

state [7], [12],[13],[19],[4]. Mathematical results on localization for interacting systems are

still very few [10],[18].

In this paper we consider a system of spinless fermions on a one dimensional lattice

with a quasi-random disorder described by a quasi-periodic almost-Mathieu potential ϕx =

u cos 2π(ωx + θ), ω irrational, and interacting via a short range potential with coupling
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U . Such model is known as the interacting Aubry-André model [19],[24] or the Heisenberg

quasi-periodic spin chain, and it has been recently experimentally realized in cold atoms

experiments [24].

In the absence of interaction the N -particle eigenstates can be constructed from the single

particle eigenstates of the Schroedinger energy operator with almost-Mathieu potential, for

which a rather detailed mathematical knowledge exists; in particular such system shows a

metal-insulator transition, with an Anderson localized insulating phase with strong disorder

and a metallic extended phase at weak disorder, similar to what happens in a random

three dimensional situation. The exponential decay of the single particle eigenstates of the

almost-Mathieu operator, almost everywhere in ω, θ, was proved in [27] and [16] , for ε small

enough, ε being the hopping, and later up to ε/u equal to 1
2
in [17]. In the opposite regime

ε/u > 1
2
the almost Mathieu has extended states [? ],[? ],[26],[? ],[? ]; in particular in [?

] a Diophantine condition is assumed on the phase excluding values close to 2θ = ωk, k

integer, corresponding to gaps [? ]. In both regimes and for all irrationals the spectrum is a

Cantor set [? ]. The non interacting Aubry-André model has ground state correlations with

a power law decay for large ε
u
[? ], even in presence of interaction [? ], and an exponential

decay for small ε
u
[? ].

In this paper we prove localization of the ground state of interacting fermions with a

strong quasi-random disorder, by establishing the exponential decay of the zero temperature

grand-canonical truncated correlations of local operators. Our main results can be informally

stated as follows.

Almost everywhere in ω, θ, for small ε
u
, U
u
, with chemical potential µ = ϕx̂, x̂ ∈ N the zero

temperature grand canonical infinite volume truncated correlations of local operators decay

exponentially for large distances

The proof is based on a combination of constructive renormalization Group methods

for fermions, see for instance [? ] , with techniques developed for proving convergence of

Lindstedt series for Kolmogorov-Arnold-Moser (KAM) invariant tori [? ],[? ]. Persistence of

localization in the ground state is therefore established for almost all values of the chemical

potentials (or the particle density), extending a previous result [18] in which the chemical

potential was assumed in the middle of one of the infinitely many gaps of the non interacting

spectrum, that is 2θ/ω ∈ N.



3

B. The model

If Λ is a one dimensional lattice Λ = {x ∈ Z, 1 ≤ x ≤ L}, we introduce fermionic creation

and annihilation operators a+x , a
−
x , x ∈ Λ on the Fock space verifying {a+x , a−y } = δx,y,

{a+x , a+y } = {a−x , a−y } = 0. The Fock space Hamiltonian is

H = −ε(
∑
x

a+x+1ax+
∑
x

a+x−1a
−
x )+

∑
x

ϕxa
+
x a

−
x +U

∑
x,y

v(x− y)(a+x a
−
x − 1

2
)(a+y a

−
y − 1

2
) (1)

with v(x−y) = δy−x,1+δx−y,1, and ϕx = u cos(2π(ωx+θ)), ω irrational, a±L+1 and a
±
0 must be

interpreted as zero and u = 1 for definiteness. If a±x = e(H−µN)x0a±x e
−(H−µN)x0 , x = (x, x0),

N =
∑

x a
+
x a

−
x and µ the chemical potential, the Grand-Canonical imaginary time 2-point

correlation is

< Ta−x a
+
y > |T =

Tre−β(H−µN)T{a−x a+y }
Tre−β(H−µN)

(2)

where T is the time-order product, T denotes truncation and µ is the chemical potential. In

the ε = U = 0 the spectrum is given by
∑

x ϕxnx with nx = 0, 1 and the correlations are given

by the Wick rule in terms of the fermionic 2-point function < Ta−x a
+
y > |U=ε=0 = g(x,y)

with

g(x,y) = δx,y
1

β

∑
k0=

2π
β
(n0+

1
2
)

e−ik0(x0−y0)

−ik0 + cos 2π(ωx+ θ)− µ
= δx,yḡ(x, x0 − y0) (3)

If µ = cos 2π(ωx̂ + θ), x̂ ∈ Λ, the occupation number, defined as ḡ(x, 0−), is at zero tem-

perature χ(cos 2π(ωx + θ) ≤ µ), that is the ground state is obtained by filling all the one

particle states with energy cos 2π(ωx+ θ) up to the level cos 2π(ωx̂+ θ).

The location of the singularity of the temporal Fourier transform of the 2-point function is

expected to depend on the interaction, and this of course causes problems in a perturbative

analysis, resulting in a lack of convergence of a naive power series expansion. It is therefore

convenient to write the chemical potential as a function of the interaction, and to tune it

so that the singularity in the free or interacting case are the same; this is done by writing

µ = cos 2π(ωx̂+ θ) + ν and choosing properly the counterterm ν as a function of ε, U .

The starting point of the Renormalization Group analysis is the representation of the

correlations (??) in terms of Grassmann integrals. Let M ∈ N and χ̄(t) a smooth compact

support function that is 1 for t ≤ 1 and 0 for t ≥ γ, with γ > 1. Let Dβ = Dβ ∩ {k0 :
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χ̄(γ−M |k0|) > 0}, where Dβ = {k0 = 2π
β
(n0 +

1
2
), n0 ∈ Z}. If x0 − y0 ̸= nβ, we can write

g(x,y) = lim
M→∞

δx,y
1

β

∑
k0∈Dβ

χ̄(γ−M |k0|)
e−ik0(x0−y0)

−ik0 + cos 2π(ωx+ θ)− µ
≡ lim

M→∞
g(≤M)(x,y) (4)

Because of the jump discontinuities, g(≤M)(x,y) is not absolutely convergent but is point-

wise convergent and the limit is given by g(x,y) at the continuity points, while at the

discontinuities it is given by the mean of the right and left limits. If Bβ,L = {Λ ⊗ Dβ}, we

consider the Grassmann algebra generated by the Grassmannian variables {ψ̂±
x,k0

}x,k0∈Bβ,L

and a Grassmann integration
∫ [∏

x,k0∈Bβ,L
dψ̂+

x,k0
dψ̂−

x,k0

]
defined as the linear operator on

the Grassmann algebra such that, given a monomial Q(ψ̂−, ψ̂+) in the variables ψ̂±
x,k0

, its

action on Q(ψ̂−, ψ̂+) is 0 except in the case Q(ψ̂−, ψ̂+) =
∏

x,k0∈Bβ,L
ψ̂−
x,k0

ψ̂+
x,k0

, up to a per-

mutation of the variables. In this case the value of the integral is determined, by using the

anticommuting properties of the variables, by the condition∫ [ ∏
x,k0∈Bβ,L

dψ̂+
x,k0

dψ̂−
x,k0

] ∏
x,k0∈Bβ,L

ψ̂−
x,k0

ψ̂+
x,k0

= 1 (5)

We define also Grassmanian field as ψ±
x = 1

β

∑
k0∈Bβ,L

e±ik0x0ψ̂±
x,k0

with x0 = m0
β
γM

and

m0 ∈ (0, 1, ..., γM − 1). The ”Gaussian Grassmann measure” (also called integration) is

defined as

P (dψ) = [
∏

x,k0∈Bβ,L

βdψ̂−
x,k0

dψ̂+
x,k0

ĝ(≤M)(x, k0)] exp{−
1

β

∑
x,k0

(ĝ(≤M)(x, k0))
−1ψ̂+

x,k0
ψ̂−
x,k0

} (6)

with

ĝ(≤M)(x, k0) =
χ̄(γ−M |k0|)

−ik0 + cos 2π(ωx+ θ)− cos 2π(ωx̂+ θ)
(7)

We introduce the generating functional W (η) defined in terms of the following Grassmann

integral (ψ±
L+1 and ψ±

−1 must be interpreted as zero)

eW (η) =

∫
P (dψ)e−V(ψ)−B(ψ,η) (8)

with

V(ψ) = ε

∫
dx(ψ+

x+e1
ψ−
x +ψ+

x−e1
ψ−
x ) +U

∫
dx

∑
α=±

ψ+
x ψ

−
x ψ

+
x+αe1

ψ−
x+αe1

+ ν

∫
dxψ+

x ψ
−
x (9)

where
∫
dx =

∑
x∈Λ

∫ β
2

−β
2

dx0 and ψ
±
x is vanishing for x = L/2+1 and x = −L/2−1. Finally

B(ψ, η) =
∫
dx(η+x ψ

−
x + ψ+

x η
−
x ) (10)
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The 2-point function is given by

SL,β2 (x,y) =
∂2

∂η+x ∂η
−
y

W |0 (11)

It is easy to check, see §1.C of [18], that the expansions in ε, U, ν of (??) with µ = p̂hix̂ + ν

and of (??) coincide in the limit M → ∞.

C. Main results

Our main result is the following.

Theorem 1.1 Let us consider the 2-point function SL,β2 (x,y) (??) with µ = cos 2π(ωx̂+θ),

x̂ ∈ Λ, x̂, θ non vanishing and assume that, for some C0, τ > 1

||ωx|| ≥ C0|x|−τ , ||ωx± 2θ|| ≥ C0|x|−τ ∀x ∈ Z/{0} (12)

with ||.|| is the norm on the one dimensional torus of period 1. There exists an ε0 such

that, for |ε|, |U | ≤ ε0 (u = 1),it is possible to choose ν = ν(ε, U) so that the limit

limβ→∞ limL→∞ limM→∞ SL,β2 (x,y) = S2(x,y) exists and for any N ∈ N

|S2(x,y)| ≤ Ce−ξ|x−y| log(1 + min(|x||y|))τ 1

1 + (∆|x0 − y0)|)N
(13)

with ∆ = (1 + min(|x|, |y|))−τ , ξ = | log(max(|ε|, |U |))| and C is a suitable constant.

Remarks

• The exponential decay in the coordinates of the zero temperature truncated correla-

tions (and the much slower decay in the temporal direction) is a signature of local-

ization of the many body ground state. One has to restrict to a full measure set of

frequencies and phases satisfying two Diophantine conditions: one on the frequency of

the almost-Mathieu potential, and the second excluding phases around integer values

of 2θ
ω
; such conditions are often assumed in the analysis of the almost Mathieu equa-

tion [? ], [16]. This above theorem extends a previous result [18] in which exponential

decay was proven assuming ω diophantine and 2θ
ω

half-integer, and it was announced

in [28].



6

• A simple consequence of the theorem proof is a localization result formulated fixing

the phase θ and varying the chemical potential; namely if we choose θ = 0 and define

µ = cos 2πωx̄, x̄ ∈ R, than the exponential decay of correlation (??) holds provided

that the chemical potential is chosen in correspondence of a point of the non interacting

spectrum, namely assuming a Diophantine condition on x̄, ||ωx ± 2ωx̄|| ≥ C|x|−τ ,

x ̸= 0. In [18] it was instead considered that case of the chemical potential in the

middle of one of the infinitely many gaps, that is x̄ half-integer; in such a case (??)

still holds, provided that ∆ in (??) is replaced by the gap size.

• The proof of Theorem 1.1 can be extended to more general form of quasi-periodic

potential; one simply needs that ϕx = ϕ̄(2π(ωx+ θ)) with ϕ̄ ∈ C1, even ϕ̄(t) = ϕ̄(−t)

and periodic ϕ̄(t) = ϕ̄(t + 1); moreover one needs ∂ϕ̄ωx̂+θ ̸= 0. Other classes of

potentials were discussed in the non interacting case in [? ] and one could easily

extend the proof of the above theorem to such cases.

• Eq.(??) is in agreement with the proposed phase diagram of the interacting Aubry-

André model obtained by numerical simulations [19], in which a many body localized

phase is expected for small ε
u
, U
u
. Many body localization is however a stronger prop-

erty, requiring exponential decay of truncated correlations not only on the ground

states corresponding to different densities, but on each eigenstate of the many body

Hamiltonian; if such correlations can be analyzed by an extension of the methods

developed here is an important open problem.

• The assumption of spinless fermions plays an important role in controlling the con-

tribution of the resonant terms. The methods developed in the present paper can be

extended to spinning fermions at the cost of introducing a marginal running coupling

constant quartic in the fields.

D. Feynman Graphs expansion and small divisors

Before starting the proof of Theorem 1.1 it is useful to figure out the main difficulties of

the problem, related to the presence of small divisors. Let us consider the effective potential

defined by

e−V (η) =

∫
P (dψ)e−V(ψ+η) (14)
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with V(ψ) given by (??). We can write

V (η) = − log

∫
P (dψ) e−V(ψ+η) =

∞∑
n=0

(−1)n

n!
ET (V ;n) (15)

where ET are the fermionic truncated expectations, that is, if X(ψ) is a monomial

ET (X;n) ≡ ET (X; ...;X) =
∂n

∂αn
log

∫
P (dψ)eαX(ψ))|α=0 (16)

It is well known that the truncated expectations can be computed using the anticommutative

Wick rule defined in the following way, see for instance [? ]. Given a set of indexes P and

defining ψ̃(P ) =
∏

f∈P ψ
ε(f)
x(f) with ε(f) = ±, we can represent each field ψεx as an oriented

half line emerging from a point x and carrying an arrow, pointing towards the point if ε = −

and in the opposite direction if ε = +. We can enclose the points x(f), f ∈ P in a box, and,

if we have P1, .., Ps sets, we can associate a set of diagrams Γ obtained by joining pairwise

the half-lines with consistent orientation, in such a way that all the boxes are connected; a

line obtained by joining two half-lines is denoted by ℓ. If a line ℓ is contained in a diagram

Γ we say ℓ ∈ Γ, and the two fields are said contracted. Then

ET (ψ̃(P1); ...; ψ̃(Ps)) =
∑
Γ

εΓ
∏
ℓ∈Γ

gℓ (17)

where gℓ = g(≤M)(x(f),y(f)) defined in (??) and εΓ is the sign of the permutation required

to move every ψ+ to the immediate right of the ψ− operator it is paired with. If we use

the graphical representation of the Wick rule described above in the truncated expectations

in (??), we see that the effective potential V can be written as a series of graphs, called

Feynman graphs, obtained taking n elements represented as in fig.1 and contracting the

lines with consistent orientation so that all the n vertices are connected; the contribution

of each Feynman graph is expressed by the sum over coordinates of product of propagators

g(≤M)(x,y).

In absence of many body interaction, i.e.U = 0, the graphs have the simple form of chain

graphs. The value of the graphs obtained contracting only nε = n ε-vertices and bilinear in

the external fields η, after summing over all the n! choices of vertex labels and taking into

account the n!−1 in (??) , is given by, see Fig. 2 (αi = ±),

εn
∫ n∏

1=1

dxiηx1 [
n∏
i=1

δxi+αi,xi+1
ḡ(xi + αi, x0,i − x0,i+1)]ηxn+1 = (18)

εn
∑
x1

∫
dk0η̂x1,k0 [

n∏
k=1

ĝ(x1 +
∑
i≤k

αi, k0)]η̂x1+
∑

i≤k αi,k0 = εn
∑
x1

∫
dk0η̂x1,k0 η̂x1+

∑
i≤k αi,k0Hn(k0, x1)
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x± e1x± e1

x x
x x± e1 x x

νεU

FIG. 1: Graphical representation of the three terms in V(ψ) eq.(??)

In the perturbative expansion all the possible choices of the indices αi contribute. Even in

the non-interacting case U = 0 the perturbation theory fails to converge everywhere, due to

a small divisor problem caused by the irrationality of ω. The peculiarity of the quasi-periodic

potential, with respect to the periodic case, is that the propagator can be arbitrarily large

when x ̸= x̂. If we set x = x′ + x̄ρ, ρ = ±,

x̄+ = x̂ x̄− = −x̂− 2θ/ω (19)

then cos 2π(ω(x′ + x̄ρ) + θ) − cos(2π(ωx̂ + θ)) = ρv0(ωx
′)mod.1 + rρ,x′ with rρ,x′ =

O(((ωx′)mod.1)
2), v0 = sin 2π(ωx̂ + θ). Therefore the propagators (and then the Feynman

graphs) are unbounded as (ωx′)mod.1 can be arbitrarily small and

ĝ(x′ + x̄ρ, k0) ∼
1

−ik0 ± v0(ωx′)mod.1

(20)

ε ε ε ε

FIG. 2: A graph with nε = 4, nU = nν = 0

If we consider not all possible irrational ω, but only the ones veryfing a diophantine

condition (which are a full mesure set) the propagators are bounded for x ̸= ρx̂; using that

||ωx′|| = ||ω(x− ρx̂) + 2δρ,−1θ|| ≥ C|x− ρx̂|−τ one finds

|ĝ(x′ + x̄ρ, k0)| ≤ C|x− ρx̂|τ (21)
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A naive bound using the above estimate is however still not sufficient to achieve convergence,

as it is easy to identify graphs bounded by O(n!τ ) (assume for instance αi = + in (??) for

any i). There is indeed a striking similarity between the expansion when U = 0 and the

Lindstedt series for KAM invariant tori in quasi-integrable Hamiltonian systems [? ],[? ]; in

both cases the expansion can be represented in terms of graphs with no loops and plagued

by a small divisor problem. A direct proof of convergence of such series, which were known

to converge as consequence of KAM theorem, was a non trivial problem which was finally

solved in in [? ],[? ] by Renormalization Group methods. A similar approach was also used

in [? ] to prove Theorem 1.1 in the absence of many-body interaction U = 0.

In the expansion for the 2-point function in presence of many body interaction much

more complex graphs can appear, namely graphs with loops; an example is Fig. 3 whose

U εε ε U

ε

FIG. 3: A graph with nU = 2, nε = 4

value is the following

ε4U2
∑
x

∫
dx0,1...dx0,6ηxḡ(x;x0,1 − x0,2)ḡ(x+ 1, x0,2 − x0,3)ḡ(x;x0,3 − x0,4) (22)

ḡ(x+ 1;x0,4 − x0,5)ḡ(x+ 1;x0,1 − x0,5)ḡ(x+ 1;x0,1 − x0,6)ḡ(x+ 2;x0,6 − x0,5)ηx+2,x5,0

The appearance of graphs with loops plagued by small divisors like (??) produces a number

of new problems. First of all, a Costn bound on each Feynman graph is not sufficient to

achieve convergence; the number of graphs with loops is O(n!2) and one has to take into
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account cancellations between graphs. In addition, the presence of loops has the effects that

the structure of small divisors is much more complex and the dangerous subgraphs can have

any number of external lines (not only two as in the U = 0 case). The presence of loops is

the signature of an interacting many-body system, and their presence makes the problem

genuinely different with respect to KAM theory.

2. PROOF OF THEOREM 1.1

A. Multiscale decomposition

We start by describing the integration of the generating function in the case η = 0 (the

partition function); we will describe how to adapt the expansion to the study of the two

point function in §2.I below.

We introduce a function χh(t, k0) ∈ C∞(T × R), such that χh(t, k0) = χh(−t,−k0) and

χh(t, k0) = 1, if
√
k20 + v20||t||2 ≤ aγh−1 and χh(t, k0) = 0 if

√
k20 + v20||t||2 ≥ aγh with a

and γ > 1 suitable constants. We define x̄+ = x̂ x̄− = −x̂ − 2θ/ω and we choose a so

that the supports of χ0(ω(x − x̂+), k0) and χ0(ω(x − x̂−), k0) are disjoint; we also define

χ(1)(ωx, k0) = 1−χ0(ω(x− x̄+), k0)−χ0(ω(x− x̄−), k0). For reasons which will appear clear

below, see Lemma 2.4, we choose γ > 2
1
τ . We can write then

g(≤M)(x,y) = g(1)(x,y) + g(≤0)(x,y) (23)

and

g(≤0)(x,y) =
∑
ρ=±

g(≤0)
ρ (x,y) (24)

where, for M large enough

g(1)(x,y) =
δx,y
β

∑
k0∈Dβ

χ(1)(ωx, k0)χ̄(γ
−M |k0|)

e−ik0(x0−y0)

−ik0 + cos 2π(ωx+ θ)− cos 2π(ωx̂+ θ)

g(≤0)
ρ (x,y) =

δx,y
β

∑
k0∈Dβ

χ0(ω(x− x̄ρ), k0)
e−ik0(x0−y0)

−ik0 + cos 2π(ωx+ θ)− cos 2π(ωx̂+ θ)
(25)

We use the following property; if Pg(dψ) is a Gaussian Grassmann integration with prop-

agator g and g = g1 + g2, then Pg(dψ) = Pg1(dψ1)Pg2(dψ2), in the sense that for every

polynomial f ∫
Pg(dψ)f(ψ) =

∫
Pg1(dψ1)

∫
Pg2(dψ2)f(ψ1 + ψ2) . (26)



11

By using such property

eW (0) =

∫
P (dψ)e−V(ψ) =

∫
P (dψ(≤0))

∫
P (dψ(1))e−V(ψ(≤0)+ψ(1)) (27)

where P (dψ(1)) and P (dψ(≤0) are gaussian Grassmann integrations with propagators respec-

tively g(1)(x,y) and g(≤0)(x,y) and ψ(1) and ψ(≤0) are independent Grassmann variables. We

can write ∫
P (dψ(1))e−V(ψ(≤0)+ψ(1)) = e

∑∞
n=1

(−1)n

n!
ET
1 (V:n) ≡ e−βLE0−V(0)(ψ(≤0)) (28)

where ET1 is the fermionic truncated expectation with respect to P (dψ(1)). By the above

definition

V(0) =
∞∑
m=1

∑
x1

∫
dx0,1....

∑
xm

∫
dx0,mW

(0)
m (x1, ...,xn)[

m∏
i=1

ψ
(εi)(≤0)

x′
i,ρi

] (29)

with x = x′ + x̄ρ, x̄ρ = (x̄ρ, 0) and E0 is a constant; moreover

eW (0) = e−βLE0

∫
P (dψ(≤0))e−V(0)(ψ(≤0) (30)

It was proved in Lemma 2.1 [18] that the constant E0 and the kernels W
(0)
m are given by

power series in U, ε, ν convergent for |U |, |ε|, |ν| ≤ ε0, for ε0 small enough and independent

of β, L. They satisfy the following bounds:

|W (0)
m |L1 ≤ LβCmεkm0 , (31)

for some constant C > 0 and km = max{1,m− 1}. Moreover the limit M → ∞ exists and

is reached uniformly.

We will show in the following section that we can integrate the fields ψ(0)...ψ(h+1) obtaining

e−βLE0

∫
P (dψ(≤0))e−V(0)(ψ(≤0)) = e−βLEh

∫
P (dψ(≤h))e−V(h)(ψ(≤h)) (32)

where P (dψ(≤h)) is the gaussian Grassman integration with propagator, ρ = ±

g(≤h)ρ (x′,y′) = δx′,y′ ḡ
(≤h)
ρ (x′, x0 − y0) (33)

with, if x = x′ + x̄ρ

ḡ(≤h)ρ (x′, x0 − y0) =

∫
dk0e

−ik0(x0−y0)χh(ωx
′, k0)

1

−ik0 + v0ρ(ωx′)mod.1 + rρ,x′
(34)
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and the corresponding fields are denoted by ψ
(ε,≤h)
x′,ρ . The effective potential V(h) can be

written as sum of terms of the form∑
x′1

∫
dx0,1....

∫
dx0,nH

(h)
n;ρ1,..,ρn

(x′1;x0,1, ., x0,n)[
n∏
i=1

ψ
εi(≤h)
x′
i,ρi

] (35)

and x′i are functions of x1.

Definition 2.1 (Resonances):The contribution to the effective potential V(h) of the form

(??) such that x′i = x′1 for any i = 1, .., n are called resonant terms; the other are called

non-resonant terms.

Lemma 2.1 In a resonant term ρi = ρ1 for any i = 1, .., n.

Proof. The second of (11) implies 2θ
ω

̸∈ Z/{0}; as xi − xj ∈ Z and x′i = x′j then (x̄ρi −

x̄ρj) +N = 0, N ∈ Z so that ρi = ρj as x̄+ = x̂ and x̄− = −x̂− 2θ/ω and x̂ ∈ Z.

Remark. There are several ways in which the multiscale integration (??) can be performed.

The most naive one would be simply to proceed as in the integration of ψ(1) (??); that is,

writing, by using (??), P (dψ(≤0)) = P (dψ(≤−1))P (dψ(0)) and integrating ψ(0) so obtaining

V(−1) and proceeding in this way. This procedure would lead to a sequence of V(h) with

kernels H
(h)
n;ρ1,..,ρn admitting bounds increasing as h→ −∞, producing a lack of convergence.

Such problem is due to the fact that, according to the usual terminology of Renormalization

Group, the theory is dimensionally non-renormalizable; the scaling dimension D is

D = 1 (36)

for any term in the effective potential, which are then all linearly relevant. One has to device

a more clever integration procedure, which will be described in the following section. The

idea behind it is that the resonant and the non resonant terms behave in a quite different

way; one needs to renormalize the resonant terms extracting as usual the local part; as

we will see, the local part is vanishing except for the kernels with two external fields, an

essential fact which avoid the presence of an infinite number of running coupling constants.

On the other hand, the dimensional bound can be dramatically improved in the case of the

non resonant terms using the Diophantine condition, as we will show in §2.F.
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B. Renormalized expansion

The sequence of effective potentials V(h), h = 0,−1,−2, .. is constructed iteratively in

the following way; assume that we have already integrated the fields ψ(0), ψ(−1), .., ψ(h+1)

obtaining the r.h.s. of (??) which we rewrite as

e−βLEh

∫
P (dψ(≤h))e−LV(h)(ψ(≤h))−RV(h)(ψ(≤h)) (37)

with L = 1−R and R acts on the terms (??) in V(h) in the following way:

1. If n = 2 then R = 1 if (??) is non resonant, while if (??) is resonant

R
∑
x′

∫
dx0,1dx0,2H

(h)
2;ρ,ρ(x

′;x0,1, x0,2)ψ
+(≤h)
x′,x0,1,ρ

ψ
−(≤h)
x′,x0,2,ρ

(38)

=
∑
x′

∫
dx0,1dx0,2H

(h)
2;ρ,ρ(x

′;x0,1, x0,2)ψ
+(≤h)
x′,x0,1,ρ

T
−(≤h)
x′,x0,1,x0,2ρ

with

T
−(≤h)
x′,x0,1,x0,2ρ

= ψ
−(≤h)
x′,x0,2,ρ

− ψ
−(≤h)
x′,x0,1,ρ

− (x0,1 − x0,2)∂ψ
−(≤h)
x′,x0,1,ρ

(39)

2. If n ≥ 4 the R operation consists in replacing any monomial of fields with the same

x′, ε, ρ in (??), that is ψ
ε(≤h)
x′,x0,1,ρ

∏
i ψ

ε(≤h)
x′,x0,i,ρ

, with

ψ
ε(≤h)
x′,x0,1,ρ

∏
i

D
ε(≤h)
x′,x0,1,x0,i,ρ

(40)

with

D
±(≤h)
x′,x0,1,x0,2,ρ

= ψ
±(≤h)
x′,x0,1,ρ

− ψ
±(≤h)
x′,x0,2,ρ

(41)

Remark When n ≥ 4 the R operation is simply the identity, as ψ
ε(≤h)
x′,x0,1,ρ

∏
i ψ

ε(≤h)
x′,x0,i,ρ

=

ψ
ε(≤h)
x′,x0,1,ρ

∏
iD

ε(≤h)
x′,x0,1,x0,i,ρ

; however, as we will see in the following sections, the equivalent

representation of the monomials given by (??) has the effect that certain dimensional gains

in the bounds can be extracted more easily. Note that in all resonances with n ≥ 4 there

are at least two D-fields, by Lemma 2.1; as we will see below, this will change the scaling

dimension from 1 to −1. Finally note that, in presence of the spin, the L action would be

non vanishing and a quartic running coupling constant is generated.

By definition LV(h) is given by the following expression

LV(h) = γhνhF
(h)
ν + F

(h)
ζ + F (h)

α (42)
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where

F (h)
ν =

∑
ρ

∑
x′

∫
dx0ψ

+(≤h)
x′,ρ ψ

−(≤h)
x′,ρ

F
(h)
ζ =

∑
ρ

∑
x′

∫
dx0(ωx

′)mod.1ζh,ρ(x
′)ψ

+(≤h)
x′,ρ ψ

−(≤h)
x′,ρ (43)

F (h)
α =

∑
ρ

∑
x′

∫
dx0αh,ρ(x

′)ψ
+(≤h)
x′,ρ ∂ψ̂

−(≤h)
x′,ρ

The νh coefficients are independent from ρ, as (??) is invariant under parity x→ −x, θ → −θ;

and this implies invariance under the transformation ψ
±(h)
x0,x′,ρ

→ ψ
±(h)
x0,−x′,−ρ; therefore, if ε = ±

H
(h)
2,ρ (x

′, x0, y0) = H
(h)
2,−ρ,(−x′, x0, y0) (44)

so that the fact that νh is independent of ρ follows. Note also that (ĝ
(k))∗(x, k0) = ĝ(k)(x,−k0)

so that (Ĥ
(h)
2,ρ (x

′, k0))
∗ = Ĥ

(h)
2,ρ (x

′,−k0), and this implies that νh is real.

With the above definitions we finally write (??) as∫
P (dψ(≤h−1))

∫
P (dψ(h))e−LV(h)−RV(h)

= e−βLEh

∫
P (dψ(≤h−1))e−V(h−1)(ψ(≤h−1)) (45)

where P (dψ(≤h−1)) has propagator g(≤h−1) defined by a formula analogous to (??) with h−1

replacing h, and P (dψ(h)) has propagator g(h) defined by a formula analogous to (??) with

χh replaced by fh = χh − χh−1, with fh a smooth compact support function vanishing for

c1γ
h−1 ≤

√
k20 + v20||ωx′||21 ≤ c2γ

h+1, for suitable constants c1, c2. From the r.h.s. of (??),

the procedure can be iterated.

The single scale propagator g(h) verifies the following bound, for any integer N and a

suitable constant CN

|ḡ(h)ρ (x′, x0 − y0)| ≤
CN

1 + (γh|x0 − y0|)N
(46)

which can be easily obtained by integrating by parts.

The above procedure allows to write the W (0) (??) in terms of an expansion in the

running coupling constants v⃗h = (νh, ζh,ρ, αh,ρ) with h ≤ 0; as it is clear from the above

construction, they verify a recursive equation of the form

v⃗h−1 = v⃗h + β⃗h(v⃗h, ..v⃗0) (47)

We will describe more explicitly such expansion in the following section.
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C. Trees

The effective potential V(h) can be written as a sum over trees [? ], defined below.

h hv′ hv

v′
v

0 1 2

FIG. 4: A tree τ ∈ Th,n with its scale labels.

Definition 2.2 (τ-Trees):

1. The labeled trees τ ∈ Th,n with n endpoints (to be called simply trees in the following)

are defined by associating some labels with the unlabeled trees, which are constructed

by joining a point r, the root, with an ordered set of n ≥ 1 points, the endpoints of the

unlabeled tree, so that r is not a branching point. Starting from the unlabeled trees,

the labeled trees are defined associating a label h ≤ 0 with the root; moreover, we

introduce a family of vertical lines, labeled by an integer taking values in [h, 2], and

we represent any tree τ ∈ Th,n so that, if v is an endpoint or a non trivial vertex (the

branching points), it is contained in a vertical line with index hv > h, to be called

the scale of v, while the root r is on the line with index h. In general, the tree will

intersect the vertical lines in set of points different from the root, the endpoints and

the branching points; these points will be called trivial vertices. Every vertex v of

a tree will be associated to its scale label hv, defined, as above, as the label of the

vertical line whom v belongs to.

2. There is only one vertex immediately following the root, whose scale is h + 1. Given

a vertex v of τ ∈ Th,n that is not an endpoint, we can consider the subtrees of τ with
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root v, which correspond to the connected components of the restriction of τ to the

vertices w ≥ v; the number of endpoint of these subtrees will be called Nv. If a subtree

with root v contains only v and one endpoint on scale hv +1, it will be called a trivial

subtree. With each endpoint v of scale hv ≤ 1 we associate LV(hv−1), and there is the

constrain that hv = hv̄ + 1, if v̄ is the non trivial vertex immediately preceding it or

the first vertex after the root; to the end-points of scale hv = 2 are associated one of

the terms contributing to V and there is not such a constrain.

3. The set of field labels associated with the endpoint v will be called Iv; if v is not an

endpoint, we shall call Iv the set of field labels associated with the endpoints following

the vertex v. Finally with each trivial or non trivial vertex v with h < hv ≤ 0, which

is not an endpoint, we associate the R = 1−L operator, acting on the corresponding

kernel.

The effective potential appearing in (??) can be written as sum over trees in the following

way, if h ≤ −1

V(h)(ψ(≤h)) + LβEh+1 =
∞∑
n=1

∑
τ∈Th,n

V (h)(τ, ψ(≤h)) (48)

where, if v̄0 is the first vertex of τ and τ1, .., τs (s = sv̄0) are the subtrees of τ with root v̄0,

V (h)(τ, ψ(≤h)) is defined inductively by the relation

V (h)(τ, ψ(≤h)) =
(−1)s+1

s!
ETh+1[V̄

(h+1)(τ1, ψ
(≤h+1)); ..; V̄ (h+1)(τs, ψ

(≤h+1))] (49)

where V̄ (h+1)(τi, ψ
(≤h+1)):

1. it is equal to RV(h+1)(τi, ψ
(≤h+1)), with R given by (??),(??) if the subtree τi is non

trivial;

2. if τi is trivial, it is equal to LV(h+1).

Starting from the above inductive definition, the effective potential can be written in a more

explicit way.

Definition 2.3 (Q,P -Subsets):

1. We associate with any vertex v of the tree a subset Pv of Iv, the external fields of v,

and the set xv of all space-time points associated with one of the end-points following
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v. The subsets Pv must satisfy various constraints. First of all, |Pv| ≥ 2, if v > v0;

moreover, if v is not an endpoint and v1, . . . , vSv are the Sv ≥ 1 vertices immediately

following it, then Pv ⊆ ∪iPvi ; if v is an endpoint, Pv = Iv. If v is not an endpoint,

we shall denote by Qvi the intersection of Pv and Pvi ; this definition implies that

Pv = ∪iQvi . The union Iv of the subsets Pvi \ Qvi is, by definition, the set of the

internal fields of v, and is non empty if Sv > 1.

2. Given τ ∈ Th,n, there are many possible choices of the subsets Pv, v ∈ τ , compatible

with all the constraints. We shall denote Pτ the family of all these choices and P the

elements of Pτ .

3. Given a tree τ and P ∈ Pτ , we shall define the χ-vertices as the vertices v of τ , such

that Iv (the union of the subsets Pvi \Qvi defined before (??), that is the set of lines

contracted in v) is non empty; note that |Vχ| is smaller than 4n.

4. We call v′ is the first vertex ∈ Vχ preceding v, and v0 the first vertex v ∈ Vχ in τ .

With these definitions, we can rewrite V(h)(τ, ψ(≤h)) as

V(h)(τ, ψ(≤h)) =
∑
P∈Pτ

V(h)(τ,P) V̄(h)(τ,P) =

∫
dxv0ψ̃

(≤h)(Pv0)K
(h+1)
τ,P (xv0) , (50)

where K
(h+1)
τ,P (xv0) is defined inductively and ψ̃(hv)(Pv) =

∏
f∈Pv

ψ
ε(f)(hv)
x′(f),ρ(f).

The tree structure provides an arrangement of endpoints into a hierarchy of clusters,

see Fig.5. Given a cluster with scale hv, one can imagine that the fields ψ̃(hv)(Pv1 \

Qv1),..,ψ̃
(hv)(PvSv

\QvSv
) are external to the Sv inner clusters, and the EThv operation contracts

them in pairs.

In order to get the final form of our expansion, we need a convenient representation for the

truncated expectation. Let us put Pi := Pvi \Qvi ; moreover we order in an arbitrary way the

sets P±
vi

:= {f ∈ Pvi , ε(f) = ±}, we call f±
ij their elements and we define x(i) = ∪f∈P−

i
x(f),

y(i) = ∪f∈P+
i
y(f), xij = x(f−

ij ), yij = x(f+
ij ). A couple l := (f−

ij , f
+
i′j′) := (f−

l , f
+
l ) will be

called a line joining the fields with labels f−
ij , f

+
i′j′ . Then, we use the Brydges-Battle-Federbush

formula [? ],[? ] saying that , if Sv > 1,

EThv(ψ̃
(hv)(Pi), · · · , ψ̃(hv)(PSv))) =

∑
Tv

∏
l∈Tv

[
δxl,yl ḡ

(hv)
ρl

(x′l, x0,l − y0,l)
] ∫

dPT (t) detG
hv ,T (t) ,

(51)
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FIG. 5: A tree of order 5 and the corresponding clusters. Only the vertices v ∈ Vχ are represented.

where Tv is a set of lines forming an anchored tree graph between the clusters of points

x(i) ∪ y(i), see Fig.6, that is Tv is a set of lines, which becomes a tree graph if one identifies

all the points in the same cluster. Moreover t = {tii′ ∈ [0, 1], 1 ≤ i, i′ ≤ Sv}, dPTv(t) is a

probability measure with support on a set of t such that tii′ = ui · ui′ for some family of

vectors ui ∈ RSv of unit norm.

Ghv ,T
ij,i′j′ = tii′δxij ,yi′j′ ḡ

(hv)
ρij

(xij, x0,ij − y0,i′j′) , (52)

with (f−
ij , f

+
i′j′) not belonging to Tv.

Definition 2.4 (T -trees):

1. We define T̄v =
∪
w≥v Tw starting from Tv and attaching to it the trees Tv1 , .., TvSv

associated to the vertices v1, .., vSv following v, and repeating this operation until

the end-points are reached. The tree T̄v is composed by a set of lines, representing

propagators with scale ≥ hv, connecting the end-points w of the tree τ .

2. To each line iw attached to w in T̄v is associated a factor δiww , and a) δiw = 0 if w

corresponds to a νh, αh, ζh end-point; b) δiw = ±1 if it corresponds to an ε end-point;

c) δiw = (0,±1) if it corresponds to a U end-point.

3. Given w1, w2 in T̄v such that x′w1
and x′w2

are coordinates of the external fields ψ̃(Pv),

and let be cw1,w2 the set of end-points in the path in T̄v connecting w1 with w2, including

w1, w2 (in the example in Fig. 7 the path is composed by w1, wa, wb, wc, w2 ). We call
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FIG. 6: A symbolic representation of a contribution to (??); the solid lines represent the propaga-

tors g(hv) in the tree Tv connecting the Sv = 3 clusters, represented as circles, the wiggly lines are

the external fields ψ̃(Pv); the fields in the determinant are not represented. Inside the 3 clusters

other trees connecting inner clusters or points must be imagined, and so on.

i∗w the line following w in cw1,w2 starting from w1. We call |cw1,w2| the number of

vertices in cw1,w2 .

By using the above definitions

x′w1
− x′w2

= (x̄ρℓw2
− x̄ρℓw1

) +
∑

w∈cw1,w2

δi
∗
w
w (53)

The above relation implies, in particular, that the coordinates of the external fields ψ̃(Pv0)

are determined once that the choice of a single one of them and of τ, T̄v0 and P is done.

Definition 2.5 (L and H vertices)

1. If the coordinates x′ of the fields ψ̃(Pv) are the same we say that v is a resonant vertex,

while if the coordinates are different is called non resonant vertex; the set of resonant

vertices in Vχ is denoted by Hχ and the set of non-resonant vertices is denoted by Lχ.

2. We define H̄χ the union of Hχ and the non-resonant end-points (that is the ε, U

end-points) L̄χ the union of Lχ and the resonant end-points (that is the νh, ζh, αh

end-points).
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w1
wa

wbwc

w2

FIG. 7: A tree T̄v with attached wiggly lines representing the external lines Pv; the lines represent

propagators with scale ≥ hv connecting w1, wa, wb, wc, w2, representing the end-points following v

in τ .

3. If vi i = 1, . . . , vSv are the vertices (including end-points ) such that v′i = vi; among

such vertices there are SLv vertices belonging to L̄χ and SHv vertices belonging to H̄χ

so that

Sv = SLv + SHv (54)

D. Graphs

Let us first set R = 1 and we can write

V(h)(ψ(≤h)) =
∞∑
n=1

∑
τ∈Th,n

∑
G∈G(τ)

Val(G) (55)

where G(τ) is the set of Feynman graphs of order n obtained associating to each end-point

a graph element as in Fig.1, and joining (contracting) the lines with consistent orientation

so that all the n vertices are connected. With respect to the Feynman graph seen in the

previous section, each propagator carries an index hv, if v is the minimal cluster containing

the propagator.

An immediate bound for each Feynman graph is, if |U |, |ε| ≤ ε0, and remembering that
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U

U

U

FIG. 8: A tree τ (only the vertices v ∈ Vχ are represented), the corresponding clusters, represented

as boxes, and a Feynman graph; the propagators have scale hv1 and hv2 respectively.

Sv is the number of clusters contained in the cluster v

|Val(G)| ≤ εn0C
n
∏
v∈Vχ

γ−(Sv−1)hv (56)

The above estimate is immediately obtained considering a tree of propagators connecting

all vertices, bounding by a constant the propagators not belonging to such tree and by γ−hv

the integrals of each one of the Sv − 1 propagators in the tree connecting the vertices in the

cluster v. The above bound can be rewritten as

|Val(G)| ≤ εn0C
nγhv0 [

∏
v∈Vχ,v ̸=v0

γ−D(hv′−hv)][
∗∏

v∈e.p.

γ−hv′ ] (57)

where D = 1 is the scaling dimension. The bound (??) do not provide a finite result

when summed over the scales hv. As we will see in §2.F the R operation produces an extra

factor
∏

v∈Hχ
γ2(hv′−hv) in the bound, making the dimension of the resonant vertices negative

D = −1. Moreover, as we will see in the following section, the diophantine condition implies

that the dimension of the non resonant vertices can be improved.

E. The non resonant terms

Consider a non resonant vertex v and x′w1
and x′w2

are coordinates of two external fields,

with x′w1
− x′w2

given by (??). The Diophantine conditions imply a relation between the
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scale hv and the number of vertices between w2 and w1 in T̄v.

Lemma 2.2 Given τ,P,T, let us consider v ∈ L̄χ and w1, w2 two vertices (possibly coin-

ciding) in T̄v, see (??), with x′w1
̸= x′w2

; then

|cw1,w2| ≥ Aγ
−hv′

τ (58)

with a suitable constant A.

Proof. Note that ||ωx′wi
||1 ≤ cv−1

0 γhv′−1, i = 1, 2 by the compact support properties of

the propagator; therefore by using (??) and the Diophantine condition, if

2cv−1
0 γhv′ ≥ ||(ωx′w1

)||+ ||(ωx′w2
)|| ≥ ||ω(x′w1

− x′w2
)|| = (59)

||(x̄ρℓw2
− x̄ρℓw1

)ω + ω
∑

w∈cw1,w2

δiww || (60)

If ρℓw2
= ρℓw1

by the first of (11) we get

2cv−1
0 γhv′ ≥ C0

|
∑

w∈cw1,w2
δiww |τ

(61)

.

If ρℓw2
= ε, ρℓw1

= −ε, ε = ± then

||(x̄ρℓw2
− x̄ρℓw1

)ω + ω
∑

w∈cw1,w2

δiww || = ||2εωx̂+ 2εθ + ω
∑

w∈cw1,w2

δiww || (62)

and if
∑

w∈cw1,w2
δiww + 2εx̂ ̸= 0 by the second of (11)

2cv−1
0 γhv′ ≥ C0

|2εx̂+
∑

w∈cw1,w2
δiww |τ

≥ C0

(2|x̂|+ |
∑

w∈cw1,w2
δiww |)τ

≥ C0

|
∑

w∈cw1,w2
δiww |τ

(63)

Finally if
∑

w∈cw1,w2
δiww + 2εx̂ = 0 then cv−1

0 γhv′ ≥ ||2θ|| ≥ ||2θ|| |2x̂|τ

|
∑

w∈cw1,w2
δiww |τ . The fact

that |
∑

w∈cw1,w2
δiww | ≤ |cw1,w2 | ends the proof.

Lemma 2.2 says that there is a relation between the number of end-points following v ∈ Lχ

and the scales of the external lines coming out from v. In particular the U, ε-endpoints with

scale hv = 2 have |cw1,w2| = 1, hence the scale of the first vertex v ∈ Vχ preceding the

end-point is bounded by a constant.

Lemma 2.3 Given τ,P,T the following inequality holds, for any 0 < c < 1

cn ≤
∏
v∈L̄χ

cAγ
−hv′

τ 2hv′−1

(64)
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Proof. If v ∈ Vχ and Nv =
∑

i,v∗i>v
1 is the number of end-points following v in τ then

cn ≤
∏
v∈Vχ

cNv2
hv′−1

(65)

Indeed we can write c =
∏0

h=−∞ c2
h−1

. Given a tree τ ∈ Th,n, we consider an end-point v∗

and the path in τ from v∗ to the root v0; to each vertex v ∈ Vχ in such path with scale hv we

associate a factor c2
hv−2

; repeating such operation for any end-point, the vertices v followed

by Nv end-points are in Nv paths, therefore we can associate to them a factor cNv2hv−2
;

finally we use that c2
hv−2

< c2
hv′−2

.

Note that if v is non resonant, there exists surely two external fields with coordinates

x′1, x
′
2 such that x′1 ̸= x′2; note that

Nv ≥ |cw1,w2| ≥ Aγ
−hv′

τ (66)

therefore, by (??), (??) follows, .

By combing the above results we get the following final lemma which will play a crucial

role in the following. We choose γ
1
τ /2 ≡ γη > 1; for instance γ = 22τ , η = 1

2τ
.

Lemma 2.4 Given τ,P,T the following inequality holds

[
∏
v∈L̄χ

cAγ
−hv′

τ 2hv′ ] ≤ C̄n[
∏
v∈Vχ

γhvS
L
v ][

∏
v∈L̄χ

γhv′ ] (67)

with C̄ = [ 2
| log |c||A ]

2e−2].

Proof As we assumed γ
1
τ /2 ≡ γη > 1 than, for any N

cAγ
−h
τ 2h = e−| log c|Aγ−ηh ≤ γNηh

N

[| log |c||A]NeN
(68)

as e−αxxN ≤ [N
α
]Ne−N , and (??) follows choosing N = 2/η.

F. The resonant terms

In the previous section, and in particular in Lemma 2.4, we have seen that the Diophantine

condition implies an extra factor γ2hv′ for any non resonant vertex v ∈ L̄χ, at the cost of an

harmless constant c−n, where n is the perturbative order. There is no such a gain for the
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resonant vertices, and one has to exploit the R operation in order to gain factors allowing

at the end to sum over all the scales hv of the tree τ . In addition, the R operation, when

applied over vertices with a large number of external fields, gives also, combined with lemma

2.3, a factor allowing the sum over Pv.

Let us start considering the resonant vertices. The effect of the R operation on the

vertices v ∈ Hχ consists in replacing a ψ fields with a T field (??) when |Pv| = 2, or to

replace at least two fields with D-fields (??) if |Pv| ≥ 4; if such fields are contracted at a

scale hv′ , the replacement of a ψ with a D fields implies the replacement of a propagator

ḡ(hv′ )(x′, x0,1 − z0) with

ḡ(hv′ )(x′, x0,1 − z0)− ḡ(hv′ )(x′, x0,2 − z0) (69)

In the bounds, it can be convenient to write such difference as

(x0,1 − x0,2)

∫ 1

0

dt∂ḡ(hv′ )(x′, x̂0,1,2(t)− z0) (70)

where x̂0,1,2(t) = x0,1 + t(x0,2 − x0,1) is an interpolated point between x0,1 and x0,2; note

that replacing g(hv′ )(x′, x0,1 − z0) with (??) produces at least an extra factor γhv′−hv in the

bounds. Similarly replacing a ψ with a T field can produce an improvement γ2(hv′−hv) so

that, in conclusion, for each v ∈ Hχ the R operation produces an extra factor γ2(hv′−hv).

In order to get a finite bound on the kernels of the effective potential, in addition to

the sum over the trees and the scale labels hv, there is also the sum over the sets Pv.

Let us consider the vertices v with a large |Pv|. Note that the external lines have labels

(εi, ρi) = (±,±); therefore Pv can be decomposed in 4 groups, and we denote by ρ̄, ε̄ the

labels of the external fields whose number is maximal; we call mv this subset of Pv and

|mv| ≥ |Pv|/4; we replace the D fields in Pv not belonging to mv with ψ fields. We consider

a tree T̄v and we define a pruning operation associating to it another tree T̂v eliminating

from T̄v all the non branching vertices w in T̄v not associated to any external line with label

ρ̄, ε̄, and all the subtrees not containing any external line with label ρ̄, ε̄ (see Fig. 9 for an

example), so that there is an external line associated to all end-points. The vertices w of

T̂v are then only branching vertices or non branching vertices with external lines ρ̄, ε̄; all

the end-points have associated an external line. We define a procedure to group in couples

the fields in mv, such that every field belongs to a couple and at most to two couples, and

the paths in T̂v connecting the coordinates of the points in the couple are non overlapping.
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w9w10

w11

w12

FIG. 9: In the picture the lines represent the propagators with scale ≤ hv in T̂v and the wiggly

lines represent the external lines Pv with label ρ̄; note that, by definition of the pruning operation,

all the end-points have associated wiggly lines, contrary to what happens in T̄v, see Fig. 7.

The procedure starts by a first pruning operation considering the end-points wa immediately

followed by vertices wb with external lines (in the tree in Fig. 9 the vertices are w10, w11 or

w4, w5); we say that the couple of fields in wa, wb is of type 1 if x′wa
= x′wb

, while it is of

type 2 if x′wa
̸= x′wb

. We now cancel the end-points wa already considered and the resulting

subtrees with no external lines; in the resulting tree we select an end-point wa immediately

followed by vertices wb with wiggly lines, and again such a couple can be of type 1 or 2; we

continue unless there are no end-points w followed by vertices with wiggly line (the result

of this pruning operation on the tree in Fig 9 is Fig. 10).

In the second pruning operation we consider (if they are present, otherwise the tree

is trivial and the procedure ends) a couple of endpoints followed by a branching vertex

(in the picture w1, w2 or w9, w12); we call them wa, wb and we proceed exactly as above

distinguishing the two kind of couples. We then cancel such end-points wa, wb and the

subtrees not containing external lines, (the result of this operation on the tree in Fig. 10 is

in Fig 11). If the resulting tree has again end-points with external lines followed by vertices

with external lines, we prune such vertices as in the first step and we continue in this way

so that at the end all except at most one vertex with external lines are considered.

Note that by construction the paths cwa,wb
in T̂v do not overlap; for instance in Fig.8

the paths are cw10,w11 , cw4,w5 , cw1,w2 , cw9,w12 , cw5,w6 , cw6,w7 , cw7,w11 . Therefore, given a vertex
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FIG. 10: The tree in Fig. 9 after the first pruning operation.

w6

w5

w7

w11

FIG. 11: The tree in Fig. 9 after the second pruning operation.

v in the tree τ , we have that every external field belongs to a couple and at most to two

couples, and the paths in T̂v connecting the coordinates of the points in the couple are non

overlapping. The fields in the couples can have the same x′ or different x′. In a couple of

fields with the same x′ one is surely a D-fields; we then write it as (??) which will produce

in the bounds a factor γ(hv′−hv) ≤ γ−1, as hv′ − hv ≤ −1. On the other hand given w,w′

with x′w ̸= x′w′ , we have |cw,w′′ | ≥ Bγ−hv′/τ by lemma 2.2; moreover by Lemma 2.3 we can

associate to each v ∈ Vχ a factor cNv2
hv′−1

with Nv the vertices in T̄v; as the paths cw,w′ are

non overlapping, we get one factor c|cw,w′ |2hv′ ≤ cBγ
−hv′/τ2hv′ ≤ γ−1 for c small enough, for
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each of the couples. As we can associate a factor γ−
1
2 to each field in a couple, we get at the

end a factor γ−|mv |/2 ≤ γ−|Pv |/8.

The result of the above operations is the following representation for the effective potential

(for more details on how derive such representation in a similar case see for instance §3.3 of

[? ])

V (h) =
∞∑
n=1

∑
τ∈Th,n

∑
T∈T

∑
P∈Pτ

∑
α∈AT

∑
x

∫
dx0,v0Hτ,P,T,α(x, x0,v0)

∏
f∈Pv0

∂
qα(f)

γhx0(f)
ψ

(≤h)ε(f)
x̂′(f),ρ(f) (71)

and

Hτ,P,T,α(x, x0,v0) = Kτ,P,T,α

∏
v not e.p.

1

Sv!

∫
dPT (t) det G̃

hv ,Tv
α (tv) (72)

∏
l∈Tv

∂
qα(f

+
l )

γhvx0,l
∂
qα(f

−
l )

γhvx0,l
(γhl(x0,l − y0,l))

bα(l)ḡ(hv)ρl
(x′l;x0,l − y0,l))

∣∣]

where T is the set of the tree graphs on xv0 , obtained by putting together an anchored tree

graph Tv for each non trivial vertex v, AT is a set of indices which allows to distinguish the

different terms produced by the non trivial R operations and the iterative decomposition of

the zeros Ghv ,Tv
α (tv) has elements

Ghv ,Tv
α,ij,i′j′ = tv,i,i′δxij ,yi′j′∂

qα(f
+
ij )

γhvx0ij
∂
qα(f

−
ij )

γhvx0ij
g(hv)(xij, x0,ij − y0,i′j′) (73)

The indices qα, bα ∈ (0, 2) are such that, by construction and for c < 1

|Kτ,P,T,α| ≤ c−n
∏
v∈Hχ

γ2(hv′−hv)γ−
1
8
|Pv | (74)

The factor
∏

v∈Hχ
γ2(hv′−hv) is obtained by the action of R on the resonant term; the

factor γ−
1
2
|Pv | is obtained by the by the action of R and by Lemma 2.3.

Regarding the flow equation for νh we get

νh−1 = γνh + γ−h
∑
n≥2

∑
τ∈Th,n

∑
T∈T

∑
P∈Pτ

∑
α∈AT

∫
dx0,v0Hτ,P,T (0, x0,v0) (75)

where by construction on the first vertex of the trees v0 the L operation acts and v0 ∈ Vχ;

a similar expression holds for the ζh,ρ, αh,ρ.
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G. Bounds for the effective potential

In this section we get a bound for the kernels of the effective potential defined in (??).

Lemma 2.5 If n = nν + nU + nε + nα + nζ the following bound holds

1

βL

∑
τ∈Th,n

∑
T∈T

∑
P∈Pτ

∑
x

∫
dx0,v0|Hτ,P,T,α(x, x0,v0)| ≤

Cnγhv0 (sup
k≥h

|νk|)nν ( sup
x′,ρ,k≥h

|ζk,ρ|)nζ( sup
x′,ρ,k≥h

|αk,ρ|)nα |U |nU |ε|nε (76)

where C is a suitable constant.

Proof We start from (??) and, in order to bound the matrix G̃h,T
ij,i′j′ , we introduce an Hilbert

space H = ℓ2 ⊗ Rs ⊗ L2(R1) so that

G̃h,T
ij,i′j′ =

(
vxij ⊗ ui ⊗ A(x0,ij−, xij) , vyi′,j′ ⊗ ui′ ⊗B(y0,i′j′−, xij)

)
, (77)

where v ∈ RL are unit vectors such that (vi,vj) = δij, u ∈ Rs are unit vectors (ui, ui) = tii′ ,

and A,B are vectors in the Hilbert space with scalar product

(A,B) =

∫
dz0A(x

′, x0 − z0)B
∗(x′, z0 − y0) (78)

given by

A(x′, x0 − z0) =
1

β

∑
k0

e−ik0(x0−z0)
√
fh(ωx′, k0)

B(x′, y0 − z0) =
1

β

∑
k0

e−ik0(y0−z0)
√
fh(ωx′, k0)

−ik0 + cos 2π(ωx′ + x̄ρ + θ)− cos 2π(x̄ρ + θ)

Moreover

||Ah||2 =
∫
dz0|Ah(x′, z0)|2 ≤ Cγh , ||Bh||2 ≤ Cγ−h , (79)

for a suitable constant C. Therefore by Gram-Hadamard indequality we get:

|detG̃hv ,Tv(tv)| ≤ C
∑Sv

i=1 |Pvi |−|Pv |−2(Sv−1) . (80)

Assume first that v0 is non resonant; by using (??),(??) we get

1

Lβ

∑
x

∫
dx0,v0|Hτ,P,T,α(x, x0,v0)| ≤ (81)

c−n[
∏
v

1

Sv!
][
∏
v∈Vχ

γhvS
L
v ][

∏
v∈L̄χ

γhv′ ][
∏

v∈Hχ,v ̸=v0

γ2(hv′−hv)]

[
∏
v∈Vχ

γ−
1
8
|Pv |][

∏
v∈Vχ

γ−hv(S
H
v +SL

v −1)][
∗∏

v∈e.p.

γhv′ ](sup
k≥h

|νk|)nν ( sup
x′,ρ,k≥h

|ζk,ρ|)nζ( sup
x′,ρ,k≥h

|αk,ρ|)nα|U |nU |ε|nε
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where
∏∗

v∈e.p. is over the νh, αh, ζh end-points and by construction in
∏∗

v∈e.p. γ
hv′ one has

hv′ = hv − 1. We use that
∏

v∈Vχ γ
−hvSH

v =
∏

v∈Hχ,v ̸=v0 γ
−hv′

∏∗
v∈e.p. γ

−hv′ and
∏

v∈Vχ γ
hv ≤

γhv0
∏

v∈Vχ,v ̸=v0 γ
hv ; therefore

[
∏
v∈Vχ

γ−hv(S
H
v −1)][

∏
v∈Hχ

γhv′−hv ][
∗∏

v∈e.p.

γhv′ ] ≤ γhv0 (82)

so that

1

Lβ

∑
x

∫
dxv0|Hτ,P,T,α(x,xv0)| ≤ γhv0 [

∏
v

1

Sv!
][
∏
v∈L̄χ

γhv′ ] (83)

[
∏
v∈Hχ

γ(hv′−hv)][
∏
v∈Vχ

γ−α|Pv |](sup
k≥h

|νk|)nν ( sup
x′,ρ,k≥h

|ζk,ρ|)nζ( sup
x′,ρ,k≥h

|αk,ρ|)nα|U |nU |ε|nε

Note that
∑

P[
∏

v∈Vχ γ
− 1

8
|Pv |] ≤ Cn, see for instance §3.7 of [? ] for a proof; moreover∑

T[
∏

v
1
Sv !

] ≤ Cn, see Lemma 2.4 of [? ]. The sum over the trees τ is done performing the

sum of unlabeled trees and the sum over scales. The unlabeled trees can be bounded by

4n by Caley formula, and the sum over the scales reduces to the sum over hv, with v ∈ Vχ,

as given a tree with such scales assigned, the others are of course determined. We use that∏
v∈L̄χ

γhv′ =
∏

v∈Lχ
γhv′

∏∗∗
v∈e.p. γ

hv′ where
∏∗∗

v∈e.p. is over the v corresponding to the ε, U

end-points; moreover trivially
∏

v∈Lχ
γhv′ ≤

∏
v∈Lχ

γ(hv′−hv). Therefore

∑
{hv}

][
∏
v∈L̄χ

γhv′ ][
∏
v∈Hχ

γ(hv′−hv)] ≤
∑
{hv}

][
∏
v∈Vχ

γ(hv′−hv)][
∗∗∏

v∈e.p.

γhv′ ] ≤ Cn (84)

where we have summed over the all possible difference of scales (the scale of the root is

fixed) and we have bounded by 1 the factor [
∏∗∗

v∈e.p. γ
hv′ ]. A similar boud is obtained if v0

is resonant, using that hv′0 ≡ h and an extra factor γ2(h−hv0 ) appears in (??).

H. The flow of the running coupling constants

The above lemma ensures convergence provided that the running coupling constant vk

remain small for any k; this is obtained by choosing properly the counterterm ν. We can

write

νh−1 = γνh +
∞∑
n=2

βνh,n αh−1,ρ = ah,ρ +
∞∑
n=2

βαh,n ζh−1,ρ = ζh−1 +
∞∑
n=2

βζh,n (85)
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Lemma 2.6 If v = ν, α, ζ and (ωx′) in the support of χh

|βvh,n| ≤ Cnγ
h
2 (sup
k≥h

|νk|)nν ( sup
x′,ρ,k≥h

|ζk,ρ|)nζ( sup
x′,ρ,k≥h

|αk,ρ|)nα |U |nU |ε|nε (86)

Proof By (??)

γhβνh,n =
∑
τ∈Th,n

∑
T∈T

∑
P∈Pτ

∑
α∈AT

∫
dx0,v0Hτ,P,T (0, x0,v0) (87)

and v0 ∈ Vχ. The r.h.s. of (??) verifies the same bound as the r.h.s. of (??); indeed

in v0 no R is applied and by definition hv0 = h; the same is true for βζh, β
α
h . Moreover

no contributions from trees with all the endpoints associated to νh, αh, ζh are possible; the

corresponding graphs are chains, whose value is vanishing by the compact support properties

of the propagator. Therefore in the trees giving a nonvanishing contribution there is at least

a vertex with scale 0 corresponding to an ε or U end-point so that (??) is replaced by

∑
{hv}

][
∏
v∈L̄χ

γhv′ ][
∏
v∈Hχ

γ(hv′−hv)] ≤ γ
h
2

∑
{hv}

][
∏
v∈Vχ

γ(hv′−hv)/2][
∗∗∏

v∈e.p.

γhv′/2] ≤ Cnγ
h
2 (88)

It remains to prove that we can choose ν so that the running coupling constants are

bounded uniformly in h. First we write, for h ≤ −1, if βνk =
∑∞

n=2 β
ν
k,n

νh = γ−h(ν0 +
0∑

k=h+1

γk−1βνk ) (89)

Lemma 2.7 There exists ν0 such that

sup
k

|νk|+ sup
x′,ρ,k

|ζk,ρ|+ sup
x′,ρ,

|αk,ρ| ≤ Cmax(|ε|, |U |) (90)

for a suitable constant C.

Proof. In order to fix ν−∞ = 0 we choose

ν0 = −
0∑

k=−∞

γk−1βνk (91)

so that

νh = −
h∑

k=−∞

γk−h−1βνk (92)



31

We consider the space M of sequences ν such that |νh| ≤ Cmax(|ε|, |U |); we shall think

to M as a Banach space with norm ||ν|| = supk≤0 |νk|. We look for a fixed point of the

operator T : M → M defined as

(Tν)h = −
h∑

k=−∞

γk−h−1βνk (ν) (93)

By using (??) we see that T leaves M invariant; moreover

|βνk (ν)− βνk (ν
′)| ≤ C(max(|ε|, |U |))γ

h
2 ||ν − ν ′|| (94)

as β
(h)
n is vanishing if nε = nU = 0. Therefore a unique fixed point for T exists. Finally with

the above choice for ν ones has, from (??)

|αh,ρ| ≤
0∑

k=h

|βαk | ≤
0∑

k=h

C(max(|ε|, |U |))γ
h
2 ≤ C1max(|ε|, |U |)

|ζh,ρ| ≤
0∑

k=h

|βζk | ≤
0∑

k=h

C(max(|ε|, |U |))γ
h
2 ≤ C1max(|ε|, |U |)

(95)

By using lemma 2.5 and 2.7 the convergence of the expansion for the kernel of the effective

potential follows.

I. The 2-point function

We have finally to get a bound for the two-point function, which can be written as

S(x,y) =
∞∑
n=2

Hn(x,y) (96)

where Hn(x,y) is sum over trees with n end-points and any value of hv0 , among which there

are 2 special end-points associated to the external lines and n−2 are associated normal end-

points of type ε, U, νh, αh, ζh. Note that there is necessarily a path cw1,w2 in T̂v connecting

the points w1, with xw1 = x and w2 with xw2 = y such that by (??) |x − y| ≤ |cw1,w2|;

moreover |cw1,w2 | ≤ n so that Hn = 0 for n < |x − y|. No R operation is applied in v0

and with respect to the bound to the effective potential (??) there is an extra γ−hv0 for the
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presence of the external lines and of one integral missing due to the fact that the coordinates

of the external lines are fixed. The sum over the scales is bounded by |h̄| with

γ−h̄ ≤ max
k∈0,n

max
ρ=±1

1

||ω(x+ k)− ωρx̂− 2δρ,−1θ||
≤

C(1 + min{|x|, |y|}+ n)τ ≤ C(1 + min{|x|, |y|})τ (1 + n

1 + min{|x|, |y|}
)τ (97)

so that in conclusion, using Lemma 2.6 and 2.7

|S(x,y)| ≤
∑

n≥|x−y|

(max(|ε|, |U |))nCn log[(1 + min{|x|, |y|})τ (1 + n

1 + min{|x|, |y|}
)τ ]

≤ e−
α
2
| logmax(|ε|,|U |)||x−y| log[(1 + min{|x|, |y|})τ ] (98)

We can get another bound, which is better for large |x0 − y0|; by integrating by parts and

using that each derivative carry an extra γ−hv0 one gets

|S(x,y)| ≤ e−
α
2
| logmax(|ε|,|U |)||x−y| CN

1 + (min{|x|, |y|}−τ |x0 − y0|)N
(99)

and combining the above two bounds, Theorem 1.1 follows.
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