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Chapter 1

Introduction

Modern power systems management relies on solving several advanced mathematical

problems at different levels. With the development of mathematical programming

techniques more and more complex models have been formulated to support deci-

sions in power systems.

The Unit Commitment Problem (UCP), where a set of power plants needs to

be scheduled to satisfy energy demand and other system-wide constraints, has been

employed for decades to support operational planning of power plants. The model

has been used to simulate whole systems as well, which include transmission net-

works and energy markets, to support strategic decisions on medium and long term

horizons. Compared to the operational case, a medium-term model represents more

components of the system on a larger scale. Therefore, to limit the complexity, a

coarser representation of the single components, often with a linearised approxima-

tion, is adopted for these models. On the other hand, these models are typically

used to evaluate long-term decisions on the system, by simulating its ideal behaviour

under different scenarios, hence low-level details of the system, that would be other-

wise critical for operational decisions, can still be abstracted without impacting on

the reliability of the simulation.

Large-scale linear UCP models for medium-term simulations are usually quite

expensive to solve to high accuracy, and require either large-scale computing power

or long solution times. In this work we tackle the problem of performing accurate

medium-term power systems simulations with the additional requirements of em-

ploying conventional computing power, such as personal computers, and a solution

time of a few hours. The problem is routinely faced by our industry partner, the En-

ergy Systems Development department at RSE S.p.A. (Ricerche Sistema Energetico,

Energy System Research), a major industrial research centre on power systems in
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Italy. While good heuristic solutions, that is with an optimality gap below 10%, can

be found for large-scale UCPs in affordable time with the mentioned setting, more

accurate solutions, for example with a gap below 1%, are sought to improve the re-

liability of the simulations and help domain experts, who may not be familiar with

the details of mathematical programming methods, to better support their analysis.

The goal of this thesis is to investigate mathematical programming techniques

to efficiently solve these large-scale linear UCPs with high-accuracy. In particular,

we seek to obtain the following results: a fast heuristic with a lower bounding

procedure, to provide good approximated simulations with a quality estimate, and

a refinement procedure, to improve the heuristic solution quality if needed. Among

the ideas we explored the following methods are the most promising: a matheuristic

to efficiently compute good solutions and two exact bounding methods: column

generation and Benders decomposition. These methods decompose the problem by

decoupling the commitment of thermal plants, represented by discrete variables, and

their level of production, represented by continuous variables. The thesis is organised

as follow. In chapter 2 we introduce the general problem of power systems simulation.

In chapter 3 we introduce the UCP variant subject of this study. In chapter 4

we propose a matheuristic which employs aggregation, continuous relaxations and

spatial decomposition to obtain high quality approximated solutions in affordable

time. In chapter 5 we propose a column generation method to compute accurate

bounds for the problem; we devised an ad-hoc combinatorial exact pricing algorithm,

a hybrid master dual optimisation method and a rounding heuristics. In chapter 6

we propose a Benders decomposition method which uses refined optimality cuts and

a two-phase heuristic, which first quickly computes valid Benders cuts by solving

the continuous relaxation of the problem, and then restores integrality constraints to

continue with the standard Benders decomposition. Finally, in chapter 7 we report

an empirical analysis of the complexity and numerical stability of the problem and

its relaxations.

From this study we conclude that advanced algorithms are needed to solve these

large-scale UCPs to the desired accuracy. On the other hand, degeneracy and flat-

ness in the objective function cause state-of-the-art methods and solvers to converge

slowly or to fail to converge due to numerical instability issues. Experimental solvers

(Desrosiers et al., 2015; Castro, 2014) have been recently proposed that may help

overcome these difficulties by directly tackling sparsity and degeneracy. Unfortu-

nately, these solvers lack an adequate implementation to be directly applied to real

world problems like ours.
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Degeneracy and flatness in the objective function are inherent properties of the

model, derived by its size. In other terms, the decision of changing the schedule

of a few power plants over a few hours is unlikely to have a sensible impact over

the global objective as several other power plants and periods are involved. Thus

a solver that explores the solution space finds candidate solutions embedded in

large neighbourhoods of alternatives with similar value, a “plateau” which causes

exploration to stall.

Contents from this thesis have already been published in international journals

or presented to international conferences.

Publications in international journal or conferences with peer-reviewed published

proceedings:

• Taverna, A. (2016), Benders Decomposition on Large-Scale Unit Commitment

Problems for Medium-Term Power Systems simulations. In Gesellschaft für

Operations Research 2016 (GOR 2016) - submitted August 2016.

• Ceselli, A., Gelmini, A., Righini, G., and Taverna, A. (2014). Mathematical

programming bounds for large-scale unit commitment problems in medium-

term energy system simulations. In SCOR 2014 – 4th Student Conference on

Operational Research.
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Chapter 2

Medium-term Power Systems

simulation

This chapter describes the real-world problem that motivated our work: the simu-

lation of electric power systems for strategic decision support. Section 2.1 describes

the main characteristics of power systems considered in the simulation. Section 2.2

describe the assumptions and points of view adopted for the simulation.

2.1 Power Systems

A power system supports the production and exchange of electric power. Real-world

power systems cover large geographical areas, possibly spanning different countries,

and coordinate both large-scale and small-scale production. This study focuses on

systems for the bulk production of electricity and its transmission through high-

voltage lines. They are assumed to have the following elements:

• power plants, controlled by producers;

• a capacitated power network, to exchange power among different parts of the

system;

• a system-wide electricity exchange, where producers bid against one another

to share demand.

Electricity can be easily transmitted through power lines across the system in

short time, as its speed is comparable to the speed of light, but it is hard to store

in large quantities. For most power systems it is not practical to satisfy demand by

relying on stored electricity. On the other hand, mismatches between supply and

5
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demand can be likely disruptive as they compromise the stability of the network

and lead to discharges or blackouts. Therefore, the system constantly requires an

accurate match between consumption and production.

Suppliers and consumers coordinate through bidding in the system-wide ex-

change to balance demand and supply at minimum cost. Auctions are generally

held daily or hourly, with power being traded with hourly resolution or higher. As

demand is uncertain (fig. 2.1), each market player needs to bid according to demand

forecasts. The system then holds different auctions with different timings and con-

tract types to deal with provisioning errors and secure the overall balance. The most

important market is the day-ahead market where power is traded every 24 hours for

the next day. The system can have an intra-day market as well, where power is

traded at higher frequency, e.g. each hour, allowing to fix unbalances determined

by previous market sessions.

Figure 2.1: Total daily purchased power in the 2014 Italian Day-Ahead market
(GME, 2014)

Several types of power plants are available in modern power systems. In most

cases, a power plant converts the mechanical energy of a fluid flow, such as water

or steam, into electricity through a turbine, in turn connected to an electric gener-

ator. In Europe and most other systems the plants that provide the fundamental

generation capacity are thermal and hydroelectric power plants.

Thermal power plants produce electricity by consuming fuels, such as coal, lig-

nite, oil, natural gas or nuclear fuels They need a proper mixture of fuels to operate

and require complex operations for production and maintenance. In particular,

varying the production level or switching the state, from active to inactive or vice
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Total net production 3,031,853
of which:
Conventional thermal 1,442,237
Nuclear 830,842
Hydro 400,647
of which from pumped storage 30,798

Wind 251,265
Solar 96,616
Geothermal 5,817
Other 4,429

Imports 386,930
Exports 371,432
Energy absorbed by pumping 43,051
Energy supplied 3,004,300

Table 2.1: Production breakdown for EU-28 in 2015 (Eurostat, 2015). Values in
[GWh]

versa, can require significant time and effort depending on the technology employed.

Furthermore, with the exception of nuclear plants, during production they emit

significant quantities of CO2 and pollutants, such as nitro-oxides NOX , which are

subjected to fees and regulations. Compared to other plants, they bear high costs

of production.

Hydroelectric power plants produce electricity by driving turbines via water

streams, originating from rivers or reservoirs. Reservoirs can be fed via an up-

stream river, a pumping mechanism (pumped storage) or both. Plants with little or

no reservoir capacity, called Run-Of-the-River (ROR) depend entirely on the down-

stream water flow for their production. Compared to thermal plants, hydroelectric

plants provide clean energy with negligible production costs. In particular, plants

with reservoir play an important role in balancing the system as they store energy, by

collecting water in the reservoir, during low-demand periods and release it, emptying

the reservoir to increase production, during high-demand periods.

Other relevant power plants are wind and photo-voltaic (PV) plants. They can

provide a considerable amount of renewable energy to the system and with negligible

production costs, but their supply is intermittent and volatile and, thus, cannot be

relied upon to ensure the stability of the system.

Power plants can be classified according to the reliability of their supply and its

ability to follow demand fluctuations. A first distinction is dispatchability. A power

plant is dispatchable if its production can be timely controlled by system actors,
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such as the plant owner or grid operators. Thermal power plants and hydroelectric

power plants with reservoir are dispatchable. ROR plant, wind power plants and

PV power plants are not dispatchable.

Dispatchable power plants can be further characterised by their flexibility, which

is the extent they can switch state, from on to off or vice versa, to timely follow

changes in the demand. Flexibility can be measured in terms of the number of

hours needed or the costs born by the plant operator to switch state. Hydroelectric

plants with reservoir offer high flexibility, In thermal power plants depends on the

technology used.

Non-dispatchable, or intermittent, power sources can instead be characterised by

their variability, defined as the degree with which their production level can change in

an unexpected way, or, equivalently, the effort required to adequately forecast their

production. Production from ROR plants generally exhibits low variability and can

be effectively predicted, while wind and PV power productions are normally highly

volatile (Brouwer et al., 2014).

The presence of variable and non-dispatchable power supply aggravates the prob-

lem of efficiently balancing the system as it increases uncertainty in the net demand,

posing a risk to the stability of both market and network (Brouwer et al., 2014) (La-

nati et al., 2015). To handle demand uncertainty and ensure profitability, producers

adopt different load sharing policies, which can be broadly divided into three classes:

• base-load: for power plants that can continuously satisfy the base load, i.e.

the minimum level of demand to ensure the stability of the network. Their

supply has low variability and they run for most of the year. They require low

production costs to be competitive but do not need high flexibility.

• peaking: for power plants that cover peak demands, i.e. periods of high demand

and high electricity prices. As they run for a limited amount of time during

the year, they bid supply at high prices and require the highest flexibility.

• mid-load: for power plants that can follow the variation of demand throughout

the day. They have production costs and flexibility which are between the ones

offered by base-load and peaking power plants.

In figure 2.2 we illustrate a possible division of the daily load among plants with dif-

ferent strategies. According to this classification, hydroelectric plants with reservoir

can adopt all the three strategies as they offer high flexibility and low production
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costs. Among the thermal plants, nuclear plants and older coal-powered plants adopt

most often the base-load scheme. Combined-Cycle Gas Turbine plants (CCGT) are

a well-known class of peaking thermal plants and are usually fuelled by natural gas

to ensure low production costs and higher efficiency. Other thermal plants fit into

either the base-load or the mid-load class.

Finally, the system can exchange energy with outer systems as well, by importing

or exporting power through cross-border lines. Exchanges between the system and

the external world are decided outside the global exchange.
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Figure 2.2: Illustration of daily load and possible corresponding strategies for power
plants.

2.2 Power Systems simulation

In this section we frame our work by describing the kind of power system simulation

subject of this study.

In the literature this approach has been used extensively by domain experts

(Burstedde, 2012; Leuthold et al., 2010; Lienert and Lochner, 2012; Spieker et al.,

2015; Lanati et al., 2015; Zhang et al., 2016) to directly simulate and compare

different scenario hypothesis accounting for variability of demand, fuel prices and

other exogenous variables over the year. Simulations are expected to return plausible

estimates for aggregated descriptors of the system, such as overall fuel consumption

or energy production, and thus provide an immediate comparison with corresponding

long-term scenario hypothesis for the same system (Spieker et al., 2015).
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2.2.1 Objective: Market and System simulation

In this setting the simulation of the system is used to compute its ideal behaviour

under a specific scenario hypothesis. Simulation results are then used as benchmarks

to evaluate different scenarios and to support long-term decisions.

The “ideal behaviour” corresponds here to the maximisation of global welfare

by satisfying demand at the lowest achievable costs. A well-known result in microe-

conomics is the theorem of welfare which ensures the welfare-maximising solution

corresponds to the outcome of a perfectly competitive market, in which prices are

determined solely by the free interaction between supply and demand. In this sense,

the definition of a global ideal behaviour corresponds to the point of view of both

a system planner, such as a system-wide authority that oversees the exchange, and

the market players, who want to participate in a fair market.

We study System Simulation or Fundamental Electricity Market Simulation (Burstedde,

2012), whose goal is to highlight and analyse the fundamental drivers of market out-

come, e.g. technical and normative limits on generation and transmission capacity.

As such, the simulation uses a detailed representation of the technical assets of the

system but simplifies the electricity market by assuming the following:

• the market reaches a perfectly-competitive equilibrium, i.e. imperfect compe-

tition is not considered;

• producers bid at production cost, i.e. strategic behaviour is not considered;

• demand is inelastic.

The ideal behaviour of the system can then be simulated by computing the

scheduling of the plants that minimises the global production costs. The simulated

market is not guaranteed to be close to the real market behaviour, suitable, for

example, to forecast actual prices in the exchange, but it can still be used to support

strategic decisions.

More sophisticated market models would allow to perform a more realistic simu-

lation with imperfect competition and strategic behaviours, but they are, in general,

much more complicated to implement and solve than models for system simulation.

It is outside the scope of this work to provide a review of the problems of advanced

electricity market simulation. For a detailed reference, we point the reader to (Ven-

tosa et al., 2005).
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2.2.2 Network: zonal and nodal models

Our model uses a zonal representation of the network as opposed to a nodal one.

In practice transmission networks are composed of several nodes and lines. A nodal

model allows to represent these components explicitly. Zonal models, instead, ag-

gregate network elements in homogeneous zones to obtain a coarser and simpler

representation of the system.

Zonal models are first of all used in operations to better organise the system and

improve its efficiency (ACER, 2011). A zone is defined as a network area where

congestion is unlikely to occur. Equivalently, zones are a partition of the network

induced by the lines that are most likely to experience congestion, i.e. the bottlenecks

of the network. During a congestion links in the network saturate and prevent the

transmission of further power to satisfy demand, causing the market to split in

areas where prices converge to different values. Zones are then areas with uniform

prices for which system actors can define policies and mechanisms while abstracting

from the underlying network details. For example, exchanges can implements zonal

pricing, where participants submit offers specifically for each zone. Congestions can

also be resolved by pricing transmission or generation capacity between zones.

2.2.3 Time scope

Simulations are performed on medium-term horizons, i.e. over one year, with hourly

resolution. The length of the horizon allows to account for seasonalities of demand

and supply (fig. 2.3), which are known to be influenced by the weather, temperatures

and human activities. Furthermore it allows a direct comparison with medium-term

forecasts of power systems, which often report annual aggregates for indicators such

as demand, supply, and costs (ENTSO-E, 2013) ; (EC, 2013). The high temporal

resolution, instead, ensure to adequately represent the response of the system to

demand fluctuations, in particular peaking hours.

Compared to short-term ones, models for medium-term simulation are larger and

afford a lesser level of detail since, on one hand, low-level decisions with short-term

impact become less important as the horizon grows and, on the other hand, the

length of the horizon makes impractical to consider more details in the model.
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Figure 2.3: Hourly purchased power on the Italian Day-Ahead market on Febru-
ary 2014 (GME, 2014) decomposed by TBATS additive model (Livera et al., 2011).
Five time series are shown: original data and four additive components: level, daily
seasonality, weekly seasonality and the residual. The daily component shows two
positive peaks on every midday and evening. The weekly component shows a de-
crease on every weekend.
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2.2.4 Handling uncertainty

In real systems agents face uncertainty on data such as prices of electricity, costs

of fuels and demand, which they handle by using statistics and stochastic mod-

elling to guide operational and tactical decisions. For medium-term simulation both

stochastic and deterministic models are used in the literature.

Compared to deterministic ones, stochastic models allow to directly represent

uncertainty and yield richer simulations, but they are larger and more expensive to

solve. On the other hand, deterministic simulations, in which actors are assumed to

possess perfect foresight, provides a plausible representation of the ideal behaviour

of the system and, thus, can still offer valuable support to strategic decisions.

In our work we address deterministic simulation.

2.3 Example: simulation of European scenarios

at 2020

In this section we report a study from RSE S.p.A.in (Benini et al., 2014) as an

example of system simulation. The study considers Italy and neighbouring countries

on the northern frontier at year 2020 under four different scenario hypotheses. The

system is composed by six countries (fig. 2.4): Italy (IT), Germany (DE), France

(FR), Switzerland (CH) and Slovenia (SL). The network is represented with one

zone for each country, except for Italy which is described with six market zones:

North (NO), Center-North (CN), Center-South (CS), South (SU), Sardinia (SA)

and Sicily (SI).

Each scenario hypothesis correspond to an instance of large-scale Unit Commit-

ment Problem with one year horizon and hourly resolution. The instances have been

solved with the heuristic implemented in the simulator sMTSIM (Siface et al., 2014)

from RSE S.p.A.. The goal of this section is to explain the assumptions behind

the development of scenarios and to show how a system simulation provides useful

insights on the behaviour of the system. For more details we refer the reader to the

original publication.

2.3.1 Scenario construction

For the study reported here, each scenario contains the following system descriptors:
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Figure 2.4: Countries involved in the study

• thermal power plants: minimum and maximum production bounds, flexibility,

coefficients of the cost curve and fuel emissivity coefficients for CO2;

• hydroelectric power plants: minimum and maximum production bounds, pump-

ing efficiency and hourly pumping limit, reservoir capacity, hourly lateral inflow

from the upstream;

• market zones;

• power network: hourly transmission capacity between zones;

• gross zonal demand, at hourly resolution;

• injections: power flow determined by intermittent sources such as wind and

PV plants and import/export flows between outer systems, i.e. neighbouring

countries not included in the simulation.

To construct future scenarios there are several sources that provide forecast for

descriptors such as fuel prices and system assets, e.g. generation or transmission

capacity (ENTSO-E, 2013) ; (EC, 2013).

Demand and injections can most often be estimated only as annual totals. It

is not possible to reliably forecast hourly profiles for these data further than a few

days. As an alternative, domain experts can generate realistic hourly profiles by
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combining historic time series of the same data, and then scale the result to obtain

the expected annual total.

2.3.2 Simulation

The study considers a “Base” scenario, in which the system evolves according to

current expectations, and then defines three other scenarios

• RTN (“Rete Trasmissione Nazionale”, National Transmission Network): net-

work capacity between zones (NO,CN) and (CN,CS) are expanded;

• Import: an additional import flow from Montenegro through the CN zone is

added to Italy;

• LessNuke: nuclear capacity is partially reduced in Germany, France and Switzer-

land. In France new flexible gas-powered power plants, e.g. CCGT plants, are

added back to compensate for the capacity reduction.

We briefly present the results of the study. In figure 2.5 we report a map for each

scenario. Square nodes represent Italian market zones and circle ones the neighbour-

ing countries. Each node is labelled with the zone identifier and the average hourly

electricity price, in [e/MWh], computed as average shadow prices of the hourly

zonal demand. The latter ones are obtained from the economic dispatching solu-

tion computed as a last step by the MTSIM program. Arrows represent the links

between the zones, and are labelled with two lines of text: the first line reports the

total amount of flow, in [TWh], whose sign determines the direction of the arrow,

and the second line reports the total number of congestion hours [ch] for the link in

each direction, with a negative value for the congestions in the direction opposite to

the arrow. In table 2.2 we report the thermal production by fuel and country and

the overall increase in CO2 emissions with respect to the Base scenario.

Simulation results suggest the following observations

• in the RTN scenario, thanks to the network expansion, power flow through

the links (CS,CN) and (CN,NO) increases, while the number of congested

hours decreases. Production from southern regions in Italy can then reach the

northern ones. This causes a reduction in the price difference between the

Italian regions, with the NO zone finding cheaper electricity and the Southern

regions selling more power at higher prices. Furthermore, the overall amount

of imported flow in Italy from the other countries decreases by 1.1TWh;
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(a) Base (b) RTN

(c) Import (d) LessNuke

Figure 2.5: Maps for four scenarios from (Benini et al., 2014).
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Scenario

Italy Other countries
CO2 emissions
change w.r.t.

“Base” scenario
Coal Natural

gas
Coal Natural

gas

[TWh] [TWh] [TWh] [TWh] [MtCO2
]

Base 67.3 29.1 234.1 2.1 0

RTN 68.4 28.9 233.3 1.8 -0.2

Import 65.5 27.8 231.2 1.7 -5.4

LessNuke 74.9 35.8 328.0 12.8 +105.6

Table 2.2: Conventional thermal production and CO2 emissions in different scenarios

• in the Import scenario the additional electricity from Montenegro causes prices

in the NO region to decrease considerably;

• in the LessNuke scenario the reduction of nuclear capacity causes an overall

increase of prices. France stops being the largest exporter of the system, in

favour of Germany. A sharp increase in conventional thermal production from

coal and natural gas is also measured, which yields a significant increase of

CO2 emissions.
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Chapter 3

The Unit Commitment Problem

(UCP)

The UCP, in its general form, requires to schedule the activation (commitment) of

a set of power plants to satisfy system-wide constraints and to optimise a given

objective. Indeed, a medium-term electric system simulation can be modelled as a

large-scale UCP.

In this chapter we introduce the basic version of the UCP along with a review

of the related literature.

3.1 Literature review

The UCP is a well-known combinatorial optimisation problem for which a huge

literature is available, spanning both theory and applications. We refer the reader

to (Saravanan et al., 2013) and (S. Salam, 2007) for more detailed reviews.

In its general case, the UCP includes integer variables to represent the state of

plants and non-linear constraints and objectives to represent cost functions or flows

in the transmission networks. One major source of non-linearity for the models

surveyed in the literature is thermal power plants, especially their cost function.

They are often modelled with quadratic convex cost functions and mixed-integer

linear constraints. The problem can then be formulated as a Mixed-Integer Non-

Linear Problem (MINLP), for which the exact optimisation is usually prohibitively

expensive. The convex UCP is known to be NP-hard (Guan et al., 2003). The

convex UCP with a single thermal unit (1-UCP) has polynomial complexity and

can be solved with an exact dynamic programming algorithm (Frangioni, 2006).

19
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The UCP has originally been studied to support operational decisions for small

systems composed of few thermal power plants on a daily or weekly time horizon.

Then most of the published literature covers short-term UCP models, with a horizon

from few hours to a week. These models are designed to represent operational

decisions with high level of detail, including complicating elements such as non-

linear costs, to accurately represent the system components.

For the small-scale, short-term UCP several heuristics have been proposed. Well-

known constructive method is “priority lists” (Tingfang and Ting, 2008), where

the order of commitment and decommitment of different plants, i.e. the “lists”,

are determined heuristically via a greedy approach. Other methods include soft

computing like neural networks, genetic algorithms and swarm intelligence, and

meta-heuristic approaches like tabu search (Padhy, 2004) (S. Salam, 2007) These

methods can be easily extended to handle more complicated models as well, by

adequately encoding additional constraints and goals as penalties or rewards in the

solution process, but the approach is inherently heuristic and sensitive to the specifics

of the instances being solved.

The most promising techniques for solving larger UCPs employ Lagrangian re-

laxation (Belloni et al., 2003; Borghetti et al., 2003; Finardi and da Silva, 2006)

to decompose the original problem into smaller and simpler subproblems. These

methods usually solve the continuous the Lagrangian model via non-smooth opti-

misation techniques, bundle methods being the most popular ones, and then they

compute feasible integer primal solutions heuristically via rounding techniques, cut-

ting planes, dynamic programming and meta-heuristics.

Recent applications have increasingly expanded both the simulation time horizon

and the complexity of the system, by explicitly representing the power network and

including heterogeneous plants, such as hydroelectric, nuclear, waste-to-energy and

biomass plants.

Large UCP models with several generation units or a long time horizon usually

rely on a linearisation of the thermal units cost functions and are solved via mixed-

integer linear programming (MILP), which allows to obtain high quality solutions

more efficiently than conventional MINLP techniques. UCPs with a weekly time

horizon and less than one hundred units have been effectively solved via commercial

MILP solvers (Chang et al., 2004). More sophisticated techniques for larger mod-

els include branch-and-cut algorithms, e.g. the perspective cuts (Frangioni et al.,

2009) which use MILP approximations to support the solution of more accurate
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MINLP models. In (Frangioni et al., 2007) a comparison is made between a MINLP

approach, including inter-temporal constraints, solved via Lagrangian relaxation

and its MILP approximation built with the perspective-cuts described in (Frangioni

et al., 2009) and solved with commercial Branch-&-Bound solvers. The paper com-

pares the two algorithms on a weekly scenario with at most 100 thermal units and

200 hydroelectric plants showing that the two approaches are complementary, i.e.

the Lagrangian approach manages to compute high-quality lower bounds with great

efficiency, while the MILP approach excels at computing good upper bounds from

the first branching iterations, but fails at closing the dual gap within practical time

for standard levels of accuracy. The paper then combines the two approaches by

feeding the MILP solver with the lower-bound computed by the Lagrangian algo-

rithm, obtaining, in particular, a significant improvement on the scalability of the

method on the most difficult tests, solving larger instances with higher accuracy

levels.

Fewer publications deal with long-term UCP, spanning several months or a whole

year. In (Kjeldsen and Chiarandini, 2012) the annual energy production in Denmark

is simulated with a MILP model. Exact approaches are known to be prohibitively

expensive (Taverna, 2011; Siface et al., 2014); therefore the authors develop a set

of constructive heuristics and iterative improvement methods which they combine

to obtain a feasible heuristic solution. In this way instances involving up to twenty

thermal plants and a time horizon of a whole year could be solved in ten to twenty

minutes.

3.2 Mathematical formulation

The Unit Commitment Problem (UCP) we consider in this study is formulated as

a large-scale Mixed-Integer Linear Problem (MILP). Here we recall the problem de-

scription, highlighting its components and the modelling choices employed to obtain

a linear model.

3.2.1 Problem description

The UCP model adopts a zonal representation of the network, where the network is

partitioned into price zones hosting different power sources. Zones exchange power

through a capacitated power network. Realistic power flow models use Alternate

Current (AC) non-linear formulations to account for electrical properties of the
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network. As these models can be quite challenging to solve in the general case,

linear approximations are often preferred, especially when modelling larger systems

which include further elements, as in our case. We use a simpler transportation

model, which can be described by a much simpler capacitated linear network flow

model, while still yielding a valuable characterisation of network flows. More realistic

linear approximations could be achieved using a DC model or a PTDF formulation.

For a review of power flow models for UCP we refer the reader to (Van den Bergh

and Delarue, 2014).

Time is represented with hourly resolution. Each zone is characterised by a given

hourly demand, that must be satisfied by either plants in the same zone or by energy

import from other zones.

In the system there are dispatchable and non-dispatchable power sources. The

former include thermal and hydroelectric plants with reservoir, and are modelled

with decision variables. The latter include wind plants, PV plants, ROR hydro-

electric plants and import flows from outer systems, and are assumed to be known

and subtracted from the gross demand. The resulting net demand represents the

actual load traded in the market. Hydroelectric power plants are represented with

linear network flow models that prescribe the balancing between the inbound flow

collected by the reservoir and the outbound flow used for production. Their produc-

tion in each period linearly depends on the outbound flow from the reservoir and is

assumed to be costless. We adopt a coarse representation, in which river systems

are represented as a single, equivalent hydroelectric plant with reservoir.

Thermal plants need to be ignited and heated to be active and offer limited

“flexibility”, which here denotes the ease with which a power plant can change state

or the production level from one period to the next one. Highly flexible plants, like

gas-fuelled CCGT, can change their state or their production level from one period

to the next one with few limitations. Others are technically unable to do so, or

incur additional costs for it. Flexibility constraints on the plant commitment can be

expressed as minimum up/down constraints, which force the power plant to maintain

the current state for a fixed amount of periods after switching, or as start-up and

shut-down costs, i.e. additional costs the power plant incurs for switching state (see

Morales-Espana et al. (2013) for reference). Constraints on the production level are

often described as ramping constraints, which bounds the change of production level

from one period to the next one.

In our formulation we model flexibility by using the minimum up/down con-
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straints only. More realistic models would have start-up and shut-down costs, and

they would possibly describe the internal state transitions of the power plants. These

constraints and costs can be time-dependent, i.e. they can vary depending on the

time passed since the last switch, and the costs can be non-linear. However, we

remark the following:

• implementing these constraints would require knowing the details of the power

plants, which are often not available to the analyst, especially considering long-

term scenarios, in which thermal plants are deemed to become more flexible

(SETIS, 2015) to adjust to the higher penetration of non-dispatchable RES;

• the objective of the simulation is to represent realistic commitment decisions

of the power plants managers. To achieve this it is not necessary to describe

the inner working of the power plant in detail but just to have a schedule

where commitment and decommitment decisions happen with credible timing.

For instance, this can be represented by constraining power plants to remain

active for at least 30 hours after switching on. To achieve this, RSE S.p.A.

considers estimates of minimum up/down times to be sufficient and, under mild

assumptions, equivalent to consider realistic start-up and shut-down costs.

As for ramping constraints, they are usually modelled as linear constraints and,

while not present in our formulation, they can be easily added with little or no

impact on our methods, as shown in section 5.2.2, where we adapt our algorithms

to RSE S.p.A.’s SMTSIM model, which includes ramping constraints.

The cost curve for thermal plants is modelled via linear functions, as shown in

Figure 3.1 (a)). By “fixed cost” we mean the value of intercept (the value indicated

by e in Figure 3.1); by “variable cost” we mean the product between the marginal

production cost and the production level (c and x respectively in Figure 3.1). Sim-

ilarly to other studies from economics (Burstedde, 2012) and engineering (Spieker

et al., 2015), we choose a linear continuous approximation of the non-convex cost

curve in place of a piece-wise or quadratic one, for the following reasons:

• the use of piece-wise or non-linear formulations could significantly increase the

complexity of the problem;

• according to our partners at RSE S.p.A., a quadratic approximation for the

cost curves would have a quadratic coefficient one and two orders of magni-

tude smaller than the linear and constant coefficients respectively; thus, for
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the purpose of simulation, it would improve accuracy by a negligible amount

compared to a completely linear model.

Thermal plants are therefore represented by a binary activation state, fixed and

variable costs, a non-zero technical minimum, indicated by p in Figure 3.1 and

reduced flexibility. Variable costs linearly depend on production levels and include

pollution penalties. Some thermal plants employ double-shaft technology: they

can switch between two working states, with one of them employing more power

units and higher production levels (see Figure 3.1 (b)). Therefore the management

of thermal plants requires two types of decisions: commitment decisions concern

turning the plants on or off and dispatch decisions concern the production level to

be attained at each point in time.

x [MWh]

C[e]

c

e

p P

(a)

x [MWh]

C[e]

c

e

p P pD PD

(b)

Figure 3.1: Generation cost models for thermal plants in single (a) and double (b)
shaft mode.

To deal with such a complex system, we first consider some simplifying observa-

tions.

Observation 1. Thermal plants of the same zone having identical marginal cost,

fixed costs and technical minima and maxima are identical from both viewpoints of

commitment and dispatch.

Observation 2. Thermal plants of the same zone having identical marginal cost

(although different fixed costs and technical minima and maxima) are identical from

the viewpoint of dispatch.
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Therefore, thermal plants in each zone are clustered in groups, each one including

plants characterised by the same marginal costs across the simulation horizon. Each

group is partitioned into subgroups, each one including plants characterised by the

same fixed costs and same technical minimum and maximum across the simulation

horizon.

We remark that the features used for clustering are determined by several char-

acteristics of power plants, in particular production technology and oldness. In a

real system the features are likely to vary across similar power plants in different

periods, to the point that only trivial singleton clusters could be determined in or-

der to represent power plants with sufficient accuracy. Nevertheless, in the context

of large-scale simulations a coarser representation of power plants features is used,

which allows for significant clustering.

3.2.2 Notation

Parameters

We define the following sets:

• T : set of time periods;

• Z : set of zones;

• A ⊂ Z × Z : set of oriented links between zones;

• H : set of hydroelectric plants;

• G : set of thermal plants.

Hydroelectric plants

For each zone z ∈ Z let Hz be the set of hydroelectric plants in z. Each hydro-

electric plant h ∈ Hz is characterised by the following data:

• Pzh: maximum power produced;

• P β
zh: maximum pumping power;

• qzh: available volume of water in the reservoir at the beginning of the time

horizon;

• Qzh: required volume of water in the reservoir at the end of the time horizon;
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• Vzh: capacity of the reservoir;

• αzh: conversion factor between energy and water volume units;

• βzh: pumping efficiency factor;

• fzh: maximum water spillage, i.e. water released from the reservoir and not

used for energy production;

• nzh: hourly inflow of water from natural sources.

Thermal plants

For each zone z ∈ Z the following sets are defined

• Gz : set of thermal plants groups in z;

• Mzg : set of subgroups of thermal plants in z for g ∈ Gz such that ∃Mzg 6=

∅∀z ∈ Z∀g ∈ Gz;

• MD
zg ⊆Mzg : set of of subgroups for g ∈ Gz with double-shaft technology;

• Kzgm: set of plants in subgroup m ∈Mzg;

• KD
zgm: set of plants in subgroup m ∈MD

zg.

For each zone z ∈ Z, group g ∈ Gz and subgroup m ∈ Mzg thermal plants are

characterised by the following data:

• ctzg and etzgm: marginal and fixed production cost at time t ∈ T , resp.;

• pzgm and Pzgm: minimum and maximum power that can be produced by plants

in subgroup m ∈Mzg when they are active;

• pDzgm and PD
zgm: technical minimum and maximum for plants in subgroup m ∈

MD
zg when the double-shaft technology is active. In the following, let p∆zgm =

pDzgm − pzgm and P∆
zgm = PD

zgm − Pzgm.

• onzgm and offzgm: minimum number of periods for which plants in subgroup

m ∈Mzg have to stay active or inactive once turned on or off.

Let

T on
tzgm = {t′ ∈ T : t ≤ t′ ≤ min(|T |, t+ onzgm − 1)}
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be the set of periods in which a plant m ∈Mzg has to remain active if turned on at

time t ∈ T and

T off
tzgm = {t′ ∈ T : t ≤ t′ ≤ min(|T |, t+ offzgm − 1)}

be the set of periods in which it has to remain inactive if turned off at time t ∈ T .

Network

For each oriented link (i, j) ∈ A and time period t ∈ T let btij be the maximum

energy transfer capacity of link (i, j) ∈ A. .

Zones

For each zone z ∈ Z and period t ∈ T let

• dtz be the demand;

• Et be the value of lost load, i.e. the cost per unit of unsatisfied demand. It

corresponds to the price paid for disconnecting willing customers when the

production is insufficient to satisfy the demand;

• Ft be the value of exceeding energy, i.e. the cost per unit of excess production.

It corresponds to the cost producers encounter in case of energy curtailment

when the production exceeds the demand.

Variables

Hydroelectric plants

To model hydroelectric plants, for each period t ∈ T , zone z ∈ Z and plant

h ∈ Hz, we use the following continuous non-negative variables:

• ltzh: energy production;

• mtzh: energy equivalent of water pumped into the reservoir as water;

• stzh: spillage from the basin;

• otzh: volume of water in the reservoir at the beginning of time period t ∈ T .
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Network

For each period t ∈ T and link (i, j) ∈ A we define continuous variables

• wtij: amount of energy flowing through the link from i to j.

Thermal plants

We introduce, for each period t ∈ T , zone z ∈ Z and group g ∈ Gz the following

variables:

• xtzg: overall production level for the group.

Then, for each subgroup m ∈Mzg we introduce the following integer variables:

• ytzgm: number of active plants in subgroup m ∈Mzg;

• v+tzgm, v
−
tzgm integer: number of plants switched on and off respectively.

Analogously we introduce for each m ∈ MD
zgm and t ∈ T the following integer

variables

• yDtzgm: number of active plants in double-shaft mode;

• vD
+
tzgm, v

D+
tzgm: number of plants which enter and exit double-shaft mode

respectively.

Zones

For each period t ∈ T and zone z ∈ Z we define the continuous non-negative

variables

• ENPtz: Energy Not Provided (ENP);

• EIEtz: Energy In Excess (EIE).

These variables represent disruptive events, such as discharges or curtailment, and

allow to detect and evaluate problems in the simulated system which can cause a

mismatch between supply and demand

The resulting UCP model is the following mixed-integer linear program.

min φ =
∑

t∈T,z∈Z,
g∈Gz

ctzgxtzg +
∑

t∈T,z∈Z,
g∈Gz ,m∈Mzg

etzgmytzgm +
∑

t∈T,z∈Z

ENPtzEt
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+
∑

t∈T,z∈Z

EIEtzFt (3.1)

s.t. xtzg ≥
∑

m∈Mzg

pzgmytzgm +
∑

m∈MD
zg

p∆zgmy
D
tzgm ∀t ∈ T, z ∈ Z, g ∈ Gz (3.2)

xtzg ≤
∑

m∈Mzg

Pzgmytzgm +
∑

m∈MD
zg

P∆
zgmy

D
tzgm ∀t ∈ T, z ∈ Z, g ∈ Gz (3.3)

yDtzgm ≤ ytzgm ∀t ∈ T, z ∈ Z, g ∈ Gz,m ∈MD
zg (3.4)

v+tzgm ≥ ytzgm − y(t−1)zgm ∀t ∈ T, z ∈ Z, g ∈ Gz,m ∈Mzg (3.5)

v−tzgm ≥ y(t−1)zgm − ytzgm ∀t ∈ T, z ∈ Z, g ∈ Gz,m ∈Mzg (3.6)

v+
D

tzgm ≥ yDtzgm − yD(t−1)zgm ∀t ∈ T, z ∈ Z, g ∈ Gz,m ∈MD
zg (3.7)

v−
D

tzgm ≥ yD(t−1)zgm − yDtzgm ∀t ∈ T, z ∈ Z, g ∈ Gz,m ∈MD
zg (3.8)

ytzgm ≥
∑

τ∈T :t∈T on
τ

v+τzgm ∀t ∈ T, z ∈ Z, g ∈ Gz,m ∈Mzg (3.9)

ytzgm ≤ |Kzgm| −
∑

τ∈T :t∈T off
τ

v−τzgm ∀t ∈ T, z ∈ Z, g ∈ Gz,m ∈Mzg (3.10)

yDtzgm ≥
∑

τ∈T :t∈T off
τ

v+
D

τzgm ∀t ∈ T, z ∈ Z, g ∈ Gz,m ∈MD
zg (3.11)

yDtzgm ≤ |KD
zgm| −

∑

τ∈T :t∈T off
τ

v−
D

τzgm ∀t ∈ T, z ∈ Z, g ∈ Gz,m ∈MD
zg (3.12)

o1zh = qzh ∀z ∈ Z, h ∈ Hz (3.13)

o(|T |+1)zh = Qzh ∀z ∈ Z, h ∈ Hz (3.14)

otzh + nth + βh ·mtzh = o(t+1)zh + stzh + αzhltzh ∀t ∈ T, z ∈ Z, h ∈ Hz (3.15)
∑

h∈Hz

ltzh +
∑

g∈Gz

xtzg +
∑

(i,z)∈A

wtiz +
∑

z∈Y

ENPtz ≥

dtz +
∑

h∈Hz

mtzh +
∑

(z,j)∈A

wtzj +
∑

z∈Y

EIEtz

∀t ∈ T, z ∈ Z (3.16)

ytzgm, v
+
tzgm, v

−
tzgm ∈ [0, |Kzgm|] ∩ Z

+
0 ∀t ∈ T, z ∈ Z, g ∈ Gz,m ∈Mzg

(3.17)

yDtzgm, v
+D

tzgm, v
−D

tzgm ∈ [0, |KD
zgm|] ∩ Z

+
0 ∀t ∈ T, z ∈ Z, g ∈ Gz,m ∈MD

zg

(3.18)

wtij ∈ [0, bij] ∀t ∈ T, (i, j) ∈ A (3.19)

stzh ∈ [0, fzh], otzh ∈ [0, Vzh], ltzh ∈ [0, Pzh],mtzh ∈ [0, P β
zh] ∀t ∈ T, z ∈ Z, h ∈ Hz

(3.20)

ENPtz ≥ 0,EIEtz ≥ 0 ∀t ∈ T, z ∈ Z (3.21)
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The objective (3.1) is to minimise the sum of production costs and the cost of

the energy not provided and in excess. Constraints (3.2) and (3.3) impose that

production level is null for inactive plants and within the prescribed production

bounds for active ones. Constraints (3.4) impose that only active plants can enter

double-shaft mode. Constraints (3.5)–(3.8) enforce consistency between variables

describing activation patterns. Constraints (3.9)–(3.12) impose that activation pat-

terns respect minimum on and off times after switching. Finally (3.13)–(6.6) are flow

conservation constraints. Constraints (3.16) ensure energy balance between zones

and consistency with thermal and hydroelectric productions inside each zone. A

more detailed discussion on modelling issues is presented in (G. Migliavacca, 2009)

and (Taverna, 2011).

The usual formulation found in the literature specifies one production variable

and one state variable for each thermal power plant. The introduction of groups

and subgroups allows to represent the production level and state of power plants

with one variable for each group and one variable for each subgroup respectively,

reducing symmetries and yielding a more compact formulation.

3.2.3 Minimum up/down constraints

One of the main sources of complexity of the UCP we consider is the presence of

minimum up-down constraints. In fact different formulations have been proposed

in the literature; a comparison among them is presented in (Hedman et al., 2009).

In particular, although being aggregated, our constraints (3.9)–(3.12) turn out to

be as strong as those defined in (Deepak and Takriti, 2005), which are in turn

known to be stronger than the popular alternating up/down inequalities (Hedman

et al., 2009). That is, we achieve the same tightness as (Deepak and Takriti, 2005)

with a more compact formulation. In fact, consider the formulation of constraints

(3.5)–(3.12) for single-shaft plants. For k ∈ Kzgm, t ∈ T let utk ∈ {0, 1} be the

commitment variable, and ω+
tk, ω

−
tk ∈ {0, 1} the “up” and “down” variables such

that ω+
tk = 1 ⇔ utk − u(t−1)k = 1 and ω−

tk = 1 ⇔ u(t−1)k − utk = 1.

The single-unit up/down constraints presented in (Deepak and Takriti, 2005),

called “turn on/off” inequalities, are

utk ≥
∑

τ∈T :t∈T on
τ

ω+
τk ∀k ∈ Kzgm ∀t ∈ T (3.22)

utk ≤ 1−
∑

τ∈T :t∈T off
τ

ω−
τk ∀k ∈ Kzgm ∀t ∈ T (3.23)
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Let y = (yt)
⊤
t∈T and u = (utk)

⊤
t∈T,k∈Kzgm

be respectively the aggregated and

decomposed representation of a schedule for plants k ∈ Kzgm of subgroup m ∈Mzg

such that yt =
∑

k∈Kzgm
utk ∀t ∈ T .

Proposition 1. Constraints (3.9)–(3.12) hold for y if and only if constraints (3.22)-

(3.23) hold for u.

Proof. The implication (3.22)-(3.23) ⇒ (3.9)–(3.12) directly follows from the defi-

nition of y.

To prove the implication (3.22)-(3.23) ⇐ (3.9)–(3.12) , instead, consider the

following algorithm to map y values to u.

For t = 1 choose a schedule such that
∑

k∈Kzgm
u1k = y1. For each period t > 1,

turn on v+t plants, starting from those which have been inactive for the longest time

up to t−1 and turn off v−t plants starting from those which have been active for the

longest time up to t−1. Assume that for some t ∈ T a plant selected to be turned on

has not completed the required minimum downtime yet, violating constraint (3.23).

Then there would be more active plants at time t than the ones who completed

their minimum downtime requirement in the periods τ ∈ T : t ∈ T off
τ and this would

violate constraint (3.12), which contradicts the hypothesis of y being feasible with

respect to constraints (3.12). The same argument can be made for plants turned off

at time t.

The proof can be trivially extended to double-shaft units as the corresponding

minimum up/down constraints are identical.

3.3 Complexity of the medium-term UCP

Formulation (3.1)-(3.21) contains a polynomial number of variables and constraints

and therefore optimising it by means of general purpose solvers might be an option.

RSE S.p.A.uses sMTSIM (Siface et al., 2014) to compute a heuristic solution on a

32GB 8GB 8 Core computer. The heuristic is expected to complete within less than

one hour.

As a benchmark, we used scenarios constructed by RSE S.p.A.for the Italian

energy system in 2011, consisting of |Z| = 7 zones in a tree network, three of which

connected to external markets, 148 thermal plants partitioned in |G| = 98 groups

and |M | = 103 subgroups, and |H| = 34 groups of hydroelectric plants. Thermal

plants are split in three types, the first one including 68 plants with minimum on and
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off times of 12 and 6 hours, resp., the second one including 48 plants with minimum

on and off times of 60 and 20 hours, resp., and the third one including 32 plants

with minimum on and off times of 1 hour (i.e. maximum flexibility). The penalty

Et for the energy not provided was set to a very large value, while the penalty Ft

for the energy in excess was set to 0.

Demand data are given and planning decisions are required for the full year with

a hour-by-hour resolution, which yields problem instances with |T | = 8760 time pe-

riods of one hour each. Besides testing our algorithms on the full twelve months hori-

zon, we also extracted instances corresponding to single “months”, (twelve instances,

|T | = 730), pairs of consecutive months (six instances, |T | = 1460), trimesters (four

instances, |T | = 2190), quarters (three instances, |T | = 2290) and semesters (two

instances, |T | = 4380).

In earlier experiments we used IBM CPLEX 12.4 MIP and LP solvers on the

instances through AMPL on a PC with 4GB of RAM and a Intel Core 2 Duo

1.2GHz processor. In table 3.1 we report the sizes of the instances after AMPL and

CPLEX presolving phases.

In later experiments we used CPLEX solvers through CPLEX’s own C++ Con-

cert API on the same hardware. In table 3.2 we report two sets of results obtained

from the CPLEX C++ Concert library implementation of the model. The first col-

umn is the estimated gap from the MIP solver within three hours of computation

time. The second is the time needed by the barrier algorithm, with no crossover,

to converge on the continuous relaxation of the formulation. Missing values in the

table indicate the respective solver failed due to insufficient memory.

The model requires at least one million variables or more beyond the two-months

horizon after the presolving phases of both AMPL and CPLEX. CPLEX, on the raw

formulation submitted through the Concert API, is able to handle only the smallest

instances for both MIP and LP solvers. The MIP solver determines primal solutions

within 60% gap from the optimum after three hours of computation time. The LP

solver requires 20 minutes alone for the 3 months instances. Larger instances cause

out-of-memory errors.

Experimental results show ad-hoc methods are indeed needed to solve our prob-

lem in practical time.
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Id Size

Problem size after presolving

Constraint matrix Integer variables

Rows Columns Non-zeros Binaries Generals

1.1

1 month

303527 263360 1584041 132130 27740

1.2 303352 263228 1583612 132126 27740

1.3 302703 262626 1581453 132108 27740

1.4 302638 262596 1581451 132092 27740

1.5 302688 262621 1581484 132104 27740

1.6 303401 263260 1583707 132130 27740

1.7 303274 263154 1583343 132130 27740

1.8 303478 263325 1583907 132130 27740

1.9 303170 263044 1582930 132121 27740

1.10 303230 263099 1583118 132122 27740

1.11 303315 263174 1583443 132121 27740

1.12 302803 262803 1582165 132123 27740

2.1

2 months

608719 528457 3179094 264256 55480

2.2 606904 526856 3173494 264206 55480

2.3 607521 527341 3175822 264234 55480

2.4 608617 528370 3178790 264260 55480

2.5 608306 528058 3177676 264242 55480

2.6 607236 527138 3175219 264231 55480

3.1

3 months

914632 794332 4774952 396361 83220

3.2 913936 793704 4772787 396330 83220

3.3 915083 794717 4776273 396387 83220

3.4 914092 793897 4773492 396365 83220

4.1

4 months

1222780 1062439 6375423 528458 110960

4.2 1223149 1062751 6376415 528494 110960

4.3 1222809 1062466 6375497 528476 110960

6.1
6 months

1842638 1602087 9583956 792696 166440

6.2 1843365 1602764 9586271 792744 166440

Table 3.1: Instances sizes after presolving
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Id Size
CPLEX MIP solution CPLEX LP relaxation

Gap % Time [s]

1.1

1 month

59.7% 244

1.2 56.9% 245

1.3 64.6% 264

1.4 70.9% 220

1.5 70.4% 237

1.6 71.9% 229

1.7 62.5% 224

1.8 73.4% 230

1.9 61.5% 220

1.10 64.0% 231

1.11 60.3% 235

1.12 64.7% 241

2.1

2 months

58.3% 805

2.2 67.8% 689

2.3 71.2% 850

2.4 68.0% 776

2.5 62.7% 710

2.6 62.5% 728

3.1

3 months

– 1566

3.2 – 1538

3.3 – 1590

3.4 – 1609

4.1

4 months

– –

4.2 – –

4.3 – –

6.1
6 months

– –

6.2 – –

Table 3.2: Results for CPLEX MIP within three hours of computing time and for
CPLEX LP Barrier solver.



Chapter 4

A fast matheuristic for the

medium-term UCP

In this chapter we present a matheuristic algorithm for model (3.1)-(3.21) which uses

aggregation, continuous relaxations and spatial decomposition to yield high quality

approximated solutions in affordable time.

4.1 The Commit&Dispatch algorithm

The Commit&Dispatch algorithm is initialised with the optimal solution of a re-

laxation of model (3.1)–(3.21). The relaxation is obtained by aggregation and it is

described in subsection 4.1.1. Its optimal solution is exploited by the matheuristic

described in subsection 4.1.2; it alternates commit and dispatch optimisation up to

convergence.

4.1.1 Aggregated Continuous Relaxations

As discussed in section 3.2.1, for each zone z ∈ Z, plants in each group g ∈ Gz have

identical marginal production costs. For each period t ∈ T the overall operating

cost of a group g is represented by a piece-wise linear function

ftzg(xtzg,ytzg) = ctzgxtzg +
∑

m∈Mzg

emytzgm

where xtzg is the overall production level of the group and ytzg = (ytzgm)m∈Mzg

is the number of active plants in each subgroup m ∈ Mzg such that they satisfy

equations 3.2-3.12.

35
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Depending on which plants are active (i.e., the activation pattern), the same

amount of production can have a different cost. Assuming to select the most con-

venient activation pattern for each production level, the resulting cost function ftzg

is piece-wise linear: all the segments have the same slope and discontinuities occur

when the optimum activation pattern changes. Owing to the constraints on mini-

mum allowed production, the function is not necessarily monotone. An example is

shown in Figure 4.1.

Production xtzg [MWh]

C
os
t
f t

z
g
[e
]

Figure 4.1: Piece-wise linear cost function ftzg as a parametric function of production
xtzg with parameters ytzg. The plot shows different cost curves for different activation
patterns of the group g ∈ Gz.

To get rid of the dependency on the y variables representing the activation pat-

tern, we underestimate ftzg with a linear function of xtzg, yielding a lower bound

to the cost. This gives an aggregated continuous approximation of the group cost

function.
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We devised two lower bounds for the group cost functions. The first, called

Aggregated Continuous Approximation (ACA) is obtained as follow.

Proposition 2. Let ẽtzg = minm∈Mzg
{etzgm} be the smallest fixed cost of plants in

group g and P̃zg =
∑

m∈Mzg
Pzgm|Kzgm|+

∑

m∈MD
zg
P∆|KD

zgm| be the overall production

capacity of group g. For each single plant m in group g producing at level xtzgm, a

lower bound to its production cost is given by c̃tzgmxtzgm with

c̃tzgm = ctzg +
ẽtzgm

P̃zgm

.

Proof. For xtzg = 0 both the original cost and the lower bound are zero for any value

of c̃tzg. Consider then xtzg ∈ (0, P̃zgm]. There must be at least one active plant in

the group, therefore
∑

m∈Mzg
ytzgm ≥ 1, from which follows

ctzgxtzg +
∑

m∈Mzg

emytzgm ≥ ctzgxtzg + ẽtzg ∀xtzgm > 0

which can be rewritten has

ctzgxtzg +
∑

m∈Mzg

emytzgm ≥

(

ctzg +
ẽtzg
xtzgm

)

xtzgm

Then, to have a valid lower bound we impose that

c̃tzg = min
xtzg∈(0,P̃zgm]

{ctzg +
ẽtzg
xtzgm

} = ctzg +
ẽtzg

P̃tzg

We then propose a tighter lower bound, called Improved Aggregated Continuous

Approximation (IACA), observing that the slope of f̃tzg(x) in Figure 4.2 can be

increased while still obtaining a valid lower bound to ftzg(x).

Proposition 3. For each single plant m in group g producing at level xtzgm, a lower

bound to its production cost is given by ĉtzgmxtzgm with

ĉtzgm =
etzgm + ctzgPzgm

Pzgm

.

Proof. Since etzgm ≥ 0, then ctzg ≤ ĉtzgm. If xtzgm = Pzgm, then ĉtzgmxtzgm is equal

to the production cost of Pzgm, i.e. etzgm + ctzgPzgm; we indicate it by Cmax. If

xtzgm < Pzgm, then define δ = Pzgm − xtzgm and observe that the actual production
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Figure 4.2: The ACA lower bound for ftzg (dot-dashed line).

cost is Cmax − ctzgδ, while the lower bound is Cmax − ĉtzgmδ and the former is larger

than the latter because ctzg ≤ ĉtzgm and δ ≥ 0.

For plants with double-shaft technology the same proof holds, using PD
zgm instead

of Pzgm.

Proposition 4. For each subset Q of plants in group g yielding an overall production

xtzg, a lower bound to its production cost is given by ĉtzgQxtzg with

ĉtzgQ = ctzg +min
m∈Q

{
etzgm
Pzgm

}.

Proof. We indicate by C(xtzg) the production cost of the amount xtzg and by xtzgm
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the amount of production of each plant m ∈ Q. Then we have

C(xtzg) =
∑

m∈Q

(etzgm + ctzgxtzgm)

and

xtzg =
∑

m∈Q

xtzgm.

The following equalities hold:

C(xtzg)

xtzg
=

∑

m∈Q(etzgm + ctzgxtzgm)
∑

m∈Q xtzgm
=

∑

m∈Q

(etzgm + ctzgxtzgm)

xtzgm

xtzgm
∑

m∈Q xtzgm
.

This is a convex combination of non-negative values (etzgm+ctzgxtzgm)

xtzgm
, each one weighted

by a coefficient xtzgm∑
m∈Q xtzgm

whose value is between 0 and 1. The value of such a con-

vex combination is obviously larger than or equal to the smallest of the values in

the combination, i.e.

∑

m∈Q

(etzgm + ctzgxtzgm)

xtzgm

xtzgm
∑

m∈Q xtzgm
≥ min

m∈Q
{
(etzgm + ctzgxtzgm)

xtzgm
}.

The minimum with respect to the production xtzgm is attained when xtzgm = Pzgm.

Hence for any production level xtzg

C(xtzg)

xtzg
≥ ctzg +min

m∈Q
{
etzgm
Pzgm

}.

Therefore, a lower bound to the production cost of all subsets of plants Q is given

by ĉtzgxtzg with

ĉtzg = ctzg +min
Q

min
m∈Q

{
etzgm
Pzgm

} = ctzg + min
m∈Mzg

{
etzgm
Pzgm

},

that is, ĉtzg can be computed by checking only a linear number of terms.

Relying upon the IACA bound illustrated above, we define an improved ag-

gregated continuous relaxation (IACR), given by the following linear programming

model:

min φ̂ =
∑

t∈T,z∈Z,
g∈Gz

ĉtzgxtzg +
∑

t∈T,z∈Z

ENPtzEt +
∑

t∈T,z∈Z

EIEtzFt (4.1)
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Figure 4.3: The IACA lower bound of ftzg (dot-dashed line).

s.t. 0 ≤ xtzg ≤ P̃zg ∀t ∈ T, z ∈ Z, g ∈ Gz (4.2)

o1zh = qzh ∀z ∈ Z, h ∈ Hz (4.3)

o(|T |+1)zh = Qzh ∀z ∈ Z, h ∈ Hz (4.4)

otzh + nth + βh ·mtzh = o(t+1)zh + stzh + αzhltzh ∀t ∈ T, z ∈ Z, h ∈ Hz (4.5)
∑

h∈Hz

ltzh +
∑

g∈Gz

xtzg +
∑

(i,z)∈A

wtiz +
∑

z∈Y

ENPtz ≥

dtz +
∑

h∈Hz

mtzh +
∑

(z,j)∈A

wtzj +
∑

z∈Y

EIEtz

∀t ∈ T, z ∈ Z (4.6)

wtij ∈ [b−ij, b
+
ij] ∀t ∈ T, (i, j) ∈ A (4.7)

stzh ∈ [0, fzh], otzh ∈ [0, Vzh], ltzh ∈ [pzh, Pzh],mtzh ∈ [0, P β
zh] ∀t ∈ T, z ∈ Z, h ∈ Hz

(4.8)

ENPtz ≥ 0,EIEtz ≥ 0 ∀t ∈ T, z ∈ Z (4.9)
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Equivalently, an Aggregated Continuous Relaxation (ACR) can be obtained by re-

placing the coefficients ĉtzg of the IACA formulation in 4.1 with ACA coefficients

c̃tzg ∀t ∈ T, z ∈ Z, g ∈ Gz.

ACR and IACR are indeed relaxations of the original formulation because they

are obtained by aggregation of constraints, replacement of the cost function with

a lower bounding function and by the relaxation of integrality constraints. Both

models can be shown to provide weaker bounds than CR. On the other hand the

aggregated continuous relaxations can be solved more efficiently than CR as they are

smaller and can also be formulated as network flow problems, for which well-known

exact polynomial time algorithms can be used.

4.1.2 Commit&Dispatch

Besides giving a valid lower bound, IACR solutions provide a tentative dispatch plan.

Therefore, we use them as a starting point for an alternating Commit&Dispatch

(CD) matheuristic that first searches for activation patterns of minimum cost to

satisfy the estimated production levels (Commit) and then optimises the produc-

tion levels for fixed activation patterns (Dispatch). Commit and Dispatch phases

are iterated until no more improvements are obtained in either phase. Hereafter we

describe the details of each phase.

Commit. Let the values

x̃tzg ∈



0,
∑

m∈Mzg

Pzgm|Kzgm|+
∑

m∈MD
zg

P∆
zgm|K

D
zgm|





for each t ∈ T, z ∈ Z, g ∈ Gz describe a feasible production plan. A minimum cost

activation plan complying with such production plan is computed by solving the

following integer linear program:

min φC =
∑

t∈T,z∈Z,
g∈Gz ,m∈Mzg

etzgmytzgm (4.10)

s.t. x̃tzg ≤
∑

m∈Mzg

Pzgmytzgm +
∑

m∈MD
zg

P∆
zgmy

D
tzgm ∀t ∈ T, z ∈ Z, g ∈ Gz (4.11)

(3.4)− (3.12), (3.17), (3.18) (4.12)

Model equations (4.10)-(4.12) decomposes into independent subproblems for each
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t ∈ T, z ∈ Z, g ∈ Gz; these subproblems are solvable in pseudo-polynomial time and

experimentally they are optimised very quickly by ILP solvers.

Dispatch. Let (ỹtzgm, ỹ
D
tzgm, ṽ

+
tzgm, ṽ

+D
tzgm, ṽ

−
tzgm, ṽ

−D
tzgm) for each z ∈ Z, g ∈ Gz,m ∈

Mzg be a feasible activation plan of thermal plants, satisfying constraints (3.4) −

(3.12), (3.17)− (3.18).

A minimum cost feasible production plan complying with such an activation plan

is computed by optimising the dispatching problem, modelled as a linear program:

min φD =
∑

t∈T,z∈Z,
g∈Gz

ctzgxtzg +
∑

t∈T,z∈Z

ENPtzEt

∑

t∈T,z∈Z

EIEtzFt

+
∑

z∈Z,g∈Gz ,
m∈Mzg

etzgmỹtzgm (4.13)

s.t. xtzg ≤
∑

m∈Mzg

Pzgmỹtzgm +
∑

m∈MD
zg

P∆ỹDtzgm ∀t ∈ T, z ∈ Z, g ∈ Gz (4.14)

xtzg ≥
∑

m∈Mzg

pzgmỹtzgm +
∑

m∈MD
zg

p∆zgmỹ
D
tzgm ∀t ∈ T, z ∈ Z, g ∈ Gz (4.15)

(3.13)− (3.16), (3.19)− (3.21) (4.16)

This model is comparable in complexity to IACR (4.1)-(4.9).

Proposition 5 (Monotonicity). The objective function value computed at each it-

eration of the Commit&Dispatch algorithm is monotone non-increasing.

This property directly follows from the following observation: every time either

phase of the algorithm is executed its input and its output are respectively feasible

and optimal with respect to a same set of constraints.

Compared to well-known classical Lagrangian relaxation heuristics, based on

an analogous decoupling between plant production and commitment decisions (Re-

dondo and Conejo, 1999) , which where previously studied in Taverna (2011) as well,

our heuristic guarantees, thanks to properties of the commit model (4.10)-(4.12), to

satisfy demand via constraints (4.12), ensuring ENPzt = 0 ∀z ∈ Z, t ∈ T , since the

first iteration. Lagrangean methods, instead, can yield dual solutions with positive,

albeit relatively small, amounts of energy not provided, which, due to the heavy

penalisation via coefficients Et, cause the Lagrangean dual solution to oscillate and

converge slowly to the optimum. Furthermore, the commit phase minimises the
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amount of periods in which power plants are active, as it always incurs a positive

cost, thus limiting the amount of energy produced in the dispatching phase. This

would then allow to minimise also the value of energy in excess (EIEzt) in the

dispatching phase.

4.2 Computational results

In this section we report the results for the aggregated continuous relaxations and

the Commit&Dispatch heuristic on the instances from section 3.3. The tests were

run on the same hardware.

4.2.1 Solving continuous relaxations

In table 4.1 we compare the three different continuous relaxations proposed for

problem (3.1)-(3.21): the continuous relaxation of the original formulation (CR) and

the two aggregated continuous relaxations ACR and IACR in equations (4.1)-(4.9).

For CR we report the computing time. For ACR and IACR we report the computing

time and the relative gap with CR. Missing values are due to out-of-memory errors.

All the algorithms are implemented with CPLEX 12.4 and AMPL. We used the

barrier algorithm with no crossover phase for all the three models as in earlier ex-

periments it proved to be the most efficient solution method. Instances are obtained

from a scenario for the Italian system at 2011.

We remark that, due to differences in implementation and data, these results can

hardly be compared with results in 3.2. In particular, the AMPL version passes to

CPLEX a presolved version of the same model which results in a smaller CPLEX

model object. The solver can then handle bigger instances than the C++ CPLEX

Concert implementation, which is passed raw and larger formulations of a similar

model.

It can be seen that both ACR and IACR can be 50 times more efficient to solve

than CR while providing comparable lower bounds. In the worst case, the ACR and

IACR solutions are 3.8% and 0.4% lower than CR respectively. Furthermore, the

aggregated continuous relaxations can be solved for the largest instances of 6 and

12 months, while CPLEX encounters out-of-memory errors on the same instances

for the CR formulation.
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Id Size
CR ACR IACR

Time [s] Time [s] Gap % with CR Time [s] Gap % with CR

1.1

1 month

244 5 2.9% 6 0.1%
1.2 164 5 2.7% 6 0.1%
1.3 149 5 2.8% 5 0.4%
1.4 152 5 3.0% 5 0.3%
1.5 163 5 2.8% 6 0.3%
1.6 158 5 2.9% 6 0.3%
1.7 171 5 2.8% 6 0.1%
1.8 149 6 3.8% 6 0.3%
1.9 167 6 2.9% 6 0.2%
1.10 156 6 2.8% 5 0.3%
1.11 165 5 2.7% 6 0.1%
1.12 167 5 2.8% 6 0.2%

2.1

2 months

755 10 2.7% 12 0.1%
2.2 583 11 2.8% 11 0.4%
2.3 576 11 2.7% 11 0.3%
2.4 595 11 3.1% 13 0.2%
2.5 605 10 2.8% 13 0.2%
2.6 612 11 2.6% 11 0.2%

3.1

3 months

933 16 2.7% 19 0.2%
3.2 1048 17 2.7% 18 0.2%
3.3 900 18 3.0% 20 0.2%
3.4 889 16 2.6% 19 0.2%

4.1
4 months

1380 27 2.8% 27 0.2%
4.2 1391 25 3.0% 26 0.3%
4.3 1310 22 2.8% 26 0.2%

6.1
6 months

- 51 - 54 -
6.2 - 40 - 42 -

12.1 12 months - 112 - 118 -

Table 4.1: Continuous relaxations for UCP
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4.2.2 Commit&Dispatch

We implemented both IACR and the Commit&Dispatch algorithm in C++ using

IBM ILOG CPLEX 12.4 to optimise the mathematical models.

We initialise the Commit&Dispatch algorithm with the IACR relaxation. The

Commit&Dispatch scheme is then run once. Earlier experiments showed further it-

erations yielded negligible improvement over the primal bound. We used the CPLEX

barrier algorithm to solve the IACR and the dispatching model.

In Table 4.2 we report the experimental results. For each instance we report the

value of the IACR lower bound, the value of the IACR+CD heuristic, the gap and

the computing time for the lower bound and the total time for the heuristic.

Id Size Gap % IACR Time [s] IACR+CD Time [s]
1.1

1 month

2.6 % 4.3 57.5
1.2 3.0 % 4.3 48.1
1.3 3.4 % 3.3 47.2
1.4 3.4 % 3.9 58.7
1.5 2.7 % 3.3 43.2
1.6 2.9 % 4.0 44.6
1.7 2.2 % 3.6 48.8
1.8 3.3 % 3.9 55.9
1.9 2.3 % 3.6 52.4
1.10 3.7 % 3.9 44.5
1.11 3.7 % 3.4 43.1
1.12 3.2 % 4.0 48.9
2.1

2 months

2.9 % 9.4 91.7
2.2 3.6 % 8.5 115.8
2.3 3.0 % 8.2 91.7
2.4 2.6 % 8.9 94.4
2.5 3.0 % 8.6 108.0
2.6 3.2 % 8.4 90.7
3.1

3 months

3.2 % 16.1 163.6
3.2 3.2 % 15.8 193.4
3.3 2.5 % 18.9 197.5
3.4 3.4 % 14.5 150.0
4.1

4 months
3.3 % 24.2 225.7

4.2 2.8 % 22.1 243.5
4.3 3.0 % 41.9 290.9
6.1

6 months
3.3 % 57.9 890.6

6.2 3.2 % 43.4 906.3

Table 4.2: Results for IACR+CD

The IACR+CD shows indeed to be a practical tool for solving our UCP, always
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producing duality gaps around 3% in minutes of computation. IACR requires little

time to be solved for all the instances. The MIP solver was able to solve most of

the Commit subproblems (4.10)-(4.12) via presolving or by performing a few LP

iterations at the root node.



Chapter 5

A Column Generation algorithm

for the medium-term UCP

Column generation has been applied to several optimisation problems to derive

both high-quality dual and primal bounds (Lübbecke and Desrosiers, 2005). In this

chapter we present a Column Generation algorithm to compute high-quality primal

solutions for the long-term UCP.

5.1 The Column Generation algorithm

From model (3.1)-(3.21) we define

Szgm = {(ỹtzgm, ỹ
D
tzgm, ṽ

+
tzgm, ṽ

+D

tzgm, ṽ
−
tzgm, ṽ

−D

tzgm)|(3.4)− (3.12), (3.17)− (3.18)}

to be the set of all feasible activation patterns for each z ∈ Z, g ∈ Gz,m ∈Mzg. For

each pattern su ∈ Szgm, let y
u
tzgm and yu

D

tzgm be the integer coefficients representing

the number of active plants in normal and double-shaft mode respectively, and

γuzgm ∈ {0, 1} be the binary variable such that γuzgm = 1 if and only if the pattern is

selected.

We consider the following extended formulation of the UCP:

min φExt =
∑

t∈T,z∈Z,
g∈Gz

ctzgxtzg +
∑

z∈Z,g∈Gz ,
m∈Mzg ,u∈Szgm

γuzgm(
∑

t∈T

ỹutzgmetzgm)

+
∑

t∈T,z∈Z

ENPtzEt +
∑

t∈T,z∈Z

EIEtzFt (5.1)

47



The Column Generation algorithm 48

s.t. xtzg ≥
∑

m∈Mzg ,
u∈Szgm

(ỹutzgmpzgm + ỹu
D

tzgmp
∆
zgm)γ

u
zgm ∀t ∈ T, z ∈ Z, g ∈ Gz (5.2)

xtzg ≤
∑

m∈Mzg ,
u∈Szgm

(ỹutzgmPzgm + ỹu
D

tzgmP
∆
zgm)γ

u
zgm ∀t ∈ T, z ∈ Z, g ∈ Gz (5.3)

∑

u∈Szgm

γuzgm = 1 ∀z ∈ Z, g ∈ Gz,m ∈Mzg (5.4)

γuzgm ∈ {0, 1} ∀z ∈ Z, g ∈ Gz,m ∈Mzg, u ∈ Szgm (5.5)

(3.13)− (3.21) (5.6)

Constraints (5.2) and (5.3) are the reformulated counterparts of constraints (3.2)

and (3.3), respectively. Constraints (5.4) enforce that a single pattern is selected for

each z ∈ Z, g ∈ Gz,m ∈Mzg.

In this extended model the region defined by constraints (3.4)-(3.12), (3.17)-

(3.18) of model (3.1)-(3.21) is replaced by the set of integer points lying in its

convex hull. Such a region is, in turn, the intersection of UCP feasibility regions,

one for each zone, group and sub-group. UCPs for each subgroup are purely integer

commitment problems consisting of k ≥ 1 identical and independent power plants

being scheduled at the same time. This UCP variant, called k-UCP in the remainder,

has thus a special structure compared to a general UCP, which can be exploited to

achieve the following result:

Proposition 6. k-UCP can be reduced in polynomial time to the shortest-path prob-

lem.

We refer to section 5.1.1 for the proof. From that it follows the integrality

property holds for the k-UCP formulation given by (3.4)-(3.12), (3.17)-(3.18) and

the continuous relaxation of the extended formulation yields the same bound as

CR. However, it can be computed more efficiently, by exploiting column generation

techniques.

In our method we start with a restricted master model where each set Szgm is

replaced by a subset Szgm containing only patterns generated by heuristics. Then

we iteratively solve the restricted master model, we obtain a vector of dual variables

and we search for columns of negative reduced cost by solving the following pricing

problem, for each z ∈ Z, g ∈ Gz and m ∈Mzg:



49 Ch. 5 - A Column Generation algorithm for the medium-term UCP

min πu
zgm =

∑

t∈T

(etzgm + pzgmλtzg − Pzgmµtzg)y
u
tzg

+
∑

t∈T

(p∆zgmλtzg − P∆
zgmµtzg)y

uD

tzg

− ηzgm (5.7)

s.t. (yutzgm, y
uD

tzgm, v
+u

tzgm, v
+Du

tzgm, v
−u

tzgm, v
−Du

tzgm)t∈T ∈ Szgm (5.8)

where λtzg ≥ 0, µtzg ≥ 0 and ηzgm are the dual variables associated with con-

straints (5.2), (5.3) and (5.4), respectively. If any column of negative reduced cost is

found, then the corresponding pattern is added to Szgm, and the process is iterated;

otherwise, the optimal solution of the restricted model is optimal also for the full

model, and therefore the process is halted.

5.1.1 Solving the pricing problem

The pricing problem decomposes into independent sub-problems (5.7)-(5.8) for each

zone, group and subgroup. In order to solve each sub-problem to proven optimal-

ity, we extend a dynamic programming algorithm described in (Frangioni, 2006),

originally designed for the single-unit UCP. We extend the algorithm to the prob-

lem with several identical units. It is worth noting that the pricing problem does

concern neither the continuous variables x nor demand satisfaction constraints. Its

only purpose is to select promising activation patterns, i.e. activation patterns with

negative reduced cost, described by the binary variables y.

Proposition 7. For each subproblem and zone there exists an optimal integer so-

lution of the pricing problem (5.7)-(5.8) in which, at each time t ∈ T , all plants

are simultaneously either off or on. Furthermore it is not optimal for double-shaft

plants to work in single-shaft mode.

Proof. The second part of the proposition is trivially proved: since the coefficients

associated with double-shaft variables are always less than or equal to those associ-

ated with single-shaft variables, it is always optimal to employ double-shaft mode,

whenever double-shaft plants are active. The first part of the proposition is proved

by contradiction. Assume that a feasible solution exists, in which each plant fol-

lows a potentially different activation and deactivation pattern, and let y∗ be the

most profitable pattern among those. A non-worse feasible solution can be found
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by using pattern y∗ for all plants. This argument applies, in particular, to optimal

solutions.

Owing to the proposition above, we restrict our search to the solutions with the

particular structure mentioned in the proposition. Let εt be the partial cost for

activating all plants at time t:

εt =







|Kzgm| · etzgm + (pzgm + p∆zgm) · λtzg − (Pzgm + P∆
zgm) · µtzg if m ∈MD

zg

|Kzgm| · etzgm + pzgm · λtzg − Pzgm · µtzg otherwise

For each zone z ∈ Z, group g ∈ Gz and subgroup m ∈ Mzg, we define an arc-

weighted directed graph Γzgm = (Vzgm, Azgm) with weights on arcs. Vzgm includes

one layer of vertices for each t ∈ T . Each layer contains two vertices vont and vofft ,

corresponding to the all-on and all-off states of plants, respectively. It also includes

an initial node σ and a final node ω. Azgm includes two arcs between each pair of

vertices (vont−1, v
on
t ) with weight εt and each pair (vofft−1 , v

off
t ) with weight 0, for each

t ∈ T, t 6= 1. These arcs represent the decision of keeping the plants in their state

from time t − 1 to time t. Let E(t) = min(|T |, t) ∀t ∈ N. We also include an arc

between each pair of vertices (vont , v
off

E(t+τoff )
) with weight 0, representing the decision

of turning off plants after time t, and keeping them off for τ off time units, in order

to fulfil the flexibility constraints. Similarly, we include an arc between each pair

of vertices (vofft , vonE(t+τon)) with weight
∑t′=E(t+τon)

t′=t+1 εt′ , representing the decision of

turning on plants after time t, and keeping them on for τ on time units. Finally, we

connect σ to both voff1 and von1 , and both voff|T | and von|T | to ω with arcs of weight 0.

The structure of the digraph Γzgm is shown in Figure 5.1.

voff1 voff3voff2

ω

voff4 voff7voff6 voff8

σ

von8von3von2

voff5

von1 von6 von7von4 von5

Figure 5.1: The digraph Γzgm with τ on = 3 and τ off = 2 on 8 periods.

Observation 3. Any σ − ω path in Γzgm represents a feasible sequence of activa-

tion and deactivation patterns of plants. In particular, the minimum weight path

represents an optimal solution to the pricing problem.

Therefore, an optimal pricing solution can be found by solving a shortest path
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problem for each z ∈ Z, g ∈ Gz and m ∈ Mzg. Since Γzgm is acyclic, this can be

done in O(|T |) time by dynamic programming.

We note the graph construction procedure assumes the power plant has to wait

its respective minimum up/down time at period 1 before switching to a new state.

In short-term models for operational support the initial state of power plants at

period 1 is known in advance and is thus fixed. For our model the initial state has

to be assumed as part of the simulated scenario.

5.1.2 Solving the master problem

Preliminary experiments revealed that, given the efficiency of the pricing algorithm,

the bottleneck of the method is the solution of the master problem. This is a large

scale LP and suffers for numerical instability and degeneracy which occur in the

LP solver during the solution of the master problem at each iteration of the CG

algorithm. These problems differ from the “dual instability” problems encountered

in literature (Ben Amor et al., 2009; Briant et al., 2008; Gondzio et al., 2013) as

they do not cause either the dual bound or the value of dual variables to oscillate

significantly; instead they consist of numerical issues during the solution of the

master problem that cause the LP solver to either “stall” (IBM, 2011), i.e. have the

bounds not improving for several iterations, or fail to converge completely and halt.

We refer the reader to sec.7.1 for a deeper analysis of the issue.

In order to overcome this difficulty we devised a hybrid method for computing

optimal dual solutions. The method quickly computes additional columns at each

iteration in order to provide a better description of the master’s polytope, in the

hope of improving its numerical properties.

We consider the following Lagrangian relaxation of the extended formulation

(5.1)-(5.6):

min L =
∑

t∈T,z∈Z,
g∈Gz

ctzgxtzg +
∑

t∈T,z∈Z

ENPtzEt +
∑

t∈T,z∈Z

EIEtzFt

+
∑

z∈Z,g∈Gz ,
m∈Mzg ,u∈Szgm

γuzgm(
∑

t∈T

ỹutzgmetzgm)

−
∑

t∈T,z∈Z,g∈Gz

λtzg(xtzg −
∑

m∈Mzg ,
u∈Szgm

(ỹutzgmpzgm + ỹu
D

tzgmp
∆
zgm)γ

u
zgm)
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−
∑

t∈T,z∈Z,g∈Gz

µtzg(−xtzg +
∑

m∈Mzg ,
u∈Szgm

(ỹutzgmPzgm + ỹu
D

tzgmP
∆
zgm)γ

u
zgm) (5.9)

s.t.
∑

u∈Szgm

γuzgm = 1 ∀z ∈ Z, g ∈ Gz,m ∈Mzg (5.10)

γuzgm ∈ {0, 1} ∀z ∈ Z, g ∈ Gz,m ∈Mzg, u ∈ Szgm (5.11)

(3.13)− (3.21) (5.12)

Constraints (5.2) and (5.3) are dualised; their violation is penalised in the objective

function by multipliers λ and µ. When the values of multipliers are fixed, problem

(5.9)-(5.12) decomposes in two parts. The first one (Lx) includes only xtzg variables

and constraints (3.13)-(3.21):

min
∑

t∈T,z∈Z,
g∈Gz

(ctzg − λtzg + µtzg)xtzg +
∑

t∈T,z∈Z

ENPtzEt +
∑

t∈T,z∈Z

EIEtzFt (5.13)

s.t. (3.13)− (3.21) (5.14)

This turns out to be a LP subproblem involving a polynomial number of variables.

The second one Ly includes γu variables and constraints (5.10) and (5.11):

min
∑

z∈Z,g∈Gz ,
m∈Mzg ,u∈Szgm

γuzgm ·̟u
zgm (5.15)

s.t.
∑

u∈Szgm

γuzgm = 1 ∀z ∈ Z, g ∈ Gz,m ∈Mzg (5.16)

γuzgm ∈ {0, 1} ∀z ∈ Z, g ∈ Gz,m ∈Mzg, u ∈ Szgm (5.17)

where

̟u
zgm = (

∑

t∈T

ỹutzgmetzgm)+

+
∑

t∈T

(ỹutzgmpzgm + ỹu
D

tzgmp
∆
zgm)λzgm

−
∑

t∈T

(ỹutzgmPzgm + ỹu
D

tzgmP
∆
zgm)µzgm

is a partial cost for selecting pattern u ∈ Szgm. This is an ILP problem including
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an exponential number of variables, but it further decomposes into independent

subproblems Ly
zgm for each z ∈ Z, g ∈ Gz and m ∈ Mzg, each requiring (due to

constraints (5.10)) to select a single pattern of minimum pseudo-cost. These are

actually the same subproblems that need to be solved by the pricing algorithm.

Observation 4. The dual bound that can be obtained by solving the Lagrangian dual

problem

max
λ,µ

L

to optimality is equivalent of that given by the LP relaxation of (5.1)-(5.6).

The integrality property holds for the second part of the decomposed problem

(5.9)-(5.12), i.e. model (5.15)-(5.17). In fact the polytope of model (5.15)-(5.17) is,

by definition, the convex hull of integer feasible solutions of model (3.1)-(3.21); hence

it always admits at least one extreme integral solution. For the sake of completeness,

we also mention that this bound can also be achieved by the Lagrangian relaxation

of constraints (3.2) and (3.3) in model (3.1)-(3.21).

Preliminary experiments revealed that a standard linear search for good multi-

pliers along subgradient directions can show significant oscillations and slow con-

vergence. This is likely to be due to the flatness of the objective function. The

systematic selection of small steps, at the same time, is not sufficient to eventually

improve dual solutions (Taverna, 2011).

However, preliminary experiments also highlighted that the dual solution pro-

vided by the Restricted Master Problem (RMP) in early column generation iterations

is often close to the Lagrange dual optimum and, starting from it, the direction given

by subgradients is sufficient for improving, provided that the steps are small.

Therefore, we designed the following specific master dual optimisation algorithm,

in which we alternate subgradient iterations with RMP re-optimisation.

At each column generation iteration, the RMP solution and the best known

Lagrangian dual solution provide an upper L̄ and a lower L bound to the optimal

Lagrangian dual solution, respectively. During subgradient iterations, each step is

classified as follows:

• bad, if the value of the produced solution is “too far” from L̄;

• poor, if the value of the produced solution is “too close” to L;

• good, otherwise.
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When good and poor steps are detected, we respectively decrease and increase the

step length; when bad steps are detected, instead, the algorithm backtracks re-

initialising the dual multipliers to the values corresponding to the last non-bad step.

We define the following parameters:

• α the step length in multiplier update;

• α0 > 0 an initial step length;

• β+ ∈ (0, 1) the minimum improvement factor to classify a poor step;

• β− ∈ (0, 1) the minimum improvement factor to classify a bad step (a different

parameter β−
0 ∈ (0, 1) is used in the first step);

• δ ∈ (0, 1) the decay factor applied to α if a good step is performed;

• θ ∈ (0, 1) the adjustment factor applied to α if a poor step is performed;

• ξ ∈ (0, 1) the adjustment factor applied to α if a bad step is performed;

• Nbad > 0 the maximum number of consecutive bad steps that can occur before

the algorithm is stopped;

• N > 0 the maximum number of allowed iterations;

• ρ > 0 optimality tolerance.

The algorithm works as follows:

1. Initialise the Szgm sets with the patterns obtained from the Commit&Dispatch

algorithm.

2. Set L := −∞; set α := α0;

3. Iteratively:

(a) Solve the RMP; let λM, µM and ηM be the values of λ, µ and η in an

optimal RMP dual solution; set L̄ to its value.

(b) Initialise the Lagrangian multipliers λL := λM, µL := µM and the backup

multipliers λL+ := λL µL
+ := µL.

(c) Let cbad := 0. For i in 1..N :
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i. Solve the Lagrangian subproblems using λL and µL, and compute the

corresponding Lagrangian bound L′; let xL be the optimal dispatch-

ing of subproblem LD and for each subgroup m ∈ Mzg let yL
zgm be

the optimal scheduling for subproblem LC.

ii. If
(

i = 1 ∧ |L′−L̄|

L̄
≥ β−

0

)

or
(

i > 1 ∧ |L′−L̄|

|L−L̄|
≥ (1 + β−)

)

then i is

a bad step.

Let cbad := cbad + 1. If cbad > Nbad then exit the loop.

Otherwise backtrack by setting λL := λL+, µ
L := µL

+ and update

α := ξα.

iii. Otherwise update backup multipliers λL+ := λL and µL
+ := µL and

reset the bad step counter cbad := 0.

• If |L′−L|
|L|

≤ β+ then i is a poor step. Increase the step: α :=

(2− θ)α.

• Otherwise i is a good step: let α := δα.

iv. Set L = max(L′,L).

v. For each subgroup compute the reduced cost of scheduling yL
zgm with

multipliers λM, µM, ηM according to the objective function (5.7). If

the reduced cost is negative then add yL
zgm to S̄zgm.

vi. Compute the subgradients of constraints (3.2) and (3.3):

∆L
zgm = −xLtzg +

∑

m∈Mzg

yLtzgmPzgm + yL
D

tzgmP
∆
zgm

∆U
zgm = xLtzg −

∑

m∈Mzg

yLtzgmpzgm + yL
D

tzgmp
∆
zgm

and update multipliers λL and µL as follows:

λLzgm := min(0, λLzgm − α ·
∆U

zgm

‖∆U‖
)

µL
zgm := min(0, µL

zgm − α ·
∆L

zgm

‖∆L‖
)

(d) If L̄−L
L

< ρ then return L; else go to step 3a.

We remark that, from the theoretical point of view, the solution returned in step

3d is guaranteed to be within a factor ρ from a Lagrangian dual optimum, that is in

turn equivalent to the optimal solution of (5.1)-(5.6). Besides improving the bound,

the subproblem solutions produced during subgradient iterations are encoded as
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columns and inserted into the RMP; they help to provide a better description of

the master dual feasibility region, and to overcome LP stability issues. At the same

time, the dual solutions obtained by RMP LP optimisation allow to escape from

subgradient local minima.

From the practical point of view, such a master optimisation algorithm requires

many parameters to be tuned. In Section 5.2 we report on experiments about tuning

the most critical parameters.

5.1.3 Column Generation rounding

During column generation we search for good integer solutions with the following

Rounding Heuristic (RH). After pricing, we consider model (5.1)-(5.6): for each

z ∈ Z, g ∈ Gz and m ∈ Mzg, we fix to 1 the γuzgm variable of highest fractional

value, and we fix to 0 all the remaining variables. Ties are broken according to the

lexicographic order. In this way, no more integer variables are left free, and model

(5.1)-(5.6) becomes a LP whose optimisation yields a full UCP solution.

5.2 Computational results

In this section we report experimental results for our algorithms. In subsection 5.2.1

we report the results for Column Generation methods in terms of dual and primal

bounds. In subsection 5.2.2 we report a comparison between our algorithms and the

sMTSIM simulator from RSE S.p.A.with RSE S.p.A.’s own environment.

5.2.1 Column Generation on Italy 2011

Tests in this section were performed on instances for Italy 2011 used in chapter 4.1.2

on the same hardware: a 4GB RAM 2 Core 1.2GHz processor PC. We implemented

the column generation algorithm in C++ with SCIP 3.1.0 and CPLEX 12.4 and the

full dual optimisation algorithm with CPLEX Concert API.

Dual bounds

In a first round of experiments we focus on finding best dual bounding strategies.

We compared three column generation strategies:

• Crossover, Pure column generation (CP) : solve master LPs with barrier al-

gorithm followed by crossover phase, price new columns, skip step 3c of the
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master dual optimisation algorithm.

• Barrier only, Pure column generation (BP) : solve master LPs with barrier

algorithm, price new columns, skip step 3c of the master dual optimisation

algorithm.

• Barrier only, Full master dual optimisation (BF) : solve LPs with barrier and

include step 3c, exploiting the full master dual optimisation algorithm.

Each strategy uses IACR+CD to initialise the RMP. In the pricing problem it is

assumed power plants have to wait the respective minimum up/down time at the

first period before switching state, as depicted in figure 5.1.

Parameter tuning. For the master dual optimisation algorithm, after preliminary

experiments, we set: α0 = 5 × 10−10, δ = 0.95, ξ = 0.3, θ = δ2 = 0.9025 β− = 0.1,

β−
0 = 0.3, β+ = 0.01 Nbad = 3, ρ = 0.001. The number of steps to be performed

on each run N is set as follows: N = 0 (i.e. no subgradient step is performed)

for the first two column generation iterations, N = 5 for iterations between 3 and

5, N = 18 for iterations between 6 and 10 and N = 25 for iterations beyond

10. The rationale for the choice of N is that on one hand the subgradient steps

are more effective at generating good columns starting from good dual solutions,

which are computed in the latest pricing iterations; on the other hand, in the latest

pricing iterations it is more convenient to price new columns during subgradient

steps instead of performing a new column generation iteration, as the complexity of

each step of the Lagrangian relaxation remains constant throughout the algorithm,

while the complexity of solving the RMP grows due to the increase in the number

of columns.

In Tables 5.1, 5.2 and 5.3 we report the results for column generation strategies

CP, BP and BF respectively. In each table we detail, in turn, the number of RMP

optimisation iterations performed and the improvement, i.e. the increase, over the

IACR dual bound; we also include the gap between the final value of the RMP

and the best dual bound, giving an upper estimate on the improvement that could

be obtained by allowing more computing resources to the master dual optimisation

process. Finally, we mark with an asterisk ’*’ the instances for which SCIP detects

numerical issues. When this happens the corresponding dual solution cannot be

proved to be either optimal or feasible, and therefore any dual optimality guarantee

is lost.
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Id Size Iterations Improvement over IACR % Gap RMP/Dual %
1.1

1 month

10 -0.1% 0.8%
1.2 10 0.2% 0.4%
1.3 15 0.3% 0.3%
1.4 11 0.2% 0.6%
1.5 15 0.4% 0.2%
1.6 15 0.2% 0.2%
1.7 12 -0.1% 0.5%
1.8 9 0.0% 0.4%
1.9 10 0.0% 0.5%
1.10 12 0.1% 0.7%
1.11 11 0.2% 0.5%
1.12 11 -0.1% 0.9%
2.1

2 months

5 -0.4% 1.2%
2.2 6 -0.5% 1.4%
2.3 6 -0.2% 0.9%
2.4 6 -1.5% 2.2%
2.5 6 -1.3% 2.1%
2.6 4 -1.6% 2.6%
3.1

3 months

5 -0.8% 1.6%
3.2 7 0.1% 0.7%
3.3 5 -0.9% 1.6%
3.4 5 -0.4% 1.4%
4.1

4 months
7 -0.1% 0.9%

4.2 5 -1.8% 2.6%
4.3 6 -0.6% 1.4%
6.1

6 months
4 -1.5% 2.4%

6.2 4 -1.5% 2.5%

Table 5.1: Dual bounds for CP column generation strategy
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Id Size Iterations Improvement over IACR % Gap RMP/Dual %
1.1

1 month

45 0.4% 0.2%
1.2 39 0.4% 0.1%
1.3 41 0.5% 0.1%
1.4 43 0.6% 0.1%
1.5 40 0.5% 0.2%
1.6 54 0.4% 0.1%
1.7 38 0.2% 0.2%
1.8 44 0.2% 0.1%
1.9 37 0.2% 0.2%
1.10 41 0.6% 0.1%
1.11 42 0.6% 0.1%
1.12 43 0.5% 0.2%
*2.1

2 months

10 – –
*2.2 13 – –
*2.3 7 – –
*2.4 15 – –
*2.5 8 – –
*2.6 4 – –
*3.1

3 months

6 – –
*3.2 5 – –
*3.3 5 – –
*3.4 6 – –
*4.1

4 months
6 – –

*4.2 8 – –
*4.3 6 – –
6.1

6 months
6 -0.4% 1.2%

6.2 6 -0.4% 1.2%

Table 5.2: Dual bounds for BP column generation strategy
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Id Size Iterations Improvement over IACR % Gap RMP/Dual %
1.1

1 month

18 0.1% 0.5%
1.2 18 0.2% 0.4%
1.3 19 0.3% 0.3%
1.4 28 0.5% 0.2%
1.5 31 0.5% 0.1%
1.6 36 0.4% 0.1%
1.7 18 -0.1% 0.6%
1.8 33 0.2% 0.2%
1.9 17 0.0% 0.5%
1.10 18 0.2% 0.6%
1.11 18 0.4% 0.4%
1.12 19 0.1% 0.6%
2.1

2 months

8 -0.2% 0.9%
2.2 8 0.1% 0.7%
2.3 15 0.1% 0.6%
2.4 16 -0.1% 0.6%
2.5 8 -0.2% 1.0%
2.6 8 -0.2% 1.0%
3.1

3 months

7 -0.2% 1.0%
3.2 11 0.0% 0.8%
3.3 12 -0.2% 0.7%
3.4 7 -0.4% 1.2%
4.1

4 months
5 0.0% 0.9%

4.2 7 -0.3% 1.0%
4.3 6 -0.5% 1.4%
6.1

6 months
5 -0.7% 1.7%

6.2* – – –

Table 5.3: Dual bounds for BF column generation strategy
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The BP strategy provides bounds that are on average 0.7% from the opti-

mum, but suffers numerical troubles on several instances. CP strategy, by using

the crossover algorithm, allows to solve these numerical troubles at the expense of

speed: the number of RMP LP re-optimisation steps is more than halved, the final

accuracy estimate doubles and the dual bounds are worse. The BF strategy allows

to effectively solve these issues: it yields better bounds with no numerical issues

and a higher accuracy guarantee with fewer LP optimisation steps. The subgradi-

ent steps allow to produce columns that improve significantly the stability and the

effectiveness of the column generation process.

We remark we found an exception in instance 6.2, for which the LP solver yielded

unreliable bounds with the BF strategy.

Heuristic solutions

In a second round of experiments we focused on finding good integer solutions. In

particular we compared the primal solution found by the CD matheuristic initialised

with an optimal solution of the IACR relaxation (IACR+CD) against the solution

found by the rounding heuristic, RHk, run at the kth iteration of the BF column

generation algorithm. In our tests we selected k = 5 as a benchmark, i.e. we ran

the rounding heuristic RH on the set of columns in the RMP after five column

generation iterations. In Table 5.4 we report, for each instance, the IACR+CD

solution value, its duality gap, and the corresponding required CPU time, the RH5

value, its duality gap, the time required to perform the five column generation

iterations and the time required to run RH itself. The duality gaps have been

computed by considering the best dual bound provided by the BF strategy. The

IACR+CD heuristic algorithm yields a good compromise between accuracy and

speed, being able to produce solutions with an average duality gap of 2.9% within a

few minutes. Its accuracy tends to be stable and the computing time grows slowly

with the instance size. The RH5 heuristic algorithm provides even higher accuracy,

allowing to reach a duality gap of 0.4% on average and below 1% in all cases but

two; however it requires substantially larger computing time, especially for instances

of large size. As a side result, this allows to conclude also that IACR dual bounds

are very tight, that in turn explains the relatively small dual bound improvement

offered by the column generation strategies.

We also tried to assess the impact of the improvement in the objective value

achievable with the RH5 heuristic on the solution structure. We found out that
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even small relative improvements yield relevant differences between primal solution

structures, i.e. it is not determined by small numerical adjustments but by a different

match between supply and demand. The latter can be synthesised by zonal energy

prices, given by the dual prices (πtz)
⊤
t∈T,z∈Z of constraints (3.16). In figure 5.2 zonal

prices distributions for instance 4.2 in the two primal solutions are reported using

boxplot charts. The difference between objectives of the primal solutions for this

instance are 20.1 Me, i.e. less than 2.1% of the best known dual bound; still

significant differences can be observed on theprices distributions. We note that in

the RH solution there are three hours, in the ’SI’ region, with ENPtz > 0 that signal

a loss-of-load event and with an hourly energy price above 400 e

MWh
. They are not

included in the chart to ease the representation.

Id Size
IACR+CD RH

Gap % Time [s] Gap % Time RH [s] Time 5th iteration [s]
1.1

1 month

2.5% 57.5 0.7% 86.8 407.0
1.2 2.8% 48.1 0.5% 101.0 445.0
1.3 3.0% 47.2 0.5% 88.1 406.0
1.4 2.8% 58.7 0.4% 85.6 466.0
1.5 2.1% 43.2 0.3% 54.7 406.0
1.6 2.5% 44.6 0.2% 37.0 282.0
1.7 2.2% 48.8 0.6% 106.9 488.0
1.8 3.0% 55.9 0.2% 59.1 247.0
1.9 2.3% 52.4 0.6% 147.5 503.0
1.10 3.5% 44.5 0.6% 117.0 447.0
1.11 3.3% 43.1 0.5% 123.1 478.0
1.12 3.2% 48.9 0.7% 83.5 436.0
2.1

2 months

3.0% 91.7 0.8% 476.9 1817.0
2.2 3.5% 115.8 0.8% 899.2 1790.0
2.3 2.9% 91.7 0.7% 159.8 1092.0
2.4 2.7% 94.4 0.7% 262.6 1171.0
2.5 3.1% 108.0 0.8% 1499.6 2252.0
2.6 3.2% 90.7 0.9% 526.7 1870.0
3.1

3 months

3.2% 163.6 0.8% 1231.3 3326.0
3.2 3.2% 193.4 0.9% 552.5 2058.0
3.3 2.6% 197.5 0.7% 417.9 2611.0
3.4 3.4% 150.0 0.9% 802.9 2866.0
4.1

4 months
3.2% 225.7 2.9% 1810.5 9433.0

4.2 2.8% 243.5 0.8% 1209.8 4633.0
4.3 3.0% 290.9 1.0% 1531.3 7652.0
6.1

6 months
3.3% 890.6 0.9% 2561.3 8817.0

6.2* 2.4% 906.3 – – –

Table 5.4: Primal bounds. Column generation with BF strategy.
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Figure 5.2: Zonal energy prices distributions in different primal dual bounds for
instance 2.4. Bold lines in the chart indicate the median of the distribution. Zero-
price hours signal overabundant production (overgeneration) and, thus, an inefficient
match between supply and demand.

5.2.2 Comparison with sMTSIM

In this section we compare the behaviour of the heuristic IACR+CD illustrated in

chapter 4 and the Column Generation algorithm presented here with the sMTSIM

algorithm available at RSE S.p.A.. sMTSIM (Siface et al., 2014; G. Migliavacca,

2009) is a zonal market model simulator developed by RSE S.p.A.. It is derived from

MTSIM, another zonal market simulator from RSE S.p.A., and provides, among

others, an extensions to perform stochastic optimisation and simulate an optimal

policy for the system which accounts for uncertainty in the data.

The deterministic solver in sMTSIM has a structure similar to the Commit&Dispatch

heuristic (section 4.1.2): a first step solves a linear problem to compute a tentative

dispatching for power plants, neglecting minimum production levels and minimum

up/down times. The approximated dispatching is then used to determine a heuris-

tic commitment for thermal plants. Finally, a linear dispatching problem computes

the optimal plant production levels given the heuristic commitments. The main

differences between IACR+CD and sMTSIM are:

• power plant grouping: sMTSIM does not group thermal plants.
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• first step: sMTSIM uses different coefficients to approximate the piece-wise

linear cost of thermal plants in the continuous linear model at the first step.

In particular, the model is not a proper lower bound of the original model and

cannot return a valid lower estimate of the optimum value.

• commitment: sMTSIM uses a polynomial-time heuristic to compute a feasible

commitment for each power plant. First the procedure tries to determine a

commitment that satisfies the tentative dispatching computed at the first step.

Such commitment can violate minimum up/down time constraints (equations

(3.5)-(3.12)) in some time intervals. Then, the procedure fixes those violations

by changing the commitment in each infeasible interval. The procedure relies

on user-defined thresholds on the overall production and commitment time

of an interval to generate new commitments. When there are more than one

commitment to choose for an interval, the procedure computes an estimate

of the production profit for each possible commitment, using zonal energy

prices from the tentative dispatching, and then it chooses the commitment

that maximises the estimated profit.

Additionally, sMTSIM implements constraints such as ramping (Frangioni, 2006)

and reserve constraints (Kirby, 2003; Zani et al., 2015) which are not included in

the model (3.1)-(3.21).

We remark that, in general, these constraints, especially the ones included in

sMTSIM, can be effortlessly added to our models since they are usually formulated

as linear inequalities. In particular, pricing problems can be extended with switching

costs, intermediate states (warming-up, cooling-down), and other linear constraints

while still being solvable in polynomial time by the same algorithm we adapted from

(Frangioni, 2006).

Experimental results

We performed two tests on a yearly instance for Europe 2020, spanning Italy and

neighbouring countries: Slovenia, France, Germany, Switzerland and Austria.

sMTSIM defines both an algorithm and a model, hence a first test compares the

different algorithms on the model (3.1)-(3.21) used in this work; a second test com-

pares the same algorithms using version 8.0 of the sMTSIM model, which includes

additional ramping and reserve constraints. We refer the reader to (Siface et al.,

2014) for further details.
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sMTSIM is implemented in GAMS and uses the CPLEX 12.1 MILP solver. We

implemented the IACR+CD model and the Column Generation algorithm with the

same technology. For Column Generation we perform three iterations using the BP

pricing strategy and computing a primal bound with the rounding heuristic (section

5.1.3) at each iteration. The pricing problems (5.7)-(5.8) are solved with the CPLEX

MILP solver. We remark we do not use the Full dual optimisation procedure for

the BF strategy as it would require appropriate precaution to be implemented in

GAMS without incurring in excessive overhead.

For the first test, on model (3.1)-(3.21), we report in table 5.5 for each algorithm

the difference in percentage between the dual bound and the best known dual bound,

computed by the CG algorithm, the gap in percentage between the primal bound

and the best known dual bound, and the computation time.

Results show the IACR+CD slightly improves over the sMTSIM heuristic for the

primal bound and provides an estimate of the optimality gap while still requiring

comparable computation time. The CG algorithm, despite requiring more time,

effectively reduces the optimality gap with just three iterations and within affordable

time, i.e. less than one hour.

Computation time, however, does not include the overall time, and memory, re-

quired by the GAMS implementation to generate and parse the necessary data to

communicate with the CPLEX solvers. For sMTSIM and IACR+CD heuristic the

total time amounts to between 10 and 20 minutes. For CG it reaches up to 1 hour.

Hence, while the CG algorithm allows to significantly increase the quality of both

bounds for the instance in reasonable time, its actual usage in production environ-

ment could easily become quite expensive with larger instances or more iterations.

sMTSIM IACR+CD CG-BP with 3 iterations
Dual improvement % – -7.9% 0%
Gap % 16.5% 12.6% 2.4%
Time [s] 248 402 1841 (of which 402 for IACR+CD)

Table 5.5: Comparison for sMTSIM and IACR+CD for model (3.1)-(3.21).

For the second test we performed a few experiments with the latest version of

sMTSIM using its own extended model, with the same instance for Europe 2020. The

sMTSIM model is larger than eq.(3.1)-(3.21) due to the additional constraints and

variables. We first present the experimental results using only the first two months

(1460 hours) of the year. Furthermore, to avoid numerical instability problems, we

use the CP pricing strategy for the CG algorithm.
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We considered two scenarios:

• NoExcess, with heavy penalisation of mismatches between supply and demand.

For the scenario we set Et = Ft = 10, 000e/KWh ∀ t ∈ T .

• OptimalThermal, with no penalisation of excessive energy. The objective then

considers only the cost of the thermal production and the penalty for unsatis-

fied demand. Compared to the other scenario, the model focuses on minimising

the cost of the thermal production schedule. We set Et = 3, 000e/KWh and

Ft = 0e/KWh ∀t ∈ T .

In tables 5.6 and 5.7 we report the results for the three algorithms in the NoEx-

cess and OptimalThermal scenarios respectively. The sMTSIM heuristic computed

slightly better primal bounds than the IACR+CD heuristic in both scenarios. The

primal heuristic in the CG algorithm, on the other hand, managed to significantly

reduce the gap in both cases by computing almost optimal solutions within few

iterations. Further inspection of the two solutions showed that the CG solution,

compared to the sMTSIM one

• in the NoExcess scenario reduces excess production by 30% and pumping

power by 18%.

• in the OptimalThermal scenario reduces thermal production by 0.1% and

pumping power by 16%.

In both cases the CG algorithm computes a better schedule for thermal and hy-

droelectric productions, optimizing the main objective drivers and yielding a lower

global cost.

On the other hand, the CG algorithm is way more expensive than the other

methods. We remark as well that the computing time in the CG algorithm is clearly

dominated by the solution time of the master problem. In tables 5.8 and 5.9 we

report the computation time for master and pricing problems at each iteration for

the NoExcess and OptimalThermal scenarios respectively. It can be noticed the

solution time of the master problem grows at each iteration in both cases, while the

pricing problem takes roughly the same amount of time at each iteration. At the

end of the CG algorithm solving the master problem required rougly ten and five

times more time than the pricing problem in the NoExcess and OptimalThermal

scenarios respectively. It can also be noticed that the LP solver manages to solve
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the master problem more quickly in the OptimalThermal scenario as the objective

function has fewer terms.

We performed further experiments on the full-year scenario with the IACR+CD

and CG algorithms as well, using both the CP and the BP pricing strategy. We

noticed the IACR+CD algorithm usually fails to improve over the sMTSIM solution

and the CG algorithm either requires long execution times with the CP strategy,

e.g. more than twenty minutes for solving the master once, or fails due to numerical

instabilities with the BP strategy.

In general the problem of finding an approximation method that guarantees

improvements over heuristic solutions from sMTSIM and CD while requiring com-

parable complexity is non trivial. Quick heuristic methods have to estimate optimal

values of variables to efficiently compute feasible solutions and cannot thus provide

guarantees about the quality of their solutions with respect to the original problem.

On the other hand, the size of the model and the presence of degeneracy can cause

more powerful methods like CG to converge slowly or not at all due to numerical

issues with state-of-the-art linear solvers.

We refer to chapter 7 for an empirical analysis on the computational difficulties

inherent to these large-scale UCPs.
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sMTSIM IACR+CD CG-BP with 3 iterations
Dual improvement % – 0% 0%
Gap % 17.8% 22.4 % 2.3%
Time [s] 31 59 1419 (of which 59 for IACR+CD)

Table 5.6: Comparison for sMTSIM and IACR+CD for sMTSIM model in the
NoExcess scenario.

sMTSIM IACR+CD CG-BP with 3 iterations
Dual improvement % – 0% 0%
Gap % 1.4% 1.5 % 0.6%
Time [s] 29 60 1088 (of which 60 for IACR+CD)

Table 5.7: Comparison for sMTSIM and IACR+CD for sMTSIM model in the
OptimalThermal scenario.

Problem
Iteration

Total time
1 2 3

master 211 392 633 1292
pricing 40 44 43 129

Table 5.8: Computing time, in seconds, for master and pricing problems in NoExcess
scenario.

Problem
Iteration

Total time
1 2 3

master 108 160 210 534
pricing 43 45 44 132

Table 5.9: Computing time, in seconds, for master and pricing problems in Opti-
malThermal scenario.



Chapter 6

Benders Decomposition

In this chapter we report our results for the Benders decomposition (BD) (Benders,

1962) algorithm we devised for the long-term UCP. Similarly to Column Generation

in chapter 5, BD is a technique used to solve large-scale MILP to high accuracy. We

adapt the standard BD algorithm to our problem and use two techniques to improve

its convergence: the Magnanti-Wong (MW) or Pareto-optimal cuts, a family of

refined Benders optimality cuts, and a two-phases heuristic, which quickly computes

optimality cuts in the first phase by applying BD to the continuous relaxation of

the problem and then restores integrality constraints to continue with the standard

BD algorithm.

In section 6.1 we report the main elements of BD algorithms and the specific

adaptation for our UCP. In section 6.2 we report the experimental results.

6.1 Benders Decomposition for the UCP

The standard BD method decomposes a MIP model into an integer master problem

and a continuous slave problem. By exploiting dual information from the slave

solution, the algorithm iteratively constructs an approximation of the optimal facets

of the slave problem into the master problem as a reduced set of optimality cuts

(Benders cuts). The method can be seen as a dual approach of CG as it “swaps” the

definitions of master and slave problems, having the slave providing dual information

to the master. We note that recent studies (Hooker, 2009; Fischetti et al., 2009)

developed techniques to generate Benders cuts from purely integer subproblems

(Logic Benders cuts) as well. An even more recent technique (Zeng and Zhao, 2011;

Long Zhao and Bo Zeng, 2012) proposes to employ the slave problem to provide

69
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primal information to the master problem, generating new columns and constraints

at each iteration. While this method is reported to be an order of magnitude faster

than classical Benders decomposition on sample stochastic programs, it also tends

to require much more memory. Since our model can already require a significant

amount of memory, we do not consider this method suitable for our purposes.

As with Column Generation, the method is used to decouple power dispatching

from unit commitment. From model (3.1)-(3.21) the method yields a slave dispatch-

ing model (6.1)-(6.10), defined for a feasible commitment (ỹ, ỹD) and identical to

the dispatching model (4.13)-(4.16).

min φS =
∑

t∈T,z∈Z,
g∈Gz

ctzgxtzg +
∑

t∈T,z∈Z

EIEtzFt +
∑

t∈T,z∈Z

ENPtzEt

+
∑

z∈Z,g∈Gz ,
m∈Mzg

etzgmỹtzgm (6.1)

s.t. xtzg ≤
∑

m∈Mzg

Pzgmỹtzgm +
∑

m∈MD
zg

P∆
zgm)ỹ

D
tzgm ∀t ∈ T, z ∈ Z, g ∈ Gz (6.2)

xtzg ≥
∑

m∈Mzg

pzgmỹtzgm +
∑

m∈MD
zg

p∆zgmỹ
D
tzgm ∀t ∈ T, z ∈ Z, g ∈ Gz (6.3)

o1zh = qzh ∀z ∈ Z, h ∈ Hz (6.4)

o(|T |+1)zh = Qzh ∀z ∈ Z, h ∈ Hz (6.5)

otzh + nth + βh ·mtzh = o(t+1)zh + stzh + αzhltzh ∀t ∈ T, z ∈ Z, h ∈ Hz (6.6)
∑

h∈Hz

ltzh +
∑

g∈Gz

xtzg +
∑

(i,z)∈A

wtiz +
∑

z∈Y

ENPtz ≥

dtz +
∑

h∈Hz

mtzh +
∑

(z,j)∈A

wtzj +
∑

z∈Y

EIEtz

∀t ∈ T, z ∈ Z (6.7)

wtij ∈ [0, bij] ∀t ∈ T, (i, j) ∈ A (6.8)

stzh ∈ [0, fzh], otzh ∈ [0, Vzh], ltzh ∈ [0, Pzh],mtzh ∈ [0, P β
zh] ∀t ∈ T, z ∈ Z, h ∈ Hz

(6.9)

ENPtz ≥ 0,EIEtz ≥ 0 ∀t ∈ T, z ∈ Z (6.10)

and a purely integer linear master problem

minφM = ψ (6.11)
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s.t. yDtzgm ≤ ytzgm ∀t ∈ T, z ∈ Z, g ∈ Gz,m ∈MD
zg (6.12)

v+tzgm ≥ ytzgm − y(t−1)zgm ∀t ∈ T, z ∈ Z, g ∈ Gz,m ∈Mzg (6.13)

v−tzgm ≥ y(t−1)zgm − ytzgm ∀t ∈ T, z ∈ Z, g ∈ Gz,m ∈Mzg (6.14)

v+
D

tzgm ≥ yDtzgm − yD(t−1)zgm ∀t ∈ T, z ∈ Z, g ∈ Gz,m ∈MD
zg (6.15)

v−
D

tzgm ≥ yD(t−1)zgm − yDtzgm ∀t ∈ T, z ∈ Z, g ∈ Gz,m ∈MD
zg (6.16)

ytzgm ≥
∑

τ∈T :t∈T on
τ

v+τzgm ∀t ∈ T, z ∈ Z, g ∈ Gz,m ∈Mzg (6.17)

ytzgm ≤ |Kzgm| −
∑

τ∈T :t∈T off
τ

v−τzgm ∀t ∈ T, z ∈ Z, g ∈ Gz,m ∈Mzg (6.18)

yDtzgm ≥
∑

τ∈T :t∈T off
τ

v+
D

τzgm ∀t ∈ T, z ∈ Z, g ∈ Gz,m ∈MD
zg (6.19)

yDtzgm ≤ |KD
zgm| −

∑

τ∈T :t∈T off
τ

v−
D

τzgm ∀t ∈ T, z ∈ Z, g ∈ Gz,m ∈MD
zg (6.20)

ψ ≥
∑

t∈T,z∈Z,
g∈Gz ,m∈Mzg

(

(etzgm + µtzgbpzgm − λtzgbPzgm)ytzgm+

(µtzgbp
∆
zgm − λtzgbP

∆
zgm)y

D
tzgm

)

+ ηb

∀b ∈ B (6.21)

Inequalities 6.21 are Benders optimality cuts for a solution (ỹb, ỹ
D
b ) with index

b ∈ B and coefficients ξb = (λb,µb, ηb) where λb = (λtzgb)
⊤ and µ = (µtzgb)

⊤

∀t ∈ T, z ∈ Z, g ∈ Gz are the duals of constraints 6.2 and 6.3 respectively and

ηb = φS(ỹb, ỹ
D
b )−

∑

t∈T,z∈Z,
g∈Gz ,m∈Mzg

etzgmỹtzgmb.

In this setting Benders feasibility cuts are not needed because the slave problem

is feasible for any commitment returned by the master problem. Indeed, in the

worst case a valid commitment causes a mismatch between supply and demand

in the system (constraints (6.7)) by limiting production of thermal plants in some

periods and some zones. This mismatch is then absorbed by the corresponding EIE

or ENP variables and causes the solution value to worsen considerably. The solution,

however, is still feasible.

In general the master problem has a combinatorial number of valid optimality

cuts, one for each feasible commitment of thermal plants. However, only a few of

them are going to be active in an optimal solution. Hence, the BD algorithm starts

from a Restricted Master Problem (RMP) where the set of cut indexes is replaced

by a non-empty subset B containing only cuts generated from heuristic solutions.

Then it iteratively adds new cuts to the restricted set by solving the slave problem,

until the solutions of master and slave problems converge to the same value.
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The rationale for trying BD on the UCP model (3.1)-(3.21) is overcoming the

numerical difficulties encountered in the CG algorithm (chapter 5), while solving the

RMP (5.1)-(5.6), to obtain a more efficient and effective solution method. Indeed,

the continuous model (6.1)-(6.10) is more stable and easier to solve than the RMP

from CG (5.1)-(5.6) and, at the same time, the commitment problem (6.11)-(6.21)

maintains most of the structure of the pricing problem (5.7)-(5.8). On the other

hand, the latter is more complex than the pricing problems (5.7)-(5.8), and NP-

hard in the general case, because of Benders cuts, which couple the commitment of

different plants in different periods.

We can further prove the master problem to be reducible to a weakly-NP-hard

variant of the shortest path problem.

Proposition 8. The master problem (6.11)-(6.21) is reducible to the Absolute Ro-

bust Shortest Path Problem (ARSPP) (Yu and Yang, 1998).

First we introduce the ARSPP. Let Γ = (V,A) be a directed and connected

graph with σ, ω ∈ V being the source and sink nodes respectively and S be a set

of scenarios. For each arc (i, j) ∈ A and scenario s ∈ S a non-negative cost csij is

defined. The ARSPP is the problem of finding the path from σ to ω that minimises

the maximum cost over all scenarios s ∈ S.

Let xij ∈ {0, 1} be the flow on arc (i, j) ∈ A. The ARSPP problem is thus

defined as

min
x

max
s∈S







∑

(i,j)∈A

csijxij







(6.22)

s.t.

∑

j∈V

xij −
∑

k∈V

xki =



















1 i = σ

−1 i = ω

0 otherwise

(6.23)

xij ∈ {0, 1} (6.24)

The ARSPP is known to be NP-hard (Yu and Yang, 1998), but admits a pseudo-

polynomial time exact algorithm, described in (Yu and Yang, 1998), and a Fully

Polynomial-Time Approximation Scheme (FPTAS) (Aissi et al., 2005).

We then prove that the master problem (6.11)-(6.21) can be polynomially re-
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duced to the ARSPP with the following procedure. To simplify the proof we use

the disaggregated formulation of the UCP, in which commitment variables for each

power plants are represented separately from others. From a disaggregated solution

an aggregated one can be computed in linear time by summing the commitment

variables of plants in each subgroup and period, as seen in theorem 1.

Let K be the overall set of power plants in the system and let it be ordered

according to some criterion, (e.g. lexicographical).

1. For each thermal plant k ∈ K generate a graph as done in section 5.1.1 or,

equivalently, in (Frangioni, 2006). Set costs to be zero for every arc. The

graph encodes all the feasible commitments of each power plant as acyclic

paths between a source and a sink node.

2. Define the global graph Γ̂ = (V̂ , Â) with V̂ = {σ0, ω0} and Â = {(σ0, ω0)} as a

graph with one source σ0 and one sink ω0 and one arc (σ0, ω0) connecting the

two.

3. Extract each plant k ∈ K in order, let Γk = (Vk, Ak) be the corresponding

graph and let σk and ωk be its source and sink respectively. Γ̂ is updated as

follows:

(a) V̂ = V̂ ∪ Vk

(b) Â = Â ∪ Ak

(c) Consider the arc aω0
= (h, ω0). Connect h to σk, connect ωk to ω0 and

remove aω0
.

When all the thermal plants have been extracted from K, Γ̂ is an acyclic

graph, where the original graphs Γk ∀k ∈ K are connected in series sink-to-

source. The foremost source is σ0, connected to the first source of the first

extracted graph, and the last sink is ω0, connected to the sink of the last

extracted graph (for example, see fig. 6.1).

4. Let S = B. The different scenarios are determined by the cut indices set

B. For each cut index b ∈ B a cost function is defined for the commitment of

power plants (u,uD) = ((utk)TK , (u
D
tk)TK) with utk, u

D
tk ∈ {0, 1} ∀t ∈ T, k ∈ K.
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fb(u,u
D) =

∑

t∈T,k∈K

[(etzgm + µtzgbpzgm − λtzgbPzgm)utk

+(µtzgbp
∆
zgm − λtzgbP

∆
zgm)u

D
tk

]

+ ηb

Then, using the labelling algorithm described in section 5.1.1, for each scenario

b ∈ B and plant k ∈ K a cost is computed for arcs belonging to σk − ωk

paths in Γ̂, such that the overall cost of each path is equal to the cost of the

corresponding commitment. Finally for every scenario set the cost of every arc

in Γ̂ connecting sinks to sources and of the arcs incident on σ0 and ω0 to zero.

It can be shown the procedure to construct Γ̂ has linear complexity O(|B||K||T |).

Proposition 9. For each b ∈ B any σ0−ω0 path on Γ̂ represents a feasible commit-

ment of thermal plants and its total cost is equal to the overall cost of the commitment

under scenario b.

Finally, we note arcs in Ĝ can have negative costs but the graph is acyclic;

therefore ARSP instances are well-defined.

Proposition 10. Any feasible solution to the master problem (6.11)-(6.21) can be

represented as a path on Γ̂, and vice versa. In particular, every optimal solution of

the master problem is an ARSP over Γ̂, and vice versa.

Indeed, for both the master problem (6.11)-(6.21) and the ARSPP over Γ̂ the

optimal solution is given by a min-max optimisation of the sum of cost functions fb

for b ∈ B.
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6.1.1 Accelerating convergence with Magnanti-Wong cuts

Modern applications of BD employ acceleration techniques to improve the conver-

gence of the algorithm. Several ones are available in the literature. We can broadly

classify them into two groups:

• cut-refining: they compute better cuts by refining the standard ones. Examples

are Pareto-optimal cuts (Papadakos, 2008), high-density cuts (Rei et al., 2008)

and cuts bundles (Saharidis et al., 2010).

• local-search: they explore a neighbourhood of the current optimal solution in

the master problem space to obtain stronger cuts (with respect to the local

optimum) while solving smaller integer subproblems. Examples are trust-

region methods (Maher et al., 2014) and local branching (Rei et al., 2008).

In this work we investigate cut-refining methods, which we consider to be more

promising than local-search ones for our problem. The rationale for our decision is

that a local search would define a restricted set of moves to operate on a master

solution to explore its neighbourhood, i.e. switching the state of some power plants.

However, the impact of such moves is unlikely to produce a significant change on

the overall solution due to the presence of degenerate solutions and the flatness of

the objective function. Furthermore, the master problem provides no information to

avoid mismatches between supply and demand in the slave problem, as it only models

feasible commitment decisions for power plants. Cut-refining methods instead try

to maximise the utility of dual information from the slave solution, which already

accounts for more elements of the system than the master solution, including energy

balancing constraints.

We consider the cut-refining method of Magnanti-Wong (MW) to compute Pareto-

optimal cuts (Magnanti and Wong, 1981; Papadakos, 2008). A MW cut is a Benders

optimality cut which is closest to an interior point (core point) of the master problem

polytope. The cut has the further property of being Pareto optimal. Formally, let

min cTx+ eTy (6.25)

s.t. Ax+Dy = b (6.26)

x ≥ 0 (6.27)

x ∈ R
n,y ∈ Y ⊂ R

m (6.28)
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be a generic linear problem, and let the following be the slave problem on the x

variables obtained via BD by dualising constraints 6.26

min φS = cTx (6.29)

s.t. Ax = b− ỹ (6.30)

x ≥ 0 (6.31)

Let its dual be

max ν = (b− ỹ)Tξ (6.32)

s.t. Aξ ≤ c (6.33)

and let Ξ = {ξ ∈ R
m : Aξ ≤ c} be the set of feasible solutions. The master is

min φM = eTy + ψ (6.34)

s.t. y ∈ Y (6.35)

ψ ≥ (b− y)Tξb ∀b ∈ B (6.36)

where equations 6.36 are Benders optimality cut.

We further introduce the following definitions.

Definition 1 (Bertsekas, 1999). Let C ⊂ R
m. The relative interior of C is the

interior of its affine space:

ri(C) = {u ∈ C : B(u, r) ∩ aff(C) for some r > 0}

Where B(u, r) is the ball centered in u with radius r > 0, and aff(C) =
{

v ∈ R
m : ∃θ ∈ R

m,u ∈ C :

is the affine space of C.

In convex optimisation the relative interior ri(C) is often used in place of just

the interior int(C) to account for cases in which the set C has a dimension n < m

smaller than the embedding space R
m. In those cases the interior of its containing

affine space is used. Otherwise we have aff(C) = C and ri(C) = int(C).

By definition, it follows that

Definition 2 (Bertsekas, 1999). For a polyhedron C = {x ∈ R
m
+ : Ax ≤ b, b ∈



Benders Decomposition for the UCP 78

R
h, A ∈ R

h×m} the relative interior is

ri(C) = {x ∈ C : Ax < b}

Then let Y C be the convex hull of the master polytope Y . In the MW method

we consider the relative interior of Y C and call each y ∈ ri(Y C) a core point of Y .

Let ξ∗ be an optimal solution to model (6.32)-(6.33) and yC ∈ ri(Y C) be a core

point of Y , the following is the MW separation problem

max ν̂ = (b− yC)Tξ (6.37)

s.t. (b− ỹ)Tξ = ν(ξ∗) (6.38)

Aξ ≤ c (6.39)

Model (6.37)-(6.39) searches for the point in Ξ that lies on the optimal facet of

problem (6.32)-(6.33) and is closest to the interior point yC ∈ Y C .

Then, a dominance relation between cuts is defined.

Definition 3 (Cut dominance). A cut (6.21) with coefficients ξ ∈ Ξ dominates a

cut with coefficients ξ′ ∈ Ξ if and only if (b−y)Tξ ≥ (b−y)Tξ′ ∀y ∈ Y with strict

inequality for at least one point y ∈ Y .

Definition 4 (Pareto-optimal cut). A cut (6.21) with coefficients ξ ∈ Ξ is Pareto-

optimal if it is not dominated by any other cut.

In (Magnanti and Wong, 1981) it is proved that MW cuts are Pareto-optimal.

The method requires generating a new core point at each iteration to guaran-

tee Pareto-optimality. In the literature (Papadakos, 2008) one of the most used

technique is to compute a convex combination between the current solution and the

interior point employed in the last iteration. At the first iteration the initial solution

is used as a core point.

The Magnanti-Wong method has one significant limitation: in practice the con-

straint 6.38 is often numerically unstable and can lead the problem (6.37)-(6.39)

to become numerically unbounded (Papadakos, 2008). In our algorithm when this

issue is encountered the algorithm just adds the original Benders cuts.
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6.1.2 Two-phases heuristic

Another technique used with Benders decomposition is the two-phases heuristic

(Mercier et al., 2005). The general idea is to have a standard BD algorithm used

in two phases. For MILP problems the scheme goes as follow. In the first phase

integrality constraints in the master are relaxed. In the second phase the integrality

constraints are restored. In every phase the BD algorithm is executed by adding

Benders cuts until the desired convergence is reached. As cuts for the continuous

relaxation are valid for the original problem as well, the scheme allows to improve

the efficiency of the standard BD algorithm by quickly and cheaply computing cuts

in the first phase, when dual information from the slave problem is scarcer, providing

a “warm-up” phase to the standard algorithm implemented in the second phase.

6.2 Computational results

We conducted a series of experiments on ten “weekly” instances of 168 hours ob-

tained from a scenario hypothesis from RSE S.p.A. for Italy in 2011. The experi-

ments were implemented with AMPL 20081120 and CPLEX 12.6 on a Linux laptop

with 4GB RAM and 2.7GHz quad-core processor. For comparison, we report the

instances require around 10 minutes to be solved by CPLEX MIP solver on the same

system.

The scheme initialises the Benders decomposition algorithm with the IACR+CD

solution sec.4.1.1. The BD algorithm follow the two-phases scheme. We evaluated

the algorithm with and without applying the MW cuts at each iteration. The

procedure is then described by a triple of parameters (k, c,m) where k is the number

of iterations in the 1st phase, with a fractional master problem, c the number of

iterations in the 2nd phase, with the integral master problem, and m ∈ {N, Y } is

the MW flag such that m = Y ⇐⇒ MW cuts are computed. We considered 6

possible combinations of parameter values, yielding 60 different tests.

To asses the complexity required to solve each subproblem, for each iteration in

the BD scheme we consider the time spent by the CPLEX solvers to fathom each

subproblem. Then we express these times as percentages of the total solver time of

each iteration. We report these values in figure 6.2 as boxplots for each subproblem.

We considered four subproblems: the continuous relaxation of the master problem

(in the first phase), the integral master problem (in the second phase), the slave

subproblem and, if present, the Magnanti-Wong subproblem. Indeed, the charts
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show that the slave subproblem is, by large, the easiest subproblem to solve among

the others. The master subproblem is the most expensive subproblem to solve,

because of both integrality and the cuts being added at each iteration. Finally, the

Magnanti-Wong problem, despite being continuous and sharing most of the structure

with the slave subproblem, requires significant effort to solve, probably because of

its numerical instability.

In table 6.1 we report the initial gap obtained from the heuristic and its compu-

tation time for the ten instances. In table 6.2 we report for each configuration, across

instances, the following indicators: average total computing time, average number of

failed MW cut computations (due to numerical unboundness), number of instances

for which the upper bound improved, average gap, in percentage, between the best

bounds computed by the algorithm, which estimates the distance of the algorithm

from termination, and average improvement over the upper bound and the lower

bound, in percentage term, compared with the initial values from the heuristic .

For illustration purposes, in figures 6.3–6.8 we report the series of primal and dual

bounds during the BD algorithm on the week-10 instance with the six parameter

configurations reported in table 6.2. In each figure we report the upper and lower

bound computed by the algorithm. The dashed lines represent the initial value

of the respective bound from the CD heuristic. Bounds are reported with light

grey for the first phase and dark grey for the second one. The charts suggest the

algorithm encounters a “plateau” after the first iterations, where the dual bound

“stalls”, i.e. remains almost constant. Once the plateau is overcome, both bounds

start improving again. This agrees with our previous experience with CG, where we

encountered numerical issues due to degeneracy in the master problem.

Table 6.1: Initial heuristic: gap and computation time

Instance Gap % Time (s)

week-5 1.28 11
week-10 1.42 11
week-15 1.56 11
week-20 2.23 10
week-24 1.03 11
week-30 0.93 11
week-35 0.83 11
week-40 1.27 11
week-45 1.54 11
week-50 1.30 12

Results in tab.6.2 show the most effective configurations for the BD algorithm
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Figure 6.2: Boxplots of solver time required for each subproblem in each iteration,
expressed as percentage over the total solver time of the iteration.
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Table 6.2: Results for different configurations across instances.

1st

phase
2st

phase
MW
cuts

avg.
Time
(s)

avg. MW
failures

# UB im-
provements

avg. BD
Gap %

avg. UB
improvement

%

avg. LB
improvement

%
20 8 N 959 – 1 27.4 -23.3 -2.1
20 8 Y 1460 4.5 1 30.5 -26.2 -2.2
20 16 N 1994 – 2 12.8 -9.5 -1.7
20 16 Y 2787 9.2 4 11.6 -8.4 -1.6
40 8 N 2344 – 3 12.1 -9.6 -1.0
40 8 Y 3264 18 5 4.7 -2.2 -1.0
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Figure 6.3: Bounds for the BD algorithm on week-10 with configuration (k, c,m) =
(20, 8, N).
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Figure 6.5: Bounds for the BD algorithm on week-10 with configuration (k, c,m) =
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Figure 6.6: Bounds for the BD algorithm on week-10 with configuration (k, c,m) =
(20, 16, Y ).



Computational results 86

1000

10000

0 10 20 30 40 50

Iteration

O
b
je

c
ti
ve

 [
M

€
]

Integrality no yes

(a) Slave

134

136

138

0 10 20 30 40 50

Iteration

O
b
je

c
ti
ve

 [
M

€
]

Integrality no yes

(b) Master

Figure 6.7: Bounds for the BD algorithm on week-10 with configuration (k, c,m) =
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Figure 6.8: Bounds for the BD algorithm on week-10 with configuration (k, c,m) =
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are those employing more iterations for the first phase. The phenomenon can be

explained considering that for this type of UCP model the integrality gap can be

quite small, especially for instances with longer horizons. Hence optimality cuts for

the continuous relaxation can be quite effective for the original problem.

The presence of degenerate solutions and flatness in the objective function imply

the dual information obtained from decoupling commitments of power plants and

their dispatching, either through Benders Decomposition or Column Generation, can

be insufficient to efficiently determine solutions with increasing accuracy. On the

other hand, table 6.2 shows MW cuts, by exploiting geometric characteristics of the

problem’s polytope, can be quite effective, especially once the initial plateau is over-

come, to improve the algorithm’s convergence, despite the fact that the separating

problem can fail 20% to 50% of the times.



Chapter 7

Analysing heuristic solutions and

complexity

Our experiments showed that solving the medium-term large-scale UCP to great

accuracy is challenging. Even just the solution of the continuous relaxation of the

original model, or the continuous relaxation of the restricted master problem in

(5.1)-(5.6) are time consuming and commercial solvers can easily encounter numer-

ical problems when solving them. In this chapter we further investigate two sub-

problems: solving large-scale LPs to estimates production levels for thermal power

plants (section 7.1) and finding good values for the integer variables representing

the commitments of thermal units (section 7.2). Finally, we propose an alternative

modelling approach (section 7.3) to circumvent these problem while still providing

a reliable simulation of the power system.

7.1 Optimising continuous variables

During the solution of large-scale LPs state-of-the-art solvers encountered difficulties

that slowed or prevented their convergence.

These problems occur at each CG iteration during the execution of the LP solver.

After each new iteration of CG, the solution time required by the LP solver to

solve the master problem increases significantly. These numerical instabilities are

not a symptom of the well-known “instability” of column generation algorithms

(Ben Amor et al., 2009; Briant et al., 2008; Gondzio et al., 2013). Indeed, the

problem here is not stabilising the dual bound or the value of dual variables. As an

example, we report here the results for the first 6 iterations of the CG algorithm on

89
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the 6th monthly instance with the barrier solver with crossover. The implementation

used is the same as in the experimental section 5.2.1 and required 20 minutes to run

on a 2 core PC with 4GB of RAM. In fig.7.1 we report the corresponding values

for the master and dual bounds in each of the six iterations. It can be seen that

the dual bound does not show signs of instability. To show the lack of significant

instability in the dual variables we defined the following descriptors for multipliers

M = (µtzg) and Λ = (λtzg) ∀t ∈ T, z ∈ Z, g ∈ Gz.Without loss of generality, we

refer to these descriptors for multipliers λtzg. Let I = 1 . . . 6 be the six iterations of

the test and λitzg be the corresponding multiplier at the i-th iteration. We exclude

from the computation of the descriptors the first iteration, in which multipliers are

expected to assume large values and would easily skew the results. We define the

average jump for λtzg as

δλtzg = E[|λitzg − λi−1
tzg | i ∈ I : i > 2]

and, given the average multiplier for λ̄tzg = E[{λitzg i ∈ I : i ≥ 2}], the relative jump

as

δ̂λtzg =
δλtzg
λ̄tzg

The former gives an absolute measure of the instability of the multiplier, the latter

compares it to the magnitude of the multiplier.

In fig.7.2 for each set of multipliers we report the density of the bivariate distribu-

tion (δtzg, δ̂tzg), of the absolute and relative jumps. We can infer that the multipliers

are, on average, significantly small (magnitude of 1× 10−6) compared to the objec-

tive value (magnitude of 1 × 102). Less than 2.5% of the multipliers for both sets

have significant values for both average jump (δ ≥ 1 × 10−4) and average relative

jump (δ ≥ 0.5).

These tests and the way the instability occurs in the LP solver indicate this

instability problem affects the LP solver and differs from the “instability” of bounds

and dual variables often referred in CG literature and, thus, it is not solvable with

the corresponding stabilisation methods.

Probable causes of these numerical difficulties are the flatness of the objective

function and the presence of degenerate solutions. The former can be observed

considering that the coefficients of the objective function in each period are quite

similar. In particular production costs are supposed to remain stable within a week

or more. Furthermore, we can verify a posteriori that annual solutions have zonal
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Figure 7.1: Master and dual bounds for monthly instance.

energy prices eight to nine orders of magnitude smaller than the objective value (see

figure 5.2). These factors imply that the difference between the choice of producing

one additional power unit at a given time and the one of producing it at another can

be quite small. In general, the impact of such choice becomes smaller and smaller

as the length of the planning horizon grows.

The latter has been verified empirically in two ways First, logs for experiments

in 5.2.1 using CPLEX primal and dual simplex implementations showed signs of

stalling which, according to CPLEX manual (IBM, 2011), is caused by degeneracy.

Finally, we analysed a IACR basic solution of the 12 month instance of Italy 2011

section 3.3 counting two types of variables: basic variables at bounds and non-basic

variables with zero reduced cost. We solved the model with the CPLEX 12.6 dual

simplex algorithm with optimality tolerance 1 × 10−9 and reduced cost tolerance

1× 10−7 Results are reported in table 7.1.

Variables 3,827,057
Basic variables at bounds

10,727
(relative tolerance for bounds: 1× 10−6)
Non-basic variables with zero reduced cost

674,353
(threshold for reduced cost: 1× 10−7)

Table 7.1: Measured degeneracy in IACR basic solution. A basic variable is consid-
ered at a bound if the relative difference between its value and the bound is below
the tolerance. A reduced cost is considered zero if its value is below the threshold.

Among the basic variables at bounds and the non-basic variables with zero re-

duced costs there are those representing hydroelectric and thermal power production.

This implies, as the formulation suggests, that given an optimal solution it is pos-

sible to compute several other ones with the same value, or basis, by exchanging
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hydroelectric and thermal production among different periods and zones.

In the literature there are several attempts at devising better LP solvers, based

either on Interior Point Methods (IPM) or simplex algorithms, to solve large-scale

problems more efficiently by exploiting their structure or directly tackling instability

causes, like poor numerical conditioning and degeneracy. We remark that these

solvers often do not provide a ready, generic implementation that can be easily

deployed in industrial settings like in RSE S.p.A.. We considered the following two

proposals of new LP solver designs for our problem:

BlockIP(Castro, 2014): an IPM designed to efficiently solve sparse, large-scale

block-angular convex separable problems. Indeed, our large-scale UCP exhibits such

an ideal structure. The algorithm exploits sparsity to solve a specific subset of the

equations in the problem. The approach relies on some properties of the correspond-

ing sub-matrices, in particular their spectral radius, hence the effectiveness of the

method is, in general, problem-dependent. The authors report the algorithm to be

significantly more efficient than CPLEX 12.5 barrier solver for large problems ob-

tained from the literature. The authors provide a public C++ library which allows

to input models and invoke the solver. We applied the algorithm to the raw for-

mulation of our model but it showed numerical instabilities and slow convergence,

likely due to formulation artefacts such as big-M constants, which prompt for an

ad-hoc preprocessing phase to apply the algorithm effectively.

Space Vector Decomposition(Desrosiers et al., 2015): an algorithmic frame-

work that unifies and generalise well-known simplex algorithms like the Improved

Primal Simplex (IPS). The authors are currently trying to obtain new insights on de-

generacy in simplex algorithms. Among those, the IPS could be a general approach

suitable for our problem. Currently there are no generic public-available libraries

for it, therefore a problem-dependent implementation is needed.

7.2 Optimising integer variables

Most of the complexity of the UCP is due to the presence of integer variables. Once

they are fixed the problem reduces to a much simpler economic dispatch problem,

as model (4.13)-(4.16), and can be solved efficiently by commercial solvers even for

large-scale instances, as we verified in chapter 4.1.2.

It can be noticed, however, that the value of quasi-optimal solutions (gap ≤ 1%)
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computed by the rounding heuristic in section 5.2.1 is close to the value of the

continuous relaxation provided by the IACR model (4.1)-(4.9). This could then

suggest that fractional and integer solutions are similar, in particular that fractional

solutions have few violations of the constraints with integer variables 3.2–3.12. It

could therefore be possible to design better algorithms to compute high-quality

primal solutions by selectively fix those violations.

In the following we report an analysis on the solutions obtained by relaxing the

constraints on integer variables in the original problem (3.1)-(3.21). We consid-

ered two relaxations: (i) the relaxation obtained by removing minimum up-down

constraints 3.5–3.12 and (ii) the IACR relaxation.

7.2.1 Flexibility of power plants

We compared the results of our previous experiments in 5.2.1(Standard Scenario)

with the ones that can be obtained by relaxing the flexibility constraints (Flexible

Scenario). In the latter case we ran both IACR+CD and RH as tested in subsection

5.2.1 but setting τON = τOFF = 1 for all subgroups. In Table 7.2 we report the

main comparison results for the Flexible Scenario with the standard one in terms of

relative difference between the following values: the IACR+CD primal bound, its

computation time and the RH5 primal bound. Numerical stability problems were

encountered during the column generation process while solving instances 1.1, 1.6,

4.1 and 6.2, even with the use of the BF strategy; they are marked with a ’*’ as

before.

The Flexible Scenario turns out to be much easier to optimise than the standard

one, as the IACR+CD heuristic manages to save more than 40% of computation

time on average. However, the improvement in the best IACR+CD and RH solution

values is limited: about 2.5% on average, and never more than 3.2%. Hence, it would

be tempting to conclude that the flexibility constraints are automatically respected,

even if a relaxed formulation is optimised. However, while we observed that only 10%

of constraints (3.9)–(3.12) are violated on average in the Flexible Scenario solutions,

the number of violations in some zones actually reaches 80% of the constraints across

the whole optimisation period.

Indeed, the number of flexibility constraint violations depends on the structural

properties of the system. In our test cases, for example, the 80% violations figure

comes from the region of Sardinia, characterised by relatively low demand and several

plants with low flexibility, τON = 60 and τOFF = 20, and low marginal costs. In this
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Id Size
Difference with Standard Scenario
IACR+CD Time RH

*1.1

1 month

– – –
1.2 2.6% 43.0% 0.5%
1.3 3.0% 26.9% 0.5%
1.4 2.9% 54.1% 0.6%
1.5 2.2% 9.4% 0.5%
*1.6 – – –
1.7 1.8% 46.2% 0.2%
1.8 2.8% 51.1% 0.3%
1.9 1.9% 48.0% 0.2%
1.1 3.2% 24.9% 0.5%
1.11 3.2% 13.3% 0.4%
1.12 2.9% 42.5% 0.5%
2.1

2 months

2.5% 30.2% 0.4%
2.2 3.1% 39.5% 0.5%
2.3 2.6% 4.6% 0.4%
2.4 2.2% 31.4% 0.3%
2.5 2.6% 55.5% 0.4%
2.6 2.7% 23.6% 0.5%
3.1

3 months

2.8% 41.5% 0.5%
3.2 2.7% 60.1% 0.5%
3.3 2.1% 71.8% 0.3%
3.4 2.9% 6.5% 0.5%
*4.1

4 months
– – –

4.2 2.3% 44.1% 0.5%
4.3 2.5% 46.0% 0.5%
6.1

6 months
2.8% 215.4% 0.3%

6.2 – – –

Table 7.2: Results for the Flexible Scenario and comparison with the Standard
Scenario
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region the Flexible Scenario solution turns off plants whenever the demand is too

low, thus, considering the inherent presence of peaks in the demand curve, it can

hardly respect minimum up/down constraints. Other regions, instead, such as the

Northern zones, are characterised by higher demand and more modern and flexible

plants. For these zones, we observed fewer violations of the flexibility constraints in

the Flexible Scenario. Explicitly handling flexibility is therefore necessary to obtain

an effective simulation that highlights potential limits of the system.

7.2.2 Infeasibility in fractional solutions

We also looked at the fractional solution obtained by the IACR relaxation on a more

complex, more realistic model provided by RSE on a scenario for Europe 2020, which

includes the same countries as the one used in 2.2. This model is implemented in

the latest version of sMTSIM (Siface et al., 2014) and differs from the original model

(3.1)-(3.21) for having ramp-up and reserve constraints. Due to these constraints,

that couple different power plants, and other requirements on the output produced

by the simulation, the model does not group power plants as in 3.2.

We measured the number and extent of violations to the minimum up down

constraints in the fractional solution. Given a thermal plant with technical minimum

pmin and fractional production levels (xt)
⊤
t∈T in the IACR solution, we define an

approximated commitment u ∈ {0, 1}T s.t. ut = 1 ⇐⇒ xt ≥ pmin.

Then, consider the longest intervals in the horizon where the commitment does

not change, i.e. intervals

δ = [ta, tb] ∈ T s.t. (ut = uta ∀t ∈ δ) ∧ (uta 6= uta−1) ∧ (utb 6= utb−1)

and let ∆ = {δj ⊂ T : max(δj) = min(δj+1)+1} be the ordered set of the intervals

and J = {1 . . . |∆|} be the set of interval indices in ∆. Then let Σ = {(sj, lj)}j∈J be

the corresponding schedule as a list of couples (sj, lj) where sj = min{ut : t ∈ δj} is

the state of the plant and lj = |δj| the interval length. Let

τ̂ : {0, 1} 7→ N : τ̂(s) =







τOFF s = 0

τON s = 1

Thus an interval δj is feasible if and only if lj ≥ τ̂(sj). Let λj =
lj

τ̂(sj)
be the

length of an interval δj relative to the corresponding minimum up or down time.
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In the model there are three classes of flexibility for thermal power plants: low

(τON = 50,τOFF = 20), medium (τON = 10,τOFF = 4) and high (τON = 1,τOFF =

1), i.e. complete flexibility, for which equations 3.5–3.12 are not binding.

In table 7.3 we report for each zone and flexibility class of thermal plants the

following statistics on infeasible intervals: the median relative length λ, in percent-

age, the number of infeasible intervals and the number of plants having at least one

infeasible intervals, along with the total number of thermal plants of the correspond-

ing flexibility class. Plants without infeasible intervals or with high flexibility are

not included in the statistics.

As an example, in figure 7.3 we plot the schedule of a French plant as follows:

for each interval δj ∈ ∆ a vertical line of length lj is plotted at the j-th position on

the x-axis; the colour and the line type depends on the state sj: a dashed light grey

line for the “on” state and a solid dark one for the “off” state. Two horizontal lines

of the respective type mark the minimum up and down times τON and τOFF .

The fractional solution has a significant number of violated flexibility constraints.

As with the Flexible Scenario 7.2.1, the amount of constraints violations depends

on the structural relationship between demand and supply in each zone. However,

contrary to the smaller and simpler system used in previous tests, the violations are

spread over the system; in particular, their location cannot be circumscribed to a

specific region as in Sardinia for the Flexible Scenario.

Zone
Flexibility

class
Median
% λj

Nr. of
infeasible
intervals

Plants with
infeasible
intervals

Total plants

AT low 25.0% 814 1 1
CH medium 50.0% 50 1 2
CS low 5.0% 40 3 7
CS medium 40.0% 130 2 7
DE low 30.0% 1551 4 5
DE medium 22.5% 6 1 2
FR low 20.0% 1665 5 6
FR medium 25.0% 562 14 14
NO low 20.0% 2368 9 13
NO medium 50.0% 256 5 36
SA low 18.0% 1733 4 7
SL low 14.0% 1082 1 2
SU low 18.0% 2593 6 10
SU medium 50.0% 909 6 14

Table 7.3: Infeasible intervals by zone and flexibility class
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7.2.3 Final remarks

We explained the similarity in the solution values between flexible and inflexible

scenarios and between integral and fractional solutions as follows: our heuristic al-

gorithms consistently produce solutions that are either optimal or very close to op-

timality (as shown in subsection 5.2.1). Many different solutions exist with similar

near-optimal objective function values: some of them respect the flexibility con-

straints and some others do not. However, when relaxing the flexibility constraints,

it is unlikely to find a solution that respects them. It seems even unlikely to find a

heuristic that is able to repair relaxed solutions by fixing the violated constraints,

because the problem of finding a feasible solution starting from a relaxed one that

violates some flexibility constraints is NP-hard in the general case. This stresses

the need of modelling the flexibility constraints explicitly.

7.3 Alternative modelling options

To overcome the aforementioned issues alternative modelling approaches could be

investigated. As an example, we suggest sampling the simulation horizon in shorter

representative intervals, such as a few weeks for each weather season, and simulate

each one independently from the others with stochastic programming, in which un-

certainty in the inputs, especially demand and non-dispatchable production from

wind and PV power plants, is represented explicitly in the model. Indeed, in the

literature (Burstedde, 2012) there are models that simulate a limited set of repre-

sentative days or weeks, from which the ideal behaviour of the system across the

whole year can be inferred. This method yields smaller and sparser models that are

therefore easier to optimise. The stochastic modelling in each interval would instead

allow to consider a significant set of realisations of the uncertain parameters, in

particular those that lead to extreme events in the system, e.g. a power discharge,

which could otherwise be neglected by a deterministic simulation on short intervals,

and that are crucial to obtain a reliable simulation.
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Chapter 8

Conclusions

In this thesis, we have studied medium-term UCP in the context of fundamental

energy market simulations, performed by our industrial partner RSE S.p.A.. The

problem differs from the one found in the literature as it requires computing accurate

solutions for large-scale UCP problems in short time and conventional computing

power. We proposed a heuristic based on spatial decomposition and two exact

bounding algorithms which extends from the ones proposed in the literature for

MILP and UCP.

To the best of our knowledge, other studies on algorithms for the UCP do not

address the specific characteristics of our problem and they cannot thus be employed,

especially because they would be too inefficient to deliver solutions in affordable time

with conventional computing power.

We performed extensive computational experiments to asses the most effective

method to solve the problem to high accuracy and to characterise the properties that

make the problem hard to solve by state-of-the-art algorithms for MILP problems.

We could, indeed, improve the quality of real-world simulations for RSE S.p.A.in

affordable time. However, the study has shown how the inherent structure and size of

the model proves to be difficult to optimise to the desired accuracy, even just for the

continuous part of the model. These numerical difficulties are caused by the inability

of state-of-the-art linear solvers to distinguish between different commitments, and

combinations thereof, when the size of either the system or the horizon becomes

considerably large.

In the literature new approaches for solving highly-degenerate linear problems

are being studied (Castro, 2014; Desrosiers et al., 2015), and they might improve

the convergence and efficiency of linear solvers on problems like ours.
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A better approach to obtain efficient and robust algorithms for the problem

would be to adopt a more efficient formulation, which affords equivalent if not higher

reliability by solving smaller or more robust problems. We propose solving stochastic

models on representative samples of the simulation horizon. Further research is

needed to assess the difference between the solutions obtained with the proposed

approach and the one studied in this work, and to find methods that could reduce

such difference, increasing the value of simulations for their intended purposes, i.e.

provide reliable support to the analysis of domain experts.
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