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1. Abstract 

Lysosomes are the principal site of the catabolism of sphingolipids, a class of bioactive 

lipids mainly associated with the external leaflet of cell plasma membrane. Several lines 

of evidence support a direct correlation between modifications in sphingolipid pattern 

and the activation of specific signaling pathways, including apoptosis and autophagy. 

Loss-of-function mutations in genes coding for lysosomal enzymes involved in 

sphingolipid catabolism result in severe clinical manifestations called sphingolipidoses. 

These pathologies belong to the group of Lysosomal Storage Diseases and are 

characterized by the accumulation of undegraded materials leading to lysosomal 

impairment and consequent cell damage. Until now, the molecular mechanisms by which 

the perturbation of lysosomal homeostasis affects cell functionality and viability are 

unknown. 

To investigate this issue, I used an artificial in vitro model of lysosomal impairment 

obtained by loading human fibroblasts with 88 mM sucrose for 14 days. In these 

experimental conditions, the absence of invertase induces sucrose accumulation into 

lysosomes. I found that sucrose loaded fibroblasts are characterized by a growth 

slowdown and by the activation of both apoptosis and autophagy. By RNA-sequencing, 

approximately a thousand of genes were found to be dysregulated after sucrose loading. 

In particular, 56 cell cycle-related genes are downregulated, whereas 37 lysosomal-

related genes are upregulated. Using biochemical approaches, I found that sucrose 

loading activates lysosomal biogenesis although sucrose storage inhibits lysosomal 

functionality. In particular, in sucrose loaded cells lipid catabolism is blocked and 

complex lipids, such as phospholipids, cholesterol, glycosphingolipids, and gangliosides 

are accumulated. Moreover, I found that sucrose loading induces the nuclear 

translocation of the Transcription Factor EB (TFEB), a master-gene regulator of 

lysosomal function, which in turn promotes the increased fusion between lysosomes and 

the plasma membrane. This last event leads to higher levels of sphingolipid hydrolases 

at the cell surface resulting in the alteration of the plasma membrane sphingolipid 

composition and the consequent ectopic production of pro-apoptotic and pro-autophagic 

ceramide. Interestingly, in sucrose loaded fibroblasts the blocking of glycosphingolipid 

hydrolysis at the plasma membrane results in a reduction of autophagy and apoptosis. 

Similar results were also obtained in response to sphingomyelin accumulation in 

Niemann-Pick Type A disease (NPA). NPA is a sphingolipidosis caused by acid 

sphingomyelinase deficiency which leads to sphingomyelin storage. Interestingly, using 

NPA-derived human fibroblasts loaded with 50 µM exogenous sphingomyelin for 30 

days, I found that the lysosomal impairment caused by sphingomyelin accumulation 

activates the same molecular pathways described in healthy fibroblasts subjected to 

sucrose loading. 
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1. Abstract 

A pathogenic role of TFEB has also been suggested by biochemical analysis on brains 

from Acid Sphingomyelinase Knockout (ASMKO) mice. In fact, ASMKO mouse brains 

are characterized by TFEB nuclear translocation, increased lysosomal biogenesis, 

increased glycohydrolytic activities and onset of apoptosis and autophagy. 

Collectively, these data suggest the existence of a cross-talk among lysosomes and the 

cell plasma membrane. In this context, the lysosomal impairment caused by the 

accumulation of uncatabolized substrates leads to an altered composition of plasma 

membrane sphingolipids resulting in the ectopic production of ceramide which in turn is 

responsible for the onset of cell damage.
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2. Introduction 

2.1 Lysosomes 

2.1.1 Structure 

Lysosomes are acidic membrane-bound intracellular organelles described for the first 

time by Christian de Duve in the 1950s (Appelmans F et al., 1955; De Duve C et al., 

1955). Subsequent electron microscopy studies showed that lysosomes appear as 

cytosolic dense bodies of heterogeneous size and morphology, and are mainly localized 

in the perinuclear region (Holtzman E, 1989). Lysosomal lumen contains several types 

of hydrolytic enzymes involved in the intracellular catabolism of different kinds of 

macromolecules such as: proteins, carbohydrates, lipids and nucleic acids (Saftig P and 

Klumperman J, 2009). Although for a long time lysosomes have been mainly considered 

the final destination of degradative pathways, it is now clear that they are also crucial 

regulators of cell homeostasis (Perera RM and Zoncu R, 2016). 

2.1.1.1 Lysosomal membrane 

Lysosomes are delimited by a single cholesterol-poor membrane (Schulze H et al., 2009) 

characterized by a thick glycocalyx due to the presence of highly glycosylated Lysosomal 

Membrane Proteins (LMPs) localized in the luminal side of the membrane (Schwake M 

et al., 2013). It is suggested that the glycocalyx could have a protective role against the 

catabolic action of the lysosomal acid hydrolases. The most abundant LMPs and markers 

of these organelles are the Lysosomal Associated Membrane Proteins LAMP-1 and 

LAMP-2 that are characterized by more than 10 glycosylation sites (Schwake M et al., 

2013). 

The lysosomal membrane is an active mediator of the fusion processes between 

lysosomes and other membranes, such as endosomes, autophagosomes and the 

plasma membrane through the action of specific proteins belonging to the family of RAB 

GTPases and SNAREs (Luzio JP et al., 2007). The lysosomal membrane mediates also 

the transport of metabolites, ions and soluble substrates from the cytosol into the 

lysosome and vice versa (Xiong J and Zhu MX, 2016). In particular, it contains the 

Vacuolar ATPase protons pumps responsible for the acidification of the lysosomal lumen 

(Mego JL, 1979; Nishi T and Forgac M, 2002). Acidic intra-lysosomal pH is required for 

proper function of the lysosomal degradative enzymes. 

2.1.1.2 Lysosomal enzymes 

Lysosomes contain about 60 different acid-hydrolases involved in the catabolism of 

specific substrates. They are mainly soluble except for those involved in the lipid 

catabolism which are principally associated with the lysosomal membrane. These 

enzymes are members of several protein families such as peptidases, glycosidases, 
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phosphatases, sulphatases, lipases, and nucleases. This variety reflects the capability 

of the lysosomes to degrade multiple kinds of macro-molecules, including nucleic acids, 

lipids, proteins, and glycosaminoglycans (Saftig P and Klumperman J, 2009).  

Lysosomal enzymes are synthesized in the endoplasmic reticulum and then transported 

to the Golgi apparatus, where they are glycosylated and tagged with mannose-6-

phosphate residues in the terminal position of the oligosaccharide chains (Braulke T and 

Bonifacino JS, 2009). The mannose-6-phosphate moiety is recognized by specific 

mannose-6-phosphate receptors (M6PRs) in the trans-Golgi network (Ghosh P et al., 

2003). M6PR-enzyme complexes are transferred to lysosomes via the secretory 

pathway through clathrin-coated vesicles. In the pre-lysosomal compartment, the 

increased acidity induces the release of enzymes from M6PRs, which are recycled back 

to the Golgi apparatus. Interestingly, a different transport mechanism mediated by LIMP-

2 (Lysosomal Integral Membrane Protein 2) has been recently identified for the 

lysosomal enzyme β-glucocerebrosidase, responsible for the hydrolysis of the simplest 

glycosphingolipid glucosyl-ceramide to glucose and ceramide (Reczek D et al., 2007). 

2.1.2 Functions 

2.1.2.1 Lysosome-mediated catabolism and recycling  

Lysosomes play crucial roles in maintaining cell homeostasis (Figure 1). First, lysosomes 

are the main site of the degradation of intra- and extra-cellular macromolecules 

(Settembre C et al., 2013). This is possible thanks to the presence of about 60 resident 

hydrolases, each responsible for the digestion of a specific substrate. The end-products 

of the catabolic pathways leave the lysosomes and can then be recycled to the 

biosynthetic pathways (Schulze H et al., 2009). 

The substances to be degraded reach the lysosomes by two main processes: 

endocytosis and autophagy. Endocytosis is the process involved in the internalization of 

extracellular material as well as in the plasma membrane turnover (Doherty GJ and 

McMahon HT, 2009). Endocytic pathways include clathrin-dependent and -independent 

endocytosis. Endosomes that are generated by endocytosis can be recycled back to the 

plasma membrane or targeted to the endo-lysosomal compartment. In the degradation 

pathway, endosomes undergo a maturation process characterized by multiple changes 

including exchange of membrane components, perinuclear localization, and decrease in 

luminal pH. After that, late endosome fuse with lysosomes and the acquisition of 

lysosomal components allows the degradation of extracellular material. On the other 

hand, catabolism of membrane lipids can occur via the formation of intraluminal vesicles. 

Interestingly, these vesicles are characterized by the presence of the phospholipid 
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bis(monoacylglycero)-phosphate, also known as lyso-bis-phosphatidic acid that 

facilitates the recognition between the lipids and their enzymes.  

Intracellular material, such as damaged proteins or entire organelles can also be 

degraded by autophagy. In physiological conditions, autophagy maintains the normal 

cellular homeostasis mainly by regulating the bioenergetic balance (Kaur J and Debnath 

J, 2015). In addition, recent lines of evidence indicate that autophagy can also be 

involved in a novel form of programmed cell death by abnormal degradation of the 

intracellular compartments (Tsujimoto Y and Shimizu S, 2015).  

In mammalian cells three different types of autophagy are described: chaperone-

mediated autophagy, microautophagy and macroautophagy. In chaperone-mediated 

autophagy, proteins to be degraded show specific motifs that are recognized by a 

chaperone. Then, the chaperone-protein complexes are degraded in lysosomes. 

Microautophagy is characterized by direct lysosomal engulfment of the cytoplasmic 

cargo. Cytoplasmic material is catched inside lysosomes by membrane invagination. 

Macroautophagy, usually referred to autophagy, is the main autophagic pathway 

characterized by the formation of a double-membrane vesicle, called autophagosome, 

around the damaged organelle to be destroyed. Then, the fusion of the autophagosome 

with a lysosome allows the degradation of its content. An important marker of autophagy 

is the LC3-II protein, the lipidated (phosphatidylethanolamine) form of the cytosolic 

microtubule-associated protein light chain 3, which is then recruited to autophagosomal 

membranes (Tanida I et al., 2008). 

2.1.2.2 Lysosomal exocytosis 

Lysosomal exocytosis, a Ca2+-regulated process (Reddy A et al., 2001), consists in the 

release of the lysosomal content in the extracellular environment. Lysosomes move from 

their perinuclear localization to the cell plasma membrane and then fuse with it (Luzio JP 

et al., 2007). As a direct consequence of lysosomal exocytosis, lysosomal enzymes are 

released in the extracellular milieu and the luminal region of LAMP-1 as well as the 

enzymes anchored to the lysosomal membrane appear at the extracellular leaflet of 

plasma membrane. Initially, exocytosis of secretory lysosomes was thought to be limited 

to specialized cell types such as hematopoietic cells and melanocytes. However, it is 

now known to also exist in all cell types, where it plays an important role in several 

processes such as immune responses, cell signalling and plasma membrane repair. The 

molecular mechanisms of lysosomal exocytosis, not fully understood until now, involve 

soluble N-ethylmaleimide-sensitive factor-attachment protein receptors (SNAREs), Ca2+ 

sensors and small Rab GTPase proteins (Rao SK et al., 2004). 
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2.1.2.3 Calcium storage 

Lysosomes can also be considered calcium storage organelles; in fact, their calcium 

concentration is similar to that found associated with the calcium storage organelle 

belonging to the endoplasmic reticulum (Appelqvist H et al., 2013). Calcium is important 

to regulate different processes such as trafficking, recycling and fusion. 

2.1.2.4 Cholesterol homeostasis 

Cholesterol is an essential structural component of cellular membranes, and the majority 

of this lipid (80% of its total cellular amount) is found in the cell plasma membrane where 

it constitutes about 40% of the total lipids (Appelqvist H et al., 2013). Cholesterol is de 

novo synthesized in the endoplasmic reticulum although an important amount can also 

derive from Low-Density Lipoproteins (LDLs) via receptor-mediated endocytosis. In 

lysosomes, the action of acid lipase liberates free unesterified cholesterol from LDLs 

(Goldstein JL et al., 1975). Cholesterol is then transported outside the lysosomes to other 

cellular sites (such as Golgi apparatus, plasma membrane and endoplasmic reticulum) 

via two specific binding proteins, Niemann-Pick C1 (NPC1) and NPC2 (Subramanian K 

and Balch WE, 2008). 

2.1.2.5 Lysosomal cell death 

Lysosomal-mediated cell death occurs upon lysosomal membrane permeabilization 

followed by the release of hydrolytic enzymes into the cytosol (Boya P and Kroemer G, 

2008). In particular, the enzymes active at neutral pH such as cathepsin B, D and L, are 

able to activate apoptotic effectors such as mitochondria proteins and/or caspases. The 

features of lysosomal-mediated cell death (necrotic, apoptotic or apoptosis-like) depend 

on the extent of the leakage and the cellular conditions. 
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Figure 1 – Lysosomal functions. (adapted from Saftig P and Klumperman J, Nat. Rev. Mol. Cell 
Biol., 2009) 
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2.2 Transcription Factor EB 

2.2.1 MiT family of transcription factors 

The Transcription Factor EB (TFEB) belongs to the microphthalmia family of basic/helix-

loop-helix/ leucine zipper (bHLH-Zip) transcription factors (MiT family) (Hemesath TJ et 

al., 1994; Kuiper RP et al., 2004). Four members of the MiT family have been identified: 

microphthalmia-associated transcription factor (MITF), TFEB, TFE3 and TFEC. All MiT 

proteins present an identical region responsible for DNA binding (Sardiello M et al., 

2009), and highly similar HLH and Zip regions helpful for their dimerization. MiT 

transcription factors can form both homodimers and heterodimers with any other family 

member. All MiT members are highly conserved in vertebrates, although only a single 

MiT ortholog is found in lower organisms, known as Mitf in Drosophila melanogaster 

(Hallsson JH et al. 2004) and HLH-30 in Caenorhabditis elegans (Lapierre LR et al., 

2013), respectively. 

2.2.2 Regulation of TFEB activity 

The activity of TFEB is strictly regulated by post-translational modifications, as well as 

protein-protein interactions and subcellular localization (Figure 2). The main regulation 

is due to the phosphorylation status of two serine residues, Ser142 and Ser211. The last 

one is the most important phosphorylation site being the docking site for the chaperone 

14-3-3, responsible for the sequestration of TFEB in the cytosol preventing its nuclear 

translocation (Roczniak-Ferguson A et al., 2012). The main kinases responsible for 

TFEB phosphorylation are the mechanistic Target Of Rapamycin Complex 1 (mTORC1) 

(Martina JA et al., 2012) and the Extracellular signal-Regulated Kinase 2 (ERK2, also 

known as MAPK1) (Settembre C et al., 2011). Interestingly, mTORC1 is activated when 

associated with the external side of the lysosome membrane. In fact, through a 

mechanism involving the V-ATPase, in the presence of nutrients, the small Rag 

GTPases are active and recruit mTORC1 at the lysosomal membrane promoting its 

activation (Powis K and De Virgilio C, 2016). Moreover, Rag GTPases also bind to TFEB 

thus helping its recruitment to the lysosomal membrane and its phosphorylation by 

mTORC1. In case of nutrient starvation or lysosomal stress, for example due to the 

accumulation of uncatabolized materials, mTORC1 is released from the lysosomal 

membrane and becomes inactive. In addition, these events also induce calcium release 

from lysosomes through the Ca2+ channel mucolipin 1 (MCOLN1). The increase in 

cytosolic calcium concentration can activate the phosphatase calcineurin which in turn 

can dephosphorylate TFEB promoting its nuclear translocation (Medina DL et al., 2015). 
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Figure 2 – TFEB regulation. 

 

2.2.3 TFEB as a master regulator of lysosomal function and autophagy 

TFEB has been demonstrated to directly bind DNA to a common 10-base E-box-like 

palindromic sequence called Coordinated Lysosomal Expression And Regulation 

(CLEAR) motif, which is found as one or more copies in the promoter of several 

lysosomal genes (namely CLEAR network) (Sardiello M et al., 2009). It has been shown 

that TFEB positively regulates the transcription of genes belonging to the lysosomal 

complement (hydrolases, transporters and accessory proteins) and genes contributing 

to lysosomal function and biogenesis, such as genes encoding subunits of the V-

ATPase. In addition, it has been shown that TFEB also promotes the expression of other 

gene networks involved in autophagy and lysosomal exocytosis (Settembre C et al., 

2011; Medina DL et al., 2011). By modulating these processes, TFEB coordinates a 

transcriptional program able to regulate the principal degradative pathways and to 

promote intracellular clearance (Settembre C et al., 2013). Notably, TFEB is not 

responsible for the basal transcription of its targets but it increases their expression in 

order to respond to cellular needs, like the lack of nutrients. Thus, TFEB represents the 

first example of a lysosome-to-nucleus signalling mechanism. 
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2.3 Sphingolipids 

2.3.1 Structure and chemical-physical properties 

Sphingolipids constitute a class of bioactive lipids which are crucial components of 

mammalian cells (van Meer G et al., 2008). They are particularly abundant in the cell 

plasma membrane where they reside asymmetrically mainly in the extracellular leaflet 

(Ikeda M et al., 2006). Sphingolipids are amphiphilic molecules composed by a 

hydrophilic portion protruding in the extracellular milieu and by a lipophilic chain inserted 

in the lipid core of the plasma membrane (Merrill AH Jr, 2011). The lipophilic moiety, 

called ceramide (Figure 3), is the structural unit common to all sphingolipids. Ceramide 

is formed by a long chain amino alcohol, 2-amino-1,3-dihydroxy-octadec-4-ene also 

known as sphingosine, which is linked to a long chain fatty acid through an amide bond. 

Despite the four possible configurations of sphingosine, only the 2S,3R is present in 

nature (Carter HE et al., 1947). 

 

Figure 3 – Chemical structures of Sphingosine and Ceramide. 

The presence of ceramide gives specific chemical and physical properties to all 

sphingolipids. In fact, the amide linkage, characterized by the simultaneous presence of 

a donor group and an acceptor group of hydrogen bonds (the hydrogen amide and 

carbonyl oxygen, respectively), allows the establishment of a rich network of hydrogen 

linkages among sphingolipid molecules at the plasma membrane level (Sonnino S et al., 

2007). Notably, these hydrogen bonds stabilize the sphingolipid segregation forming the 

so-called lipid rafts or sphingolipid-and-cholesterol enriched membrane domains 

(Simons K and Ikonen E, 1997; Simons K and Sampaio JL, 2011). With the recruitment 

of specific proteins, lipid rafts form macromolecular complexes involved in several 

signalling pathways, such as signal transduction, cellular development and cell-to-cell 

and cell-to-matrix communication (Simons K and Toomre D, 2000). 

2.3.1.1 Classification 

The classification of the different classes of sphingolipids is based principally on the 

nature of the hydrophilic headgroup. In particular, two main groups can be distinguished: 

phosphosphingolipids and glycosphingolipids.  
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Phosphosphingolipids  

Phosphosphingolipids are characterized by the presence of a phosphate group in the 

hydrophilic portion linked to ceramide. The phosphosphingolipids of mammals are 

ceramide-1-phosphate, ceramide phosphoethanolamine and sphingomyelin (Figure 4). 

The latter is obtained by the addition of a residue of phosphorylcholine and it is the most 

common sphingolipid in mammalian cells (Ramstedt B and Slotte JP, 2002). 

Glycosphingolipids 

Glycosphingolipids are divided in several subcategories: first by the carbohydrate 

attached in β-linkage to ceramide that can be glucose (glucosylceramide) or galactose 

(galctosylceramide); second by the nature of the additional substituents (for example, 

sulphated glycosphingolipids are classified as sulphatides) (Merrill AH Jr, 2011). The 

addition of galactose to glucosylceramide produces lactosylceramide, which is at a 

branchpoint for the formation of five different families called globo-, isoglobo-, lacto-, 

neolacto- and ganglio-series. In the latter family, prominent in mammal brains, the core 

structure Galβ1-3GalNAcβ1-4Galβ1-4GlcβCer can contains one or more residues of 

sialic acid. Sialic-acid-containing glycosphingolipids are commonly known as 

gangliosides and are particularly abundant on the cell surface of neuronal cells. 

 

 

Figure 4 – Chemical structures of Sphingomyelin, Glucosylceramide, and the simplest 
ganglioside GM3. 
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2.3.2 Metabolism 

2.3.2.1 Biosynthesis 

Ceramide biosynthesis 

The de novo biosynthesis of sphingolipids starts with the production of ceramide at the 

cytosolic leaflet of the endoplasmic reticulum (Figure 5). The first step of ceramide 

synthesis consists in the formation of 3-ketosphinganine by condensation of the amino 

acid L-serine with a fatty acyl-coenzyme A, typically palmitoyl-CoA. This initial reaction 

is catalysed by serine palmitoyltransferase (Weiss B and Stoffel W, 1997; Hanada K, 

2003), then the 3-ketosphinganine obtained is rapidly reduced to produce sphinganine 

by 3-ketosphinganine reductase in a NADPH-dependent reaction (Stoffel W, 1970). 

Afterwards, sphinganine is acylated to dihydroceramide by a N-acyltransferase called 

ceramide synthase. Six different isoforms of ceramide synthase have been identified, 

each characterized by a selective specificity for the length of the acyl-CoA chain (Levy 

M and Futerman AH, 2010; Mullen TD et al., 2012). Notably, ceramide synthases can 

also directly recycle the sphingosine derived from ceramide catabolism. 

Dihydroceramide is then desaturated to ceramide thanks to the action of 

dihydroceramide desaturase (Michel C et al., 1997; Geeraert L et al., 1997).  

 

 

Figure 5 – De novo biosynthesis of sphingolipids. 
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Sphingolipid biosynthesis 

The neo-synthesized ceramide can directly reach the plasma membrane or become the 

precursor for the biosynthesis of complex sphingolipids, such as sphingomyelin and 

glycosphingolipids. In both cases, ceramide can reach the Golgi apparatus by both a 

vesicular-dependent and -independent transport mechanisms (Perry RJ and Ridgway 

ND, 2005). Sphingomyelin synthesis occurs by the addition of a phosphorylcholine 

residue to the hydroxyl group in position 1 of the sphingoid base. To obtain 

glycosphingolipids, ceramide is subjected to the sequential addition of sugar residues by 

the action of specific membrane-bound glycosyltransferases, resulting in the formation 

of the oligosaccharide chains. 

Glucosylceramide is the simplest glycosphingolipid synthesized at the cytosolic leaflet of 

the early Golgi apparatus by ceramide glucosyltransferase (Ichikawa S and Hirabayashi 

Y, 1998). Then glucosylceramide can reach the plasma membrane or be translocated to 

the luminal side of the Golgi apparatus, where it is further glycosylated by other 

glycosyltransferases to generate more complex glycosphingolipids (Lannert H et al., 

1998). Neo-synthesized glycosphingolipids move through the Golgi apparatus to the 

plasma membrane following the exocytotic vesicular pathway.  

The biosynthesis of gangliosides is catalysed by sialyl-transferases in the lumen of the 

Golgi apparatus starting from the common precursor lactosylceramide (Yu RK et al., 

2011) (Figure 6). The gangliosides GM3, GD3 and GT3, are the precursors for the 

complex gangliosides series o-, a-, b-, and c-. In adult human tissues, gangliosides from 

the o- and c-series are found only in trace amounts.  

 

 

Figure 6 – Biosynthesis of ganglioside series. 
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2.3.2.2 Catabolism 

The catabolism of sphingolipids occurs in lysosomes thanks to the presence of specific 

hydrolases. Cell plasma membrane sphingolipids reach the lysosomes through the 

endocytic pathway. In the case of glycosphingolipid catabolism, the lysosomal 

glycosidases sequentially remove the glycosidic residues from the non-reducing end of 

the oligosaccharide chains.  

Besides the hydrolytic enzymes, for proper glycosphingolipid catabolism is also required 

the presence of the so-called Sphingolipid Activator Proteins (called also saposins) 

(Kishimoto Y et al., 1992). For example, in the degradation of ganglioside GM1 (Figure 

7), β-galactosidase removes a galactose from GM1 to obtain GM2 thanks to the 

presence of the GM2-activator protein or saposin B. Ganglioside GM2 is hydrolyzed to 

ganglioside GM3 and N-acetylgalactosamine by the action of β-hexosaminidases in 

presence of the GM2-activator protein. The reaction responsible for GM3 degradation to 

lactosylceramide and sialic acid is mediated by saposin B and sialidases. 

Lactosylceramide is then cleaved into galactose and glucosylceramide by β-

galactosidases and saposins B or C; glucosylceramide is converted to glucose and 

ceramide by the action of the β-glucosidase GBA1 in presence of saposin C (Sandhoff 

K and Harzer K, 2013). On the other hand, sphingomyelin is converted to ceramide and 

phosphoryl-choline by the action of acid sphingomyelinases (Marchesini N and Hannun 

YA, 2004). Finally, ceramide derived by both glycosphingolipid and sphingomyelin 

catabolic pathways, is hydrolysed by acid ceramidase and saposin D to sphingosine and 

fatty acid (Ferlinz K et al., 2001). Acid ceramidase can also hydrolyse the N-acyl linkage 

of several glycosphingolipids to produce the corresponding lyso-derivatives. 

Lysosphingolipids are typically accumulated in some sphingolipidoses, thus suggesting 

the involvement of these molecules in the pathogenesis of these lysosomal storage 

diseases (Spassieva S and Bieberich E, 2016). The end-products of the catabolic 

process, can leave the lysosomes and be recycled for the biosynthetic pathways (Kitatani 

K et al., 2008). In particular, sphingosine can be phosphorylated to sphingosine-1-

phosphate (Maceyka M et al., 2012) or can be re-acylated to ceramide.  

Notably, during the transport of glycosphingolipids from the cell plasma membrane to the 

lysosomes, some of them can reach different intracellular compartments (presumably 

the Golgi apparatus) where they can be used as intermediates of the biosynthetic flow 

(van Meer G and Lisman Q, 2002). It has been suggested that this process may be 

relevant at least for certain cell types, including neurons, representing an important 

mechanism for the regulation of the plasma membrane sphingolipid composition.  
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Figure 7 – Lysosomal catabolism of ganglioside GM1. 

 

2.3.2.3 Metabolism at the plasma membrane level 

Several enzymes involved in sphingolipid metabolism have been found associated with 

the external leaflet of the cell plasma membrane: sphingomyelinase, sphingomyelin 

synthase, sialidase, sialyl transferase, β-hexosaminidase, β-galactosaminyl transferase, 

β-galactosidase, β-glucosidase, ceramidase and sphingosine kinase (Sonnino S et al., 

2010; Aureli M et al., 2011) (Figure 8). Furthermore, it has been demonstrated in live 

cells that these enzymes can directly work on their substrates at the cell surface. The 

presence of a series of couples of enzymes catalysing the synthesis and the catabolism 

of a specific sphingolipid at the plasma membrane level, let to hypothesize that the cell 

membrane sphingolipid composition can be modified directly at this site, without passing 

from the intracellular compartments. This fine tuning of sphingolipid membrane 

composition could rapidly modulate cell functions in response to specific stimuli.  
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Figure 8 – Sphingolipid catabolism at the plasma membrane level. 

 

Sphingomyelinase/Sphingomyelin synthase 

Sphingomyelinases catalyse the hydrolysis of sphingomyelin to ceramide and 

phosphorylcholine. In eukaryotic cells, three sphingomyelinases have been described: 

secreted sphingomyelinase, that exerts its activity in the extracellular milieu; acid 

sphingomyelinase, mainly located in lysosomes but also associated with the cell plasma 

membrane; and neutral sphingomyelinases that are a family of different enzymes 

working at a neutral pH (Milhas D et al., 2010). On the other hand, sphingomyelin 

synthases convert ceramide and phosphatidylcholine in sphingomyelin and 

diacylglycerol. In mammalian cells, two isoforms have been found: sphingomyelin 

synthase 1, localized in the Golgi apparatus; and sphingomyelin synthase 2, which is 

present both in the Golgi and at the plasma membrane (Huitema K et al., 2004). The 

“sphingomyelin cycle” was the first biosynthetic/catabolic cycle proposed at the plasma 

membrane level, where probably acid sphingomyelinase and sphingomyelin synthase 2 

play the most important role. 

Sialidase/Sialyl transferase 

Several sialidases located in different subcellular compartments are involved in the 

hydrolysis of sialic acid containing molecules (Monti E et al., 2010). Neu1 is the 

lysosomal enzyme; Neu2 is principally located in the cytosol; the two isoforms of Neu4, 

short and long, are associated with internal membranes and mitochondria, respectively, 

whereas Neu3 is associated with the plasma membrane. Neu3 can be considered a 

ubiquitous enzyme that hydrolyses the α2-3 external ketosidic bonds, resulting 

ineffective on the inner sialic acid residues. The increase of Neu3 activity leads to an 

important modification of the ganglioside membrane composition, which shifts from 

polysialylated species to monosialoderivatives, or produces lactosylceramide from 

ganglioside GM3. These modifications result in significant consequences on neuronal 

differentiation and apoptosis (Kakugawa Y et al., 2002; Valaperta R et al., 2006; 
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Valaperta R et al., 2007). Sialyl transferases catalyse the addition of sialic acid to a pre-

existing oligosaccharide chain. These enzymes are not only present in the Golgi 

apparatus but they are also associated with the plasma membrane (Crespo PM et al., 

2010). 

β-hexosaminidase/β-hexosaminyl transferase 

The β-hexosaminidase A found associated with the cell plasma membrane is the same 

enzyme located in lysosomes (Mencarelli S et al., 2005). It reaches the cell surface after 

a fusion process between lysosomes and the plasma membrane. Recently, a β-

hexosaminyl transferase has also been identified at the cell surface, where it works on 

exogenous GM3 (Crespo PM et al., 2010). The coexistence at the plasma membrane of 

β-hexosaminidase and β-hexosaminyl transferase activities corroborates the hypothesis 

about the existence of a “glycolipid cycle” at the cell surface that could have important 

biophysical effects on the membrane structure or in events regarding signalling pathways 

starting at this level. 

β-galactosidase 

Until now, no data are available about the identity of protein/proteins showing β-

galactosidase activity at the cell surface, nevertheless this enzymatic activity has been 

found in several cell lines (Valaperta R et al., 2007; Aureli M et al., 2011b). On the 

contrary, no evidence about a β-galactosyl transferase activity at the plasma membrane 

level is known so far. 

β-glucosidase 

Three different enzymes with β-glucosidase activity have been described: a β-

glucocerebrosidase (GBA1) sensitive to the inhibition of Conduritol B Epoxide (CBE) 

normally described as a lysosomal enzyme but also found associated with the plasma 

membrane (Neufeld EF, 1991); a cytosolic β-glucosidase (GBA3) not studied deeply 

(Daniels LB et al., 1981); and a non-lysosomal β-glucosylceramidase (GBA2) that has 

been found associated with endosome vesicles and cell surface (Boot RG et al., 2007). 

GBA2 is insensitive to CBE and is specifically inhibited by N-(5-adamantane-1-yl-

methoxy-pentyl)-deoxynojirimycin (AMP-DNM) (Overkleeft HS et al., 1998). Until now, 

no data are available on the existence of a β-glucosyl transferase activity at the plasma 

membrane level. 

Ceramidase/Sphingosine kinase 

Five different genes have been found encoding for: one acid ceramidase, one neutral 

ceramidase and three different alkaline ceramidases, respectively (Coant N et al., 2016). 

The neutral ceramidase has been described to play a role in the metabolism of ceramide 

directly at the cell surface. The sphingosine produced by ceramide catabolism at the 
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plasma membrane can be released in the extracellular milieu and undergoes different 

metabolic fates or could be inserted into the inner lipid layer becoming substrate for the 

sphingosine kinase enzyme which converts the sphingosine to the bioactive lipid 

sphingosine-1-phosphate (Tani M et al., 2007). 

2.3.3 Sphingolipids as regulators of cellular functions 

Plasma membrane sphingolipids and cholesterol can spontaneously segregate in the 

so-called lipid rafts. These membrane domains are characterized by a liquid-ordered 

phase resulting in a decreased membrane fluidity compared to the overall plasma 

membrane (Simons K and Sampaio JL, 2011). Numerous studies support the 

involvement of lipid rafts in signal transduction; in fact, it has been observed that a variety 

of proteins implicated in cell signalling are associated with the sphingolipid-enriched 

membrane domains. Several membrane-associated proteins show a strong preference 

for the association with lipid rafts, for example glycosylphosphatidylinisotol (GPI) 

anchored proteins or proteins which have a lipid modification (palmitoylation) (Sangiorgio 

V et al., 2004; Levental I et al., 2010). However, proteins can also be recruited into lipid 

rafts via interactions with other proteins located in these lipid domains. As mentioned 

above, it is hypothesized that the seizure of proteins in lipid rafts could influence their 

functions. Several mechanisms to explain the effect of the lipid environment on the 

protein functioning have been proposed: i) the segregation of proteins in a liquid-ordered 

phase domain could restrict their lateral motility, thus promoting more stable interactions 

with other proteins isolated in the same domain; on the contrary, the isolation of a protein 

into the lipid raft could avoid its interaction with other proteins outside the domain; ii) the 

rigidity characteristic of lipid domains could induce conformational changes in the 

polypeptide chain resulting in the impairment of protein’s functionality; iii) lipid raft 

proteins are more susceptible to interaction with lipid components of the raft themselves. 

Regarding the last point, glycosphingolipids are good candidates for lateral lipid-protein 

interactions thanks to their oligosaccharide chain. In fact, the oligosaccharide chain of a 

glycosphingolipid inserted in the cell plasma membrane could interact with membrane 

proteins via: a) amino acids of the extracellular loops of the proteins (if the polypeptide 

chain conformation allows its proximity to the cell surface); b) sugars of glycosylated 

proteins (also in this case the dynamics of the protein oligosaccharide chain should allow 

the correct orientation towards the cell surface); c) the hydrophilic portion to the anchor 

for the GPI anchored proteins. 

2.3.3.1 Ganglioside GM3 and Epidermal Growth Factor Receptor (EGFR) 

The interaction between ganglioside GM3 and EGF receptor (EGFR) is an example of 

cellular signalling modulated by a membrane sphingolipid. Direct carbohydrate-
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carbohydrate interaction, which takes place between GM3 and the N-acetylglucosamine 

termini of N-linked glycan of EGFR, has been proven responsible for the GM3 inhibitory 

action on EGFR (Bremer EG et al., 1986). GM3-EGFR interaction is facilitated by the 

enrichment of EGFR in lipid rafts where gangliosides as GM3 are also particularly 

enriched. In addition, other factors, together with GM3, can influence EGFR function. In 

fact, caveolin-1 protein also contributes to the modulation of EGFR signalling (Pike LJ, 

2005). In a keratinocyte derived cell line, GM3 overexpression causes the shift of 

caveolin-1 in EGFR-enriched membrane regions allowing caveolin-1-EGFR interaction, 

which in turn results in the inhibition of EGFR tyrosine phosphorylation and the 

consequent receptor dimerization (Wang XQ et al., 2002). 

2.3.3.2 Ganglioside GM3 and Insulin Receptor (IR) 

Insulin receptors (IR) localize within caveolae-enriched membrane domains where the 

β-subunit of IR interacts with a scaffold domain of Caveolin-1 allowing the IR dimerization 

and function (Couet J et al., 1997). In case of an enrichment of GM3 at the plasma 

membrane, IR is sequestered by the interaction occurring between a lysine residue 

(Lys944) and the sialic acid of GM3. The loss of the interaction with Caveolin-1, induced 

by GM3, does not allow the activation of IR resulting in the onset of insulin resistance 

(Tagami S et al., 2002).  

2.3.3.3 Ganglioside GM1 and Tropomyosin receptor kinase (Trk) 

Gangliosides have a significant role in neuronal differentiation processes (Ledeen RW, 

1984). Ganglioside GM1, a common ganglioside in neurons, has been described to 

participate in several pathways including neuronal growth, differentiation and survival 

(Ledeen RW and Wu G, 2015). Interestingly, in PC12 cells, a cell line derived from a 

pheochromocytoma of rat adrenal gland, the exogenous administration of GM1 

stimulates Tropomyosin receptor kinase (Trk) activity, its dimerization and auto-

phosphorylation (Farooqui T et al., 1997). Trk receptors have been found to be 

associated with lipid rafts suggesting that the receptor localization in these sphingolipid-

enriched domains could be relevant for the regulation of their function (Guirland C et al., 

2004; Suzuki S et al., 2004). The extracellular portion of Trk receptors is essential for 

GM1-dependent activation (Rabin SJ et al., 2002). In particular, Trk glycosylation is 

mandatory for the targeting of Trk into GM1-enriched domains and for the subsequent 

formation of GM1-Trk complexes (Mutoh T et al., 2000). This suggests that the 

glycosylation process could be a physiological important mechanism for the regulation 

of Trk trafficking and function. Thus, also in this case, carbohydrate-carbohydrate 

interaction (between the oligosaccharide chain of Trk and GM1) may play a regulatory 

role in the control of the receptor activity at the cell surface.  
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2.3.3.4 Ceramide as a pro-apoptotic signalling molecule 

Several lines of evidence involve the ectopic production of ceramide in the induction of 

apoptosis (Morales A et al., Apoptosis, 2007). Notably, pro-apoptotic ceramide has been 

often associated with the hydrolysis of sphingomyelin by the action of 

sphingomyelinases. Nevertheless, emerging data suggest that also ceramide deriving 

by the hydrolysis of plasma membrane-glycosphingolipids could have an important pro-

apoptotic role (Valaperta et al., The FASEB Journal, 2006; Aureli et al., Glicoconj J, 

2012). The molecular mechanisms by which ceramide mediates its possible apoptotic 

effect are still unknown. However, several targets for ceramide-mediated apoptosis have 

been identified. For example, ceramide seems to be required for the activation of the 

Stress Activated Protein Kinase (SAPK)/c-Jun N-terminal Kinases (JNK) signalling 

pathway (Westwick JK et al., 1995; Verheij M et al., 1996).  In addition to the induction 

of apoptosis, ceramide activation of SAPK pathways causes cell cycle arrest and inhibits 

cell proliferation (Bourbon NA et al., 2000). Another crucial target of ceramide is the 

cytosolic serine/threonine (class 2A) phosphoprotein phosphatase Ceramide-Activated 

Protein Phosphatase (CAPP) (Wolff RA et al., 1994), which induces the downregulation 

of c-myc resulting in anti-proliferative effects. So, the apoptotic effect of ceramide may 

be regulated by the activation of the cytotoxic SAPK cascade and, at the same time, by 

CAPP-mediated inhibition of the cytoprotective MAPK cascade.  

Ceramide has been also described play a role in the activation of extrinsic apoptotic 

pathway mediated by the death receptors Tumor Necrosis Factor 1 (TNFR1) and CD95 

(also known as FAS) (Schütze S et al., 2008). In particular, TNFR1 after binding its ligand 

(TNF) can activate the plasma membrane-associated neutral sphingomyelinase which 

in turn produce ceramide from the hydrolysis of sphingomyelin; the formed ceramide 

could then contribute to caspases activation. Moreover, activated-TNFR1 can also be 

subjected to a clathrin-dependent internalization and, thanks to the interactions with 

other proteins such as TRADD and FADD, it can activate acid sphingomyelinase within 

endosomes producing a pool of ceramide responsible for caspases or cathepsin D 

activation. Regarding CD95-mediated cell death, the first step is the formation of a few 

FAS-FAS ligand complexes that cause the recruitment of acid sphingomyelinase at the 

plasma membrane level which results in the increased production of ceramide at this 

site. The increased ceramide determines its clustering together with CD95 receptors, 

which in turn are internalized leading to the activation of apoptosis through the cleavage 

of procaspases. 
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2.4 Lysosomal Storage Diseases 

2.4.1 Pathogenesis 

Lysosomal Storage Diseases (LSDs) are a group of more than 50 inherited metabolic 

disorders characterized by the accumulation of uncatabolized materials within the 

lysosomes. Typically, LSDs are classified on the base of the accumulated substrate 

(Filocamo M and Morrone A, 2011). Each of these diseases are rare but considering all 

LSDs their prevalence in the population is relatively high, approximately 1:6.000 live 

births. LSDs are monogenic pathologies due to the defective function of a specific 

lysosomal enzyme (e.g. Gaucher disease is due to the deficiency of the β-

glucocerebrosidase and characterized by the accumulation of glucosylceramide) and, in 

few cases, of non-enzymatic lysosomal proteins (e.g. GM2 gangliosidosis due to the 

deficit of the GM2 activator protein) or non-lysosomal proteins involved in lysosomal 

function (I-cell disease, due to mutations in mannose-6-phosphate receptor). Deficit in 

these proteins determines a lysosomal impairment with the intralysosomal accumulation 

of undegraded molecules (Platt FM et al., 2012). Interestingly, the primary accumulation 

is followed by the storage of secondary substrates with a mechanism unknown so far but 

independent from the genetic defect (Walkley SU, 2004). In addition, a common feature 

of LSDs is a reduction in the autophagic flux (the rate at which autophagosomes are 

processes by lysosomes) leading to a prominent dysregulation of the autophagic process 

(Platt FM et al., 2012). This is confirmed by the increase, in LSDs cells, of autophagic 

substrates and autophagosome-associated LC3-II. Despite these findings, to date the 

molecular mechanisms linking the lysosomal impairment to the onset of cellular damage 

is still unknown. 

2.4.1.1 Clinical manifestations 

LSDs clinical manifestations involve multiple organs and systems (Wang RY et al., 

2011). The principal pathological phenotypes are represented by hepatosplenomegaly, 

corneal or lenticular opacities, retinal dystrophy, optic nerve atrophy, glaucoma, 

blindness, bone dysplasia, abnormalities of bone density and osteonecrosis (Parenti G 

et al., 2015). About two-thirds of patients affected by LSDs also show an important 

neurological deficiency, which is extremely variable and heterogenous ranging from 

progressive neurodegeneration and severe cognitive deficit to psychiatric and 

behavioural disorders (Parenti G et al., 2015). The onset of symptoms can occur before 

the birth, for the most severe phenotypes, or during the adulthood for the late-onset mild 

forms. Peculiar is the progress and the evolution of the disease over time. Severity and 

age of onset in LSDs depend by several factors including: residual enzyme activity, 

distribution of tissue-specific and cell-specific substrates, cell turnover rate, defective 
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protein expression, and other mechanisms that influence the life span of affected cells 

(Jakóbkiewicz-Banecka J et al., 2014). Notably, presence of residual activity can result 

in mild and late-onset forms.  

2.4.1.2 Classifications 

Classically, LSDs are classified based on the nature of the accumulated substrate: 

mucopolysaccharidoses (accumulation of mucopolysaccharides), sphingolipidoses 

(sphingolipids), oligosaccharidoses also known as glycoproteinoses (oligosaccharides) 

(Filocamo M and Morrone A, 2011). More recently LSDs have also been classified by 

the molecular defect, including more pathologies recognized now as LSDs: i) non-

enzymatic lysosomal defects, ii) transmembrane protein defects (transporters and 

structural proteins), iii) lysosomal enzyme protection defects, iv) post-translational 

processing defects of lysosomal enzymes, v) trafficking defects in lysosomal enzymes 

and vi) polypeptide degradation defects (Table 1). 

2.4.1.3 LSDs etiopathology 

In general, LSDs share common features such as secondary storage of toxic 

metabolites, impaired lipid trafficking, perturbed signalling, enhanced inflammation, 

disturbed calcium homeostasis in endoplasmic reticulum, and stress and activation of 

the Unfolded Protein Response (UPR) (Vitner EB et al. 2010). All together these 

perturbations culminate in dysregulated autophagy and the onset of apoptosis and cell 

death through still unknown mechanisms. Several processes have been suggested to 

play a role in the onset of cell damage. For example, the activation of cell death signalling 

pathways has been speculated to contribute to cellular damage in Krabbe disease, 

characterized by the deficit of the enzyme galactosylceramidase resulting in the 

accumulation of its substrate galactosylceramide and of the lysosphingolipid 

galactosylsphingosine (also known as psychosine) (Giri S et al., 2006). The aberrant 

storage of these molecules can alter the activation of receptors or enzymes that are 

involved in signalling cascades. Also, the alteration of lipid content could play an 

important role in the pathobiology of LSDs because it can affect receptor responses and 

subsequent signalling events (Spector AA and Yorek MA, 1985). 
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Disease Defective protein Main storage materials 
Mucopolysaccharidoses (MPS) 

  

MPS I (Hurler, Scheie, Hurler/Scheie) α-Iduronidase Dermatan sulphate, heparan sulphate 

MPS II (Hunter) Iduronate sulphatase Dermatan sulphate, heparan sulphate 

MPS III A (Sanfilippo A) Heparan sulphamidase Heparan sulphate 

MPS III B (Sanfilippo B) Acetyl α-glucosaminidase Heparan sulphate 

MPS III C (Sanfilippo C) Acetyl CoA: α-glucosaminide N-acetyltransferase Heparan sulphate 

MPS III D (Sanfilippo D)  N-acetyl glucosamine-6-sulphatase Heparan sulphate 

MPS IV A (Morquio A) Acetyl galactosamine-6-sulphatase Keratan sulphate, chondroiotin 6-sulphate 

MPS IV B (Morquio B) β-Galactosidase Keratan sulphate 

MPS VI (Maroteaux-Lamy) Arylsulphatase B Dermatan sulphate 

MPS VII (Sly) β-Glucuronidase Dermatan sulphate, heparan sulphate, chondroiotin 6-sulphate 

MPS IX (Natowicz) Hyaluronidase Hyluronan 

Sphingolipidoses 
  

Fabry α-Galactosidase A Globotriasylceramide 

Farber Acid ceramidase Ceramide 

Gangliosidosis GM1 (Types I, II, III) GM1 β-galactosidase GM1 ganglioside, Keratan sulphate, oligosaccharides, glycolipids 

Gangliosidosis GM2 (Tay-Sachs) β-Hexosaminidase A GM2 ganglioside, oligosaccharides, glycolipids 

Gangliosidosis GM2 (Sandhoff) β-Hexosaminidase A + B GM2 ganglioside, oligosaccharides, glycolipids 

Gaucher (Types I, II, III) Glucosylceramidase Glucosylceramide 

Krabbe β-Galactosylceramidase Galactosylceramide 

Metachromatic leucodystrophy Arylsulphatase A Sulphatides 

Niemann-Pick (Types A, B) Sphingomyelinase Sphingomyelin 

Oligosaccharidoses (Glycoproteinoses) 
  

Aspartylglicosaminuria Glycosylasparaginase Aspartylglucosamine 

Fucosidosis α-Fucosidase Glycoproteins, glycolipids, fucoside-rich oligosaccharides 

α-Mannosidosis α-Mannosidase Mannose-rich oligosaccharides 

β-Mannosidosis β-Mannosidase Man(β1→4)GlnNAc 

Schindler N-acetylgalactosaminidase Sialylated/asialoglycopeptides, glycolipids 

Sialidosis Neuraminidase Oligosaccharides, glycopeptides 

Glycogenoses   

Glycogenosis II/ Pompe Acid maltase Glycogen 

Lipidoses   

Wolman/CESD Acid lipase Cholesterol esters 

 
Table 1 – Lysosomal Storage Diseases 
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Disease Defective protein Main storage materials 
Non-enzymatic lysosomal protein defect   

Gangliosidosis GM2, activator defect GM2 activator protein GM2 ganglioside, oligosaccharides 

Metachromatic leucodystrophy Saposin B Sulphatides 

Krabbe Saposin A Galactosylceramide 

Gaucher Saposin C Glucosylceramide 

Transmembrane protein defect 
  

Transporters 
  

Sialic acid storage disease; infantile form (ISSD) and adult form (Salla) Sialin Sialic acid 

Cystinosis Cystinosin Cystine 

Niemann–Pick Type C1 Niemann–Pick type 1 (NPC1) Cholesterol and sphingolipids 

Niemann–Pick, Type C2 Niemann–Pick type 2 (NPC2) Cholesterol and sphingolipids 

Structural Proteins 
  

Danon Lysosome-associated membrane protein 2 Cytoplasmatic debris and glycogen 

Mucolipidosis IV Mucolipin Lipids 

Lysosomal enzyme protection defect 
  

Galactosialidosis Protective protein cathepsin A Sialyloligosaccharides 

Post-translational processing defect 
  

Multiple sulphatase deficiency Multiple sulphatase Sulphatides, glycolipids, GAGs 

Trafficking defect in lysosomal enzymes 
  

Mucolipidosis IIα/β, IIIα/β GlcNAc-1-P transferase Oligosaccharides, GAGs, lipids 

Mucolipidosis IIIγ GlcNAc-1-P transferase Oligosaccharides, GAGs, lipids 

Polypeptide degradation defect 
  

Pycnodysostosis Cathepsin K Bone proteins 

Neuronal ceroid lipofuscinoses (NCLs) 
  

NCL 1 Palmitoyl protein thioesterase Saposins A and D 

NCL 2 Tripeptidyl peptidase 1 Subunit c of ATP synthase 

NCL 3 CLN3, lysosomal transmembrane protein Subunit c of ATP synthase 

NCL 5 CLN5, soluble lysosomal protein Subunit c of ATP synthase 

NCL 6 CLN6, transmembrane protein of ER Subunit c of ATP synthase 

NCL 7 CLC7, lysosomal chloride channel Subunit c of ATP synthase 

NCL 8 CLN8, transmembrane protein of ER Subunit c of ATP synthase 

NCL 10 Cathepsin D Saposins A and D 

 
Table 1 – Lysosomal Storage Diseases (continued) 
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2.4.2 Sphingolipidoses 

Sphingolipidoses are the first LSDs to be described and are caused by defects in the 

degradation of sphingolipids, resulting in their accumulation within the lysosomes 

(Sandhoff K, 1974). All sphingolipidoses are inherited autosomal recessive disorders, 

except Fabry disease, an X-linked recessive LSD (Schiffmann R, 2015). Lysosomal 

accumulation of undegraded sphingolipids occurs mainly in cells characterized by high 

levels of sphingolipids. The amount of residual activity of the defective enzyme is one of 

the factors contributing to the pathogenesis and severity of the disease. In fact, according 

to the threshold theory first postulated by Conzelmann and Sandhoff (Conzelmann E and 

Sandhoff K, 1983-1984), a correlation between the level of the residual catabolic activity 

and the progression of the lipid storage disease has been confirmed in several clinical 

forms of sphingolipidoses such as GM2-gangliosidosis (Leinekugel P et al., 1992), 

metachromatic leukodystrophy (Tan MA et al., 2010), Gaucher disease (Gieselmann V, 

2005) and Niemann-Pick type A and B diseases (Ferlinz K et al., 1995). 

2.4.2.1 GM1-gangliosidosis 

GM1-gangliosidosis is due to the deficit of the lysosomal enzyme GM1-β-galactosidase 

(Brunetti-Pierri N and Scaglia F, 2008). Together with GM2-activator protein or Saposin 

B, GM1-β-galactosidase hydrolyses the terminal β-galactose residue from ganglioside 

GM1 generating GM2. Three clinical forms can be distinguished: type I, the infantile and 

most severe form characterized by progressive impairment of the nervous system in the 

early infancy; type II, the late infantile/juvenile form showing progressive neurological 

symptoms in childrens; and type III, the adult/chronic form. 

2.4.2.2 GM2-gangliosidoses 

GM2-gangliosidoses are a group of three sphingolipidoses resulting from defects in 

degradation of ganglioside GM2 and related glycolipids (Kolter T and Sandhoff K, 1998). 

Three lysosomal β-hexosaminidases have been described which differ in the 

combination of their two subunits (α and β). β-hexosaminidase A (α+β) cleaves the 

terminal β-glycosidic bond between N-acetylglucosamine or N-acetylgalactosamine 

residues and the negatively charged and uncharged glycoconjugates. β-hexosaminidase 

B (β+β) cleaves the terminal N-acetylhexosamine residues from uncharged substrates 

such as oligosaccharides. β-hexosaminidase S (α+α) participates in the degradation of 

glycosaminoglycans and sulphated glycolipids. 

The B-variant of GM2-gangliosidosis (Tay-Sachs disease is the infantile form) is 

characterized by α-chain deficiency resulting in the deficit of hexosaminidase A and S, 

but the activity of hexosaminidase B is normal. The 0-variant (Sandhoff disease) 
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presents the deficiency of both hexosaminidase A and B. The AB-variant shows normal 

β-hexosaminidase A, B and S activities but the deficit of GM2 activator protein. 

2.4.2.3 Fabry disease 

Fabry disease is caused by α-galactosidase A deficiency resulting in the accumulation 

of several neutral glycolipids, expecially globotriaosylceramide (Schiffmann R, 2015). 

Since Fabry disease has an X-linked inheritance mode, the most severe forms affect 

hemizygous males. The pathology is characterized by a progressive course and 

premature death because of renal failure, stroke and cardiac disease; these organs are 

also the main sites of globotriaosylceramide accumulation. 

2.4.2.4 Gaucher disease 

Gaucher disease is caused by mutations in the gene coding for the lysosomal enzyme 

β-glucocerebrosidase leading to the accumulation of its substrate glucosylceramide 

(Nagral A, 2014). Gaucher disease type I, the non-neuronopathic form, is the most 

common sphingolipidosis with a frequency of 1:50.000-200.000 live births, that is higher 

in the Ashkenazi Jewish population (1:1.000). Thanks to the Enzyme Replace Therapy 

the life expectancy of these patients is up to 80 years. The neuronopathic forms are the 

type II, the most severe one characterized by the involvement of the central nervous 

system with an early onset and a life expectancy of less than two years, and the type III, 

an intermediate variant of the other two types.  

2.4.2.5 Krabbe disease 

Krabbe disease is also known as globoid cell leukodystrophy and it is caused by the 

deficiency of β-galactocerebrosidase (Bongarzone ER et al., 2016). This enzyme is 

responsible for the hydrolysis of galactosylceramide and lactosylceramide. Since 

galactosylceramide is mainly localized in oligodendrocytes, its accumulation together 

with the formation of the lyso-derivative galactosphingosine induce a progressive de-

myelinisation in the affected patients.  

2.4.2.6 Metachromatic leukodystrophy 

Metachromatic leukodystrophy is caused by the deficiency of arylsulphatase A enzyme, 

resulting in the accumulation of sulfatides mainly present in myelin sheaths in the white 

matter of the brain and in the peripheral nervous system (van Rappard DF et al. 2015). 

This pathology can be classified in three forms: late infantile, juvenile and adult, 

correlating with increasing residual activity. 

2.4.2.7 Farber disease 

Farber disease is characterized by the deficit of lysosomal acid ceramidase that 

catalyses the degradation of ceramide into sphingosine and a fatty acid resulting in 
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ceramide accumulation (Ehlert K et al., 2007). This disease shows a broad spectrum of 

clinical signs ranging from the classical articular and laryngeal symptoms to the 

respiratory and neurological involvement in the most severe phenotypes. 

2.4.2.8 Niemann-Pick diseases 

Niemann-Pick diseases include three sphingolipidoses: Type A, B and C. The first two 

types, A and B, are caused by mutations in the sphingomyelin phosphodiesterase 1 gene 

(SMPD1) coding for the lysosomal enzyme acid sphingomyelinase (Schuchman EH and 

Wasserstein MP, 2016). Acid sphingomyelinase is responsible for catalysing the 

breakdown of sphingomyelin to ceramide and phosphorylcholine and its deficiency leads 

to the accumulation of the undegraded substrate sphingomyelin. The Niemann-Pick 

Type A is the most severe form characterized by a rapid progressive neurodegenerative 

course; it is a fatal disorder of infancy caused by an almost complete deficiency of acid 

sphingomyelinase. In contrast, Type B is the late-onset form characterized by a higher 

residual catabolic activity with little or no involvement of nervous system but severe and 

progressive visceral organ abnormalities. Type C disease presents similar clinical 

manifestations but is caused by impaired cholesterol transport (Vanier MT, 2010).  

The first patient with Niemann-Pick disease Type A (NPA) was described in 1914 by the 

German paediatrician Albert Niemann. A few years later, in the 1930s, the primary lipid 

accumulating in these patients was identified as sphingomyelin (Crocker AC, 1961). 

Now, it is known that NPA, like others LSDs, is characterized by secondary accumulation 

of lipids, including cholesterol, glucosylceramide, lactosylceramide and gangliosides, 

especially ganglioside GM2 (Walkley SU and Vanier MT, 2009). Cells accumulating 

sphingomyelin, and other undegraded molecules, are present in several organs of NPA 

affected patients such as liver, spleen, lymph nodes, lung, bone marrow and brain. 

Sphingomyelin storage is also observed in multiple types of skin cells including dermal 

fibroblasts, macrophages and vascular endothelial cells (Schuchman EH and 

Wasserstein MP, 2015). 

Sphingomyelin is a major component of cell membranes and normally the function of 

acid sphingomyelinase is essential to maintain sphingolipid homeostasis. In NPA cells, 

the storage of sphingomyelin and other lipids, and the consequent impaired sphingolipid 

metabolism, could lead to the alteration of the plasma membrane lipid composition, 

which in turn could affect several signalling pathways.  

An important model for the study of NPA pathogenesis is represented by the Acid 

Sphingomyelinase Knock-Out (ASMKO) mice, developed in the mid-1990s (Horinouchi 

K et al. 1995). The ASMKO mice show progressive lipid storage, particularly in 
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reticuloendothelial organs as well as in the brain. The ASMKO mice present neurological 

symptoms starting from two months after birth and die within 6-8 months.
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Lysosomal Storage Diseases (LSDs) are rare inherited metabolic disorders caused by 

defects in lysosomal proteins leading to the accumulation of undegraded materials into 

lysosomes and the consequent lysosomal impairment and onset of cell damage. Until 

now, the molecular mechanisms linking lysosomal dysfunction with the onset of cell injury 

are unknown. 

Lysosomes are the principal site of the catabolism of sphingolipids, a class of bioactive 

lipids mainly associated with the external leaflet of cell plasma membranes (PM). 

Interestingly, in LSDs, when the primary storage reaches high levels, also other 

lysosomal catabolic enzymes which are not genetically deficient may be inhibited leading 

to secondary substrate accumulations, including sphingolipids. For example, Niemann-

Pick Type A disease (NPA), a neurodegenerative sphingolipidosis caused by deficit of 

the lysosomal enzyme acid sphingomyelinase resulting in primary sphingomyelin 

storage, is characterized by secondary accumulations of both gangliosides GM2 and 

GM3. Several lines of evidence support a direct correlation between modifications in 

sphingolipid pattern and content and the activation of specific signalling pathways, 

including apoptosis and autophagy. Alteration of cell PM sphingolipid composition could 

also occur in situ by the action of PM-associated sphingolipid-hydrolases. Several lines 

of evidence indicate that the ectopic production of ceramide from sphingolipid catabolism 

can promote signalling death pathways, such as autophagy and apoptosis.  

The cellular response to such accumulation is to promote the nuclear translocation of 

Transcription Factor EB (TFEB) which in turn causes: i) an enhanced expression of 

lysosomal genes; ii) the increase of lysosomal biogenesis; iii) autophagy and iv) fusion 

between lysosomes and PM (lysosomal exocytosis). These processes can be potentially 

involved in changes of sphingolipid PM composition resulting in the production of pro-

apoptotic ceramide.  

Based on these findings, my PhD Thesis was aimed to verify the hypothesis of the 

existence of a positive loop occurring in LSDs cells which could explain the onset of cell 

damage. The loop is triggered by the aberrant lysosomal storage of uncatabolized 

molecules. The massive accumulation of the undegraded substrates into lysosomes 

causes a general impairment of lysosomal catabolism leading to abnormal storage of 

other uncatabolized molecules, including complex sphingolipids. This lysosomal 

impairment causes TFEB nuclear translocation and, therefore, an increased lysosomal 

biogenesis as well as an enhanced fusion between lysosomes and PM. This last event 

is related to two different subsequent effects: alteration of PM sphingolipid composition, 

with the enrichment of sphingolipids undegraded into lysosomes, and increase of 

sphingolipid-hydrolases at the cell surface. In this way, the coexistence at the PM level 

of sphingolipid substrates and the enzymatic cascade, composed by β-hexosaminidase, 
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sialidase, β-galactosidases and β-glucosidases, could result in the ectopic production of 

ceramide which in turn leads to apoptosis and autophagy.
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4.1 Cell cultures 

Healthy and pathological human fibroblasts were obtained by skin biopsy. Niemann-Pick 

Type A disease (NPA) fibroblasts (code number FFF0841985) were derived from the 

“Cell line and DNA Biobank from patients affected by Genetic Diseases” of the Istituto 

G. Gaslini (Genova, Italy). According to ethical and legal recommendations, the samples 

have been taken for analysis and biobanking after written donor informed consent, 

approved by the local Ethics Committee.  

Fibroblasts were cultured and propagated in RPMI-1640 medium which was 

supplemented with 10% FBS, 2 mM L-glutamine, 100 U/ml penicillin and 100 µg/ml 

streptomycin. The cells were cultured as monolayer in a humidified atmosphere at 37°C, 

5% CO2.  

4.1.1 Sucrose loading 

Healthy fibroblasts were cultured for 14 days in complete growth medium supplemented 

with 88 mM sucrose (Sigma-Aldrich). The proper amount of sucrose was solubilized in 

RPMI-1640 medium, the solution was then filtered and supplemented with serum, 

glutamine and antibiotics. In parallel, control healthy fibroblasts were cultured with the 

same culture medium without sucrose. Fibroblasts were plated in T75 flasks at a density 

of 3,000 cells/cm2. Sucrose loading was started the day after plating and culture media 

were changed after 7 days from plating. 

4.1.2 Sphingomyelin loading 

NPA fibroblasts were cultured for 30 days in complete growth medium supplemented 

with 50 µM sphingomyelin (SM) (Avanti Polar Lipids). SM was solubilized according to 

the following experimental conditions for the preparation of 100 ml culture medium 

(Levade T et al., 1995). An aliquot corresponding to 5 µmoles of SM was taken from a 

solution of 25 mg/ml SM solubilized in chloroform/methanol 2:1 (v/v), transferred in a 

sterile tube and dried under nitrogen flow. 10 ml of heat-inactivated FBS supplemented 

with antibiotics were added to SM. The mixture consisting of SM-FBS-antibiotics was 

stirred, sonicated using an ultrasonic bath for three times (1 minute per time) and 

incubated at 37°C overnight. The day after, the mixture was added to the culture medium 

containing glutamine. In parallel, control NPA fibroblasts were cultured with the same 

culture medium without SM. NPA fibroblasts control and loaded with SM were plated in 

T75 flasks at a density of 3,000 cells/cm2. SM loading was started the day after plating 

and culture media were changed every 7 days from plating. 
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4.2 Evaluation of cell proliferation 

Healthy fibroblasts were plated in T25 flasks at a density of 3,000 cells/cm2 and sucrose 

loading was started the day after plating. After 1, 2, 3, 7, 10 and 14 days of sucrose 

loading both control and loaded cells were detached with Trypsin-EDTA solution. An 

aliquot of cell suspension was used to evaluate the cell number by Trypan blue exclusion 

assay and counted using a Bürker chamber. Data are expressed as number of live cells 

for cm2 of growth area. 

4.3 Cell treatment with Bafilomycin A1 

Healthy fibroblasts loaded or not with 88 mM sucrose for 7 days were plated in T25 flasks 

at a density of 10,000 cells/cm2 and sucrose loading was maintained for other 7 days. At 

the end of 14 days of loading, both control and loaded cells were treated with Bafilomycin 

A1 (Sigma-Aldrich) at the final concentration of 100 nM for 6 hours at 37°C, 5% CO2. As 

control, cells loaded or not with sucrose were cultured in the same support at the same 

concentration and were treated with only the vehicle (ethanol). At the end of incubation, 

cells were harvested and processed for immunoblot analysis. 

4.4 Cell treatment with Conduritol B epoxide (CBE) and AMP-

DNM 

Healthy fibroblasts loaded or not with 88 mM sucrose for 7 days were plated in T25 flasks 

at a density of 10,000 cells/cm2 and sucrose loading was maintained for other 7 days. At 

12 days of loading, loaded cells were treated with 500 µM CBE (Calbiochem), inhibitor 

of β-glucocerebrosidase GBA1, and 20 nM AMP-DNM (kindly given by Professor JMFG 

Aerts, Leiden University, Netherlands), inhibitor of the non-lysosomal β-

glucosylceramidase GBA2, directly diluted in culture medium for 48 hours at 37°C, 5% 

CO2. In parallel, as control, other sucrose loaded cells were maintained in culture without 

the inhibitors of β-glucosidases. At the end of incubation, cells were harvested and 

processed for immunoblot analysis. 

4.5 Transient transfection of TFEB-GFP lentiviral vector in 

fibroblasts 

4.5.1 Lentiviral vector packaging 

Lentiviral vector packaging was performed using Lenti-vpak Lentiviral Packaging Kit 

(OriGene). Briefly, 2.5 x 106 HEK-293 cells (DMEM High Glucose, 10% heat-inactivated 

FBS, 2 mM L-glutamine, 100 U/ml penicillin and 100 µg/ml streptomycin) were plated in 
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a Petri dish 100mm (day 1). The day after (day 2), 5 µg of pLenti-ORF clone of TFEB-

GFP (RC230141L2, OriGene) and 6 µg of packaging plasmids were mixed with 500 µl 

of Opti-MEM (tube 1). In a different tube (tube 2), 44 µl of MegaTran transfection reagent 

were mixed with 500 µl of Opti-MEM. Then, DNA solution was transferred from tube 1 to 

tube 2 and the mixture was incubated for 30 minutes at room temperature (RT). At the 

end of incubation, the mixture was added directly to the HEK-293 cells medium without 

antibiotics. After overnight incubation (day 3), the culture medium was changed. At day 

4, the culture medium was harvested and centrifuged at 450 x g for 5 minutes at RT. The 

viral supernatant was filtered through a 0.45 µm filter to remove cellular debris and stored 

in aliquots at -80°C. 

4.5.2 Transient transfection 

Healthy fibroblasts were plated in 6-well plates on a coverslip of 24 mm of diameter at a 

density of 5,000 cells/cm2. The day after, cells were infected with 300 µl of viral 

supernatant containing lentiviral vector coding for TFEB-GFP. After 72 hours from the 

infection, cell medium was changed and 88 mM sucrose loading was started. At different 

times of sucrose loading (12, 48, 96 hours and 14 days), cells were washed three times 

with PBS and fixed in 4% paraformaldehyde for 20 minutes at RT. Coverslip was 

mounted on a glass slide with Dako fluorescent mounting medium. Images were 

acquired with Olympus BX50 Upright Fluorescence Microscope equipped with a mercury 

burner lamp. Objective used was UPlanApo 100X/1.35 Oli Iris. 

4.6 RNA-sequencing 

Healthy fibroblasts were plated in Petri dish 100mm at a density of 3,000 cells/cm2 and 

sucrose loading was started the day after plating. After 14 days of sucrose loading, total 

RNA from 3 sucrose-treated and 3 untreated Petri dishes was extracted using the 

EuroGold TriFast reagent (Euroclone, Wetherby, UK), following the manufacturer's 

instructions. RNA concentration was determined using the NanoDrop ND-1000 

spectrophotometer and the RNA integrity was assessed on a LabChip GX Touch (Perkin 

Elmer). Subsequently, 500 ng of RNA for each sample were used to generate paired-

end sequencing libraries with a Illumina TruSeq Stranded mRNA Sample LS Preparation 

kit (Illumina), according to the manufacturer's protocol. Sequencing was performed on a 

NextSeq500 platform at the Humanitas Genomic Facility (Illumina). After quality filtering 

according to the Illumina pipeline, 76 bp paired-end reads were mapped to the hg19 

reference genome and to the Homo sapiens transcriptome (Illumina's iGenomes 

reference annotation downloaded from UCSC 

http://support.illumina.com/sequencing/sequencing_software/igenome.html) using 
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STAR v2.3.1s (Dobin A et al., 2013) . Differential expression analysis between treated 

and untreated samples was evaluated with an exact test for the negative binomially 

distributed counts using DeSeq2 (Bioconductor package) (Love MI et al., 2014). 

Differentially expressed genes were selected using an FDR (false discovery rate) ≤ 0.01 

and FC (fold change) >=1. 

4.7 Electron microscopy of cell monolayers 

Healthy fibroblasts loaded or not with 88 mM sucrose for 7 days and NPA fibroblasts 

loaded or not with 50 µM SM for 23 days were plated in 6-well plate at a density of 10,000 

cells/cm2. Cells were processed for electron microscopy after other 7 days of culturing in 

the same conditions (at 14 days of sucrose loading and at 30 days of SM loading, 

respectively). Cells monolayer were fixed in a mixture of 4% paraformaldehyde and 2% 

glutaraldehyde in cacodylate buffer (0.12 M, pH 7.4) for 4 hours at 4°C. Then, cells were 

extensively washed with cacodylate buffer and subsequently post-fixed for 1 hour on ice 

in a mixture of 1% osmium tetroxide and 1.5% potassium ferrocyanide in cacodylate 

buffer. After several washes with ultrapure water, samples were "en bloc" stained with 

0.5% uranyl acetate in water overnight at 4°C. Finally, samples were dehydrated in a 

graded ethanol series, then infiltrated for 2 hours in a mixture 1:1 (v/v) of ethanol and 

Epon and subsequently in 100% Epon, twice for 1 hour. Then polymerization was 

performed for 24 hours in an oven at 60°C. Ultra-thin sections (80 nm) were prepared 

using a ultramicrotome (Leica Ultracut; Leica Microsystems GmBH, Wien, Austria), 

collected on nickel grids and stained with saturated uranyl acetate for 5 minutes, washed 

and then stained with 3 mM lead citrate for 5 minutes. Finally, the sections were 

photographed using a transmission electron microscope LEO 912AB (Advanced Light 

and Electron Microscopy BioImaging Center - San Raffaele Scientific Institute). 

4.8 LysoTracker staining 

LysoTracker Red DND-99 (Molecular Probes) is a red-fluorescent dye for labelling and 

tracking acidic organelles in live cells. Healthy fibroblasts loaded or not with 88 mM 

sucrose for 14 days and NPA fibroblasts loaded or not with 50 µM sphingomyelin for 30 

days were plated in 6-well plate at a density of 14,000 cells/cm2 (approximately 70% of 

confluence). The day after, cells were incubated with LysoTracker diluted directly in the 

cell media at a final concentration of 50 nM (1 hour, 37°C, 5% CO2). After one wash in 

PBS, Images were acquired with Olympus IX50 Inverted Fluorescence Microscope 

equipped with a halogen lamp. Objective used was LCAch 20X/0.40 PhC directly on live 

cells.  



 

39 

 

4. Materials and Methods 

4.9 Immunofluorescence experiments 

Cells for immunofluorescence staining were plated at sub-confluence in 6-well plates on 

a coverslip of 24 mm of diameter. Healthy fibroblasts were plated after 7 days of sucrose 

loading whereas NPA fibroblasts were plated after 23 days of sphingomyelin loading; the 

immunofluorescence staining was performed after other 7 days of culturing in the same 

conditions (at 14 days of sucrose loading and at 30 days of SM loading, respectively). 

Cells were washed three times with PBS and fixed in 4% paraformaldehyde for 20 

minutes at room temperature (RT). 

4.9.1 Lamp-1 

Cells were blocked and permeabilized with 5% donkey serum/1% Bovine Serum Albumin 

(BSA) fatty acid free/0.2% Triton X-100/PBS for 1 hour at RT. Cells were then washed 

three times with PBS and incubated with mouse anti-Lamp-1 H4A3 (Developmental 

Studies Hybridoma Bank) overnight at 4°C. The primary antibody was diluted in 1.25% 

donkey serum/0.25% BSA fatty acid free/0.05% Triton X-100/PBS at the final 

concentration of 3 µg/ml. The day after, cells were washed three times in 0.05% Triton 

X-100/PBS and then incubated with anti-mouse AlexaFluor594 (Life Technologies) for 1 

hour at RT. The secondary antibody was diluted 1:2,500 in 1.25% donkey serum/0.25% 

BSA fatty acid free/0.05% Triton X-100/PBS. After three washing with 0.05% Triton X-

100/PBS, coverslip was mounted on a glass slide with Dako fluorescent mounting 

medium. Images were acquired with Olympus BX50 Upright Fluorescence Microscope 

equipped with a mercury burner lamp. Objective used was UPlanApo 100X/1.35 Oli Iris. 

4.9.2 Lamp-1 – nonpermeabilizing conditions 

For the immunofluorescence staining of the only Lamp-1 associated with cell plasma 

membrane, cells were processed as described above without the use of Triton X-100 in 

all the solutions. 

4.9.3 LC3 

Cells were blocked and permeabilized in a solution containing 10% donkey serum/0.2% 

Triton X-100/PBS for 30 minutes at RT. Cells were then washed three times with PBS 

and incubated with rabbit anti-LC3B (Sigma-Aldrich) for 2 hours at RT. The primary 

antibody was diluted in 1% donkey serum/0.1% Triton X-100/PBS at a final concentration 

of 5 µg/ml. After three washing with PBS, cells were incubated with anti-rabbit 

AlexaFluor488 (Life Technologies) for 1 hour at RT. The secondary antibody was diluted 

1:600 in 1% donkey serum/0.1% Triton X-100/PBS. Cells were then washed three times 

with PBS and coverslip was mounted on a glass slide with Dako fluorescent mounting 
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medium. Images were acquired with Olympus BX50 Upright Fluorescence Microscope 

equipped with a mercury burner lamp. Objective used was UPlanApo 100X/1.35 Oli Iris. 

4.9.4 Lysenin 

Cells were permeabilized with digitonin (Sigma-Aldrich) diluted in PBS at the final 

concentration of 50 µg/ml for 10 minutes at RT. Cells were then washed three times with 

PBS and blocked with a solution containing 2% BSA fatty acid free/PBS for 15 minutes 

at RT. After three washing with PBS, cells were incubated with Lysenin (Sigma-Aldrich) 

for 2 hours at RT. Lysenin was diluted in 2% BSA fatty acid free/PBS at a final 

concentration of 1 µg/ml. Cells were then washed three times with PBS and incubated 

for 1 hour at RT with rabbit Lysenin antiserum (Peptides International) diluted 1:500 in 

2% BSA fatty acid free/PBS. After three washing with PBS, cells were incubated with 

anti-rabbit AlexaFluor488 (Life Technologies) for 45 minutes at RT. The secondary 

antibody was diluted 1:600 in 2% BSA fatty acid free/PBS. Cells were then washed three 

times with PBS and coverslip was mounted on a glass slide with Dako fluorescent 

mounting medium. Images were acquired with Olympus BX50 Upright Fluorescence 

Microscope equipped with a mercury burner lamp. Objective used was UPlanApo 

100X/1.35 Oli Iris. 

4.10 Nuclear extraction from cells 

Nuclear extraction was performed as previously described (Settembre C and Medina DL 

2015). Briefly, cells deriving from a confluent T75 flask were lysed with 0.5 ml of lysis 

buffer (50 mM Tris-HCl at pH 7.5, 0.5% Triton X-100, 137.5 mM NaCl, 10% glycerol, 5 

mM EDTA) supplemented with Protease Inhibitor Cocktail (Sigma-Aldrich) and 1 mM 

Na3VO4, for 15 minutes in ice under gentle shaking. Lysates were then transferred in 

Eppendorf tubes and centrifuged at 15,700 x g for 15 minutes at 4°C. The supernatant 

was discarded and the nuclear pellet was rinsed three times with 0.5 ml of lysis buffer. 

Then, nuclear pellet was resuspended in 0.1 ml of lysis buffer supplemented with 0.5% 

sodium dodecyl sulfate (SDS), and sonicated in ice three times for 3 seconds at low 

output to shear genomic DNA. After centrifugation at 15,700 x g for 15 minutes at 4°C, 

the supernatant (nuclear extract) was transferred to a new tube. The protein 

concentration of nuclear extracts was determined by DC Protein Assay (Biorad), 

accordingly to manufacturer’s instruction. 

4.11 Nuclear extraction from mouse brain tissue 

Wild type and Acid Sphingomyelinase Knockout (ASMKO) mice (kindly given by 

Professor EH Schuchman, Icahn School of Medicine at Mount Sinai, New York) were 
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sacrificed and brains were collected and weighed. After mechanical homogenization in 

ice, brain tissue was resuspended in lysis buffer (10 mM HEPES at pH 7.9, 1.5 mM 

MgCl2, 10 mM KCl, 0.2 mM EDTA) supplemented with 0.32 M sucrose, 1 mM DTT, 1 

mM NaF, 1 mM Na3VO4 and Protease Inhibitor Cocktail (Sigma-Aldrich) with a ratio of 

0.1 g tissue/0.9 ml lysis buffer. Brain tissue was then homogenized in a Teflon pestle 

PYREX Potter-Elvehjem tissue grinder and centrifuged at 850 x g for 10 minutes at 4°C. 

The supernatant was removed and the pellet was resuspended in lysis buffer 

supplemented with 1 mM DTT and Protease Inhibitor Cocktail, corresponding to ½ of the 

tissue homogenate volume. The protein concentration of tissue homogenates was 

determined by DC Protein Assay (Biorad), accordingly to manufacturer’s instruction. 

Aliquots of tissue homogenates were further processed for nuclear extraction. In 

particular, they were centrifugated at 850 x g for 10 minutes at 4°C. Cell pellet was 

resuspended in extraction buffer (20 mM HEPES at pH 7.9, 1.5 mM MgCl2, 0.42 M NaCl, 

0.2 mM EDTA, 25% v/v glycerol) supplemented with 1 mM DTT and Protease Inhibitor 

Cocktail, corresponding to ½ of the pellet volume. After Dounce homogenization (10 hits 

with tight pestle and 10 hits with loose pestle), the suspension obtained was maintained 

in gently shaking for 45 minutes at 4°C. Then, the suspension was centrifuged at 20,000 

x g for 20 minutes at 4°C. The supernatant (nuclear extract) was dialyzed versus 50 

volumes of dialysis buffer (20 mM HEPES at pH 7.9, 1.5 mM MgCl2, 10 mM KCl, 0.2 mM 

EDTA, 20% v/v glycerol) supplemented with 1 mM DTT and Protease Inhibitor Cocktail 

for 3 hours (buffer change after 1.5 h). The protein concentration of nuclear extracts was 

determined by DC Protein Assay (Biorad), accordingly to manufacturer’s instruction. 

4.12 Immunoblotting 

4.12.1 Samples preparation 

Cells were harvested in PBS by mechanical scraping. After centrifugation at 450 x g for 

10 minutes at 4°C, cell pellet was lysed in an appropriate volume of Milli-Q water 

supplemented with Protease Inhibitor Cocktail (Sigma-Aldrich) using an ultrasonic 

homogenizer. The protein concentration of cell lysates was determined by DC Protein 

Assay (Biorad), accordingly to manufacturer’s instruction. 

Brain tissue homogenates were prepared as described above (see Chapter “Nuclear 

extraction from brain mouse tissue”). 

4.12.2 SDS-PAGE and Western-Blotting 

Cell lysates, brain tissue homogenates and nuclear extracts from cells or brain tissues 

were denatured with Laemmli buffer and subsequent heating (100°C for 10 minutes); 

then they were analyzed by SDS-PAGE. Equivalent amounts of proteins were separated 
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on polyacrylamide (AA) gels (15% AA for Caspase-3 and LC3; 10% AA for GBA1 and 

Lamp-1; 12.5% AA for TFEB) and then transferred to PVDF membranes by 

electroblotting. Membranes were washed with TBS-T (10 mM Tris-HCl, 150 mM NaCl, 

0.05% Tween-20 at pH 8) and then blocked with 5% non-fat dry milk in TBS-T (blocking 

solution) for 1 hour at room temperature (RT). PVDFs were incubated with primary 

antibody diluted in blocking solution overnight at 4°C. The day after, PVDFs were washed 

with TBS-T three times for 5 minutes. Then membranes were incubated with the 

appropriate horseradish peroxidase conjugated (HRP) secondary antibody for 1 hour at 

RT. After washing PVDFs with TBS-T three times for 5 minutes, signals were visualized 

using a chemiluminescent kit (WESTAR ηC, Cyanagen). Digital images were obtained 

by the chemiluminescence system Alliance Mini HD9 (UVItec). 

Differently, immunoblotting of Lamp-1 was performed using 1% non-fat dry milk in PBS-

0.1% Tween-20 for blocking and dilution of the primary antibody. 

4.12.3 Antibodies 

Primary antibodies: rabbit anti-Caspase-3, 1:1000 (Cell Signaling); rabbit anti-LC3B, 1 

µg/ml (Sigma-Aldrich); rabbit anti-GBA1, 1.125 µg/ml (Abcam); mouse anti-Lamp-1 

H4A3, 0.37 µg/ml (Developmental Studies Hybridoma Bank); rat anti-Lamp-1 1D4B, 

0.325 µg/ml (Developmental Studies Hybridoma Bank); rabbit anti-TFEB, 0.33 µg/ml 

(Bethyl Laboratories); rabbit anti-GAPDH, 0.14 µg/ml (Sigma-Aldrich); mouse anti-α-

tubulin, 1:20,000 (Sigma-Aldrich); rabbit anti-Histone H3, 1:2,000 (Cell Signaling). 

Secondary HRP-linked antibodies: goat anti-rabbit, 1:2,000 (Cell Signaling); goat anti-

mouse, 1:40,000 (ThermoFisher Scientific); goat anti-rat, 1:5,000 (Santa Cruz). 

4.13 Evaluation of enzymatic activities in cell lysates and tissue 

homogenates 

4.13.1 Samples preparation 

Cells were harvested in PBS by mechanical scraping. After centrifugation at 450 x g for 

10 minutes at 4°C, cell pellet was lysed in an appropriate volume of Milli-Q water 

supplemented with Protease Inhibitor Cocktail (Sigma-Aldrich) using an ultrasonic 

homogenizer. The protein concentration was determined by DC Protein Assay (Biorad), 

accordingly to manufacturer’s instruction. 

Wild type and Acid Sphingomyelinase Knockout (ASMKO) mice were sacrificed and 

brains were collected and weighed. After washing in PBS, brains were mechanically 

homogenized and then resuspended in 10 volumes (respect to their weight) of McIlvaine 

buffer (0.1 acid citric/0.2 Na2HPO4) at pH 6. After homogenization with a Potter 

homogenizer at 4°C, 50 µl of Complete Protease Inhibitor Cocktail Tablets (Roche) and 
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5 µl of PMSF 1 mM were added to the homogenate. After sonication and centrifugation 

at 300 x g for 10 minutes at 4°C, supernatants were collected for determination of protein 

concentration by DC Protein Assay (Biorad), accordingly to manufacturer’s instruction. 

4.13.2 Substrates 

The enzymatic activities associated with total cell lysates and brain homogenates were 

determined using a method previously described (Aureli M et al., 2011b). The fluorogenic 

substrates used were purchased by Glycosynth: 4-Methylumbelliferyl β-D-

glucopyranoside (MUB-β-Gluc) for β-glucocerebrosidase GBA1 and non-lysosomal β-

glucosylceramidase GBA2, 4-Methylumbelliferyl β-D-galactopyranoside (MUB-β-Gal) for 

β-galactosidase, 4-Methylumbelliferyl N-acetyl-β-D-glucuronide (MUG) for β-

hexosaminidase, 4-Methylumbelliferyl α-D-mannopyranoside (MUB-α-Man) for α-

mannosidase, 4-Methylumbelliferyl β-D-mannopyranoside (MUB-β-Man) for β-

mannosidase. 6-hexadecanoylamino 4-MU-phosphoryl-choline (HMU-PC) (Moscerdam 

Substrates) was used for measuring sphingomyelinase activity.  

4.13.3 GBA1 and GBA2 

Aliquots of cell lysates or brain homogenates were pre-incubated for 30 minutes at room 

temperature in a 96-well microplate with a reaction mixture composed by: 25 µl of 

McIlvaine buffer 4X (0.4 M citric acid /0.8 M Na2HPO4) pH 6, the specific inhibitors and 

water to a final volume of 75 µl. In particular, AMP-DNM (Adamantane–pentyl-dNM;N-

(5-adamantane-1-yl-methoxy-pentyl)-Deoxynojirimycin) at the final concentration of 5 

nM was used to inhibit GBA2; whereas Conduritol B epoxide (CBE) at the final 

concentration of 1 mM to inhibit GBA1. At the end of pre-incubation, the reaction was 

started by the addition of 25 µl of MUB-β-Gluc at the final concentration of 6 mM.  

4.13.4 β-galactosidase, β-hexosaminidase, α-mannosidase, β-mannosidase 

and sphingomyelinase 

Aliquots of cell lysates or brain tissue homogenates were incubated in a 96-well 

microplate with 25 µl of McIlvaine buffer 4X (0.4 M citric acid /0.8 M Na2HPO4) pH 5.2 

containing the specific fluorogenic substrates (MUB-β-Gal, MUG, MUB-α-Man and MUB-

β-Man at the final concentration of 500 µM and 250 µM for HMU-PC. Then water was 

added to reach the final volume of 100 µl. 

4.13.5 Enzymatic assay 

The reaction mixtures were incubated at 37°C under gentle shaking. At different time 

points 10 µl of the reaction mixtures was transferred in a black microplate (Black, 96-

well, OptiPlate- 96 F, Perkin Elmer) and 190 µl of 0.25 M glycine pH 10.7 were added. 

For sphingomyelinase assay (HMU-PC), 190 µl of 0.25 M glycine pH 10.7 containing 
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0.3% Triton X-100 were added. The fluorescence was detected by a Victor microplate 

reader (Perkin Elmer). Data were expressed as nmoles of converted substrate/mg 

cellular proteins x hour and are the averages ± standard deviation of three independent 

experiments. 

4.14 Evaluation of enzymatic activities at the cell surface of live 

cells 

Cells were plated in a 96-well plate at a density of 70,000 cells/cm2. The day after, 

plasma membrane-associated GBA1, GBA2, β-galactosidase and β-hexosaminidase 

activities were determined using a method previously described (Aureli M et al., 2011b). 

The artificial fluorogenic substrates MUB-β-Gluc, MUB-β-Gal and MUG solubilized in 

DMEM/F-12 without phenol red at the final concentrations of 6 mM, 0.25 mM and 1 mM, 

respectively; the pH of medium was adjusted at pH 6. Cell medium was removed and 

cells were washed twice with DMEM/F-12. For GBA1 and GBA2 assays cells were pre-

incubated for 30 minutes at room temperature with 5 nM AMP-DNM and 1 mM CBE 

diluted in DMEM/F-12 pH 6, respectively. The specific substrates where then added to 

the cell monolayers and the incubation was performed at 37°C under very gently shaking. 

At different time points, aliquots of the medium were transferred in a black microplate 

(Black, 96-well, OptiPlate- 96 F, Perkin Elmer) and 20 volumes of 0.25 M glycine pH 10.7 

were added. The fluorescence was evaluated using a Victor microplate reader (Perkin 

Elmer). Data were expressed as nmoles of converted substrate/106 cells x hour and are 

the averages ± standard deviation of three independent experiments. (Aureli M et al., 

2011b). 

4.15 Lipid analysis 

Cells were harvested in PBS by mechanical scraping and collected. After centrifugation 

at 450 x g for 10 minutes at 4°C, cell pellet was lysed in an appropriate volume of Milli-

Q water supplemented with Protease Inhibitor Cocktail (Sigma-Aldrich) using an 

ultrasonic homogenizer. The protein concentration was determined by DC Protein Assay 

(Biorad), accordingly to manufacturer’s instruction. For NPA fibroblasts loaded or not 

with sphingomyelin (SM) for 30 days, before harvesting, cells were subjected to a specific 

treatment aimed to remove the exogenous SM fraction weakly associated with the cell 

plasma membranes. In details, fibroblasts were washed three times with culture medium 

supplemented with 10% FBS (RPMI-FBS). Then, cells were incubated in mild agitation 

for 1 minute with 3 ml of PBS containing 0.1% trypsin; immediately trypsin was blocked 

by the addition of 10 ml RPMI-FBS. 
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Cells lysates were lyophilized and subjected to lipid extraction with 

chloroform/methanol/water 2:1:0.1 (v/v/v). The total lipid extracts were then subjected to 

a two-phase partitioning, resulting in the separation of an aqueous phase containing 

gangliosides and in an organic phase containing all other lipids (Folch J et al., 1957). 

Briefly: to obtain the phase separation 20% in volume of water was added to the total 

lipid extract. The mixture was centrifuged at 5,000 x g for 5 minutes, obtaining the 

separation of the two phases. The aqueous phase (upper phase) was transferred in 

another tube and an identical volume of chloroform/methanol/water 3:48:47 (v/v/v) was 

added to the organic phase (lower phase). The mixture was centrifuged as described 

above and the second aqueous phase was combined to the first one. The organic phases 

and the aqueous phases were then dried under nitrogen flow.  

The dried aqueous phases were resuspended in 100 µl of water and then dialyzed 

against water for 48 hours at 4°C (water change every 12 hours). This procedure allows 

to remove salts from aqueous phases. At the end of dialysis, the samples were 

lyophilised and resuspended in a known volume of chloroform/methanol 2:1 (v/v). 

Aliquots of the organic phases were dried and resuspended in 800 µl of chloroform and 

800 µl of 0.5 M NaOH in methanol; the mixture was then incubated overnight at 37°C. 

This alkaline treatment allows to remove glycerophospholipids from the organic phases, 

breaking their ester bonds and preserving the amide bonds of sphingolipids. At the end 

of incubation, the reaction was blocked by adding 50 µl of 0.5 M HCl in methanol. The 

samples were then dried under nitrogen flow and subjected again to the two-phase 

partitioning as described above to obtain the new alkali-stable organic phases 

resuspended in a known volume of chloroform/methanol 2:1 (v/v). 

The dialyzed aqueous phases, the organic phases and the alkali-stable organic phases 

obtained were then separated by mono-dimensional High Performance Thin Layer 

Chromatography (HPTLC) carried out with the following solvent systems: 

chloroform/methanol/acetic acid/water 30:20:2:1 (v/v/v/v) for the analysis of 

phospholipids; hexane/ethyl acetate 3:2 (v/v) for cholesterol; chloroform/methanol/water 

110:40:6 (v/v/v) for neutral glycolipids; hexane/chloroform/acetone/acetic acid 

20:70:20:4 (v/v/v/v) for ceramide; chloroform/methanol 9:1 (v/v) followed by 

chloroform/methanol/0.2% aqueous CaCl2 50:42:11 (v/v/v) for gangliosides. 

Identification of lipids after separation was assessed by co-migration with lipid standards. 

Phospholipids were detected by spraying the HPTLC with a molybdate reagent 

(Vaskovsky et al. 1968); cholesterol, neutral glycolipids and ceramide were visualized by 

spraying the HPTLC with anisaldehyde; gangliosides were detected by spraying the 

HPTLC with Ehrlich’s reagent. The relative amounts of lipids were determined by 

densitometry using ImageJ software. 
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4.16 Treatment of cell cultures with [3-3H(sphingosine)]GM3 

Healthy fibroblasts loaded or not with sucrose for 13 days were plated in Petri dishes 

100mm at a density of 9,500 cells/cm2. The day after, isotopically labelled [3-

3H(sphingosine)]GM3 was administered to both control and sucrose loaded cells. [3-

3H(sphingosine)]GM3 dissolved in propanol/water 7:3 (v/v) was transferred in a sterile 

glass tube and dried under nitrogen flow. The residue was solubilised in the cell culture 

medium without serum at the final concentration of 4.5x10-6 M. To follow the catabolism 

of [3-3H(sphingosine)]GM3 both in the lysosomes and at the plasma membrane level, 

dedicated cells were pre-incubated with 100 µM chloroquine for 1 hour in cell medium 

without serum. After removal of the medium and rapid washing of cells, 5 ml of the 

medium containing the radioactive lipid were added to each dish and the cells were 

incubated at 37°C in the presence or not of 100 µM chloroquine for 4 hours. At the end 

of incubation, cells were washed three times with complete cell culture medium and 

incubated in the same medium for 30 minutes. Finally, cells were harvested with PBS 

and processed for lipid analysis as described above. The radioactivity associated with 

lipid extracts was determined by liquid scintillation counting. Total lipid extracts were then 

separated by HPTLC carried out with the solvent system chloroform/methanol/water 

110:40:6 (v/v/v). Radioactive lipids were detected and quantified by radioactivity imaging 

performed with a Beta-Imager 2000 instrument (BioSpace) using an acquisition time of 

about 48 hours. Identification of lipids after separation was assessed by co-migration 

with radioactive lipid standards. The radioactivity associated with individual lipids was 

determined with M3Vision software.  

4.17 Statistics 

All the experiments have been performed in triplicate and repeated three times. Data are 

presented as the mean values ± standard deviation and were tested for significance 

employing Student’s t-test analysis (GraphPad Prism software). The level of significance 

was set at p<0.05. 
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5.1 Sucrose loading in human fibroblasts 

5.1.1 Sucrose loading induces cell damage in human fibroblasts 

Lysosomal Storage Diseases (LSDs) are characterized by lysosomal dysfunction leading 

to the accumulation of uncatabolized molecules within lysosomes. In LSDs cells, the 

lysosomal accumulation of undigested materials is associated with the onset of cell 

damage. Nevertheless, the molecular mechanisms linking these two events are still 

unknown.  

To investigate this issue, I used an artificial in vitro model of lysosomal impairment 

represented by human healthy fibroblasts loaded with 88 mM sucrose for 14 days in 

culture (Kato T et al., 1981). Sucrose is rapidly taken up by the cells and stored into 

lysosomes due to the absence of invertase, the enzyme responsible for its hydrolysis. 

Importantly, at this concentration, sucrose was previously assessed not to induce 

osmotic stress in fibroblasts (Karageorgos LE et al., 1997). As control cells I used the 

same fibroblasts cultured in the identical medium without sucrose. 

Since one of the main feature of LSDs is the onset of cell damage, to validate this cellular 

model I first evaluated the effect of sucrose loading on cellular proliferation. Interestingly, 

as shown in Figure 9, I found that fibroblasts loaded with sucrose are characterized by a 

significant growth slowdown. If compared to control cells, the reduction in cell growth is 

about 30% starting at day 3 after sucrose loading until 14 days in culture (Figure 9). 

 

 

Figure 9 – Sucrose loading causes growth slowdown in human fibroblasts. Human 
fibroblasts were loaded with 88 mM sucrose for 14 days and cell counting was performed at 1, 2, 
3, 7, 10, 14 days after sucrose loading by Trypan blue exclusion assay. Data are expressed as 
number of live cells for cm2 of growth area. Each value represents the average of three 
independent experiments. CTRL: control cells; SUCROSE:  sucrose loaded cells. 
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I investigated the main cell death pathways such as apoptosis and autophagy. First, I 

analysed one of the most important final effectors of apoptosis: Caspase-3, which is 

activated both by extrinsic and intrinsic apoptotic pathways. As shown in Figure 10 (panel 

A), sucrose loaded cells are characterized by the activation of apoptosis as indicated by 

the presence of the cleaved form of Caspase-3. Furthermore, sucrose loaded cells show 

a strong increase of the autophagic marker LC3-II compared to control cells (Figure 10, 

panel B and C) suggesting the possible activation of autophagy.   

 

 

Figure 10 – Sucrose loading induces the activation of both apoptosis and autophagy in 
human fibroblasts. A) Representative Western Blot image showing Caspase-3 (procaspase) 
and the cleaved form protein expression; α-tubulin was used as loading control. B) Representative 
Western Blot image showing LC3-I and LC3-II protein expression; α-tubulin was used as loading 
control. C) Representative indirect immunofluorescence images of LC3; cells were permeabilized 
with Triton X-100 before staining. CTRL: control cells; SUCROSE: 14-day sucrose loaded cells. 

To elucidate if the increase of the autophagic marker LC3-II after sucrose loading was 

due to autophagy activation or rather to a blockage of autophagosomes degradation, I 

treated cells with Bafilomycin A1. Bafilomycin A1 blocks the lysosomal functionality via 

the inhibition of the lysosomal proton pump V-ATPase resulting in autophagosomes and 

LC3-II accumulation. As shown in Figure 11, control cells treated with Bafilomycin A1 

show an increased LC3-II protein expression with respect to untreated control cells. I 

performed the same experiment in sucrose loaded cells and I found that Bafilomycin A1 

treatment induces a further increase of LC3-II level compared to untreated sucrose 

loaded cells. Since the amount of LC3-II further accumulates in the presence of a 

lysosomal function’s inhibitor, this result suggests that sucrose loading activates the 

autophagic flux. 
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Figure 11 – Sucrose loading enhances the autophagic flux in human fibroblasts. Cells were 
treated with Bafilomycin A1 (100 nM) for 6 hours at 37°C, 5% CO2. A) Representative Western 
Blot image showing LC3-I and LC3-II protein expression; GAPDH was used as loading control. 
B) Semi-quantitative graph of normalized LC3-II/GAPDH; *p<0.05 vs CTRL (-), #p<0.05 vs 
SUCROSE (-). CTRL: control cells; SUCROSE: 14-day sucrose loaded cells; (-) untreated cells; 
(+) Bafilomycin A1-treated cells. 

As well known, several factors could contribute to induce cell growth slowdown. To 

deeply investigate this aspect, thanks to a collaboration with Professor Duga’s laboratory 

from Humanitas University (Milano, Italy), we performed a Next-Generation RNA 

Sequencing (Illumina platform). Transcriptomes of control and 14-day sucrose loaded 

cells derived from three independent experiments were evaluated and data were 

analysed with DeSeq2 (Bioconductor). We found that approximately a thousand of genes 

are deregulated after sucrose loading. Among these, 56 genes encoding for proteins 

involved in cell cycle regulation are downregulated (Figure 12; Table 2): 3 genes coding 

for proteins working on DNA replication and repair processes; 9 for proteins responsible 

for cytokinesis; 18 for proteins playing a role in the mitotic spindle formation; 24 for other 

proteins contributing in the regulation of cell cycle and 2 for proteins involved in the 

inhibition of apoptosis.  
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Figure 12 – Cell cycle-related genes downregulated in 14-day sucrose loaded fibroblasts. 
RNA sequencing analysis was performed by Illumina platform; differential expression analysis 
between treated and untreated samples was evaluated using DeSeq2 (Bioconductor). 

Collectively, these results indicate that fibroblasts loaded with sucrose represented an 

artificial in vitro model of lysosomal storage characterized by the onset of cell damage. 

In particular, in these cells I observed: cell growth slowdown, downregulation of cell 

cycle-related genes and the activation of both apoptosis and autophagy. Therefore, I 

proved that sucrose loaded fibroblasts represent a valid model to further study the 

possible molecular mechanisms linking lysosomal storage to the onset of cell damage. 
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Downregulated cell cycle-related genes 
Cell cycle regulation  
BUB1  BUB1 Mitotic Checkpoint Serine/Threonine Kinase 
BUB1B  BUB1 Mitotic Checkpoint Serine/Threonine Kinase B 
CCNB2  Cyclin B2 
CCNE2   Cyclin E2 
CDK1  Cyclin-Dependent Kinase 1 
CYP26B1  Cytochrome P450 Family 26 Subfamily B Member 1 
ESCO2  Establishment of Sister Chromatid Cohesion N-Acetyltransferase 2 
E2F2  E2F Transcription Factor 2 
E2F8  E2F Transcription Factor 8 
FBXO5  F-Box Protein 5 
GAS7  Growth Arrest Specific 7 
GTSE1  G2 and S-Phase Expressed 1 
HJURP  Holliday Junction Recognition Protein 
ID4  Inhibitor Of DNA Binding 4, HLH Protein 
KIFC1 Kinesin Family Member C1 
KIF15  Kinesin Family Member 15 
KIF20B  Kinesin Family Member 20B 
MKI67  Marker Of Proliferation Ki-67 
NEK2  NIMA Related Kinase 2 
NUSAP1  Nucleolar and Spindle Associated Protein 1 
PBK  PDZ Binding Kinase 
PLK1  Polo Like Kinase 1 
PTTG1  Pituitary Tumor-Transforming 1 
UBE2C  Ubiquitin Conjugating Enzyme E2 C 
Mitotic spindle formation  
ASPM  Abnormal Spindle Microtubule Assembly 
AURKB  Aurora Kinase B 
CENPA  Centromere Protein A 
CENPF  Centromere Protein F 
CEP55  Centrosomal Protein 55 
KIF2C  Kinesin Family Member 2C 
KIF11  Kinesin Family Member 11 
NCAPG  Non-SMC Condensin I Complex Subunit G 
NCAPH  Non-SMC Condensin I Complex Subunit H 
NDC80  NDC80 Kinetochore Complex Component 
NUF2  NDC80 Kinetochore Complex Component NUF2 
SGOL1 or SGO1  Shugoshin 1 
SKA1  Spindle and Kinetochore Associated Complex Subunit 1 
SKA3  Spindle and Kinetochore Associated Complex Subunit 3 
SPAG5  Sperm Associated Antigen 5 
SPC25  Kinetochore-associated Ndc80 Complex Subunit SPC25 
TACC3  Transforming Acidic Coiled-Coil Containing Protein 3 
TTK  TTK Protein Kinase 
Cytokinesis  
ANLN  Anillin Actin Binding Protein 
CDCA2  Cell Division Cycle Associated 2 
CDCA3  Cell Division Cycle Associated 3 
CDCA8  Cell Division Cycle Associated 8 
CDC20  Cell Division Cycle 20 
CDC25C Cell Division Cycle 25C 
CDC45  
 

Cell Division Cycle 45 
CIT  Citron Rho-Interacting Serine/Threonine Kinase 
PRC1  Protein Regulator of Cytokinesis 1 
DNA replication and repair  
CLSPN   Claspin 
EXO1  Exonuclease 1 
RAD54L  RAD54-Like (S. Cerevisiae) 
Apoptosis inhibition  
BIRC5  Baculoviral IAP Repeat Containing 5 
C11ORF82  known also as DDIAS (DNA Damage Induced Apoptosis Suppressor) 
 
Table 2 - Downregulated cell cycle-related genes in human fibroblasts loaded with 88 mM sucrose 
for 14 days. 
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5.1.2 Sucrose loading induces lysosomal impairment 

Morphologically, sucrose loaded fibroblasts are characterized by the presence of 

intracellular translucent vesicles that are absent in control cells (Figure 13). 

 

 

Figure 13 – Phase contrast microscopy images of human fibroblasts loaded or not with 
sucrose. Black arrows indicate sucrose loaded intracellular vesicles. CTRL: control cells; 
SUCROSE: 14-day sucrose loaded cells. 

To better characterize the morphology of these intracellular structures, thanks to a 

collaboration with Dr. Zucca from Istituto di Tecnologie Biomediche – Consiglio 

Nazionale delle Ricerche (Milano, Italy) we performed an ultrastructural analysis by 

Transmission Electron Microscopy (TEM). Normally, lysosomes measure approximately 

500 nm in diameter and in TEM appear like electron-dense vesicles due to the reaction 

between osmium tetroxide and lipids, of which lysosomes are particularly rich (Figure 

14B and 14C, white arrows). As shown in Figure 14D, sucrose loaded cells are 

characterized by a large amount of non-electron-dense white intracellular bodies. These 

structures are apparently lysosomes which have accumulated sucrose. These non-

electron-dense vesicles show a larger size compared to normal lysosomes, with an 

average of approximately 1 µm in diameter (Figure 14F, black arrow). 
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Figure 14 – Electron micrographs of human fibroblasts loaded or not with sucrose. (N) 
Nucleus; white arrows: normal electron-dense lysosomes, black arrows: not electron-dense 
bodies. A, B, C: control cells; D, E, F: 14-day sucrose loaded cells. Scale bars are shown: 2 µm 
for A and D; 1 µm for B and E; 500 nm for C and F.  

From the data obtained by RNA sequencing, we found that 37 genes encoding for 

lysosomal proteins are upregulated in sucrose loaded fibroblasts compared to control 

cells. These genes include: 6 genes encoding for lysosomal structural proteins; 6 for 

lysosomal membrane transporters; 6 for other proteins contributing in the regulation of 

lysosomal function and 19 for enzymes involved in the degradation of several kinds of 

macromolecules (Figure 15; Table 3). 

 

 

Figure 15 – Lysosome-related genes upregulated in 14-day sucrose loaded fibroblasts. 
RNA sequencing analysis was performed by Illumina platform; differential expression analysis 
between treated and untreated samples was evaluated using DeSeq2 (Bioconductor). 
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Upregulated lysosome-related genes 
Lysosomal enzymes  
ACP5 Acid Phosphatase 5, Tartrate Resistant 
ADA  Adenosine Deaminase 
ARSB  Arylsulfatase B 
ASAH1  Acid Ceramidase 
CTSA  Cathepsin A 
CTSH Cathepsin H 
CTSK Cathepsin K 
DNASE2 Lysosomal Deoxyribonuclease II 
FUCA1  Fucosidase, Alpha-L- 1 
GBA  β-glucocerebrosidase 
GNS  Glucosamine (N-Acetyl)-6-Sulfatase 
HEXA  α-subunit of the β-hexosaminidase 
HEXB  β-subunit of the β-hexosaminidase 
MANBA  β-mannosidase 
NEU1  Neuraminidase 1 
PLA2G15  Phospholipase A2 Group XV 
PNPLA7  Patatin Like Phospholipase Domain Containing 7 
SMPD1  Sphingomyelin Phosphodiesterase 1 
TPP1  Tripeptidyl Peptidase 1 
Membrane transporters  
CTNS  Cystinosin 
MCOLN1  Mucolipin 1 
NPC1  NPC intracellular cholesterol transporter 1 
NPC2  NPC intracellular cholesterol transporter 2 
SLC17A5  Solute Carrier Family 17 Member 5 
SLC36A1  Solute Carrier Family 36 Member 1 
Structural proteins  
CLN3  Ceroid-Lipofuscinosis, Neuronal 3 
COL4A3BP  Collagen Type IV Alpha 3 Binding Protein 
C1ORF85  Lysosomal Protein NCU-G1 
EPDR1  Ependymin Related 1 
LITAF  Lipopolysaccharide-induced TNF-α factor 
TMEM192  Transmembrane Protein 192 
Other lysosomal proteins  
GM2A  GM2 Ganglioside Activator 
IGF2R  Insulin Like Growth Factor 2 Receptor 
MARCH9  Membrane Associated Ring-CH-Type Finger 9 
PCSK9  Proprotein Convertase Subtilisin/Kexin Type 9 
P2RX7  Purinergic Receptor P2X 7 
STX3  Syntaxin 3 

 
Table 3 - Upregulated lysosome-related genes in human fibroblasts loaded with 88 mM sucrose for 
14 days. 
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The results obtained by RNA sequencing suggest that fibroblasts are characterized by 

an increased lysosomal function and biogenesis after sucrose loading. To further 

investigate this hypothesis, I used the fluorescent probe LysoTracker® Red DND-99 

wich allows to selectively label intracellular acidic organells in live cells. 

 

 

Figure 16 –LysoTracker® Red DND-99 staining of human fibroblasts loaded or not with 
sucrose. The staining was performed on live cells. A, B, C: control cells; D, E, F: 14-day sucrose 
loaded cells.  

As shown in Figure 16, sucrose loaded fibroblasts are characterized by an increased 

LysoTracker® Red DND-99 staining with respect to control cells, which is evaluated as 

fluorescence intensity. This result suggests that sucrose loading induces an increase in 

the volume of acidic intracellular compartments. To better identify these acidic 

intracellular compartments, I performed indirect immunofluorescence experiments in 

permeabilized fibroblasts using a primary antibody against the lysosomal marker 

“Lysosomal associated membrane protein 1” (Lamp-1). As shown in Figure 17, sucrose 

loaded cells show a higher immunofluoresce intensity associated with Lamp-1 compared 

to control cells, suggesting that sucrose loading induces an increased lysosomal 

biogenesis.  
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Figure 17 – Indirect immunofluorescence staining of Lamp-1 in human fibroblasts loaded 
or not with sucrose. Cells were permeabilized with Triton X-100 before staining. A, B, C: control 
cells; D, E, F: 14-day sucrose loaded cells. 

These data were also confirmed by Western Blot analysis (Figure 18), showing that the 

increase in Lamp-1 protein expression is more than 2 fold in sucrose loaded fibroblasts 

with respect to control cells. 

 

 

Figure 18 – Western Blot analysis of Lamp-1 in human fibroblasts loaded or not with 
sucrose. A) Representative Western Blot image showing Lamp-1 protein expression; GAPDH 
was used as loading control. B) Semi-quantitative graph of normalized Lamp-1/GAPDH; *p<0.05 
vs CTRL. CTRL: control cells; SUCROSE: 14-day sucrose loaded cells. 

Moreover, by in vitro  fluorimetric assays, I measured the activity of the main lysosomal 

enzymes such as: β-glucocerebrosidase GBA1, β-galactosidase, β-hexosaminidase, α-

mannosidase, β-mannosidase and sphingomyelinase. As shown in Figure 19, all the 

activities are increased in sucrose loaded fibroblasts with respect to control cells. In 

particular, GBA1 activity is 2.8 fold higher in sucrose loaded fibroblasts compared to 

control cells (21.00 ± 1.46 nmoles/mg proteins/h vs 7.60 ± 0.55 nmoles/mg proteins/h, 
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respectively); β-galactosidase activity increases 1.9 fold (347.71 ± 24.05 nmoles/mg 

proteins/h vs 186.76 ± 9.64 nmoles/mg proteins/h); β-hexosaminidase 1.7 fold (1,746.19 

± 95.93 nmoles/mg proteins/h vs 1,009.07 ± 47.75 nmoles/mg proteins/h); α-

mannosidase 3.8 fold (24.47 ± 0.69 nmoles/mg proteins/h vs 6.41 ± 0.35 nmoles/mg 

proteins/h); β-mannosidase 2.4 fold (30.65 ± 3.66 nmoles/mg proteins/h vs 12.72 ± 0.41 

nmoles/mg proteins/h); sphingomyelinase 2.7 fold  (3.34 ± 0.37 nmoles/mg proteins/h vs 

1.26 ± 0.13 nmoles/mg proteins/h). 

Interestingly, the increase in the activities of β-glucocerebrosidase GBA1, β-

hexosaminidase and sphingomyelinase, that are three of the principal enzymes involved 

in sphingolipid catabolism, positively correlates with the upregulation of their respective 

genes (GBA, HEXA, HEXB and SMPD1) as found by RNA sequencing analysis. 

 

 

Figure 19 – Sucrose loading induces increased activity of the main lysosomal hydrolases. 
Graphs represent the enzymatic activities of β-glucocerebrosidase GBA1, β-galactosidase, β-
hexosaminidase, α-mannosidase, β-mannosidase and sphingomyelinase measured in total cell 
lysates of human fibroblasts loaded or not with sucrose. Average value of triplicate analyses is 
expressed as nmoles/mg proteins/h. *p<0.05 vs CTRL. CTRL: control cells; SUCROSE: 14-day 
sucrose loaded cells. 

GBA1 increase was also confirmed by Western Blot analysis (Figure 20), showing that 

GBA1 protein expression is 1.4 fold higher in sucrose loaded fibroblasts with respect to 

control cells. 
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Figure 20 – Western Blot analysis of GBA1 in human fibroblasts loaded or not with 
sucrose. A) Representative Western Blot image showing GBA1 protein expression; GAPDH was 
used as loading control. B) Semi-quantitative graph of normalized GBA1/GAPDH; *p<0.05 vs 
CTRL. CTRL: control cells; SUCROSE: 14-day sucrose loaded cells. 

Taken together, these results suggest that sucrose loading induces an increased 

biogenesis of mature lysosomes enhancing the catabolic flow.  

In order to follow the lysosomal catabolism in live cells, I fed fibroblasts loaded or not 

with sucrose with the ganglioside GM3 tritium-labeled at position 3 of sphingosine ([3-

3H(sphingosine)]GM3). [3H(sphingosine)]GM3 was solubilized in cell culture medium 

without FBS and then administered to the cells. After 4 hours of incubation, cells were 

harvested and then radioactive lipids were extracted and analysed. I found that cells 

have incorporated the same amount of GM3 independently from the sucrose loading. 

The digital autoradiography reported in Figure 21 shows that [3-3H(sphingosine)]GM3 

catabolism is strongly reduced in sucrose loaded fibroblasts with respect to control cells. 

In fact, the percentage of radioactivity associated with GM3 catabolites 

(lactosylceramide, glucosylceramide and ceramide) is reduced for all sphingolipid 

species in sucrose loaded cells compared to control ones. In particular, a 1.8, 3.7 and 

4.3 fold decrease of  lactosylceramide, glucosylceramide and ceramide respectively was 

observed in sucrose loaded cells. 
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Figure 21 – Sucrose loading reduces lysosomal catabolism of radioactive ganglioside GM3 
in live cells. A) Digital autoradiography of HPTLC performed using the solvent system 
chloroform/methanol/water 110:40:6 (v/v/v); 1000 dpm of total lipid extracts were applied per lane. 
B) Radioactivity quantification of GM3 catabolites: lactosylceramide (LacCer), glucosylceramide 
(GlcCer) and ceramide (Cer); data are expressed as percentage of radioactivity with respect to 
the total radioactivity associated with lipid extracts. CTRL: control cells; SUCROSE: 14-day 
sucrose loaded cells. 

These results indicate that after sucrose loading the lysosomal catabolism is impaired. 

Therefore, in sucrose loaded fibroblasts the increased biogenesis of lysosomes is not 

related to an enhancement of their catabolic function.  
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5.1.3 Sucrose loading cells show an altered lipid composition 

Fibroblasts loaded or not with sucrose were subjected to lipid extraction to evaluate their 

lipid content. Total lipid extracts were subjected to a two-phase partitioning to separate 

gangliosides from the other lipids.  

  

 

Figure 22 – Phospholipid analysis in human fibroblasts loaded or not with sucrose. A) 
Representative HPTLC performed using the solvent system chloroform/methanol/acetic 
acid/water 30:20:2:1 (v/v/v/v); aliquots of the organic phases corresponding to 120 µg of cellular 
proteins were applied per lane. B) Densitometric quantification of phosphatidylcholine (PC); 
phosphatidylserine (PS) and phosphatidylethalamine (PE); graph shows the fold increase in 
sucrose loaded cells with respect to control cells; each value is the average of three independent 
experiments. *p<0.05 vs CTRL. CTRL: control cells; SUCROSE: 14-day sucrose loaded cells. 

The organic phases obtained after partitioning were first analyzed for the phospholipid 

pattern and content. As shown in Figure 22, all the phospholipid species identified 

including phosphatidylcholine (PC), phosphatidylserine (PS) and 

phosphatidylethalamine (PE) are increased in sucrose loaded fibroblasts with respect to 

control cells. In particular, PC increases 1.53, PS 2.39 fold and PE 2.19 fold. 

Afterwards, the organic phases were subjected to an alkaline treatment to remove 

glycerophospholipids thus allowing the analyses of neutral glycosphingolipids and 

cholesterol.  

As shown in Figure 23, cholesterol content increases 1.8 fold in sucrose loaded cells 

compared to control cells. 
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Figure 23 – Cholesterol analysis in human fibroblasts loaded or not with sucrose. A) 
Representative HPTLC performed using the solvent system hexane/ethyl acetate 3:2 (v/v); 
aliquots of the alkali-stable organic phases corresponding to 100 µg of cellular proteins were 
applied per lane. B) Densitometric quantification of cholesterol; graph shows the fold increase in 
sucrose loaded cells with respect to control cells; the value is the average of three independent 
experiments. *p<0.05 vs CTRL. CTRL: control cells; SUCROSE: 14-day sucrose loaded cells. 

The analysis of neutral lipids show an increase in the main sphingolipids after sucrose 

loading. In particular, compared to control cells, sphingomyelin (SM) increases 1.75 fold, 

globotriaosylceramide (Gb3) 1.87 fold, lactosylceramide (LacCer) 10 fold and 

glucosylceramide (GlcCer) 4.6 fold (Figure 24).  

 

 

Figure 24 – Analysis of neutral glycosphingolipids in human fibroblasts loaded or not with 
sucrose. A) Representative HPTLC performed using the solvent system 
chloroform/methanol/water 110:40:6 (v/v/v); aliquots of the alkali-stable organic phases 
corresponding to 500 µg of cellular proteins were applied per lane. B) Densitometric quantification 
of sphingomyelin (SM); globotriaosylceramide (Gb3); lactosylceramide (LacCer); 
glucosylceramide (GlcCer); graph shows the fold increase in sucrose loaded cells with respect to 
control cells; each value is the average of three independent experiments. *p<0.05 vs CTRL. 
CTRL: control cells; SUCROSE: 14-day sucrose loaded cells. 
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Ceramide was analysed separately using a specific solvent system and, as shown in 

Figure 25, its content is increased about 1.7 fold in sucrose loaded cells with respect to 

control cells. 

 

 

Figure 25 – Ceramide analysis in human fibroblasts loaded or not with sucrose. A) 
Representative HPTLC performed using the solvent system hexane/chloroform/acetone/acetic 
acid 20:70:20:4 (v/v/v/v); aliquots of the alkali-stable organic phases corresponding to 1.2 mg of 
cellular proteins were applied per lane. B) Densitometric quantification of ceramide; graph shows 
the fold increase in sucrose loaded cells with respect to control cells; the value is the average of 
three independent experiments. *p<0.05 vs CTRL. CTRL: control cells; SUCROSE: 14-day 
sucrose loaded cells. 

Subsequently, I analysed ganglioside content and pattern in the aqueous phases 

obtained after partitioning. As shown in Figure 26, ganglioside levels are also increased 

after sucrose loading. In particular, a 12.2 fold increase for ganglioside GD1a, a 2.1 fold 

increase for GD3, and 2.8 and 3.7 fold increase respectively for GM2 and GM3 compared 

to control cells. 

 

 

Figure 26 – Ganglioside analysis in human fibroblasts loaded or not with sucrose. A) 
Representative HPTLC performed using the solvent system chloroform/methanol 9:1 (v/v) 
followed by chloroform/methanol/0.2% aqueous CaCl2 50:42:11 (v/v/v); aliquots of the aqueous 
phases corresponding to 1.5 mg of cellular proteins were applied per lane. B) Densitometric 
quantification of GD1a, GD3, GM2 and GM3; graph shows the fold increase in sucrose loaded 
cells with respect to control cells; each value is the average of three independent experiments. 
*p<0.05 vs CTRL. CTRL: control cells; SUCROSE: 14-day sucrose loaded cells. 
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Collectively, these results indicate that sucrose loaded fibroblasts show a higher content 

of the principal phospholipid and sphingolipid species. This condition could be explained 

as the consequence of the impairment of intralysosomal catabolism resulting in the 

accumulation of secondary undegraded molecules, such as complex lipids.  
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5.1.4 Lysosomal impairment leads to the production of pro-apoptotic 

ceramide through the hydrolysis of cell surface glycosphingolipids  

Recent lines of evidence support the role of the Transcription Factor EB (TFEB) in the 

regulation of lysosomal function. TFEB is normally localized into cytosol but under 

cellular stress conditions, such as lack of nutrients or lysosomal dysfunction, TFEB 

rapidly translocates to the nucleus and upregulates several set of genes involved in 

lysosomal function and biogenesis. I performed a transient transfection of TFEB tagged 

with the Green Fluorescent Protein (GFP) to monitor its intracellular localization during 

the 14 days of sucrose loading. 

 

 

Figure 27 – Transient transfection of human fibroblasts loaded or not with sucrose with 
lenti-TFEB-GFP at different time points (12, 48, 96 hours and 14 days). Representative 
images obtained with Olympus BX50 Upright Fluorescence Microscope. 

As shown in Figure 27, TFEB nuclear translocation occurs in sucrose loaded fibroblasts 

starting at 48 hours after sucrose loading; TFEB reaches an almost complete nuclear 

translocation at 14 days. On the contrary, in control cells, TFEB localization was mostly 

cytosolic at all the times investigated. 

Endogenous TFEB nuclear localization was also confirmed in sucrose loaded cells after 

14 days of sucrose loading by Western Blot analysis (Figure 28). In particular, a 1.8 fold 

increase of TFEB levels was detected in the nuclear extracts of sucrose loaded 

fibroblasts compared to control cells. 
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Figure 28 – Western Blot analysis of TFEB in human fibroblasts loaded or not with sucrose. 
A) Representative Western Blot image showing TFEB protein expression; Histone H3 was used 
as loading control. B) Semi-quantitative graph of normalized TFEB/Histone H3; *p<0.05 vs CTRL. 
CTRL: control cells; SUCROSE: 14-day sucrose loaded cells. 

Recent findings from the literature suggest a role of TFEB in the promotion of lysosomal 

exocytosis. For this reason, I decided to study this aspect in the sucrose loading in vitro 

model. To this purpose, I evaluated the cell surface expression of Lamp-1 by indirect 

immunofluorescence experiments in nonpermeabilizing conditions. In fact, following the 

fusion between lysosomes and the cell surface, the luminal portion of Lamp-1 is localized 

at the extracellular leaflet of the plasma membrane. As shown in Figure 29, sucrose 

loaded fibroblasts are characterized by a greater staining of Lamp-1 at the plasma 

membrane level compared to control cells. 

 

 

Figure 29 – Indirect immunofluorescence staining of Lamp-1 at the plasma membrane level 
in human fibroblasts loaded or not with sucrose. Staining was performed in nonpermeabilizing 
conditions. A, B: control cells; C, D: 14-day sucrose loaded cells. 
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To further support this evidence suggesting an increased lysosomal exocytosis in 

sucrose loaded fibroblasts, I decided to measure the activity of the main glycohydrolases 

associated with the cell plasma membrane in live cells. Among the evaluated enzymes, 

the lysosomal β-glucocerebrosidase GBA1, β-galactosidase and β-hexosaminidase can 

reach the cell surface after the fusion between lysosomes and the plasma membrane. 

As shown in Figure 30, all these enzymatic activities are increased in sucrose loaded 

cells with respect to control cells. Remarkably, the activity of GBA2, which is the non-

lysosomal β-glucosylceramidase mainly associated with the cell surface, is also 

augmented after sucrose loading. In particular, a 6.4 fold increase for GBA1 activity 

(19.54 ± 0.21 nmoles/106 cells/h vs 3.06 ± 0.14 nmoles/106 cells/h, respectively sucrose 

loaded vs control cells),  1.8 fold increase for GBA2 (0.97 ± 0.03 nmoles/106 cells/h vs 

0.54 ± 0.07 nmoles/106 cells/h), 12.6 fold for β-galactosidase (8.16 ± 1.09 nmoles/106 

cells/h vs 0.65 ± 0.13 nmoles/106 cells/h) and 18.8 fold for β-hexosaminidase (259.27 ± 

10.56 nmoles/106 cells/h vs 13.82 ± 5.13 nmoles/106 cells/h). 

 

 

Figure 30 – Sucrose loading induces increased activity of plasma membrane-associated 
glycohydrolases. Graphs represent the enzymatic activities of plasma membrane-associated β-
glucocerebrosidase GBA1, non-lysosomal β-glucosylceramidase GBA2, β-galactosidase and β-
hexosaminidase measured in live human fibroblasts loaded or not with sucrose. Average value 
of triplicate analyses is expressed as nmoles/106 cells/h. *p<0.05 vs CTRL. CTRL: control cells; 
SUCROSE: 14-day sucrose loaded cells. 

These results, obtained using artificial substrates, were validated using a natural 

substrate, such as ganglioside GM3. For this purpose, I fed fibroblasts loaded or not with 

sucrose with [3-3H(sphingosine)]GM3 as previously described. Differently, in this case 

cells were pre-treated with chloroquine, a compound able to block the lysosomal 

function. Therefore, in this condition, [3-3H(sphingosine)]GM3 can only be catabolized at 

the cell surface through the action of plasma membrane associated-hydrolases. After 4 

hours of incubation, cells were harvested and then radioactive lipids were extracted and 

analysed. I found that cells have incorporated the same amount of GM3 independently 

from the sucrose loading. The digital autoradiography reported in Figure 31 shows that 

[3-3H(sphingosine)]GM3 catabolism at the plasma membrane level is increased in 
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sucrose loaded fibroblasts with respect to control cells. In fact, the percentage of 

radioactivity associated with GM3 catabolites (lactosylceramide, glucosylceramide and 

ceramide) is augmented for all sphingolipid species in sucrose loaded cells compared to 

control ones. In particular, 1.6, 5.3, and 11.5 fold increase respectively of 

lactosylceramide, glucosylceramide and ceramide. 

 

 

Figure 31 – Sucrose loading leads to increased catabolism of radioactive ganglioside GM3 
at the plasma membrane. Cells were pre-treated with chloroquine to block lysosomal function. 
A) Digital autoradiography of HPTLC performed using the solvent system 
chloroform/methanol/water 110:40:6 (v/v/v); 1000 dpm of total lipid extracts were applied per lane. 
B) Radioactivity quantification of GM3 catabolites: lactosylceramide (LacCer), glucosylceramide 
(GlcCer) and ceramide (Cer); data are expressed as percentage of radioactivity with respect to 
the total radioactivity associated with the lipid extracts. CTRL: control cells; SUCROSE: 14-day 
sucrose loaded cells. 

Taken together these results strongly suggest that sucrose loading induces an increased 

fusion between lysosomes and the cell plasma membrane. Consequently, the 

augmented lysosomal exocytosis could alter the lipid composition at the cell surface. In 

fact, the coexistence at the plasma membrane level of lysosomal glycohydrolytic 

enzymes and their substrates leads to an ectopic production of pro-apoptotic ceramide 

at this site. To verify this hypothesis, in sucrose loaded fibroblasts I performed an 

experiment aimed to block the production of ceramide at the cell surface by inhibiting the 

plasma membrane-associated β-glucosidases GBA1 and GBA2; these enzymes 

catalyse the last step of glycosphingolipid catabolism leading to ceramide production. 

For this reason, at 12 days after sucrose loading, fibroblasts were treated for 48 hours 

with CBE and AMP-DNM, inhibitors of GBA1 and GBA2 respectively. At the end of 

incubation, both treated and untreated sucrose loaded cells were harvested and the level 

of Caspase-3 and LC3 was detected by Western Blot analysis. As shown in Figure 32, I 

found that sucrose loaded cells treated with β-glucosidases inhibitors are characterized 

by a reduction in the cleaved active form of Caspase-3 and LC3-II levels compared to 
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the corresponding untreated cells. In particular, 13.4 fold decrease of the cleaved form 

of Caspase-3 and 1.46 fold decrease of LC3-II. These results suggest that the cell 

damage caused by sucrose loading could be reverted by blocking the production of 

ceramide at the plasma membrane level. Therefore, these findings corroborate the 

hypothesis that the ectopic ceramide produced at the cell surface could be responsible 

for the activation of downstream signalling pathways leading to the onset of cell damage. 

 

 

Figure 32 – Cell treatment with CBE and AMP-DNM reduces the cleaved form of Caspase-
3 and LC3-II levels in 14-day sucrose loaded fibroblasts. A) Representative Western Blot 
images showing the cleaved form of Caspase-3 and LC3-II protein expression; GAPDH was used 
as loading control. B) Semi-quantitative graphs of normalized cleaved Caspase-3/GAPDH and 
LC3-II/GAPDH; *p<0.05 vs untreated sucrose loaded cells. CBE: inhibitor of β-
glucocerebrosidase GBA1; AMP-DNM: inhibitor of non-lysosomal β-glucosylceramidase GBA2. 
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5.2 Sphingomyelin loading in human Niemann-Pick Type A 

fibroblasts 

5.2.1 Sphingomyelin accumulation induces cell damage in human 

fibroblasts from a Niemann-Pick Type A disease patient 

Niemann-Pick Type A disease (NPA) is a sphingolipidosis belonging to the group of 

Lysosomal Storage Diseases; NPA is caused by mutations in the gene coding for the 

acid sphingomyelinase. SM storage occurs primarily in the lysosomes of neurons and 

reticuloendothelial cells, although it has been demonstrated in other cell types such as 

hepatocytes, Schwann cells, and dermal fibroblasts (Bhuvaneswaran C et al., Eur. J. 

Cell Biol., 1985; Schuchman EH et al., Best Pract. Res. Clin. Endocrinol. Metab., 2014). 

To date, the molecular mechanisms by which SM accumulation leads to cell damage 

and cell death are still unknown. To investigate the possible molecular mechanism, I 

developed an in vitro model able to accumulate an amount of SM similar to that observed 

in the more compromised NPA cells. The NPA fibroblasts used in this study have a 

residual acid sphingomyelinase activity less than 2% corresponding to a 3.5 fold increase 

in SM content compared to healthy fibroblasts (Figure 34). Since this level of SM is 

insufficient to cause cell damage, I exogenously administered 50 µM SM to NPA 

fibroblasts for different time points in order to increase its lysosomal accumulation. The 

amount of administered SM is approximately 10 fold higher with respect to its 

concentration in serum (Chigorno V et al., 2005). 

As shown in Figure 33 (panel A), 30-day SM loaded NPA fibroblasts (+SM) are 

characterized by the activation of apoptosis as demonstrated by the increase of the 

cleaved form of Caspase-3. Moreover, SM loaded cells show a strong increase of the 

autophagic marker LC3-II with respect to control cells (Figure 33, panel B and C) 

suggesting also autophagy activation. Activation of both apoptosis and autophagy was 

not observed after 14 days of SM loading (data not shown); for this reason, 30-days of 

SM loading were used for the following experiments. 
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Figure 33 – Sphingomyelin (SM) loading in Niemann-Pick Type A human fibroblasts 
induces the activation of both apoptosis and autophagy. A) Representative Western Blot 
image showing the cleaved form of Caspase-3 protein expression, GAPDH was used as loading 
control; semi-quantitative graph of normalized cleaved Caspase-3/GAPDH, *p<0.05 vs CTRL. B) 
Representative Western Blot image showing LC3-I and LC3-II protein expression, α-tubulin was 
used as loading control; semi-quantitative graph of normalized LC3-II/α-tubulin, *p<0.05 vs CTRL. 
C) Representative indirect immunofluorescence images of LC3; cells were permeabilized with 
Triton X-100 before staining. CTRL: control cells; +SM: 30-day SM loaded cells. 

I analysed SM in healthy fibroblasts and NPA fibroblasts loaded or not with SM. To this 

purpose, cell lysates were subjected to lipid extraction followed by a two-phase 

partitioning and then the organic phases were analysed by HPTLC. As shown in Figure 

34, NPA fibroblasts (NPA CTRL) are characterized by a 3.5 fold increase in SM content 

with respect to healthy fibroblasts (Healthy) (80 ± 5.3 nmoles/mg cellular proteins vs 23 

± 2.4 nmoles/mg cellular proteins). Interestingly, NPA cells loaded for 30 days with 

exogenous SM (NPA +SM) show a 22 fold increase of SM content compared to healthy 

cells (760 ± 40.2 nmoles/mg cellular proteins).  
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Figure 34 – Sphingomyelin (SM) content in healthy human fibroblasts and Niemann-Pick 
Type A (NPA) human fibroblasts loaded or not with 50 µM SM. Quantification of HPTLC 
performed using the solvent system chloroform/methanol/acetic acid/water 30:20:2:1 (v/v/v/v) 
was obtained by comparison with known amounts of SM standard applied in the same HPTLC; 
aliquots of the organic phases corresponding to 120 µg of cellular proteins were applied per lane. 
Graph shows the SM cellular content; average value of triplicate analyses is expressed as nmoles 
SM/mg cellular proteins. *p<0.05 vs Healthy; #p<0.05 vs NPA CTRL. Healthy: healthy cells; NPA 
CTRL: NPA control cells; NPA +SM: NPA 30-day SM loaded cells. 

I evaluated the cellular localization of accumulated SM by indirect immunofluorescence 

experiments using Lysenin, a SM-binding protein; as shown in Figure 35, NPA fibroblasts 

(NPA CTRL) are characterized by a higher perinuclear fluorescence intensity with 

respect to healthy cells (Healthy). Remarkably, NPA cells loaded for 30 days with 

exogenous SM (NPA +SM) show a further increase of fluorescence intensity compared 

to NPA control cells. The perinuclear localization of SM suggests that its accumulation 

mainly occurs into lysosomes.  

 

 

Figure 35 - Indirect immunofluorescence staining of sphingomyelin (SM) using the specific 
SM-binding protein Lysenin in healthy human fibroblasts and Niemann-Pick Type A (NPA) 
human fibroblasts loaded or not with 50 µM SM. Cells were permeabilized with Digitonin before 
staining. Healthy: healthy cells; NPA CTRL: NPA control cells; NPA +SM: NPA 30-day SM loaded 
cells. 
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Thanks to a collaboration with Dr. Zucca from Istituto di Tecnologie Biomediche – 

Consiglio Nazionale delle Ricerche (Milano, Italy) we performed an ultrastructural 

analysis by Transmission Electron Microscopy (TEM) on NPA fibroblasts loaded or not 

with SM.  

 

 

Figure 36 – Electron micrographs of Niemann-Pick Type A human fibroblasts loaded or 
not with 50 µM sphingomyelin (SM). (N) Nucleus; white arrows: SM accumulating organelles. 
A, B, C: control cells; D, E, F: 30-day SM loaded cells. Scale bars are shown: 2 µm for A, B, D, 
E; 1 µm for C and F. 

As shown in Figure 36 (A-C), NPA control cells are characterized by electron-dense 

intracellular organelles (white arrows) which are lysosomes storing SM. These vacuoles 

appear like dark intracellular bodies due to the reaction between the lipid SM and osmium 

tetroxide used for sample preparation. Interestingly, NPA SM loaded cells show a greater 

number of dark intracellular bodies (Figures 36D-36F) compared to control cells, 

suggesting that SM loading induces an increased lysosomal biogenesis. 

To verify this hypothesis, I performed a staining with LysoTracker® Red DND-99 to 

selectively label intracellular acidic organelles in live cells. 
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Figure 37 – LysoTracker® Red DND-99 staining of Niemann-Pick Type A human fibroblasts 
loaded or not with 50 µM sphingomyelin (SM). The staining was performed on live cells. A, B, 
C: control cells; D, E, F: 30-day SM loaded cells.  

As shown in Figure 37, NPA +SM fibroblasts are characterized by an increased 

LysoTracker® Red DND-99 staining with respect to control cells, which is evaluated as 

fluorescence intensity. This result indicates that SM loading causes an increased relative 

volume of acidic intracellular compartments. To better classify these acidic intracellular 

vesicles, I performed indirect immunofluorescence experiments in permeabilized NPA 

fibroblasts using a primary antibody against the lysosomal marker “Lysosomal 

associated membrane protein 1” (Lamp-1). As shown in Figure 38, NPA +SM cells exhibit 

a higher immunofluorescence intensity compared to control cells, indicating that SM 

loading determines an increased lysosomal biogenesis. 

 

 

Figure 38 – Indirect immunofluorescence staining of Lamp-1 in Niemann-Pick Type A 
human fibroblasts loaded or not with 50 µM sphingomyelin (SM).  Cells were permeabilized 
with Triton X-100 before staining. A, B, C: control cells; D, E, F: 30-day SM loaded cells.  
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These results were also confirmed by Western Blot analysis (Figure 39) showing a 8 fold 

increase in Lamp-1 protein expression in NPA SM loaded fibroblasts with respect to 

control cells. 

 

 

Figure 39 – Western Blot analysis of Lamp-1 in Niemann-Pick Type A human fibroblasts 
loaded or not with 50 µM sphingomyelin (SM). A) Representative Western Blot image showing 
Lamp-1 protein expression; GAPDH was used as loading control. B) Semi-quantitative graph of 
normalized Lamp-1/GAPDH; *p<0.05 vs CTRL. CTRL: control cells; +SM: 30-day SM loaded 
cells. 
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5.2.2 Sphingomyelin loading cells show an altered lipid composition 

NPA fibroblasts loaded or not with SM were subjected to lipid extraction to evaluate their 

lipid content and pattern. Total lipid extracts were subjected to a two-phase partitioning 

to separate gangliosides from the other lipids. 

 

 

Figure 40 – Phospholipid analysis in Niemann-Pick Type A human fibroblasts loaded or 
not with 50 µM sphingomyelin (SM). A) Representative HPTLC performed using the solvent 
system chloroform/methanol/acetic acid/water 30:20:2:1 (v/v/v/v); aliquots of the organic phases 
corresponding to 120 µg of cellular proteins were applied per lane. B) Densitometric quantification 
of phosphatidylcholine (PC) and phosphatidylethalamine (PE); graph shows the fold increase of 
SM loaded cells with respect to control cells; each value is the average of three independent 
experiments. *p<0.05 vs CTRL. CTRL: control cells; +SM: 30-day SM loaded cells. 

The organic phases obtained after partitioning were first analysed for the phospholipid 

pattern and content. As shown in Figure 40, phosphatidylcholine (PC) and 

phosphatidylethanolamine (PE) are increased in NPA SM loaded fibroblasts with respect 

to control cells. In particular, a 1.9 and 8.3 fold increase in PC and PE levels respectively. 

Afterwards, the organic phases were subjected to an alkaline treatment to remove 

glycerophospholipids in order to analyse neutral glycosphingolipids and cholesterol.  

As shown in Figure 41, cholesterol content increases 1.7 fold in SM loaded cells 

compared to control cells. 
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Figure 41 – Cholesterol analysis in Niemann-Pick Type A human fibroblasts loaded or not 
with 50 µM sphingomyelin (SM). A) Representative HPTLC performed using the solvent system 
hexane/ethyl acetate 3:2 (v/v); aliquots of alkali-stable organic phases corresponding to 100 µg 
of cellular proteins were applied per lane. B) Densitometric quantification of cholesterol; graph 
shows the fold increase of SM loaded cells with respect to control cells; the value is the average 
of three independent experiments. *p<0.05 vs CTRL. CTRL: control cells; +SM: 30-day SM loaded 
cells. 

The analysis of neutral glycolipids shows an increase in the main glycosphingolipids after 

SM loading. In fact, a 1.6, 2.2 and 2.1 fold increase for globotriaosylceramide (Gb3), 

lactosylceramide (LacCer) and glucosylceramide (GlcCer) respectively are observed in 

NPA SM loaded fibroblasts with respect to control cells (Figure 42).  

 

 

Figure 42 – Neutral glycosphingolipid analysis in Niemann-Pick Type A human fibroblasts 
loaded or not with 50 µM sphingomyelin (SM). A) Representative HPTLC performed using the 
solvent system chloroform/methanol/water 110:40:6 (v/v/v); aliquots of the alkali-stable organic 
phases corresponding to 500 µg of cellular proteins were applied per lane. B) Densitometric 
quantification of globotriaosylceramide (Gb3); lactosylceramide (LacCer); glucosylceramide 
(GlcCer); graph shows the fold increase of SM loaded cells with respect to control cells; each 
value is the average of three independent experiments. *p<0.05 vs CTRL. CTRL: control cells; 
+SM: 30-day SM loaded cells. 

Ceramide was analysed separately using a specific solvent and, as shown in Figure 43, 

its content is increased in sucrose loaded cells of about 1.3 fold with respect to control 

cells. 
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Figure 43 – Ceramide analysis in Niemann-Pick Type A human fibroblasts loaded or not 
with 50 µM sphingomyelin (SM). A) Representative HPTLC performed using the solvent system 
hexane/chloroform/acetone/acetic acid 20:70:20:4 (v/v/v/v); aliquots of the alkali-stable organic 
phases corresponding to 1.2 mg of cellular proteins were applied per lane. B) Densitometric 
quantification of ceramide; graph shows the fold increase of SM loaded cells with respect to 
control cells; the value is the average of three independent experiments. *p<0.05 vs CTRL. CTRL: 
control cells; +SM: 30-day SM loaded cells. 

Then, I analysed ganglioside content and pattern in the aqueous phases obtained after 

partitioning. As shown in Figure 44, ganglioside content is also increased after SM 

loading. In particular, higher levels of ganglioside GD1a (2.1 fold), GD3 (1.4 fold), GM2 

(4.1 fold) and GM3 (1.6 fold) are detectable in NPA SM loaded fibroblasts with respect 

to control cells. 

 

Figure 44 – Ganglioside analysis in Niemann-Pick Type A human fibroblasts loaded or not 
with 50 µM sphingomyelin (SM). A) Representative HPTLC performed using the solvent system 
chloroform/methanol 9:1 (v/v) followed by chloroform/methanol/0.2% aqueous CaCl2 50:42:11 
(v/v/v); aliquots of the aqueous phases corresponding to 1.5 mg of cellular proteins were applied 
per lane. B) Densitometric quantification of GD1a, GD3, GM2 and GM3; graph shows the fold 
increase of SM loaded cells with respect to control cells; each value is the average of three 
independent experiments. *p<0.05 vs CTRL. CTRL: control cells; +SM: 30-day SM loaded cells. 

These results indicate that NPA SM loaded fibroblasts show a higher content of the main 

phospholipid and sphingolipid species. This condition could be explained as the 

consequence of the impaired catabolism into lysosomes resulting in the accumulation of 

secondary undegraded molecules, such as complex lipids.   
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5.2.3 Sphingomyelin loading increases glycohydrolytic enzymes at the 

plasma membrane level 

I evaluated the localization of the Transcription Factor EB (TFEB), recently described to 

play an important role in the regulation of lysosomal function, lysosomal biogenesis, 

autophagy and lysosomal exocytosis. As shown in Figure 45, TFEB nuclear localization 

was observed in SM loaded cells at 30 days after SM loading by Western Blot analysis. 

If compared to control cells, a 1.8 fold increase of TFEB is detected in the nuclear 

extracts from NPA SM loaded fibroblasts. 

 

Figure 45 – Western Blot analysis of TFEB in Niemann-Pick Type A human fibroblasts 
loaded or not with 50 µM sphingomyelin (SM). A) Representative Western Blot image showing 
TFEB protein expression; Histone H3 was used as loading control. B) Semi-quantitative graph of 
normalized TFEB/Histone H3; *p<0.05 vs CTRL. CTRL: control cells; +SM: 30-day SM loaded 
cells. 

Besides lysosomal biogenesis, TFEB can also promote lysosomal exocytosis. For this 

reason, I evaluated the activity of the main glycohydrolases associated with the cell 

plasma membrane in live cells. Among the evaluated enzymes, the lysosomal enzymes 

β-glucocerebrosidase GBA1, β-galactosidase and β-hexosaminidase can reach the cell 

surface after fusion between lysosomes and the cell plasma membrane. As shown in 

Figure 46, all the measured activities are increased in SM loaded cells with respect to 

control cells. Interestingly, also GBA2 activity, which is the non-lysosomal β-

glucosylceramidase mainly associated with the cell surface, is augmented after SM 

loading. In particular, a 3.1 fold increase of GBA1 activity in sucrose loaded fibroblasts 

with respect to control cells (9.67 ± 0.40 nmoles/106 cells/h vs 3.17 ± 0.16 nmoles/106 

cells/h, respectively); 2.1 fold increase of GBA2 (2.46 ± 0.01 nmoles/106 cells/h vs 1.16 

± 0.08 nmoles/106 cells/h); a 1.8 fold increase in the activity of β-galactosidase (1.04 ± 

0.04 nmoles/106 cells/h vs 0.57 ± 0.13 nmoles/106 cells/h), and a 3 fold increase of β-

hexosaminidase is (25.25 ± 3.49 nmoles/106 cells/h vs 8.34 ± 2.60 nmoles/106 cells/h).  
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Figure 46 – SM loading induces increased activity of plasma membrane-associated 
glycohydrolases. Graphs represent the enzymatic activities of plasma membrane-associated β-
glucocerebrosidase GBA1, non-lysosomal β-glucosylceramidase GBA2, β-galactosidase and β-
hexosaminidase measured in live Niemann-Pick Type A human fibroblasts loaded or not with SM. 
Average value of triplicate analyses is expressed as nmoles/106 cells/h. *p<0.05 vs CTRL. CTRL: 
control cells; +SM: 30-day SM loaded cells. 

The increased activity of glycohydrolytic enzymes at the plasma membrane level could 

result in the ectopic production of pro-apoptotic ceramide at this site, as previously 

demonstrated in sucrose loaded fibroblasts. 
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5.3 Acid Sphingomyelinase Knockout mice: the possible 

pathogenic role of Transcription Factor EB 

Acid Sphingomyelinase Knockout (ASMKO) mice (Horinouchi K et al., 1995) represent 

the animal model of the human Niemann-Pick Type A disease (NPA). ASMKO mouse 

brains showed a 6-fold SM increase compared to wild type (WT) mouse brains 

(Scandroglio et al., 2008; Galvan C et al., 2008). Interestingly, ASMKO mouse brains are 

also characterized by 12 fold increase of the two monosialogangliosides GM2 and GM3 

(Scandroglio et al., 2008).  

I decided to further study ASMKO mouse brains using ASMKO mice at 3 months old 

age, age at which neurological symptoms occurred. Since ASKMO mouse brains 

accumulate SM, I evaluated the subcellular localization of the Transcription Factor EB 

(TFEB). As shown in Figure 47, a 3.2 fold increase of TFEB expression is detected in 

the nuclear extracts from ASMKO mouse brains compared to WT ones. 

 

 

Figure 47 – TFEB nuclear localization in Acid Sphingomyelinase Knockout (ASMKO) 
mouse brain. A) Representative Western Blot image showing TFEB protein expression in 
nuclear extracts obtained from brain homogenates; Histone H3 was used as loading control. B) 
Semi-quantitative graph of normalized TFEB/Histone H3; *p<0.05 vs WT. WT: Wild Type mouse 
brain; ASMKO: ASMKO mouse brain. 

I then evaluated the expression of the lysosomal marker Lamp-1 in ASMKO mouse 

brains. As shown in Figure 48, ASMKO mouse brains are characterized by a 2.6 fold 

increase of Lamp-1 protein expression compared to WT ones. This result suggests that 

in ASMKO mouse brain acid sphingomyelinase deficiency and the consequent SM 

accumulation determine an increased lysosomal biogenesis which is mediated by TFEB. 
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Figure 48 – Increased lysosomal biogenesis in Acid Sphingomyelinase Knockout (ASMKO) 
mouse brain. A) Representative Western Blot image showing Lamp-1 protein expression in brain 
homogenates; GAPDH was used as loading control. B) Semi-quantitative graph of normalized 
Lamp-1/GAPDH; *p<0.05 vs WT. WT: Wild Type mouse brain; ASMKO: ASMKO mouse brain. 

I measured the activity of the main glycohydrolases in the homogenates from brains of 

ASMKO mice.  

 

 

Figure 49 – Increase of glycohydrolase activities in Acid Sphingomyelinase Knockout 
(ASMKO) mouse brain. Graphs represent the enzymatic activities of β-glucocerebrosidase 
GBA1, β-galactosidase and β-hexosaminidase in the brain homegenates. Average value of 
triplicate analyses is expressed as nmoles/mg proteins/h. *p<0.005 vs WT. WT: Wild Type mouse 
brain; ASMKO: ASMKO mouse brain. 

As shown in Figure 49, all the measured activities are increased in ASMKO mouse brain 

homogenates with respect to WT mouse brain homogenates. In particular, a 3.6 fold 

increase of GBA1 activity (16.20 ± 1.62 nmoles/mg proteins/h vs 4.48 ± 0.45 nmoles/mg 

proteins/h, ASMKO vs WT respectively); a 1.4 fold increase of β-galactosidase activity 

(31.87 ± 3.19 nmoles/mg proteins/h vs 22.23 ± 2.22 nmoles/mg proteins/h); a 1.9 fold 

increase of β-hexosaminidase (930.52 ± 93.10 nmoles/mg proteins/h vs 483.85 ± 4.84 

nmoles/mg proteins/h).  
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To investigate the onset of tissue damage in ASMKO mouse brain, I analysed the protein 

expression of Caspase-3, main effector of both intrinsic and extrinsic apoptotic pathways, 

and LC3-II, well-known autophagic marker. As shown in Figure 50, I found an increase 

in both cleaved form of Caspase-3 and LC3-II levels in ASMKO mouse brains with 

respect to WT ones. In particular, a 5.3 and 6.6 fold increase of the cleaved form of 

Caspase-3 and LC3-II respectively are observed. 

 

 

Figure 50 – Activation of both apoptosis and autophagy in Acid Sphingomyelinase 
Knockout (ASMKO) mouse brain. A) Representative Western Blot image showing the cleaved 
form of Caspase-3 protein expression; α-tubulin was used as loading control; semi-quantitative 
graph of normalized Caspase-3 cleaved form/α-tubulin. B) Representative Western Blot image 
showing LC3-I and LC3-II protein expression; α-tubulin was used as loading control; semi-
quantitative graph of normalized LC3-II/α-tubulin. *p<0.05 vs WT. WT: Wild Type mouse brain; 
ASMKO: ASMKO mouse brain.
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Lysosomal accumulation of undegraded molecules is a common feature of several 

pathologies, such as Lysosomal Storage Diseases (LSDs) (Platt FM et al., 2012) and 

neurodegenerative diseases (i.e. Alzheimer’s disease and Parkinson’s disease) (Zhang 

L et al., 2009) as well as aging process (Carmona-Gutierrez D et al., 2016). In these 

pathological conditions, lysosomal storage and dysfunction are related to the onset of 

cell damage and cell death. Although numerous studies have addressed this 

relationship, no clear evidence of the molecular mechanisms linking these events has 

been described. 

One of the main limitations in the study of LSDs, is the lack of suitable cellular models. 

In fact, despite the huge availability of fibroblasts derived from patients affected by 

diverse LSDs, these cells may not always represent an appropriate disease model. 

Usually, they show just a modest level of lysosomal storage with no effect on cell 

damage. Both these features are essential to address the objective of my PhD project 

aimed to investigate the relationship between lysosomal storage and cell injury.  

Previous works have reported that in human healthy fibroblasts, the administration of 88 

mM sucrose for 14 days results in a lysosomal storage phenotype. In fact, due to the 

absence of invertase, fibroblasts are not able to catabolize sucrose that is accumulated 

in lysosomes without inducing osmotic stress (Kato T et al., 1981; Karageorgos LE et al., 

1997).  

Interestingly, I found that sucrose loaded cells are characterized by a significant 

slowdown of cell growth and by the activation of apoptosis, as demonstrated by the 

presence of the cleaved form of Caspase-3, the main effector of both extrinsic and 

intrinsic apoptotic pathways. In addition, sucrose loading also induces an aberrant 

activation of the macroautophagic pathway.  

In this scenario, sucrose loaded fibroblasts represent an excellent artificial model to 

investigate the molecular mechanisms linking lysosomal impairment with the onset of 

cell damage.  

First, I found that the cellular response to sucrose-induced lysosomal accumulation 

involves an alteration of the endo-lysosomal compartment. Interestingly, by RNA-

sequencing analysis I found that 37 genes encoding for lysosomal proteins are 

upregulated after sucrose loading.  

Recently, several lines of evidence point out the crucial role of the Transcription Factor 

EB (TFEB) in the regulation of lysosomal function (Sardiello M et al. 2009). TFEB is 

normally localized to the cytosol but under stress conditions, such as lack of nutrients or 

lysosomal impairment, it moves into the nucleus leading to an augmented expression of 

lysosomal genes as well as to an increased lysosomal biogenesis. 
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As expected, sucrose loaded fibroblasts show a massive nuclear translocation of TFEB 

compared to untreated cells. However, only 8 of the 37 upregulated genes in response 

to sucrose loading are TFEB-regulated genes (ARSB, CTSA, GBA, GNS, HEXA, 

MCOLN1, NEU1, TPP1). This finding let me to speculate that transcription factors other 

than TFEB could also contribute to the control of cellular processes triggered by sucrose 

storage.  

Among the upregulated genes, 6 genes encoding for enzymes involved in sphingolipid 

catabolism, such as ASAH1, GBA, HEXA, HEXB, NEU1 and SMPD1 have also been 

found. However, I demonstrated in live sucrose loaded cells that these enzymes are not 

able to work on their natural substrates within the lysosomes. This impaired lipid 

catabolism, as demonstrated by lipid analyses, induces a strong increase in the cell 

content of phospholipids, cholesterol, neutral glycosphingolipids and gangliosides. As 

known, secondary lipid storage is a common feature of many LSDs (Walkley SU and 

Vanier MT et al., 2009). For example, an increased content of gangliosides GM2 and 

GM3 is associated with neuropathology in multiple LSDs such as Niemann-Pick disease 

and mucopolysaccharidoses. The data obtained clearly indicated that the augmented 

lipid content is due to the loss of lysosomal catabolic function. Furthermore, I can exclude 

the possible contribute of the biosynthetic pathways since I did not find any changes in 

the expression of the enzymes involved in sphingolipid biosynthesis (RNA-sequencing 

analysis).   

One of the proposed mechanisms that LSDs cells could use to reduce the storage of 

undegraded compounds into lysosomes is represented by lysosomal exocytosis (Samie 

MA and Xu H, 2014). This process consists in the fusion between lysosomes and the 

cell plasma membrane resulting in the release of undegraded materials in the 

extracellular milieu. Recently, TFEB has been demonstrated to play an important role in 

the regulation of lysosomal exocytosis. For this reason, TFEB has been suggested as a 

potential therapeutic target for LSDs (Medina DL et al. 2011). Considering this, I found 

that sucrose loading leads to an increased fusion between lysosomes and the cell 

plasma membrane. However, the release of toxic and harmful undegraded compounds 

in the extracellular milieu, which can be considered apparently as a favourable event, 

could compromise the integrity of the same cells as well as of neighbouring ones. 

Notably, while proteins can be degraded by proteases present in the extracellular 

environment, the release of vesicles enriched in uncatabolized lipids can lead to the 

alteration of the lipid composition of the plasma membranes. In fact, the shedding of 

complex lipids can alter the lipid pattern and content of the surrounding cell membranes 

(Chigorno V et al., 2006).  
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Another important consequence of lysosomal exocytosis is the strong increase of 

sphingolipid-hydrolases at the cell surface. As known, these enzymes are able to 

catabolize sphingolipids directly at the plasma membrane (Aureli M et al. 2009; Sonnino 

S et al., 2010; Aureli et al., 2011). Therefore, in these conditions,sphingolipid catabolism 

can be activated at the cell surface leading to an augmented production of ceramide. 

Over the past three decades, ceramide is considered a lipid second messenger involved 

in the onset of cell death (Obeid LM et al., 1993; Mullen TD and Obeid LM, 2012).  

Despite the pioneering studies indicated that ceramide derived from sphingomyelin 

hydrolysis is pro-apoptotic (Obeid LM et al., 1993), some more recent findings suggest 

that also ceramide derived from glycosphingolipid catabolism could have a role in the 

activation of the apoptotic pathway. Valaperta et al. demonstrated that in human 

fibroblasts, the overexpression of the specific plasma membrane sialidase Neu3 

hydrolyses ganglioside GM3 leading to ceramide production and activation of apoptosis 

(Valaperta R et al., 2006). The ectopic production of pro-apoptotic ceramide due to the 

activation of glycosphingolipid-hydrolases at the cell surface was also found in a breast 

cancer cell line treated with ionizing radiations (Aureli M et al., 2012). Despite these lines 

of evidence, the downstream pathways triggered by ceramide induced-cell death are still 

unknown. It has been suggested that ceramide accumulation within cell plasma 

membranes determines its spontaneous association to form small ceramide-enriched 

membrane microdomains (Zhang Y et al., 2009). These microdomains have the 

tendency to fuse together forming ceramide-enriched macrodomains also called 

ceramide-enriched platforms. These structures seem to play a role in protein sorting and 

signal transduction. For example, ceramide-mediated clustering of CD95 receptors 

(Schütze S et al., 2008) has been described to promote CD95 internalization thus 

activating the extrinsic apoptosis pathway. In this view, it can be argued that in sucrose 

loaded fibroblasts, the increased production of plasma membrane ceramide from 

glycosphingolipids may trigger a similar pathway.   

To confirm the putative role of plasma membrane-associated ceramide in the onset of 

apoptosis, I administered specific β-glucosidases inhibitors to sucrose loaded cells. 

These enzymes are responsible for the last hydrolytic step of glycosphingolipid 

catabolism, yielding ceramide from glucosylceramide. As previously mentioned, 

lysosomes of these cells are not able to work properly, therefore the catabolism of 

complex glycosphingolipids can only occur at the cell surface. Interestingly, I found that 

the treatment with β-glucosidases inhibitors leads to a strong reduction of the cleaved 

form of Caspase-3 suggesting a possible reversion of the apoptotic phenotype. This 

result indicates that the ectopic ceramide production at the plasma membrane level could 

promote the onset of cell damage in sucrose loading fibroblasts. Remarkably, in these 
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experimental conditions, I also found a reduction of autophagy. Autophagy is an essential 

process in maintaining normal cell homeostasis. Nevertheless, recent evidence indicate 

that dysregulation of autophagy could contribute to cell damage (Ryter SW et al., 2013). 

Besides to promote lysosomal function, TFEB is also known as a master regulator of 

autophagy (Settembre C et al., 2011). In fact, I found that sucrose-induced TFEB nuclear 

translocation is associated with a strong activation of autophagy, as demonstrated by 

the increased level of the autophagic marker LC3-II. Interestingly, when I treated sucrose 

loaded cells with β-glucosidases inhibitors in conditions blocking ceramide production at 

the cell surface, I found a slight but significant reduction of LC3-II protein expression. 

This result also points out a possible contribution of ectopic plasma membrane ceramide 

in the promotion of a potentially harmful autophagic process, even if the precise role for 

ceramide as autophagy inducer has not fully unveiled. (Pattingre S et al., 2009).  

Taken together, the results obtained indicate that sucrose loading represents a very 

powerful strategy to better understand the involvement of several cellular pathways in 

the onset of cell damage consequent to lysosomal accumulation and impairment. On the 

other hand, it may have some potential limitations since is an artificial model of lysosomal 

impairment. For this reason, I developed another in vitro model able to mimic the 

phenotypic features of Niemann-Pick Type A disease (NPA), one of the most common 

and widely studied LSDs. 

NPA is a neurodegenerative sphingolipidosis characterized by deficit of the lysosomal 

enzyme acid sphingomyelinase (ASMase) resulting in sphingomyelin (SM) accumulation 

(Schuchman EH and Wasserstein MP, 2015). Human fibroblasts derived from NPA 

patients show a very low residual ASMase activity (<2% vs healthy cells); however, it is 

sufficient to prevent the accumulation of huge amounts of undegraded SM into the cells. 

For this reason, NPA fibroblasts cannot be considered a good model to study this 

pathology; therefore, I administered exogenous SM (50 µM) to these cells for 30 days. 

This condition allowed to obtain a significant accumulation of SM, like that occurring in 

NPA damaged tissues (Walkley SU and Vanier MT, 2009). It is noteworthy that in NPA 

fibroblasts the lysosomal impairment caused by SM accumulation activates the same 

molecular pathways described in healthy fibroblasts subjected to sucrose loading. These 

findings further support the hypothesis that cell damage is triggered by lysosomal 

accumulation and dysfunction. 

Collectively, the results obtained with these two in vitro models of lysosomal impairment 

are very promising to better clarify the molecular mechanisms underlying the 

pathogenesis of multiple diseases such as LSDs. However, cellular models have an 

intrinsic limit represented by the lack of complexity characteristic of injured tissues. For 

this reason, with the purpose to translate my findings to a more complex system, I 
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performed preliminary studies on brain tissue homogenates of Acid Sphingomyelinase 

Knockout (ASMKO) mice (Horinouchi K et al., 1995). ASMKO mice are the most studied 

and extensively characterized animal model of NPA. I focused my attention on brains 

because central nervous system is the most seriously damaged tissue in ASMKO mice, 

which show a neurodegenerative phenotype starting from two months of age. Notably, 

ASMKO mouse brains are characterized not only by SM accumulation but also by 

storage of other lipids such as gangliosides GM2 and GM3 (Ledesma MD et al., 2011). 

Interestingly, in ASMKO mice brain homogenates I found: i) the nuclear translocation of 

TFEB; ii) an increased lysosomal biogenesis; iii) augmented glycohydrolytic activities 

and iv) the onset of cell damage. Of course, the analysis performed on total tissue 

homogenates provides only a general scenario on what really happens into damaged 

brains. In fact, in brain homogenates I cannot distinguish the different cellular populations 

such as neuronal, glial and endothelial cells. As known, neurons are the most affected 

cell type in neurodegenerative LSDs, including sphingolipidoses. In fact, neuronal cells 

are post-mitotic cells particularly enriched in sphingolipids; for these reasons, neurons 

are the best candidates for the establishment of my proposed hypothesis of the 

etiopathogenis of LSDs. Therefore, in brain homogenates I can underestimate the real 

damage occurring in neuronal cells. Moreover, I can speculate that the increased 

lysosomal exocytosis promoted by TFEB could lead to the release of toxic undegraded 

compounds in the extracellular matrix. In a tissue context, the release of uncatabolized 

molecules can damage other cell types such as glial cells, causing for example the onset 

of neuroinflammation which can contribute to neuronal cell death (Ransohoff RM, 2016).  

In conclusion, as schematized in Figure 51, the data obtained suggest that the primary 

accumulation of an undegraded substrate leads to a more general impairment of 

lysosomes resulting in the storage of other undigested materials. The lysosomal 

impairment causes the nuclear translocation of TFEB, which in turn determines an 

increased lysosomal biogenesis as well as an enhanced synthesis of lysosomal proteins, 

including catabolic enzymes. Furthermore, new lysosomes also accumulated 

undegraded compounds; therefore, they are not able to exert their catabolic activity. In 

addition, the enhanced fusion between lysosomes and the cell plasma membrane leads 

to: i) the release of toxic undegraded molecules in the extracellular environment, 

including complex lipids that can alter the plasma membrane lipid composition by a 

shedding mechanism; ii) the increase of plasma membrane sphingolipid-hydrolases. The 

coexistence of these enzymes and their substrates results in the ectopic production of 

pro-apoptotic ceramide at the cell surface leading to the onset of cell damage.  
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Thus, the findings of my research represent an initial excellent step to deeply investigate 

how the ectopic sphingolipid hydrolysis could mediate the onset of cell damage 

consequent to lysosomal storage. 

 

 

Figure 51 - Schematic representation of the suggested molecular mechanism linking 
lysosomal impairment and the alteration of plasma membrane sphingolipid composition 
to the cell damage.
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