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Abstract

In this thesis I study the non-relativistic limit (¢ — oo) of the nonlinear Klein-Gordon (NLKG)
equation on a manifold M, namely

c%u“ —Au+Fu+ANuVu=0, teRzeM (0.0.1)
where A = +1, [ > 2. The aim of the present work is to discuss the convergence of solutions of the NLKG
to solutions of a suitable nonlinear Schrédinger (NLS) equation, and to study whether such convergence
may hold for large (namely, of size O(c") with r > 1) timescales.

In particular I obtain the following results: (1) when M is a general manifold, I show that the solution
of NLS describes well the solution of the original equation up to times of order O(1); (2) when M = R?,
d > 3, I consider higher order approximations of NLKG and prove that small radiation solutions of the
approximating equation describe well solutions of NLKG up to times of order O(c*") for any r > 1; (3)
when M = [0,7] C R I consider the NLKG equation with a convolution potential and prove existence
for long times of solutions in H* uniformly in ¢, which however has to belong to a set of large measure.

I also get some new dispersive estimates for a Klein Gordon type equation with a potential.
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Riassunto della Tesi

In questa tesi si studia il limite non-relativistico (¢ — oco) dell’equazione di Klein-Gordon non lineare
(NLKG) su una varieta M,

c%utt —Au+cu+ )\|u\2(l_1)u =0, teR,zeM (0.0.2)
dove A = £1, [ > 2. L’obiettivo del presente lavoro é di discutere la convergenza delle soluzioni della
NLKG alle soluzioni di un’opportuna equazione di Schrédinger non lineare (NLS), e di studiare quando
questa convergenza possa valere su scale di tempo lunghe (pit precisamente, dell’ordine di O(c"), r > 1).

In particolare si possono ottenere i seguenti risultati: (1) quando M ¢ una generica varietd, si puod
mostrare che le soluzioni della NLS approssimano bene le soluzioni dell’equazione originale, fino a tempi
dell’ordine di O(1); (2) quando M = R¢, d > 3, considerando approssimazioni ad ordini pit alti di NLKG
si puo mostrare che le soluzioni di radiazioni piccole dell’equazione approssimata approssimano soluzioni
di NLKG fino a tempi dell’ordine di O(c®") per ogni r > 1; (3) quando M = [0, 7] C R, considerando la
NLKG con un potenziale di convoluzione, si pu6 dimostrare 'esistenza per tempi lunghi delle soluzioni
in H® uniformemente in ¢, che deve pero appartenere ad un insieme di misura grande.

Si sono inoltre dimostrate delle stime dispersive per un’equazione di tipo Klein-Gordon con poten-
ziale.



Chapter 1

Introduction

In this thesis we consider the nonrelativistic limit (namely, the limit in which the speed of light
¢ — o0) of the nonlinear Klein-Gordon (NLKG) equation. Formal computations going back to
the first half of the last century suggest that, up to corrections of order O(c=?2), the system
should be described by the nonlinear Schrédinger (NLS) equation. Subsequent mathematical
results have shown that the NLS describes the dynamics over time scales of order O(1).

In the present thesis we obtain some results for the dynamics of NLKG over longer time
scales. Actually we get two kinds of results: (i) results for NLKG uniform as ¢ — oo and (ii)
approximation results showing that solutions of NLKG can be approximated by solutions of
suitable higher order NLS equations.

The theory is completely different in the case where the equation lives on R? or in a compact
manifold. We are now going to present the results splitting these two cases.

1.0.1 The NLKG equation on R?

The NLKG equation describes the motion of a spinless particle with mass m > 0. Consider first
the real NLKG

h2

2
me
2mc?

Ut A=Yy =0, (1.0.1)

2
Ut — iAU +
2m

where ¢ > 0 is the speed of light, & > 0 is the Planck constant, A € R, [ > 2, ¢ > 0.
In the following we will take m = 1, A = 1. As anticipated above, we are interested in the
behaviour of solutions as ¢ — oco.

First it is convenient to reduce equation to a first order system, by making the following
symplectic change variables

where
(V)e = (¢ = A)'/2, (1.0.2)
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which reduces ([1.0.1)) to the form

X[ e P/ e 2 N
e () () "wra] . wos
which is hamiltonian with Hamiltonian function given by
_ _ A e N\ yptp]”
H(w,w>=<w,c<V>c¢>+i/ <<V>c) E dz. (1.0.4)

To state our first result, we introduce for any k¥ € R and for any 1 < p < oo the following
relativistic Sobolev spaces

WIP(RY) = {u € LP: lullyrw == |c® <V>fu”m < +OO}7 (1.0.5)
-

HF(R3) uelL?: [ull s = Hcflc (V>lc"u||L2 < 400}, (1.0.6)

and remark that the energy space is %1/ . We also remark that for finite ¢ > 0 such spaces
coincide with the standard Sobolev spaces, while for ¢ = co they are equivalent to the Lebesgue
spaces LP.

We first begin with a global existence result for the NLKG (1.0.3)) in the cubic case, | = 2,
for small initial data.

Theorem 1.0.1. Consider Eq. (1.0.3) with | = 2.
There exists €, > 0 such that, if the norm of the initial datum gy fulfills

[P0l 12 < €, (1.0.7)
then the corresponding solution of (1.0.3)) exzists globally in time
||w(t)HL?09fcl/2 j ||1/}0H9f01/27 (108)

All the constants do not depend on c.

Remark 1.0.2. For finite c this is the standard result for small amplitude solution, while for
¢ = oo it becomes the standard result for the NLS. Thus Theorem[1.0.]) interpolates between these
apparently completely different situations.

Remark 1.0.3. We also remark that the lack of a priori estimates for the solutions of NLKG
in the limit ¢ — oo was the main obstruction in order to obtain global existence results uniform
in ¢ in standard Sobolev spaces.

We are now interested in discussing the approximation of the solutions of NLKG with NLS-
type equations. Before giving the result we describe the general strategy we use to get them.

We remark that Eq. is Hamiltonian with Hamiltonian function . If we divide
the Hamiltonian by a factor ¢? (which corresponds to a rescaling of time) and we expand in
powers of ¢~2 it takes the form

(¥, 9) + C—EPC(w,&) (1.0.9)

with a suitable funtion P.. One can notice that this Hamiltonian is a perturbation of hg := (1, ),
which is the generator of the standard Gauge transform, and which in particular admits a flow



that is periodic in time.

Thus the idea is to exploit canonical perturbation theory in order to conjugate such a Hamilto-
nian system to a system in normal form, up to remainders of order O(c=2"), for any given r > 1.
The problem is that the perturbation P, has a vector field which is small only as an operator ex-
tracting derivatives. One can Taylor expand P, and its vector field, but the number of derivatives
extracted at each order increases. This is typical in singular perturbation problems. Problems
of this kind have already been studied with canonical perturbation theory, but the price to pay
to get a normal form is that the remainder of the perturbation turns out to be an operator that
extracts a large number of derivatives. The standard way to exploit such a ”singular” normal
form is to use it just to construct some approximate solution of the original system, and then
to apply Gronwall Lemma in order to estimate the difference with a true solution with the same
initial datum.

This strategy works also here, but it only leads to a control of the solutions over times of
order O(c?), that, when scaled back to the physical time, turns out to be of order O(1).

The idea we use here in order to improve the time scale of the result is that of substituting
Gronwall Lemma with a more sophisticated tool, namely dispersive estimates and the retarded
Strichartz estimate. This can be done each time one can prove a dispersive or a Strichartz
estimate (in the spaces #.%* or W) for the linearization of equation on the approximate
solution uniformly in c.

It turns out that this is often a quite hard task. Actually we were able to accomplish it only
for radiation solutions. For solutions of other kind we have some preliminary results that could
have some interest in themselves, and that will be described later on.

In order to state the approximation result for radiation solutions, we consider the approximate
equation given by the Hamilton equations of the normal form truncated at order O(c~2"), and
let v, be a solution of such a normalized equation.

Of course, in order to produce some solution of the normal form equation one has to know
the equation itself. In Sect. we compute it at order 4. It is given by:

1 3
—ithy = c*1p — §A7f1 + 1)\|1/’|21/’
1 |51 3 - - 1
+ g [N+ 1A QI AY + AV + A([Y ")) — S A% (1.0.10)

We remark that it is a singular perturbation of a Gauge-transformed NLS equation. If one,
after a gauge transformation, only considers the first order terms, one has the NLS, for which
radiation solution exist (for example in the defocusing case all solutions are of radiation type).
For higher order NLS nothing is known. There are some preliminary results by Kim, Arnold
and Yao (see [48]) and by Carles, Lucha and Moulay (see [23]), who proved dispersive estimates
and local-in-time Strichartz estimates for solutions of the linearized normal form equation (which
actually do not involve any normal form transformation)

. " a; ;
—ithy = Y- CQTJ_DAW;, (1.0.11)
j=1

. |
0= for any j > 1.

Before stating the result, we introduce the following set of admissible exponents:

where a; =

A, :={(p,q) : (1/p,1/q) lies in the closed quadrilateral ABCD, }
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where

11 1 1 2r—1 1 1
A—(2,2>, B—<17T7>, C—(].,O), D—(T/,0>, Tr = ’["—1’ ;+E—1

T

Now, the aforementioned authors proved the following dispersive estimates

Proposition 1.0.4. Let r > 1, and denote by 1, (t) the solution of the linearized normal form
equation of order v (1.0.11). Then we have the following local-in-time dispersive estimate

e (0l e asy = 7 IC [ (0) | sy - 0 <[] < 27D, (1.012)
Furthermore, (¢, (t)| .2 = ||¢¥r(0)|| ;2 for any t € R.
Therefore for any (p,q) € A\ {(2,2), (1,7:), (77, 00)}

3

16r (Ol oy = D GED 7 F G 0 0 o gey, 0< Il < A0 (1.0.13)
We have the following theorems

Theorem 1.0.5. Let r > 1, and fiz k1 > 1. Let 1 < p < 2 be such that (p,3) € A\ {(1,7-)}-
Then 3 ko = ko(r) > 0 such that for any k > k1 the following holds: consider the solution ,.(t)
of the nonlinear normal form equation with initial datum 1. € W*TFor  Assume also that

¥, (t) satisfies the decay estimate (1.0.13) for Eq. (1.0.11).

Then there exists o™ := a*(I,7,p) > 0 and there exists ¢* := ¢*(r,k,p) > 1, such that for any
o > o and for any c > c*, if Yo satisfies

1¥rollwetkor =™, (1.0.14)

then

1
sup [[W(t) = () llgr = =, T =07, (1.0.15)
te[0,T] * c

where 1(t) is the solution of (1.0.3)) with initial datum 1, (0).

Theorem 1.0.6. Let r > 1, and fiz k1 > 1. Let 1 < p < 2 be such that (p,3) € A\ {(1,7)},
and let 1 < p; < 2 be such that (p1,6(l — 1)) € A,. Then 3 kg = ko(r) > 0 such that for any
k > ky the following holds: consider the solution 1,.(t) of the nonlinear normal form equation
with initial datum v, € WF+tkor N LP1. Assume also that ,.(t) satisfies the decay estimate

[T.0-13) for Eq. (T.0.11).

Then there exist o* := a*(l,r,p) > 0 and of = af(l,r,p1) > 0 and there ewists ¢* =
c*(r,k,p) > 1, such that for any o > max(a*, aj) and for any c > ¢*, if ¥, o satisfies
[¥r,0 wETkoPALP <

then

1 —
sup [ (t) = ¢r(t)l|lgr <, T =207,
tc[0,T] c

where ¥(t) is the solution of (1.0.3)) with initial datum 1), .



The nonrelativistic limit for the Klein-Gordon equation on R¢ has been extensively studied
over more then 30 years, and essentially all the known results only show convergence of the solu-
tions of NLKG to the solutions of the approximate equation for times of order O(1). The typical
statement ensures convergence locally uniformly in time. We mention a first series of results (see
[85], [61] and [54]) in which it was shown that, if the initial data are in a certain smoothness
class, then the solutions converge in a weaker topology to the solutions of the approximating
equation. These are informally called “results with loss of smoothness”. Although we can prove
a longer time convergence, our results also fill in this group.

Some other results, essentially due to Machihara, Masmoudi, Nakanishi and Ozawa, ensure
convergence without loss of regularity in the energy space, again over time scales of order O(1)
(see [53], [67] and [63]).

Concerning radiation solutions there is a remarkable result (see [62]) by Nakanishi, who
considered the complex NLKG in the defocusing case, in which it is known that all solutions
scatter (and thus the scattering operator exists), and proved that the scattering operator of the
NLKG equation converges to the scattering operator of the NLS.

We remark that this result is not contained in our one and does not contain it. Indeed, the
scattering operator involves the backward flow of the free equation, that for the considered class
of solutions has some contracting properties.

We also mention the recent result proved by Lu and Zhang in [53], which concerns the NLKG
with a quadratic nonlinearity. Here the problem is that the typical scale over which the standard
approach allows to control the dynamics is O(c™!), while the dynamics of the approximating
equation takes place over time scales of order O(1). In that work the authors are able to use a
normal form transformation (in a spirit quite different from ours) in order to extend the time of
validity of the approximation over the O(1) time scale. We did not try to reproduce or extend
that result.

We remark that there are ome other well known solutions of NLS which would be interesting
to study; indeed, it is well known that in the case of mixed-type nonlinearity

ihy = =D — ([0 — [Y|)e,

such an equation admits linearly stable solitary wave solutions; it can also be proved that the
standing waves of NLS can be modified in order to obtain standing wave solutions of the normal
form of order r, for any r. It would be of clear interest to prove that true solutions starting close
to such standing wave remain close to them for long times (remark that the NLKG does not
admit stable standing wave solutions). In order to get this result one should prove a Strichartz
estimate for NLKG close to the approximate solution and uniformly in ¢. For the moment we
did not succeeed in obtaining such a result.

The thesis contains a preliminary result which can have some independent interest: it is a
dispersive estimate for the linear equation

—ihy = H(@)Y = c(V)eth + V(z) 9, (1.0.16)
¥(0) = o,
where V € C(R3,R) satisfies
V(@) +|VV(2)| < (@), =R, (1.0.17)

for some 8 > 0.
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Theorem 1.0.7. Let us assume that V satisfies (1.0.17) for some 8 > 9, and that the point c?
is neither an eigenvalue nor a resonance for the operator H(xz). Then for any o > 9/2, for any
Yo € L2 and for ¢ > 1 sufficiently large one has

[ P(H)ioll 2, = ()7 ollzz, 1] — oo

Before closing the subsection, we add a few technical comments. The first one is that, in
order to exploit Strichartz estimates after the normal form, we need to develop normal form in
the framework of the spaces W*P?, while known results in Galerkin averaging theory only allow
to deal with the spaces H*. This is due to the fact that the Fourier analysis is used in order
to approximate the derivatives operators with bounded operators. Thus the first technical step
needed in order to be able to exploit dispersion is to reformulate Galerkin averaging theory in
terms of dyadic decompositions. This is done in Theorem [3.1.3

At this point we also mention that actually the Galerkin averaging result proved in the thesis
is of abstract form and has a further new application: it allows to justify the approximation of
the solutions of NLKG by solutions of the NLS over time scales of order O(1), on any manifold
admitting a Littlewood-Paley decomposition (such as Riemannian compact manifolds without
borders, or R?; see the introduction of [19] for the construction of Littlewood-Paley decomposition
on manifolds).

Proposition 1.0.8. Let M be a manifold which admits a Littlewood-Paley decomposition, and

consider Eq. (1.0.1) on M.

Fixr>1, R>0,k >1,1<p< +4o0o. Then 3 kg = ko(r) > 0 with the following properties:
for any k > ky there exists ci k. p,r > 1 such that for any c > ¢k p R, if we assume that

H'(/JO”Ichko,p <R

and that there exists T = T, , > 0 such that the solution of the equation in normal form up to
order r satisfies

16(®)lkk0p < 2R, for 0<t<T,
then
(t) = r(t)lxp < Crpc ", for 0 <t <T. (1.0.18)

A similar result has been obtained for the case M = T¢ by Faou and Schratz, who aimed
to construct numerical schemes which are robust in the nonrelativistic limit (see [35]; we refer
also to [12], [13] and to [I4] for some numerical analysis of the nonrelativistic limit of the NLKG
equation).

Actually the present thesis is part of a research program in qualitative theory of Hamiltonian
PDEs in which canonical perturbation theory is used together with the theory of dispersive equa-
tions in order to understand the dynamics of some system. In this context, the nonrelativistic
limit of the NLKG is a relevant example of a singular limit.

The issue of nonrelativistic limit has been studied also in the more general Maxwell-Klein-
Gordon system ([I5], [58]), in the Klein-Gordon-Zakharov system ([59], [60]), in the Hartree
equation ([25]) and in the pseudo-relativistic NLS ([26]). However, all these results proved the



convergence of the solutions of the limiting system in the energy space ([25] studied also the
convergence in H*), locally uniformly in time; no information could be obtained about the con-
vergence of solutions for larger (in the case of NLKG, that would mean c-dependent) timescales.

Other examples of singular perturbations that have been studied either with canonical per-
turbation theory or with other techniques (typically multiscale analysis) are the problem of the
continuous approximation of lattice dynamics (see e.g. [I1], [76] and [75]) and the semiclassical
analysis of Schrodinger operators (see e.g. [69], [40], [2]). In the framework of lattice dynamics,
the time scale covered by all known results is that typical of averaging theorems, which corre-
sponds to our O(1) time scale. We hope that the methods developed in the present thesis could
allow to extend the time of validity of those results.

1.0.2 The case of x € [0, 7]
We consider here (1.0.1) on M = [0, 7] C R with a convolution potential, namely

1
2 Ut~ Uag + Au +Vru=f(u), (1.0.19)

with ¢ > 1, 2 € T, f € C*°(R) a real-valued function, with Dirichlet boundary condition. The
potential has the form

V(z) = Z vj cos(jz);

j>1
having fixed a positive s, for any R > 0 we consider the probability space
/ —1,.s 11
V= VS,R: (Uj)j21 Uy = R J°v; € —575 s

and we endow the space (1,400) X V 3 (¢, (v;);) with the product probability measure.
By introducing the following change of coordinates,

" 1 (2 — A+ ‘7)1/2 12 . c 12
= — —_— u—1 —_—=— u
V2 c (2 — A+ V)1/2 e

where V is the operator that maps u to V x u, the Hamiltonian of (1.0.19) now takes the form

H(¢7/(Z) = Ho(wﬂﬁ) + N(Q/J?’@[;),

where

Ho(, ) = (4, elc? = A+ V)2p)

1/2
_ A c _
N, ¢) = 27/f ((02—A4—1~/)1/2> (Y +) | da.

By generalizing the techniques developed in [10] we are able to prove the following long-time
existence result.
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Theorem 1.0.9. Consider the equation (1.0.19) and fixr v > 0, and 7 > 1. Then for any r > 1
there exists a set R := R s, C |1,4+00[xV satisfying

Ry N ([n,n+1] x V)| =O(y) Vn € Ny,

and s* > 0 s.t., Vs > s*, there exists €, ;.- such that for any (c, (vj);) € (J1,+00[xV) \ R, and
for any initial datum fulfilling
€:= |[Yoll g < €sryr s (1.0.20)

one has
[ e <26, [t <e . (1.0.21)

Finally, there exists a smooth torus T. such that for any sy < s—1/2
doy ($(8), (1)), Te) S €2 F, |t < e mntl/2),
where 11 <1, and ds, is the distance in H*'. All the constants are independent of c.

An immediate corollary of Theorem [T.0.9] allows us to show that for any a > 0 any solution of
Eq. (1.0.19) in H*® with initial datum of size O(c~*) remains of size O(c¢~%) up to times of order
O(c®r+1/2)) for any r > 1, uniformly in ¢; however, we have to assume that both the parameter
¢ and the coefficients of the potential belong to a set of large measure. The main limitation of
such a result is that it holds only for solutions with initial data which are small with respect to
c.

For what concerns the result on [0, 7], the new ingredient with respect to [10] is a diophantine
type estimate for the frequencies, which holds uniformly when ¢ — oc.

A further comment is that it would of interest to study the dependence of the torus T, on c.
Of course one expects that it should converge to an invariant torus of the NLS (with a convolution
potential). However this is a quite subtle property that we expect to be true, but needs further
investigation for a proof. This is due to the fact that the NLS is the singular limit of NLKG
and to the fact that c¢ is only allowed to vary in Cantor like sets, so that one can only expect
Whitney-smooth dependence on it.

A further aspect that would deserve future work is the study of the nonrelativistic limit of
the NLKG without potential. This is expected to be a quite subtle problem since, for ¢ # 0 the
frequencies of NLKG are typically non resonant, while the limiting frequencies are resonant.



Chapter 2

Dispersive estimates

In this chapter we will discuss the dispersive properties of Klein-Gordon type equations. First
we will study these properties in the free case, namely for the Klein-Gordon equation, for which
we will derive both Strichartz estimates and a weighted-norm decay; we will later use these
Strichartz estimates in order to approximate the NLKG equation for long times. These are the
first examples of dispersive estimates for the KG equation that are uniform with respect to c.
Next we will study the dispersive properties of the Spinless Salpeter equation with a poten-
tial: we will generalize the weighted-norm decay obtained in the first part to the case of a
time-independent potential, and we will obtain local-in-time a priori estimates for some time-
dependent potentials.

Finally we will present Strichartz estimates for the Klein-Gordon equation with a time-independent
potential: again this is the first result of this kind that is uniform with respect to c.

2.1 Dispersive properties of the Klein-Gordon equation

At the beginning we will obtain dispersive estimates for the linear equation

—i = c(V)e), xR (2.1.1)

Proposition 2.1.1. For any Schrédinger admissible couples (p,q) and (r,s), namely such that

2,332 3 3
p q¢ 2°r s 2
one has
11 L1
(V)™ e e ol pprg < en v (V)e 2ol Le, (2.1.2)
-1 " s vy o111, 114
(V) [ e © F(s) ds < AT T P . (213)
LrLe ;

Remark 2.1.2. By choosing p = +00 and ¢ = 2, we get the following a priori estimate for finite

energy solutions of (2.1.1)),
e /2(W) 8% e Ve qpg || ooz = (|2 (V)L e e
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We also point out that, since the operators (V) and (V). commute, the above estimates in the
spaces LY LY extend to estimates in LYW for any k > 0.

Proof. We recall a result reported by D’Ancona-Fanelli in [30] for the operator (V) := (V);.

Lemma 2.1.3. For all (p,q) Schrodinger-admissible exponents (ie, s.t. % + g = %)
; 1_1_1
e G0l agopa = INOVETFE e ) ol 1y < ool

Now, the solution of equation ([2.1.1]) satifies 1[1(t, &) = ei“’<§>°t1/30(§). We may define 7 := £/c,
in order to have that

Qg(c2t7 77) = ’(ﬁ(tv 077) = @(m E)a

and in particular that ¢o(n) = 1o (€).
Since

€), = VAR +IEP =c/1+]E]2/e2, (2.1.4)

we get

Bt,n) = < E/V gy (¢ /o)
=¢ te? <"><ZA50(77)
— i <n>¢30(7])

if we set 7 := c?t. Now, by setting y := cx a simple scaling argument leads to

e ) Golle po = INV)P 712 @ollze = || ()7 "ot 2 Gl e
and since
2k
I n N d 1 .
Il ol = [ ™ 1datl? an = [ <5> Boln/IP 5 = s [ 1n(OF a6
R3 R3 Cc C C R3
we get
1_ 14,1 ~ 1 ;_1_,_%
17~ %2 dollze = =y 16877 wollie, (2.1.5)
c2 a4 'p

while on the other hand

bt x) = (2m) 2 / 6 (t,€) de = (2m) 2 / ) (1, o)
RS

R3
—(@m S [0 i) dy = ot o),
R3
yields

lllLrra = 3= B2/ 9llzera. (2.1.6)

Hence we can deduce (2.1.2); via a scaling argument we can also deduce (2.1.3)). O
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One important application of the Strichartz estimates for the free Klein-Gordon equation is
the following global existence result uniform with respect to ¢ for the NLKG equation (|1.0.3])
with cubic nonlinearity (this means [ = 2), with small initial data.

Theorem 2.1.4. Consider Eq. (1.0.3) with | =2 on R®.
There exists €, > 0 such that, if the norm of the initial datum g fulfills

[%0ll 172 < €, (2.1.7)
then the corresponding solution v (t) of (1.0.3) exists globally in time:
1D oo iz = 10l 22, (2.1.8)

All the constants do not depend on c.

Proof. 1t just suffices to apply Duhamel formula,

and Proposition with p = 400, in order to get that

20—1

3

1/2
- T T— S C
Hd)(t)”L?ojﬁlm = H1/J0||jfc1/2 + cl/s—1/ Vi/ 1/ [(M) (¥ + )

7

’rgt
s
Lt Lz

but by choosing r = +o00 and by Holder inequality we get

r 1/2 73
c _
6Ol Wl + || (757) 0+
- - lnirg
VARRNE 72 e\ /2 ~
= ol 12 + ( ) (v +1b) ( ) (1 +1)
¢ (Ve (V)e 76
L D llpie L& LS
e \1/2 & e \1/2 B
olr+| () @+ () @+
’ (Ve L2LS (V)e L LS
t -z t T
= H¢0”3f01/2 + Hw”igyyfl/lﬁ ||¢||L50W;1/2,6
< Mol + 1612 100 108l e 2
and one can conclude by a standard continuation argument. O

We also establish the weighted norm decay for the free Klein-Gordon equation; we will prove

later that this decay can be extended to the spinless Salpeter equation with time-independent
potential.
This result is the first weighted-norm decay uniform with respect to ¢ for the KG equation. Some
classical results for the KG equation may be found in the literature (see [20], [79], [64]), but they
are not uniform with respect to c. The proof we give is inspired by the one for the weighted
energy decay established in [49] and in [50]. For any p € R we will denote by Lf) the Hilbert
space of functions 1 € L? (R3) with the finite norm

loc
otz = ( [ <x>w<x>|2d3x)1/2.
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Proposition 2.1.5. Let o > 3/2. Then for 1)y € L% and for any ¢ > 1
lle Ve oz < (=32 lollzz, [t]> 1. (2.1.9)

Proof. Tt suffices to consider ¢ > 0. Then the action of the dynamical group eVl is the
following (the proof of this fact can be found in sec. [B.1)

eitc(v)cwo(fﬂ) _ u0<33 -, t)’L/Jo(y)d3y, (2.1.10)
2 (ct+z0) H? (clet +i0 — 2] /2[et +i0 + |2]]/2)

& 2.1.11

Un(z1) = o (ct+i0—|z\)(ct+i0+|2\) , ( |

where H2(2) is the Hankel function of second kind of order 2. Now, let us fix 0 < 6 < 1: by
exploiting the classical asymptotics for the function H2(2) (see formula 9.2.4 in [1]),

|H2(2)(z)| <272 2500

we have that
c20tc_1/2(1 _ 52)_1/46_1/225_1/2
(1= 52)2c2¢2
< (1=8)" W) |2 < bt t > 1e> 1. (2.1.12)

[Uo(z, 1) <

Now consider an arbitrary ¢ > 1. Let us split the initial function 1, 1o = ¥, . ;+v( .. ;> such that

190.c.ellzz + 196 cellz = Wocellzz, €>1, (2.1.13)
Vh.c.5(x) = 0for x| > dct/2, o . #(x) = 0for |z] < dct/4, (2.1.14)

(for example, choose ¢ E C*(R) s.t. ¢(s) = 1 for |s| < §/4, ((s) = 0 for |s| > 6/2, and set
Vo8 = C(I - 1/(et)) o, Oct = [ =<(I-[/(ct))ltbo; notice that Var [95¢(] - |/(ct))] X 1 for £ > 1).

The estimate for eV 1/)’ o7 follows from the energy estimates for the Klein-Gordon equation,

and (.1.13):
||6i{c<v> Oct”L < Heltcw "/}OCtHL2—<”cht
>0 526272 o/2
L) Wl
§<1,c>1 920
S 60— £> Hwo,(‘,t”Lg
0>3/2 920
2 22 Jylss. o1y
o <B3/2
Now split Ve = (1=¢(|-]/(ct)))e?t Ve +-¢(|-|/(ct))e**(V)e, and recall that 1—¢(|z|/(ct)) = 0

for |z| < dct/4. Then
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= ¢ /e ey g

2 272\ —0/2 -
<(1+550) et e, g

Lz, 2
2.1.16)
20
< 2 e e
2% o
= 5o (07 [¥o.cell
2% o
= 5o (07 Yo, llez
227\ 32
= 5o (0" Yol rz - (2.1.17)

Finally, in order to estimate ((| - |/(cf))e?*(Y)eq} - we notice that

Uy (- )0 ez 7= C( - [/ (e))Uo (- E)g o 2
= (I 1/(ct))Uo (- )C(] - 1/ (ct))thg . 5-
The kernel of the operator [1 — (] - |/(ct)|Uo (-, T)[1 — (| - |/(ct))] is equal to

Ug(x =y, 1) = [1 = ((J2l/ () tho (= 5, D)[1 = C(lyl/(ct))].

Since 1 — ¢(|z|/(ct)) = 0 for |z| < dct/4, the estimate (2.1.12) implies that
Uz —y, ) = (1=62)"9* @32 I>1c>1. (2.1.18)
Now, the norm of the operator Uj(-,f) : L2 — L? , is equivalent to the norm of the operator

Acoi(,y) o= ()77 [1 = ¢(Jl/ () Uo(x =y, )1 = C(Iyl/ ()] {y) ™7 : L*(Ry) — L*(R3).

However, since

Acoilr,y) = (2)"" Uz =y, 1) (y) 7, (2.1.19)

we can estimate the norm of A, , 7 as follows
5 1/2
d?’z]

9 1/2
dgx:|

[ it =00 )7 )y
5 1/2
d3x]

/| s mﬁ(\fﬁl/(cf))f(\yl/(cf)) W)~ f(y)d®y

@)™ U = 9 8) () lpane = sup [ |

[[fllp2=1
~ swp / ()2
[[fll2=1 R3

<o (-, )|l Loe(-|<5cr)  SUP / (o)
Ifllp2=1 | /]z|<5ct/2

[ el ettt = v €1/ )™ )ty

2.1.12) _ o —0o
= (1= B ) |\Lg‘|fﬁupl||<-> Fllz
L2=

0>3/2 L _
< (=T ()T ()
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which leads to the thesis. O

Remark 2.1.6. Like the Strichartz estimates (2.1.2) and (2.1.3)), also the weighted time-decay
[2.1.9) can be extended to a HX — HF  estimate, by exploiting a simple argument of pseudo-
differential calculus.

Remark 2.1.7. Again by a simple argument of pseudo-differential calculus, one can also show
that for any o > 3/2, for any ¢y € (V)C_l/ng and for any ¢ > 1 the following energy decay holds

()W) 2et e gl e < ()72 | (T (V)Y 2] 2, [E] > 1 (2.1.20)

2.2 Dispersive properties of the Spinless Salpeter Equation
with a potential

Now consider the following equation

—itpy = H(z)p == (V) + V() 2, (2.2.1)
7/1(0) = quu

where V € C(R3,R) satisfies
V(@) +|VV(z)] < (&)™, = eR?, (2.2.2)

for some 8 > 0.

Proposition 2.2.1. Let o > 3/2, and assume that § > 20.
Then Eq. ([2.2.1) admits a unique solution ¢ € L>°(R)L?*(R3). Furthermore

[0z = llvollzz

Proof. One may argue by writing the Duhamel formula and by using a perturbative argument,
by exploiting the boundedness of V', and the dispersive estimates (2.1.2)) and (2.1.9) for the free
KG equation. O

Theorem 2.2.2. Let us assume that V satisfies (2.2.2)) for some § > 9, and that the spectral
condition (B.2.52) holds. Then for any o > 9/2, for any 1o € L% and for ¢ > 1 sufficiently large
one has

| P (H)ollzz, = ()7 [Wollzg. 1] = oo, (2:2.3)
where P, denotes the projection onto the continuous spectrum of H.

Indeed, if we denote by Rg .(2) := (¢(V). — 2)~! the free resolvent and by R.(z) := (H(x) —
2)~! the perturbed resolvent, one can relate these two operators through the Born perturbation
series,

Re(z) = RO,C(Z) - RO,C(Z)V Re(2)
= RO,C(Z) — R07C(Z) Vv RQC(Z)
+Roc(2) VRoe(z) VRe(2).
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Next, by taking the inverse Fourier-Laplace transform, we can deduce the corresponding ex-
pansion for the evolution operator for (2.2.1)),

t
() — gite(V)e +i/ ei(t_s)°'<v>cV(ﬂﬁ)eisc<v> ds —iF L, W.(2)Re(2)], (2.2.4)
0

where W,(2) := Roc(2) V Roc(z) V.

However we stress the fact that for the KG equation, unlike the Schrédinger equation, we

cannot exploit the classical Jensen-Kato technique reported in [46] to deduce the L2 - L?  de-
cay from the Born expansion: indeed, as pointed out by (B.2.35)), the free resolvent of the KG
equation does not decay for large |z|. Hence, for the KG equation the integration by parts does
not provide the long-time decay.
As pointed out in [49], the fact that the multiplication by ¢V (for large N) improves the
smoothness of the solution is not only a technical difference between the KG equation and
the Schrédinger equation; it corresponds to the different behaviour of wave propagation for rel-
ativistic and non-relativistic equations.

Therefore, to get the weighted energy decay we will deal with the terms in as in [49]:
by exploiting for the first term, and the decay of the potential for the second term,
and Jensen-Kato technique combined with the asymptotics of W,(z) for large |z| for the last
term. Indeed, we can write

1 [t

"M@ P (H )y = 5 e R (2 +10) — Re(z — i0)] 1odz

= % [1h1(t) + 2 (t) + ¥3(t)],

where

“+oo
”t [Ro,c(z 4+ 10) — Ro,c(z — 10)] odz,

e "R .o(z 4 i0)V (2)Ro.e(z + i0)1hodz+

/+
/C oo
/ —1ztR0 . Z _ ’LO)V(QJ)RO,C(Z — ’Lo)wodz’

s (t) = / T DNz 4 0)Roe(z +0) — Wel= — i0)Ro.o(= — i0)] vodz.

Now, the first term ¢y (t) = e***(V)eq)y by the LAP for the free resolvent. Hence, Proposition
implies that for o > 3/2 and for any ¢ > 1

1 ()2, = &)~ ol (2.2.5)
Lemma 2.2.3. The following convolution representation holds

Yo (t) :i/o =Ny (1) (7)dr, T € R, (2.2.6)

where the integral converges in L% for o > 3/2.
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Proof. We first recall that ¢ (t) = 121 () — 122(t), where

2

“+o0
or (1) 1= / e Ry o (2 + 10)V (2)Ro.o (= + 0)thodz,

—+oo
Vo (t) = / ' Ro oz — i0)V (2)Ro.c(= — i0)od:.

2

If we denote by

UE (L) == O(Ft)et Ve,
Ui (t) = O£t (t).-

We know that the Fourier-Laplace transform of vy,
U (2) == / 0(t)e*ty (t)dt,
R

solves the stationary equation 2zt (2) = ¢ (V). Y5 (2) — ithy, and therefore may be rewritten as
Y1 (2) = iRo,c(2)10. Hence the term )91 satisfies also

Pa1(t) = —i/Re_mRo,c(z +i0)V (x)] (2)dz

= —i/RefiZtRQc(z +3i0)V(z) (/R ei”wf'(T)dT> dz
—izt

= —i(i0; +i)* /R (:+7Z,)2Ro,c(z +1i0)V (z) (/R eizwj(f)dr> dz.

The last double integral converges in L? _ with o > 3/2 by the decay for the free equation (2.1.9)),

by the LAP for the free resolvent (B.2.11)) and by the asymptotics (B.2.35)). Hence, we can apply
Fubini theorem to change the order of integration

(1) = —i / U (t— )V (@)h (r)dr, >0,

since U0+ (t—7) may be rewritten by exploiting the spectral-Fourier representation for the solution
of the free KG equation,

1 ) )
B(t)y(t) = / ~iGHORY (2 4 ie)godz, € > 0.

T 2mi

Similarly, one can show that

Voa(t) = —i /0 Us (t = 7)Vp (r)dr, ¢ <0,



2.2. DISPERSIVE PROPERTIES OF THE SPINLESS SALPETER EQUATION WITH A POTENTIAL17

Now, let us consider o € (3/2,8/2]. Applying (2.1.9) to the integrand in (2.2.6) we get for
c>1

e 0>3/2 1
e DYy (7|2, = e IVl
- T
a<p/2 1
X T M Ole,
- T
1 1

- <t - T>3/2 <T>3/2 ”dJOHLg

Integrating in 7 we obtain
[2(®)llzz, 267 IWollzz, o> 3/2 (22.7)

Finally, we rewrite the term s(t) as

+oo

Y3(t) = / e FIN(2)1hodz, (2.2.8)

where NV (2) :== M(z +i0) — M(z —i0) for z € T := C \ [¢?, +00), and
M(2) == We(2)Re(2), T\E(V).
By the asymptotic of R (z) and R.(z) we can deduce that for sufficiently large ¢
Lemma 2.2.4.
IN"(2)lL2—p2 =0 (c_5/2|z — c|_3/2> , 2= 0>9/2 z€T. (2.2.9)
Proof. The asymptotic follows from
M (2) = W(2)Ro(2) + DV (2)RLZ) + Wal 2)RL(2),

combined with (B.2.15)), (B.2.16)), (B.2.56) and (B.2.57)). Indeed, we want to estimate terms of
the form

RYD (VR (2)VRED (2),

with k1, ko, k3 > 0, k1 + ko + k3 = 2. We provide the estimate for the term with k& = ko = 1 and
for the term with k1 = ko = 0, the others being similar.
Fixed o > 9/2, choose § € (5/2, min(o, 5 — 5/2)]; then for ¢ > 1

IR0,(2)VRG o(2)VRe(2) 12 512 <

=0 (|2 = 72) [VRY (VRe(=) 1312

B>26 _
200 (|2 = A7) IRG (2)VRA=) 12 12,

(I =T IVR(2)ll 1z - 2
(I =) IRe()lz 12
(

@)
=0
O (2= ™) [Re(2)lgosz, =0 (=27, 2
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On the other hand, if one chooses ¢ € (9/2, min(o, § — 3/2)],
= [Ro,c(2)VRo,e(2)VRI(2) |l L2 - 12,
=0 (c7?) IVRo,(2)VR(2) ]| L2 12
P20 (¢7?) [Roe() VR 1212,
= 0 () VR 121
=0 () IR L2 12,
<O(N IR anrz, =0 (2= 72), 2o

[Ro,c(2)VRo,e(2)VRE(2)| L2 - r2 <

O
Similarly we can show
Lemma 2.2.5. Let k = 0,1,2; then for sufficiently large c
3(k+1
IN® ()pasrz . =0 (12172), |2l = o0, 0> (k+ ), zeT. (2.2.10)
Proof. We just show the case k = 2. Differentiating M(z) twice we get
M (2) = W (2)Re(2) + 2We(2)Re(2) + We(2)R{ (2);
for a fixed o > 9/2, choose ¢ € (9/2, min(o, 8 — 3/2)], then for the first term we have
Ve (2)Re(2) fllz2 , < IWE (2)Re(2) fll22
(B.2.60) B
= O0(1e7?) IR(2) fll 2,
B255 Y
= O0(127%) Iflles, |zl = 00, z €T
Other terms may be estimated similarly, by choosing a suitable value of 4. O

Now we can prove the decay of 13(t) by the usual Jensen-Kato technique. First, we split
13(t) into the low and high-energy components: we choose ¢1,p2 € C§°(R), such that

e supp(¢1) C [?/2,c2 + 1],
e supp(¢z) C [¢* — 1, +00),

o ¢1(2)+ da(z) =1Vz> 2
Then wg (t) = Tl)gl(t) + 'LZJ32 (t), where

Dt / 1 (2N (2)odz,

+oo
Paa(t / e~ o (2)N (2)hodz.

2+1
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By (2.2.9), we can apply to the Fourier integral 3;(t) the corresponding version of the Lemma
B.1 in [49] (which is based on Lemma 10.2 in [46]), in order to get
a2, = () lolliz, t = o0, o >9/2. (22.11)

Furthermore, since supp(¢2/N') C [c® + 1, +00) and since (¢ N)” € L' ([c¢? + 1, +0c0), L(L2, L% ))
with o > 9/2 by (2.2.10)), by integrating by parts twice we get

lse(@)llze, < () lollez, ¢ = o0, o >9/2. (2.2.12)

Finally, the decay (2.2.3) (and thus the proof of Theorem [2.2.2)) follows from (2.2.5)), (2.2.7),
[@2.11) and @22.19).

Remark 2.2.6. Unfortunately, one cannot derive from (2.2.3) the corresponding Strichartz es-
timates for the operator H(x). However, one can deduce the following weighted decay: since by
Duhamel formula

t
P(t) = e Veqpy + / =9 eViey (2)5(s)ds,
0
one has that by Propositionfor any o > 9/2

[0l gerz = [1Yolle + V(@)Y ()l Ly r2

s/
= Iollze + 1™ ol 2 Il

<Il%ollz2 + ll%ollLz
< 2l¢ollrz- (2.2.13)

Similarly, one can prove that for any o > 9/2 and for any F € LfOL?,@

. t
’/ =M@ B (s5)ds < H/ e’ = IHER(s)] 12
0 0 -

LyFLz,, L

t
—-3/2
< [re-a e
0 Ly

—-3/2
=IO POz e S MFOlsnrers, . (2:2.14)

The issue of proving dispersive estimates for PDEs with time-dependent potentials is abso-
lutely non-trivial, and often requires refined estimates (see for example [70], which deals with
the NLS equation).

However, by a simple adaptation of the argument used in the proof of Theorem 1.1 in [31], we
can get local-in-time a priori estimates for potentials in the L} LS class: we emphasise that the
potentials in this case may be both large and may also change sign.

Proposition 2.2.7. Let I = [0,T] be a bounded time interval, and assume that V € L} L is a
real-valued potential. Assume also that 1y € L? and that F € L} L2. Then the integral equation

t

Ut z) = et Ve (z) + /0 =9Vl F(s) + V(s)3(s)]ds (2.2.15)

admits a unique solution ¢ € C(I)L2 that satisfies the following a priori estimate

[Vl zeerz = 1Yoz + | FllLizz- (2.2.16)
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Proof. Consider a small time interval J = [0, 6], and for any v € C(J)L? define the mapping
B(v) = et Vey () + /0 t etV [ F(s) + V(s)v(s)]ds. (2.2.17)
A direct application of Proposition 2.1.1] gives
[®()llLgerz = 1ol + [V ollire + 1 FllLize
= Yolle + IVIzizesllvllzeers + 1 Fllprpe-

Thus we have construct a mapping ® : C(J)L2 — C(J)L2. Assume now that the interval J is
so small that

1
IVllLizee = > (2.2.18)

in this case we have that ® is a contraction on C(J)L2, and hence has a unique fixed point v,
which is the required solution. Furthermore, we have that
1
[vllzserz = llvbollze + §||UHL;>°L5 + 1| L2
[ollzgerz = 2l[Yollz2 + 21 FllLizz- (2:2.19)

One can clearly apply (2.2.19) on any subinterval J = [tg,¢1] C I on which (2.2.18) holds; we

will get an estimate of the form

vlloe(yrz = 2[[W(to)llLz + 2 FllLr(yL2, (2.2.20)

which implies that

o)z = 2[19 o)l + 21Fl 21 (5yL2; (2.2.21)

by partitioning the interval I into a finite number of subintervals on which (2.2.18) holds, and
by inductively applying (2.2.20) and (2.2.21)) we can deduce ([2.2.16]). O

Remark 2.2.8. Proposition |2.2.7 can also be generalized to an unbounded time interval I =
[0,4+00), by partitioning the interval I in a finite number of subintervals in which condition

(2.2.18) holds.

Definition 2.2.9. Let V : R? = R be a real-valued function such that
H(z) =c(V)e+ V()

admits a self-adjoint extension. We say that V is of Strichartz type if for any bounded time
interval I = [0,T), for any 1o € L? and for any F € L} N L L2, the integral equation
t
h(t,x) = @ py +/ =M@ P (5)ds
0

has a unique solution h € L{°L2 that satisfies the estimate

1hllLgerz < K (I, V)llhollL2 + K(I, V)IFllinrge r2- (2.2.22)
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Remark 2.2.10. Consider a real-valued potential V € C;LS°

>, and assume that there exists 3 > 9
such that for each fixed t > 0

V(t,z)| < (x)°, Vo eR?

Then V is of Strichartz type. Indeed, for any arbitrary to, we have that V(to,-) is of Strichartz
type by Proposition |2.2.7 .

Proposition 2.2.11. Let I = [0,T] be a bounded time interval, and let V € CiL°. Assume
that for each t € I the potential V (t,-) is of Strichartz type, and that ho € L?>, F € L} N L L2,
Then the local-in-time a priori estimate holds.

Moreover, if there exists Ty > 0 such that |V (t,-)| Le is sufficiently small for t > Ty, the results
holds also in the case I = [0,400) (global-in-time a priori estimate).

Proof. The proof follows the lines as the one of (2.2.16)): indeed, for any fixed to > 0 the continuity

in time of the potential allows one to consider V (¢, z) as a small perturbation of V(to,x) for ¢

near tg-

Let J = [0,6] be a small time interval, and construct the following mapping on the space
3

C(J)L*(R?),

B(v) := Oy (2) 4 /0 t =IO [P (5) + W (s)v(s)]ds, (2.2.23)

where H(0,2) = ¢(V).+V(0,z), and W(s,z) = V(s,2)—V(0,z) (formula (2.2.23) is meaningful
because V (0, z) is of Strichartz type). Hence, the following a priori estimate holds
12l zgorz = 1ollz + W vllzire + [1Fl Ly 22
= ollzz + IWllzipeellvllngerz + 1F | Lir2

and if § is so small that

Vllzoes <5
we have that ® is a contraction on C(J)L?2, and hence has a unique fixed point v, which satisfies
the local-in-time a priori estimate with some constant K(0) for some bounded time
interval [0, d].

The same argument can be appled in a small time interval around each point ¢ty € I. More
precisely, let J = [to — 0,to + 6] N I, and assume that > 0 is so small that

W(t,x) =V(t,z) — V(to, )
satisfies

1
HVV”Ll(J)Lgo < m, (2.2.24)

where K (to) is the constant that appears in the a priori estimate for the potential V' (¢o,-) for
the bounded time interval [0,to + 1]. Then one can argue as above, and we obtain that for any
given initial time ¢, € J, and for any ¢y € L? the integral equation

t
Y(t ) = 0D gy () +/ ! mIHDF(s) + W (s)i(s)lds
0
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where H(tg, 1) = ¢(V)+V (to, x) admits a unique solution in C'(J)L?, which satisfies the estimate
|2 (0) || (ryz2 < 2K (to)l[Yollrz + 2K (to) || F[| L1 L2,

for some constant K (tp) depending on the point ¢y, but not on the initial time t; € J.

Now we can argue via a continuation argument, as follows. Extend the local solution constructed
on [0, 4] to a maximal interval [0, 7*), namely consider the union on all intervals [0, §] on which
the solution 1 € C([0,d])L? exists and sarisfies the Strichartz estimate with some constant K.
Assume by contradiction that T* < T. Then the above local argument applied to to = 7™ on an
interval of the form J = [T — ¢, T* + €] (where € > 0 is sufficiently small) allow us to extend this
maximal solution to [0, T* +¢). Moreover, this extended solution satisfies the Strichartz estimate
on [0,7* + ¢€). Indeed, choose t; such that T* — e < t; < T*: then by construction we have that
the a priori estimate holds both on I; = [0,#;] with initial datum at t = 0

[l oo (ryzz = 1Y (o)llzz + 1F]l2rryyLz (2.2.25)

and on J = [T* — ¢, T* + €] with initial data at t = ¢4,

19l Lo (e =2 1Y E) Lz + 1Fl e ez - (2.2.26)

But since [|9(t1)]/z2 can be estimated via (2.2.25), we can deduce the a priori estimate on
[0,T* + €). This contradicts the assumption T* < T, and we get that T* = T.
The extension to the unbounded time interval I = [0, +00) is analogous. O

2.3 Dispersive properties of the Klein-Gordon equation with
a potential

As in [8], we can deduce Strichartz estimates for the operator H by exploiting the boundedness
of the wave operators for the Schrédinger equation.

Theorem 2.3.1. Let ¢ > 1, and consider the operator

H(z) == c(? — A+ V(2)Y? = Ho(1 + (V)72V)1/2, (2.3.1)
where V€ C(R3 R) is a potential such that
V(@) + |VV(2)] < ()77, zeR®,

for some B > 5, and that 0 is neither an eigenvalue nor a resonance for the operator —A+V (x).

Let (p,q) be a Schriodinger admissible couple, and assume that ¢y € <V>§1/2L2 is orthogonal to

the bound states of —A + V(z). Then

1

1_1 . 1_1_1
(V)& 7 eyl ppra < 572 |(V)2/2 4| 2. (2.3.2)

In order to prove Theorem we recall Yajima’s result on wave operators [89] (where we
denote by P.(—A + V') the projection onto the continuous spectrum of the operator —A + V).

Theorem 2.3.2. Assume that

e () is neither an eigenvalue nor a resonance for —A +V;
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o |0°V(z)| 2 ()" for |a| < k, for some B> 5.
Consider the strong limits

Wy = lim e®AHVIHA  z .~ lim e_itAeit(A_V)Pc(—A—l—V).
t—+oo t—+oo

Then Wy : L? — P.(—A + V)L? are isomorphic isometries which extend into isomorphisms
Wy : WP 5 P(=A + V)WH,P for all p € [1,+00], with inverses Z.. Furthermore, for any
Borel function f(-) we have

f(A+VIP(=A+V) = Wi f(-A)Zs, f(-8) = ZLf(-A+V)P(-A+V)Ws. (2.3.3)

Now, in the case ¢ = 1 one can derive Strichartz estimates for #H(z) from the Strichartz
estimates for the free KG equation, just by applying the aforementioned Theorem by Yajima in
the case k =1 (since 1/p — 1/q+ 1/2 € [0,5/6] for all Schrédinger admissible couples (p, q)). In
the general case, this will follow from the following remark.

Remark 2.3.3. Estimates (2.3.2)) clearly follow from Proposition if we can prove that for
any o € [—1/3,1/2] and for any q € [2, 6]
V)WL (V) lLamre 21, (2.34)
IKV)EZ4(V) e “llLasra < 1.
Indeed in this case one would have
(V) /171 1@ P (— A4 Vol o pa = (V)8 9P Wi Ve Ziajo| s,
but

(V) e/ P Wae Ve 2o pg = (VD! TP Y00 Z 4o g,

hence

To prove we first show that it holds for a = 2k, k € N. We argue by induction. The case
k =0 s true by Theorem . Now, suppose that holds for o = 2(k — 1), then
(e = A2 (e = D) Fllpamsza = [[(F =AY = A2 (P = A)TF(E = A) | pass 1o
ANl = A2 (= A)TRTI( = A) | Lo
+ = AP = A2 (P = 8)TFI( = A) L
<A = A2 (P = A)TEI(E = D) pasra
= A=A (E = A) T2 (P - A)TE Y L
+l = A = A2 (= A)T(E = A) T Y Lo
= (e = A)Mlzasrs + | = Ale? = A) Hpas e 21,

since

12 (¢ = 8) Ml % s < (4162
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Similarly we can show (2.3.5) for o = —2k, k € N.
By interpolation theory one can extend the result to any o € R wvia the following result. Recall
that we denote by

WP (R3) = {u €LV lullyrr = Hc_k (V>’§uHLP < +oo} , keER, 1<p< 4o,

the relativistic Sobolev space of exponents k and p.

Proposition 2.3.4. Let ko # k1, 1 < p < 400, and assume that T : WP — #FoP has norm
My, and that T : WP — WP has norm M. Then

T: WP 5 wkp k= (1—0)ko+ 0k,

with norm M < MO170M19.

The above proposition is a consequence of Corollary [C.0.8; we defer the statement and the
proof of Corollary[C.0.8 to the appendiz, Ch. Q.



Chapter 3

(Galerkin Averaging

In this chapter we will state an abstract Normal Form Theorem, and we will prove it in Sec.
In Sec. 33| we will apply the Normal Form theorem to the nonlinear Klein-Gordon equation, and
we will show that the normalized equation will be given by a NLS equation plus higher-order
corrections for the real case, and by a system of two coupled NLS equations for the complex
NLKG.

3.1 Galerkin Averaging Method

Consider the scale of Banach spaces W*P(M,C" x C") > (¢,%) (k> 1,1 < p < 400, n € Ny)
endowed by the standard symplectic form. Having fixed k and p, and Uy, C WFkP open, we
define the gradient of H € C*°(Uy, p, R) w.r.t. 9 as the unique function s.t.

- - .
<V¢;H, hy = dyHh, Yh e WP,

so that the Hamiltonian vector field of a Hamiltonian function H is given by
)(H(w7i»:: @‘7¢fﬂ 44‘7w}{)

The open ball of radius R and center 0 in W*? will be denoted by By, ,(R).

We briefly recall some classical notion of Fourier analysis on R?. We first recall the definition
of the space of Schwartz (or rapidly decreasing) functions,

S :={f € C*[R%R)| sup (1+[x|*)*/?0° f(z)| < +00, Vo € N4 V3 e N}
z€ERY

In the following we will denote by (z) := (1 + |=|?)!/2.
Now, for any f € S we introduce the Fourier transform of f, f : R — R,

@ = @m="2 | f@)e e, Ve R,

where (-, -) denotes the scalar product in R,

Next, we call an admissible family of cut-off (pseudo-differential) operators a sequence (m;(D));>0,

where 7;(D) : WP — WFP for any j > 0, such that

25
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for any j > 0 and for any f € Wk»

f=Y m(D)f;

7>0

for any j > 0 m;(D) can be extended to a self-adjoint operator on L?, and there exist
constants K1, Ko > 0 such that

1/2 1/2
Ky (D lIm(D)fll7 < fllee < Ko | Y Imi(D) fll7 ;

J=20 Jj=0

for any j > 0, if we denote by II,(D) := Z{:O m (D), there exist positive constants K’,
(possibly depending on k and p) such that

L fllep < K || fllep Vf € WEP;

e there exist positive constants K{, K4 (possibly depending on k and p) such that
1/2
K| fllwes <[] D 2%*m;(D) S| < K3 fllwr-

jeN
Lp

Remark 3.1.1. Let k > 0, M be either R¢ or the d-dimensional torus T¢, and consider the
Sobolev space H* = H*(M). One can readily check that Fourier projection operators on H*

m() = (2m) 2 / DRyt Tk, §> 1
J—1<Ik|<)

form an admissible family of cut-off operators. In this case we have

My (z) = (2m) Y2 /KN O(k)eF*dk, N > 0.

Remark 3.1.2. Let k£ > 0, 1 < p < +00, we now introduce the Littlewood-Paley decomposition
on the Sobolev space WFP? = WkP(R?) (see [84], Ch. 13.5).

In order to do this, define the cutoff operators in WP in the following way: start with
a smooth, radial nonnegative function ¢o : R® — R such that ¢o(&) = 1 for |¢| < 1/2, and
$0(§) =0 for [§] = 1; then define ¢1(£) := ¢o(£/2) — ¢o(§), and set

$;(€) =1 (2'77¢), j=>2. (3.1.1)

Then (¢)j>0 is a partition of unity,

> i) =1.

Jj=0
Now, for each j € N and each f € W2, we can define ¢;(D)f by

F(6;(D)f)(E) = () f(€).
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It is well known that for p € (1,4+00) the map ® : LP(R?) — LP(R?,1?),
®(f) := (¢;(D) f)jen
maps LP(RY) isomorphically onto a closed subspace of LP(R%,12), and we have compatibility of
norms ([84)], Ch. 13.5, (5.45)-(5.46)),
1/2
K|l fllee <19 Loaey = || | D 1é;(D)fI? < Kpllfllze,
jEN
Lp

and similarly for the W*P-norm, i.e. for any k >0 and p € (1, +00)

1/2
Kyl fllwen < ||| D2 22*10;(D) 117 < Kip| fllwes- (3.1.2)
jEN o
We then define the cutoff operator I by
Iyt = > ¢;(D)y. (3.1.3)

J<N

Hence, according to the above definition, the sequence (¢;(D));>0 is an admissible family of cut-
off operators.

We point out that the Littlewood-Paley decomposition, along with equality (3.1.2), can be extended
to compact manifolds (see [21]), as well as to some particular non-compact manifolds (see [19]).

Now we consider a Hamiltonian system of the form

H=hy+eh+¢cF, (3.1.4)

where € > 0 is a parameter. We fix an admissible family of cut-off operators (m;(D));>0 on
WkP(RY). We assume that

PER hg generates a linear periodic flow ® with period 2,
QI = @t vt

We also assume that ® is analytic from WP to itself for any k& > 1, and for any p €
(1, +00);

INV for any k > 1, for any p € (1,+00), ® leaves invariant the space II;W*? for any j > 0.
Furthermore, for any j > 0
73(D) o B! = ' o m,(D);

NF h is in normal form, namely

ho®!=h.

Next we assume that both the Hamiltonian and the vector field of both A~ and F admit an
asymptotic expansion in e of the form

he Y @7y, Fo @7y, (3.1.5)
jz1 jz1
Xp ~ Zéjithj, Xp~ ZejilXFj, (316)
j>1 i>1

and that the following properties are satisfied
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HVF There exists R* > 0 such that for any j > 1

- X}, is analytic from By o;,(R") to Wkep,

- Xp, is analytic from Byyogj_1),(R*) to WP,
Moreover, for any r > 1 we have that
. Xh—Z};l ci-1p, is analytic from By io(41),,(R*) to Wwkp,
. XF—E;.‘=1 ci-1F; 1s analytic from Biyorp(R*) to Whkp,
The main result of this section is the following theorem.

Theorem 3.1.3. Fizr>1, R>0, k1 > 1,1 <p < +oo. Consider (3.1.4), and assume PER,
INV (with respect to the Littlewood-Paley decomposition), NF and HVF. Then 3 ko = ko(r) > 0
with the following properties: for any k > ki there exists €, 1, < 1 such that for any € < €1,

there exists T : By, »(R) = Bip(2R) analytic canonical transformation such that

Hy:=HoT" =ho+ Zrlejzj +e RO,
j=1
where Z; are in normal form, namely
{Z,ho} =0, (3.1.7)
and

sup HXZJ'”W}“P S Ck),p7

Bitkg.,p(R)
sup [ Xgo lwre < Crp, (3.1.8)
Bltrg,p(R)
sup || = id||yer < Chpe (3.1.9)
Bk,p(R)

In particular, we have that

Zl(wﬂz) = hl(wa 1;) + <F1> (wa 17;))
where (Fy) (1, 1) = fo% Fo®(y,¢)5L.

3.2 Proof of Theorem 3.1.3

We first make a Galerkin cutoff through the Littlewood-Paley decomposition (see [84], Ch. 13.5).
In order to do this, fix N € N, N > 1, and introduce the cutoff operators Iy in W*P by

Mxe =Y ¢;(D),

J<N
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where ¢;(D) are the operators we introduced in Remark

We notice that by assumption INV the Hamiltonian vector field of hy generates a continuous
flow ®! which leaves IIyW*? invariant.
Now we set H = Hy, + Ry, + R,, where

HNJA = h0+€hN1r+EFN_’T, (321)
hN,r = Z EjilhﬂN, hj7N = hj olly, (322)

j=1
Fy, =Y ¢ 'Fin, Fjn:=Fjolly, (3.2.3)

j=1

and
Rye=ho+» ehj+> F;— Hy,, (3.2.4)
j=1 j=1
R, :=¢ h—Zejflhj +e F—Zeﬂlej . (3.2.5)
j=1 j=1

The system described by the Hamiltonian is the one that we will put in normal form.

In the following we will use the notation a < b to mean: there exists a positive constant K
independent on N and R (but dependent on r, k and p), such that a < Kb.

We exploit the following intermediate results:

Lemma 3.2.1. For any k > ki and p € (1,400) there ezists By ,(R) C WP st. ¥V o > 0,
N>0

- €
sup [XRn, (0, V) lwew = PEIREEIE (3.2.6)

Bitot2(r+1),p(R)

sup [ Xw, (¥, ¢)[lwer < €T (3.2.7)
Bit2(r+1),p(R)

Proof. We recall that Ry, = ho + Z;:1 e'hj + Z;:1 &F; — Hy,r.

Now, ”Zd - HN||W’“+°’P—>W’C,P = 27U(N+1), since
1/2
o a0 =] X rem)fP
J>N+1 Whp j>N+1 L
1/2
=< 270’(N+1) Z |2](k+g)¢j(D)f‘2
Jj>N+1 L

= 2_U(N+1) ||fHWk+W7
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hence

sup IXR . (&, )l wren

YEByy2(r+1)+o,p(R)

= ||dX2;:1 el (h; +F;) 72 (Brt2(rt1),p(R),Wk:P) llid — HN||Loc(Bk+2(7‘+1)+0',p(R))Bk+2(r+l),p)
j EQ*O’(N*FI).

The estimate of X, follow from the hypothesis HVF.
O

Lemma 3.2.2. Let j > 1. Then for any k > k1 +2(j — 1) and p € (1,400) there exists
By p(R) C WEP such that

i o
sup (| X, o (8, 9) | < K25,
Bk,p(R)

_ » -
sup ||XFj,N(¢7w)||k,p < K;7k?p22(] 1)N7
Bk,p(R)

where

. _
K]Ek),p = sup || Xn, (¥, ) |lk—25p,
B ,p(R)

i _
Kj(-,k,)p (= sup : | X7 (¥, ) |lk—2(i-1).p-

k,p

Proof. Tt follows from

1/2
sup Z (bh(D)XFj,N (%1/;) = sup Z |2hk¢h(D>XFj,N("/}»'J})|2
YEB,p(R) || <N X YEB,p(R) || | h<N
< Wk < .
(3.2.8)
1/2

< 207DV sup || Y 20l (D) X (4, 9) (3.2.9)

WeBK,(R) || | p=n

P
< 220N gyp 1 X5, x (¥, %) lk—2(j-1),p (3.2.10)
weBk,p(R)
F -

_ Kj(',k:?p 92(J 1)N7 (3.2.11)
and similarly for Xp, . O

Next we have to normalize the system (3.2.1). In order to do this we need a slight reformu-
lation of Theorem 4.4 in [4]. Here we report a statement of the result adapted to our context.

Lemma 3.2.3. Let k > k; + 2r, p € (1,400), R > 0, and consider the system (3.2.1)). Assume
that e < 274N7" | and that

(K]gf;»"') _‘_K]g?;"’)),rQQNTG < 2_96_17T_1R7 (3212)
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where
KED = sup  sup | Xe (b, D) ||k_o;
o ip p F; (Y, k—2(j—1),ps
1<j<r ¢ €Bj »(R)
h,r )
Klg,p )= sup sup Hth (¥, D) ll—25,p-

1<j<r$€By,p(R)
Then there exists an analytic canonical transformation 7;(2 : Bip(R) = By p(2R) such that

sup T (W, 9) — (4, 8) [wrw < AmrKL D227,
Bi,p(R/2)

and that puts (3.2.1) in normal form up to a small remainder,
Hy, o TN = ho + ehy, + €23 + € IRY, (3.2.13)
with Z]((,a) is in normal form, namely {ho N, Z](\;)} =0, and

Sup X 0 (6, 9) e < 42287 € (rE(SD 4 r KT ) r22N R

Bi.p(R/2)
F, Fr h,
= 4K (5T 4 KT )2t R (3.2.14)
sup [ X0 (4, 9) [, (3.2.15)
Bip(R/2) N
T K r
< P (K" + KL (3.2.16)
[4T <9 . 296Z(K(Fn') + K(FJ'))K(F77")7,224N7‘6+ 5K (W) 02NT 4 g e (Fir) T22NT) T]T
R R\ ki k,p k,p k,p k.p

(3.2.17)

The proof of Lemma, is postponed to the Appendix, Chapter [A]

Remark 3.2.4. In the original notation of Theorem 4.4 in [{]] we set

P=Wwh?,
he = ho,
fAL = EhN’r,
f= EFN,T?
fi=r=9g=0,

F =KoV,

Fy = K" r2?Vre,

Remark 3.2.5. Actually, Lemma [3.2.5 would hold also under a weaker smallness assumption
on e: it would be enough that ¢ < 272N and that

(Fr) 1— 22Nr€r (hr) 22N(1 _ 22N7’€r)

9 —1_-1
hp ] 92N kp | — 22N, <27%e"m "R (3.2.18)
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is satified. However, condition (3.2.18|) is less explicit than (3.2.12)), that allows us to apply
directly the scheme of [4]. The disadvantage of the stronger smallness assumption (3.2.12)) is

that it holds for a smaller range of €, and that at the end of the proof it will force us to choose
a larger parameter o = 4r%. By using (3.2.18) and by making a more careful analysis, it may be
possible to prove Theorem [3.1.3 also by choosing o = 2r.

Now we conclude with the proof of the Theorem [3.1.3
Proof. Now consider the transformation 7;(7]3 defined by Lemma , then

(t(TN))*H =hy + Zejhj’N + eZ](\;) + 6T+1R(NT) + € Rgal
j=1

where we recall that

€ Raa = (TN) (R + Ry).

By exploiting the Lemma we can estimate the vector field of Rg\?), while by using Lemma
[3.2.1} and (A.0.10) we get

- € ertl
sup [ XR o (¥ ) lwer = < 1 > (3.2.19)
Bitota(r+1),p(R/2) ot ’ 20(N+D g 4 2(r + 1)

To get the result choose

k0:0’+2(7“+1),
N =ro tlog,(1/e) — 1,

o= 4r2.

Remark 3.2.6. The compatibility condition N > 1 and (3.2.12)) lead to
—9 —1_— Fr h,r)\—1 —16—2r 2 —20/r —8r
€< [2 Yemln 1R(K,;p )+K,(€7p)) Lp=1g 2} =€ pp < 2 20/r < 98"
Remark 3.2.7. We point out the fact that Theorem [3.1.3 holds for the scale of Banach spaces
WFkP(M,C" x C"), where k > 1, 1 < p < 400, n € Ny, and where M is a smooth manifold on

which the Littlewood-Paley decomposition can be constructed, for example a compact manifold
(see sect. 2.1 in [21]), R, or a noncompact manifold satisfying some technical assumptions (see

[29)).

If we restrict to the case p = 2, and we consider M as either R? or the d-dimensional torus T¢,
we can prove an analogous result for Hamiltonians H (v, 1)) with (¢, 1) € H* :== Wk2(M,C xC).
In the following we denote by By(R) the open ball of radius R and center 0 in H*. We recall
that the Fourier projection operator on H* is given by

nju(a) = (2m) 2 [ Bk, =1,

J—1<|k|<j
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Theorem 3.2.8. Fizr > 1, R > 0, ky > 1. Consider (3.1.4), and assume PER, INV (with
respect to Fourier projection operators), NF and HVF. Then 3 ko = ko(r) > 0 with the fol-
lowing properties: for any k > ki there exists €, < 1 such that for any € < €, there exists

7 By (R) — Bj(2R) transformation s.t.

HT ::Hot(r):h0+zejzj+er+l R(T)7

j=1
where Z; are in normal form, namely
{Z;,ho} =0, (3.2.20)
and
sup ”X’R(") HFk < Ck, (3221)
Bty (R)
sup ||77) —id|| g < Cre. (3.2.22)
Bi(R)

In particular, we have that

Z1(,9) = ha(y, ¥) + (F1) (¥, 9),
where <F1> (1!1,1[)) = fozﬂ Fl o @t(wvi)%

The only technical difference between the proofs of Theorem and the proof of Theorem
3.2.8|is that we exploit the Fourier cut-off operator

Myv(e)i= [ e ak

|k|<N

as in [5]. This in turn affects (3.2.6)), which in this case reads

sup [ X R, (8,9 = (3.2.23)

Biyotar+1) (R

<
N’
and (3.2.19)), for which we have to choose a bigger cut-off, N = ¢~ "7.

3.3 Application to the nonlinear Klein-Gordon equation

3.3.1 The real nonlinear Klein-Gordon equation

We first consider the Hamiltonian of the real non-linear Klein-Gordon equation with power-
type nonlinearity on a smooth manifold M (M is such the Littlewood-Paley decomposition is
well-defined; take, for example, a smooth compact manifold, or R?). The Hamiltonian is of the
form

c2 u2!
2

H(u,v) = — (v,v) + % (u, (V)2u) + )\/Q—Z, (3.3.1)
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where (V). := (> = A)Y/2, N e R, 1 > 2.
If we introduce the complex-valued variable

i % K(Vc>c>l/2u i (<VC>C)1/2 v} , (3.3.2)
Efphiﬁ a)msgociated symplectic 2-form becomes idi) A d1)), the Hamiltonian in the coordinates
) is
. . A c \y+9]”

H (), ) = (¢, e(V)e)) + 5 / <<V>c> 7 dz. (3.3.3)

If we rescale the time by a factor ¢?, the Hamiltonian takes the form (3.1.4), with e = %, and
H(, ¥) = ho(,¥) + e h(v),¥) + e F (¢, 1), (3.3.4)

where
ho(y,9) = (¥, 9) , 3.3.5
W, 9) = (&, ((V)e = E) ) ~ D71 (Dya;A0) =Y (9, 4), (3.3.6)
Jj21 j>1
o e N2 ]

Fod) =gt [ () @+ @ (3:37)

Y _
~ o] /(1/) + ) de

~ eby / [(6 + 9)? AW +6) + ...+ (@ + DA + %)) da
+ O(?)
=Y (1), (3.3.8)

Jj=1

where (a;);>1 and (bj);>1 are real coefficients, and F}(1,1) is a polynomial function of the
variables 1) and ¢ (along with their derivatives) and which admits a bounded vector field from
a neighborhood of the origin in W#+2U=1» to W*» for any 1 < p < 400.

This description clearly fits the scheme treated in the previous section, and one can easily check
that assumptions PER, NF and HVF are satisfied.

Therefore we can apply Theorem to the Hamiltonian ([3.3.4)).

Remark 3.3.1. About the normal forms obtained by applying Theorem[3.1.5, we remark that in
the first step (case r = 1 in the statement of the Theorem) the homological equation we get is of
the form

{x1, ho} + F1 = (F1), (3.3.9)
where Fy(,)) = ﬁ J (¢ +¢)*'dz. Hence the transformed Hamiltonian is of the form

H (0, 0) = ho(,9) + 5 |~ (6. A0+ (R) 0. 9)| + ZRO@.H).  (33.10)
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If we neglect the remainder and we derive the corresponding equation of motion for the system,
we get

) 1 1 A (21 2(1—1
— iy :dﬂrcj {2A¢+25‘H(l>|w| ( )74 ) (3.3.11)
which is the NLS, and the Hamiltonian which generates the canonical transformation is given by
A 1 21 2—j 7
—_ dx. 3.12
(. 8) = sy _Ozzlz.Q(l_j)<j>/w P (3312)
A

Remark 3.3.2. Now we iterate the construction by passing to the case r = 2, and for simplicity
we consider just the case | = 2, which at the first step yields the cubic NLS. In this case one has
that

T - — . dT
x1(¥,9) =/O T PR (¥, 9) — (F1) (27 (%,¥))] =

A o 3 —iT,],
—55 |7 [ lemer e — ol o

Since

|6i7—’L/J + e_iT’lZJ|4 _ e4i7’w4 +462i7w3i)+6ﬂ)21]]2 _'_46—21‘71/},&3 + 6_41‘7—1E4

. 2m i .
and since fo TemTdr = 12—:; for any non-zero integer n, we finally get

4 1,4
ad) = 15 [ L+ 20 - 0 do

6

If we neglect the remainder of order ¢c™°, we have that

1 1 1
HoTW =ho+ Zhi+ = {xi,}+ Shat
1 1 1 1
+ 672 <F1> + Cj{x].)Fl} + 264 {Xla {Xlaho}}' + 074F2 (3313)

1 1 1
= ho + 2 [h1 + (F1)] + o {xi,hmt+he+{x1,FAi}+ §{X17<F1> - R} +Fl,

(3.3.14)
where hy (1, V) = -3 <¢ A1/1>
Now we compute the terms of order C%
a0 O 0 O
bt =dxaXn, = a0 Ton o o0 (3.3.15)
A - _ _
=~ [ [80 (8 + 6970 — 26°) — MGy — 64° — )], (3.3.16)

hy = ,é (Y, A%)), (3.3.17)
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2
{x1,F1} = ;—2 / (49° 4+ 1209 4+ 1209° + 49%) (§° + 69% — 2¢°)+ (3.3.18)
— (4¢% + 12029 + 12992 + 4°)(2¢° — 699 — ¢°) du, (3.3.19)
A2 _ _ _ _ _
Das () =5 / [[01%9 (4% + 69%) — 20°) — |99 (2¢° — 6y9® — 4°)] dz,  (3.3.20)

Fy = % (07 + 3970 + 3y” + 9%) Ay + (0% + 300 + 399% +07) AY] dz. (3.3.21)

Now, one can easily verify that ({x1,h1}) = {x1, (F1)}) =0, and that

)\2
(s 11} = BT /( 8[9]° + 720|° + 4191°) + (4]9[° + 72[|° - 8[¢[%) dx (3.3.22)
—)\2/|1/J|6 dx, (3.3.23)
by _ _ _
(Fy) = i / 3p? Ap + 3¢y? A dz (3.3.24)
_A 31V (¢ Ay + P AY) da. (3.3.25)

Hence, up to a remainder of order O (c%), we have that
Hz_ho+/[ (5.80) + D] as
17,56 27 " Lo a2
o [ NI+ SR Ay + 6 AG) - ¢ (§,8%) da, (3.3.26)

which, by neglecting ho (that yields only a gauge factor) and by rescaling the time, leads to
the following equations of motion

iy = —lAwﬁAWw

b [ SN o (2P Ay + 9200 - AGPE) — SA%|. (3327)

To the author’s knowledge, Eq. has never been studied before. It is the nonlinear
analogue of a linear higher-order Schrédinger equation that appears in [22] and [23)] in the con-
text of semi-relativistic equations. Indeed, the linearization of Eq. s studied within the
framework of relativistic quantum field theory, as an approzimation of nonlocal kinetic terms;
Carles, Lucha and Moulay studied the well-posedness of these approzimations, as well as the
convergence of the equations as the order of truncation goes to infinity, in the linear case, also
when one takes into account the effects of some time-independent potentials (e.g. bounded po-
tentials, the harmonic-oscillator potential and the Coulomb potential).

To the author’s knowledge, very little is known for the nonlinear equation : we just men-
tion [2])], in which the well-posedness of a higher-order Schrodinger equation has been studied.
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3.3.2 The complex nonlinear Klein-Gordon equation

Now we consider the Hamiltonian of the complex non-linear Klein-Gordon equation with power-
type nonlinearity on a smooth manifold M (take, for example, a smooth compact manifold, or

RY)

c? 1 2 |w]*
H(w.pw) = 5 (Puspu) + 5 (w, (V)cw) + A [ ==, (3.3.28)
where w: R x M — C, (V). := (2 = A)V/2 A€ R, 1 >2.
If we rewrite the Hamiltonian in terms of u := Re(w) and v := I'm(w), we have
2 2 u? + v2)!
(0,0 p90) = S (usta) + s i) + 5Vl + 90 + S0 407 1 [ 0]
(3.3.29)

We will consider by simplicity only the cubic case, [ = 2, but the argument may be readily
generalized to the other power-type nonlinearities.

If we introduce the variables

Wb = \% <<VC>C)WU —i (&)1/2%] , (3.3.30)
bim % <<Vc>c)1/2y+i (<VC>C>1/2pU] , (3.3.31)

(the associated symplectic 2-form becomes idy A dep —idp Adg), the Hamiltonian ([3.3.28) in the
coordinates (¢, ¢, ¥, ¢) reads

H(tp, 0,0, 0) = (,c{V)eth) + (, (V) ) (3.3.32)
=3 [<w+w7< ><w+w>> (o456 an @330)

with associated equations of motion

it = eV + 1 [(0+ 6, @+ 9)) + (646, - (6+ 9))] (0 + D),

ion  =o(Vhed+ 1 [(0+ S +D) + (046, &0+ )] (6 +9).
If we rescale the time by a factor ¢?, the Hamiltonian takes the form (3.1.4), with ¢ = %, and

H(,¢,0,0) = Ho(v, §,,0) + €h(1,6,9,0) + ¢ F(1), 6,9, 6), (3.3.34)
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where
Ho(¢, 9,0, 0) = (0, ) + (¢, 6), (3.3.35)
h(b, ,1,8) = (¥, (c(V)e — ) ) — (&, (c(V)e — %) )
~ ST (B a; A + (60,07 6))
j>1
= Zef Yhi (v, 6,0, 9)), (3.3.36)

P08 = g5 [ (v i e+ (046 (¢+¢)>]2

[+ B2 + 16+ 6] da
+ O(e)
_ ZGJ LFj (¢, 6,0, 0), (3.3.37)

7j>1

where (a;);>1 are real coefficients, and F; (1, ¢, 1, ¢) is a polynomial function of the variables 1,
&, ¥, ¢ (along with their derivatives) and which admits a bounded vector field from a neighbor-
hood of the origin in W*+20-1.»(R¢ C2 x C?) to WFP?(R?, C? x C?) for any 1 < p < +o0.
This description clearly fits the scheme treated in sect. with n = 2, and one can easily check
that assumptions PER, NF and HVF are satisfied.

Therefore we can apply Theorem to the Hamiltonian (|3.3.34)).

Remark 3.3.3. About the normal forms obtained by applying Theorem[3.1.3, we remark that in
the first step (case r =1 in the statement of the Theorem) the homological equation we get is of
the form

{x1,ho} + F1 = (F1), (3.3.38)

where Fy(,1) = % Jllv+92+]o+ <5|2]2dx. Hence the transformed Hamiltonian is of the
form

H(,6,5,8) = ho(,6,,8) + 5 | —5 (8,50) +(5,08)) + (F1) (8,6, ,0)

+ ZRO,0,0,6), (3339
where
(F1) = 25 (6007 + 6625 + 80966 + 2067 + 2%
)\

S BUP +16P)° + 2(¢¢ — 49)*] .

If we neglect the remainder and we derive the corresponding equation of motion for the system,
we get
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{z’wt = ¢+ L {-3A¢ + 2 B2+ [0/ + 200 + ¥)d] }

idr =0+ 5 {380+ 3 BYP +161%)0 +2(¢0 +¥e)d] },

which is a system of two coupled NLS equations.

39

(3.3.40)
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Chapter 4

Approximation of the NLKG
equation in the non-relativistic limit

4.1 Dynamics

Now we want to exploit the result of the previous section in order to deduce some consequences
about the dynamics of the NLKG equation in the non-relativistic limit. Consider the
simplified system, that is the Hamiltonian H, in the notations of Theorem [3.1.3] where we
neglect the remainder:

Hsimp = hg + 6(hl + <F1>) + Zej(hj + Z])

j=2

We recall that in the case of the NLKG the simplified system is actually the NLS (given by
ho + €(h1 + (F1))), plus higher-order normalized corrections. Now let 1, be a solution of

_i'(/}r = XHS'ian(wT)? (4'1'1)
then v, (t, z) := T (¢, (c?t, x)) solves
. A\ 1/2 V2 2l-1 1 B
"/}a = ic<v>c¢a + ﬂ (<VC>C> <<VC>C> w \—/"_;b - CQﬁXTM')*R(v') (¢au z/Ja)v (412)

that is, the NLKG plus a remainder of order ¢=2" (in the following we will refer to equation

as approzrimate equation, and to v, as the approximate solution of the original NLKG).
We point out that the original NLKG and the approximate equation differ only by a remainder
of order ¢~2", which is evaluated on the approximate solution. This fact is extremely important:
indeed, if one can prove the smoothness of the approximate solution (which often is easier to
check than the smoothness of the solution of the original equation), then the contribution of the
remainder may be considered small in the non-relativistic limit. This property is rather general,
and has been already applied in the framework of normal form theory (see for example [7]).

Now let 9 be a solution of the NLKG equation , and set § := 1) — 1), the error between
the solution of the approximate equation and the original one. One can check that ¢ fulfills

0 =ic(V)eb + [P(Ya + 6,90 + ) — P(a, )] + C%Xﬂmnm (a(t), Ya(t)),

41
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where
_ c \"? ¢ \"? Y+ o
Thus we get
0 =i c(V)ed + dP(¢a(t))6 + O(6%) + O (Cl) ;
3(t) = eite(Vegy 4 /t e t=9)eNV)e 4P (1o (5))d(s)ds + O(8%) + O (C;) . (4.1.4)
0

By applying Gronwall inequality to (4.1.4)) we obtain

Proposition 4.1.1. Fizr>1, R> 0,k > 1,1 <p < 4o0o. Then 3 kg = ko(r) > 0 with the
following properties: for any k > ki there exists iy p.r > 1 such that for any ¢ > ci i p.r, if
we assume that

[Yollk+kop < R
and that there exists T' =T, j, , > 0 such that the solution of satisfies
[0 ()| kthop < 2R, for 0<t < T,
then
16(8)[|kp < Crpe™™", for 0<t<T. (4.1.5)

Remark 4.1.2. If we restrict to p = 2, and to M = R? or M = T, the above result is actually
a reformulation of Theorem 3.2 in [35]. We remark, however, that the time interval [0,T] in
which estimate (4.1.5)) is valid is independent of c.

Remark 4.1.3. By exploiting estimate (3.1.9) about the canonical transformation, Proposition
leads immediately to a proof of Proposition[1.0.8
In order to study the evolution of the error between the approximate solution and the solution

of the NLKG over longer (namely, c-dependent) time scales, we observe that the error is described
by

0(t) = i c(V)ed(t) + dP(a(1))5(t); (4.1.6)
5(t) = e'tVlegy + / t e =9V 4P (14 (5))d(s)ds, (4.1.7)
0

up to a remainder which is small, if we assume the smoothness of v,,.

Equation in the context of dispersive PDEs is known as semirelativistic spinless Salpeter
equation with a time-dependent potential. This system was introduced as a first order in time
analogue of the KG equation for the Lorentz-covariant description of bound states within the
framework of relativistic quantum field theory, and, despite the nonlocality of its Hamiltonian,
some of its properties have already been studied (see [81] for a study from a physical point of
view; for a more mathematical approach see [51] and the more recent works [22] and 23], which
are closer to the spirit of our approximation).

It seems reasonable to estimate the solution of Equation by studying and by exploiting
its dispersive properties, and this will be the aim of the following sections. From now on we will
consider by simplicity only the three-dimensional case, d = 3, but the argument may also be
applied to M = R? for d > 3.
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4.2 Long time approximation

Now we study the evolution of the the error between the approximate solution ,, namely the
solution of (4.1.2), and the original solution ¢ of for long (that means, c-dependent) time
intervals.

We begin by taking 1 € W***0-4 guch that the solution v, of the normalized equation
with initial datum 1y exists for all times. We want to estimate the space-time norm LYW (for
some particular values of the couple (p, ¢), that we will specify later) of the solution of .

Remark 4.2.1. The assumption of global existence for 1, is actually a delicate matter. For the
case r = 1 Eq. is the nonlinear Schrédinger equation, for which the question of global
existence has been widely studied, and a lot is known.

For the general case r > 1, in [22] and [23] the authors proved that the linearized system,
namely the one associated to

ho+ > €'h; (4.2.1)
j=1

admits a unique solution in L>=(R)H"(R®) (this is a simple application of the properties of the
Fourier transform), and by a perturbative argument they also proved the global existence also for
the higher oder Schridinger equation with a bounded time-independent potential.

In the nonlinear case little is known (see for example [Z]]] for the well-posedness for a higher-order
nonlinear Schrodinger equation, and also Remark in the next subsection).

Remark 4.2.2. We point out that the case of the one-dimensional defocusing NLKG is also
interesting, since for A =1 the normalized equation at first step is the defocusing NLS, which is
integrable. It would be interesting also to understand whether globally well-posedness and scat-
tering hold also the normalized order 2 equation , which we later exploit to approrimate
solutions of the NLKG up to times of order O(c?).

Even though there is a one-dimensional integrable JNLS equation related to the dynamics of
a vortex filament (see [T7] and references therein),

1 3 3 - 3 1
7;1/}t + "/}:L’x + §|¢|2¢ -V %m + §|¢|2¢zz + 51/{3;1/} + §|¢\4¢ + §(|¢|2)11w = 07 veR
(4.2.2)

apparently there is no obvious relation between the above equation and Eq. . Furthermore,
while the issue of local well-posedness for one-dimensional fourth-order Nonlinear Schridinger has
been quite studied (see for example [{3]), there is only a recent result (see [T]]) about global well-
posedness and scattering for small radiation solutions of 4NLS, which unfortunately does not

cover Eq. (3.3.27), due to technical reasons.
Therefore it seems difficult to give an explicit condition for global well-posedness and scattering

for the normalized equation also in the one-dimensional case.

By following the arguments of Theorem 4.1 in [48] and Lemma 4.3 in [23] we obtain the
following dispersive properties for (4.2.1)) which will be useful in the sequel.

Proposition 4.2.3. Let r > 1, and denote by U,.(t) the evolution operator associated to (4.2.1))
rescaled back to the original time. Then we have the following local-in-time dispersive estimate

edy ()| 1 23y oo () = P73/ G0 < ) < 20D, (4.2.3)
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On the other hand, U, (t) is unitary on L*(R3).
Now let us introduce the following set of admissible exponent pairs:

A :={(p,q): (1/p,1/q) lies in the closed quadrilateral ABCD, } (4.2.4)

where

11 1 1 2r—1 1 1
A_<§’§>’ B_(LT_T)’ C=(1,0), D_(;?())v Tr—r_—l, T_r+;_1'
Then for any (p,q) € A\ {(2,2),(1,7), (17, 00)}

e (B) | o9y o ey = R G =3 (G5

Figure 4.1: Set of admissible exponents A, for different values of r: (a) r=1 (this is the
Schrodinger case); (b) r=2; (¢) r=11.

Let r > 1: in the following lemma we will say that (p,q) is an order-r admissible pair when
2<g<+4ooforr>2(2<qg<6forr=1), and

2 3 3
-4+ — = —. 4.2.6
p * rq 2r ( )

Proposition 4.2.4. Let r > 1, and denote by U,.(t) the evolution operator associated to (4.2.1))
rescaled back to the original time. Let (p,q) and (r,s) be order-r admissible pairs, then for any
T j 02(7‘71)

_1\(1_1 _1)2r
e (8)boll Lo 0.1y acesy < O ED 6o Lasy = 775 (|gol L2asy. (4.2.7)

Radiation solution

As an application of Proposition 2.1.1] we consider the following case. Fix r > 1, and let
U = Nraq be a radiation solution of (|4. l.1|), namely such that

Nrad,0 = nrad(o) S Wk+k0’p(R3), (428)

where ko > 0 and k >> 1 are the ones in Theorem [3.1.3] and such that 7,,4(c*t) satisfies ([4.2.5
for any p such that (p,3) € A, \ {(1,7-)}, with U, replaced by the evolution operator of (4.1.1
(rescaled back to the original time).

Remark 4.2.5. The assumption r > 1 is due to (4.2.3), and it reflects the fact that we want to
study the behavior of the error 6 for long (c-dependent) timescales.
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Let 6(¢) be a solution of (4.1.6)); then by Duhamel formula
85(t) == U(t,0)8p = e V)egy + / e =NV P (b, (s))U(s,0)dods. (4.2.9)
0

Now fix T' < ¢>"~1); we want to estimate the local-in-time norm in the space L>([0,T])H*(R?)
of the error §(t).

By (2.1.2) we can estimate the first term. We can estimate the second term by (2.1.3)): hence
for any (p, q) Schrodinger-admissible exponents

t
/ e t=eV)edP (4h,(5))d(s)ds

0

L ([0, 1) HE
+

dp(wa(t))(s(t)||Lf'([01T])Wa/:v,q’
dP(1,qq(c*t))5(t) HL?/([QT])W;C,Q,

AP @a(0) — AP0l OO 1y o1y i

Q=
Wl

,i
Ol Oxgl=
Q=
nl=

2(1-1)

(<VC>C>U2 (Mrad + nmdﬂ 5(t) ,

L ([0, THwk’

I, = A cl '
P=2l=1/2(21)(21 — 1)

and by choosing p = 2, ¢ = 6 we get (since ||(¢/(V)e)YO||o/s_ o5 < 1)

2(1—1)

e\ /2
y <<v>c) (raa(c*t) + nmd<c2t>>] 5(t)

I <
2= 1220 (20— 1)

Lz(jo,Thwe*/®

Now, since by Hélder inequality

2(1-1)

c 1/2 , ) )
[( <V>c> (11rad(c”t) + 7raa(c t))] 5(t)

L3(jo,)ws%/®
2(1-1)

1/2
C _
(<v> ) (nr‘ad(c2t) + nrad(c2t))] ||5(t)||Lt°°([O,T])H£7
c
Ly ([0, 1wy
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and by Sobolev product theorem (recall that [ > 2, and that 3k > 3) we can deduce that

12 2(1-1)
C ) ) ,
H KM) (11rad(¢*t) + Tlraalc t))]

/ ' [(m) Y (@) + ﬁmd<c2t>>]

Hn’r‘ad(czt) + ﬁrad(c2t) Hi(f‘l(j_lz)([QT])Wf’s ’

Lz (0, Thw?
a-1) 712
dt

wks

IN

but for any 1 < p < 2 such that (p,3) € A, \ {(1,7.)} we have

/ey (il _3(1_1
raa(D)]| psa o rpwes < VG gl 1t~ F573)

g0 0,1
_ 1_1 _3(1_1
< ACTIG) o]yt 2730 p)||L?<,,1)([O,TD, (4.2.10)
which is finite and does not depend on ¢ for
7radollyys+r00 = M, (4.2.11)
1\ /1 1 (r—1) r—1/1 1
>3(1-=) (=== 3 -
= ( ) (p 3>+2<11>+ " (p 3)
1\ /1 1 (r—1)
=6(1—-=)(==-=)+ "L :=a"(l,rp). 4.2.12
(1-2) G-3) = 2w

where M is independent of ¢. Indeed, under conditions (4.2.11)) - (4.2.12)) we obtain that for any
c>1

1raa(8)| a0 o s < €7 M.

Furthermore, via (3.1.9) one can show that there exists ¢, , > 0 sufficiently large such that
for ¢ > ¢,k p the term Il> can be bounded by C% I>.

This means that we can estimate the L>([0,7])H* norm of the error only for a small (with
respect to ¢) radiation solution.

Remark 4.2.6. We notice that 7. < 3 for r > 2, hence the point (1,3) is contained in A, for
r > 2. The smallness conditions - are probably due to the fact that we had no
loss of derivatives in the previous estimates, which in turn is based on the estimates for
the normalized equation. If one could find the analogue of with loss of derivatives, we
think that such conditions could be improved.

To summarize, we get the following result

Proposition 4.2.7. Consider , let r > 1, and fit ky > 1. Let 1 < p < 2 be such that
(p,3) € A\ {(1,7,)} (where A, and 7, are defined as in [£.2.4)). Then 3 ko = ko(r) > 0 such
that for any k > ky the following holds: consider the solution 1,4q of (E.1.1) with initial datum
Nrad,0 € Wktkor - and assume also that 1.qq satisfies the decay estimate (4.2.5) for (4.1.1)).
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Call § the difference between the solution of the approzimate equation (4.1.2) and the original
solution of the Hamilton equation for (3.3.3)), and assume that &y := 6(0) satisfies

1
Soll e < =
|| OHHf, = 2
Then there exist o* := o*(I,7,p) > 0 and there exists ¢* := c¢*(r,k,p) > 1, such that for any
o > o and for any c > c*, if Nrqq,0 Satisfies

||777‘ad,0||Wk+ko~P = c—a’

then

1
sup 8(8) s < =5, T = XD,
te[0,T) = = ¢

By exploiting (3.1.9)), we can rewrite Proposition in terms of the solution of the normal
1)

form equation (|

Theorem 4.2.8. Consider , let v > 1, and fix ky > 1. Let 1 < p < 2 be such that
(p,3) € A\ {(1,7)} (where A, and 7, are defined as in [{.2.4)). Then 3 ko = ko(r) > 0 such
that for any k > ki the following holds: consider the solution 1, of (4.1.1) with initial datum
Vro € WETROP - Assume also that v, satisfies the decay estimate .

Then there exist o := a*(l,r,p) > 0 and there ewxists ¢* = ¢*(r,k,p) > 1, such that for any
o > o* and for any c > c*, if .o satisfies

10r0llwretror = ¢,

then

1 —
sup [ 0() = (Bl s < 5, T =200,
te[0,T) c

where 1(t) is the solution of (3.3.4) with initial datum ), ¢.

Remark 4.2.9. For [ = 2, which corresponds to the cubic NLKG, by taking r = 2 in Theorem
/.2.7, and this allows one to approzimate small radiation solutions up to times of order O(c?),
assuming that the decay holds also for the simplified equation .

It would be interesting to study in detail Eq. , and to state explicitly some conditions
that ensure scattering for solutions of the order-r normalized equation. Fven though some results
for the linearization of Eq. have already been established (see [16] and [48] for dispersive
estimates, and [23] for Strichartz estimates), the study of the fourth-order NLS-type (4NLS)
equation is still open: while there are some papers dealing with the local well-posedness of 4NLS
(see for example [T7] for the one-dimensional case, [{4] for the multidimensional case), global
well-posedness and scattering results are much less known. The recent [T]] gives the first global
well-posedness and scattering result for small radiation solutions of 4NLS in any dimensiond > 1,
but unfortunately does not cover Eq. , due to technical reasons. Therefore we cannot give
a more explicit statement for the approzimation up to times of order O(c?) for the NLKG on
R?, d > 3.

Remark 4.2.10. One may ask whether it is possible to prove an approximation result also in
the relativistic Sobolev spaces WP, A modification of the argument used to prove Proposition
allows to state an approzimation result in the space L;° . Indeed, by Proposition
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t
/ ei(t—s)cW}cdp(nmd(s))é(s)ds
0

L= ([0,T)) 2 /?

. 1/2 2(1-1)
(<V>C) (nT'ad + UT'ad)‘| 5(t)

L3([0,T)wkH1/3:0/5

(0.7 ¢ 1/2 2(1-1)
2 (M) (v + Tivad) 18]l 22
‘ L2([0.T)y w138
12 2(1-1)
C _
+ (<v> ) (nrad + nrad)‘| ||5||Ltoojﬂfck+1/3

L([0, 1) L3

1/2 2(1-1)
Cc
< ( ) (rad + i) 1601222
V> wyk+1/3,3
¢ Li([o.1])
2(1-1)
+ nrad + ﬁrad) ||6||L°°jfk+1/3
L8|, to
LE([0,71)
2(1-1) 2(1-1)

2 ( Mmraall - 1/63||L2+H||7]7"ad|| —1/2,6(1— 1)||Lf ) ||5||L?ojfck+1/2

(|77md|| 4(z 1)([0T]) k— 1/63+ Hnde 4(z 1)([0 Tlyw /260 1)> ||6||Lt00<}fck+1/2'

Now, the term

-1
”nrad“ (4(1 3)([0 Tywk=1/68

can be bounded as in Propositz'on namely by assuming the smallness conditions (4.2.11))-
(4.2.12). The term
2(1—1
Hnmdu (4(1 3)([077,])%;1/2,6(171)7

can also be bounded by exploiting the dispersive estimates (4.2.5)). Indeed, for any p1 € [1,2] such
that (p1,6(1 — 1)) € A, one has

||777‘ad||L4(l U([OT]) 1/2 6(1—1) _< HnTadHL‘l(l 1)([0 T])LG(Z 1)

< A= 1/r)(p1 60— 1)) |||t|_7(6(1 1)_7)||L4(z v (0,77) 1Mrad.ollLe1 s
which is finite and does not depend on ¢ > 1 for

a0l pr = ™M, (4.2.13)

a>6 <1 - i) (pll -5 1_ 1)> + 26__11) = ai(l,r,p1). (4.2.14)

where M is independent of c. We obtain the following result

Proposition 4.2.11. Consider (3.3.3)), let r > 1, and fix k1 > 1. Let 1 < p < 2 be such that
(p,3) € A\ {(1,7)}, and let 1 < p; < 2 be such that (p1,6(1 — 1)) € A, (where A, and 7,



4.2. LONG TIME APPROXIMATION 49

are defined as in (£.2.4)). Then 3 ko = ko(r) > O such that for any k > ky the following holds:
consider the solution nyqq of (4.1.1) with initial datum nyqq,0 € Whtkor O\ [P1 and assume also
that n-qq satisfies the decay estimate (4.2.5) for (4.1.1)).

Call § the difference between the solution of the approximate equation and the original
solution of the Hamilton equation for , and assume that oo := §(0) satisfies

1
190ll.x = -

Then there exist o := «*(I,r,p) > 0 and oF := o5 (l,7,p1) > 0 and there exists ¢* := c*(r, k,p) >
1, such that for any o > max(a*,aj) and for any ¢ > c*, if Nrqa,0 satisfies

Hnrad,O ||ch+kovmep1 = c—a’

then

1
sup [|6(t)[|ler < —, T =201,
te[0,T N c

By exploiting (3.1.9), we can rewrite Proposition [4.2.11|in terms of the solution of the normal
11)

form equation (|

Theorem 4.2.12. Consider , let r > 1, and fir k1 > 1. Let 1 < p < 2 be such that
(p,3) € A\ {(1,7)}, and let 1 < p; < 2 be such that (p1,6(l — 1)) € A, (where A, and 7.
are defined as in {.2.4)). Then 3 ko = ko(r) > 0 such that for any k > ky the following holds:
consider the solution v, of ([.1.1) with initial datum Vro € WETkoP O [P1. Assume also that
¥, satisfies the decay estimate (4.2.5)) for (4.1.1).

Then there ezist o := a*(I,7,p) > 0 and o := (I, r,p1) > 0 and there exists ¢* := ¢*(r, k,p) >
1, such that for any o > max(a*,af) and for any ¢ > c*, if ¥, o satisfies

[0 ||Wc’“+’°0’meP1 .

then

1 _
sup [[(t) = o (®)l|er = =, T =07,
te[0,T) c

where 1(t) is the solution of (3.3.4) with initial datum ), ¢.

Remark 4.2.13. At the first step of Birkhoff Normal Form, r = 1, one can show with a similar
argument (where one can exploit Strichartz estimates for NLS, instead of the stronger estimate
(4.2.3) ) that the approximation is valid up to O(1)-timescales, hence only locally uniformly in

time, but it does not need any smallness assumption as in (4.2.12)-(4.2.12)). An example of such
a result for the cubic case | = 2, which is analogous to Proposition[{.1.1], is the following

Proposition 4.2.14. Consider , and fir k1 > 1. Then 3 kg > 0 such that for any
k > ky the following holds: consider the solution 1,.q of the cubic NLS with initial datum
nrad(o) € HFE o,

Call § the difference between the solution of the approximate equation and the original
solution of the Hamilton equation for , and assume that oo := §(0) satisfies

1
”%”H’; = (372
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Then there exists ¢* := c¢*(k,p) > 0, such that for any ¢ > ¢* there exists T := T(k,p) > 0
independent of ¢ such that

1
sup [|6(t)[[ax = -
t€[0,T) c

Remark 4.2.15. If one considers the linear KG equation and applies the above argument,
one obtains the following approzimation result.

Fixzr>1, ky > 1. Let 1 < p <2 be such that (p,3) € A\ {(1,7.)}.

Then 3 ko = ko(r) > 0 such that for any k > ki the solution nyqq of with initial datum
n(0) € Whtkop satisfies the following property: call § the difference between the solution of the
approximate equation and the original solution of , and assume that oo := §(0) satisfies

1
90l % = =

Then there exists ¢* := c*(r, k,p) > 0, such that for any ¢ > c*

1

2(r—1)
5 T<¢ .

sup [|6(¢)|| e =
te[0,7T) c

This result has been proved in the case r = 1 in Appendiz A of [23].

Standing waves solutions

Now we consider the approximation of another important type of solutions, the so-called standing
waves solutions. Fix r > 1, and let v, be a standing wave solution of (4.1.1)), namely of the form

Ur(t, ) = "ny(), (4.2.15)

where w € R, and 7, € S(R?) solves

—Whw = XHsian (nw)'

The issue of (in)stability of standing waves and solitons has a long history: for the NLS equation
and the NLKG the orbital stability of standing waves has been discussed first in [78]; for the
NLS the orbital stability of one soliton solutions has been treated in [39], while the asymptotic
stability has been discussed in [29] for one soliton solutions, and in [71] and [72] for N-solitons.
For the higher-order Schrédinger equation we mention [56], which deals with orbital stability of
standing waves for fourth-order NLS-type equations. For the NLKG equation, the instability of
solitons and standing waves has been studied in [79], [45] and [65].

As in the case of the radiation, if §(¢) is a solution of (4.1.6)), then by Duhamel formula

§ = ie(V)ed(t) + AP (1), Pu(1))3(0).

Since
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we have that

Y 2(1-1) |
( > cos(wt)nw] (e"™h + e " h),

- ¢
dP(nwvﬁw)eltwh = 2171/2 ( >
c (V).

V)

and by setting § = e *“h, one gets

2(1-1)

—ih = (e{V)e + w)h + 2171/2 cos2(1) (i) <<VC>) [( ¢ ) v m] (h + e~ )

(V).
(4.2.16)
+ [AP(a(s), Ya(s)) — AP(10, )] b (4.2.17)

Eq. is a Salpeter spinless equation with a periodic time-dependent potential; there-
fore, in order to get some information about the error, one would need the corresponding
Strichartz estimates for Eq. (4.2.16). Unfortunately, in the literature of dispersive estimates
there are only few results for PDEs with time-dependent potentials, and the majority of them is
of perturbative nature; for the Schrodinger equation we mention [31] and [38], in which Strichartz
estimates are proved in a non-perturbative framework.

By using Proposition one can show that the NLKG can be approximated by the sim-
plified equation locally uniformly in time, up to an error of order O(c=2"). One may
think that arguing in a non-perturbative framework one could derive some almost-global-in-time
Strichartz estimates for Eq. ; however, since also Proposition deals only with
local-in-time Strichartz estimates, we are not able to exploit the techniques of [31] in order to
get a result valid over the O(1)-timescale.

Thus the result we get is the following one

Proposition 4.2.16. Consider , and fir r > 1 and ky > 1. Assume that w € R and
No € S(R3) are such that is a solution of the simplified equation .

Then there ezists ko = ko(r) > 0 such that for any k > ki the following holds. Call § the
difference between the solution of the approzimate equation and the original solution of
the Hamilton equation for , and assume that §y := §(0) satisfies

1
||50||H§ = 677

Then there exists ¢* = c*(k, ko, |Nwllkt+k,) > 0, such that for any ¢ > c* there exists T =
T(k, ko, |Nw|lk+ko) > 0 independent of ¢ such that

1
sup [|6() | mx = —5-
te[0,T] T e

Remark 4.2.17. Of course the existence of a standing wave for the simplified equation is
a far from trivial question (see [39] for the NLS equation, and [56] for the fourth-order NLS-type
equation,).

Forr =1 and A = 1 (namely, the defocusing case), we can exploit the criteria in [39] for exis-
tence and stability of standing waves for the NLS: we recall that if we fit w > 0 and we consider
N, to be the ground state of the corresponding equation, we have that the standing wave solution

is orbitally stable for % <l< %, and unstable for % <l< %
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Remark 4.2.18. One could ask whether one could get a similar result for more general (in
particular, moving) soliton solution of . Apart from the issue of existence and stability
for such solutions, one can check that, provided that a moving soliton solution for exists,
then the error §(t) must solve a -type equation, namely a spinless Salpeter equation with a
time-dependent moving potential. Unfortunately, since Eq. , unlike KG, is not manifestly
covariant, one cannot apparently reduce to an analogue equation, and once again one cannot
Justify the approzimation over the O(1)-timescale.



Chapter 5

The non-relativistic limit of KG
equation on T

In this chapter we study the non-relativistic limit of the nonlinear Klein-Gordon (NLKG) equa-
tion on compact manifolds. To be definite, we consider

2.2
ciz e (t, ) — Au+ %u + M f(w) =0, (5.0.1)
where z € T, u = u(t, z) is a real-valued (or complex-valued) field, A € R, f(u) is a real-valued
function (or f(u) = Ag(Ju|?)u if u is complex-valued), and m > 0, ¢ > 0, i > 0 are respec-
tively the mass, the speed of light and Planck’s constant. In the following we will assume that
m=h=1.
For fixed ¢, the well-posedness of the Klein-Gordon equation is well studied (see [36] and [37]).
We mention also the papers [33], [32] and [9], in which the authors have discussed the time-
existence beyond the timescale controlled by local existence theory for small solutions of :
the main difficulty of such a problem, already when c is fixed, is the fact that dispersive estimates
typically fail on a compact manifold, hence a more refined analysis is needed in order to obtain
nontrivial results.
Here we focus on the non-relativistic limit (¢ — co0) of the NLKG with real initial data of the
form u(0) := ug € H*(T), u(0) = vo € H*1(T).

The nonrelativistic limit of on the torus has recently gained a lot of interest, both
from the analytical and from the numerical point of view: Faou and Schratz in [35] proved by
using a normal form method the convergence of solutions in H*, locally uniformly in time. We
refer also to [14] for some numerical analysis of the nonrelativistic limit of NLKG.

Our aim is to show that for ¢ sufficiently large, the solution of with initial datum
of size O(c™®) (@ > 0) remains of size O(c™®) for large (namely, O(c*"+1/2)) with r > 1)
timescales.

93
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5.1 The NLKG Equation with a potential

Now consider the following equation:

1
o Ut~ Uas + Au +Vru= f(u), (5.1.1)
with ¢ > 1, 2 € T, f € C(R) a real-valued function (f(u) = g(Ju|?)u where g € C°(R) if u is
complex-valued), with Dirichlet boundary condition. The potential has the form

Viz) = Z vj cos(jx). (5.1.2)
j>1
By using the same approach of [10], we fix a positive s, and for any R > 0 we consider the
probability space
/ —1,s 11
V= V&R = (vj)j21 Uy = R VAKU S —575 R (513)

and we endow the space (1,4+00) X V 3 (¢, (v;);) with the product probability measure.
We recall that in this case the frequencies are given by

s
wj=wilc) =cyJ2+ N = & + —— 5.1.4
imwile) = /et i (514
SN2
2N - = : (5.1.5)
2 20 (14 /14 );/c?)?
where \; = j% + v;. Now, as we have done in sec. we introduce the following change of
coordinates,
~ 1/2 1/2
L (@-asrpe\? c /
Yvi=— || —— u—i| ——m—mm—=——— u |, (5.1.6)
V2 c (2 — A+ V)12
where V is the operator that maps u to V  u. The Hamiltonian of (5.1.1)) now reads
) Py
. . - +
H(, ) = {1, e(c® — A+ V)2 +—/ < _ de.  (5.1.7
(6,9) = (b,cle o) ri i\ Goarem) )4 61
Therefore the Hamiltonian takes the form
H(ip,9) = Ho(y,¥) + N(4,9), (5.1.8)
where
Ho(,9) = (W, e(¢ = A+ V) 2p), (5.1.9)
\ 1/2
_ c _
N, ¢) = = S + dz, 5.1.10
(. ) 24/Tf(<(62_A+V)1/2> (b +9) (5.1.10)

l

1/2

>4
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where N; € C* for each [ (since V € C°°), and

1/2
—° ) :H*>H
((c2—A+17)1/2> '

is a smoothing pseudodifferential operator, which can be estimated uniformly in ¢ > 1.

Theorem 5.1.1. Consider the equation (5.1.1) and fix v > 0, and 7 > 1. Then for any r > 1

there exists s* > 0 and, for any s > s*, there exists a set R := Ry s, C ]1,4+00[xV satisfying
IRy N ([n,n+1] x V)| = O(y) Vn € Ny,

and there exists Ry > 0 such that for any (c, (vj);) € (]1,400[xV) \ Ry and for any R < R
there exist N := N(r, R) > 0, and a canonical transformation

T. =T : B4(R/3) — Bs(R)
such that
H, := HoTC(T) = Hy+ A R(T),

where Z\") is a polynomial of degree (at most) v + 2, which is in (v, 7,N) - normal form with
respect to w = (w;(c));>1, namely such that

ZOW ) = D D™ P",

m,neNN
Znn #0=>|o-(n=—m)| < <. > m+m <2, (5.1.12)
I>N+1
and such that
sup (| X peor (v, )| e < K R7H/2, (5.1.13)
B, (R/3)
sup |7 —id| - < K, R (5.1.14)
B.(R/3)

and we have that Z,, ,, depends on the actions I = ¥ only. Moreover, there exists K > 0 such
that if the initial datum satisfies

(%0, %0)lers < K R (5.1.15)

with K < K}, then
((t), D) || = 2K R, [t| = RTCH/2) (5.1.16)
I(I(t), I(t) |l = K R®, [t| < R-(H1/2), (5.1.17)

Finally, there exists a smooth torus T. such that for any s1 < s —1/2
da, (0(1), (1)), Te) = RFHL, |t < R=(r=mH1/2), (5.1.18)

where r1 < r, and dg, is the distance in H*'.
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Remark 5.1.2. The fact that Z depends only on the actions is a direct consequence of the
non-resonance property established in Theorem|5.1.7

Remark 5.1.3. By the same argument one can prove that if we fix o > 0, then for any r > 1
there exists a set Ry s a.r C ]1,4+00[xV such that there exists ¢* > 0 such that for any (c, (vj);) €
(J1,4+00[xV) \ Ry s,a,r with ¢ > c*, if the initial datum satisfies

- K
| (o, o)l s < pr

for some K > 0, then

1), ()] -

T K o(r
ICZ@), L)l = 50 [t = e (r+1/72),

PN

2Ry < ot

Remark 5.1.4. It would also be interesting to study the dependence of the torus T, on c. One
could expect that it should converge to an invariant torus of the NLS with a convolution potential.
We expect this fact to be true, but it needs further investigation for a proof. This is due to the
fact that the NLS is the singular limit of NLKG and to the fact that c is only allowed to vary in
Cantor like sets, so that one can only expect a Whitney-smooth dependence.

In order to get our result, we need to show some nonresonance properties of the frequencies
w = (wj)j>0: it will be crucial that these properties hold uniformly (or at least, up to a set of
small probability) in (1, +00) x V, since this will allow us to deduce a result which is valid in the
non-relativistic limit regime.

Proposition 5.1.5. Letr > 1, ¢ > 1 be fived. Then¥y > 03V, . CV with [V\V, g .| = O(7),
and 31 > 1 s.t. Y(vj)j>1 € Vi g, andV N > 1

S

.
-k > — 5.1.19
wek + 0l > (5.1.19)

for 0 < |k| <r, supp(k) C{l,...,N}, and ¥V n € Z.

Proof. Let pr((vj)j>1) = Zjvzl w;k;, and assume that kj, # 0 for some h. Then

Opk knh® 1 1
7T =~ > > 0,
avh 2./1+ )\h/CZ 2\/1 + hmaz(s,2) 2\/1 + Nmaz(s,2)
hence by Lemma 17.2 of [73]
{())iz1 o pk((vs)jz1)] < Y| < v Notmaz(e:2)/2;
U {0z iellg)zn)] <7)| <y Netrsmesearz < T

0<|k|<r
supp(k)C{1,....,N}

with 7 > 1 for v = —N,+S+TJ£,QI(S72)/2. O
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Proposition 5.1.6. Letr > 1 be fited. Then ¥y >0 3R, := R, s, C|1,+00[xV with [Ry| — 0
as vy — 0, and 37 > 1 such that ¥(c, (vj);) € (]1,+00[xV)\ R, and V N > 1

N
> wiky + owl 2 % (5.1.20)
7j=1

for 0 < |k| <, supp(k) C{l,...,N}, o ==+1,1 > N.

Proof. Without loss of generality, we can choose o = —1.

Now fix k € ZV with 0 < |k| < r, and fix | > N. Set p.(c, (v;);>1) = Z;yzl wik; —w;. We

can rewrite the function py; in the following way:

Al
v =ac® + )
pk,l( ( J)j>1 Zl+ /1+>\ /CQ 1+ /1+)\l/02
where o := (Z;V 1 ki) —1e{-—r—-1,. — 1}. Now we have to distinguish some cases:

Case o = 0: in this case we have that pr1 can be small only if 12 < 3(N? + N*)?r2. So to
obtain the result we just apply Proposition with N’ := /3(N2 + N*)r, ' =r + 1.
Case o # 0, ¢ < )\%27’1/2: we have that

N
Z e/ + Nkj <rvet+ Ay < V2 r? A,
=1

so |32V =1 wik; wl| can be small only for I> < rN2. Therefore, in order to get the thesis we

apply Proposition with N := /rN, v :=r+ 1.
Case a > 0, ¢ > )\1/2 1/2; first notice that if we set f(z) ==

z; := \j/c?, in this regime we get

2
X
WiTs(virs? and we put

N

r 1
> kif(a)| < S fan) < 5.
- 2 2
j=1
= 2 o 2 AL ;
Now define py, ;(c?) := ac oy vl One can verify that
Pra(c?) = 0;
- Al
2 _ 2 .
¢ = e ala+2)’
and that
0p 2)?
Pel @ ) =a— Ha+2) >0,
9(c?) 2/1+ala+2)(1+ /1 + ala +2))2

Cl

' o.—+Ci o4 ] We have that

Q 02
ala+2)’ l,a a(a+2

s, o 1 1
a(c’;l)(c )> <2 T 1)) @

Besides, in an interval [cl w—
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Then, by exploiting Lemma 17.2 of [73], we get that
9 9 0 9 2(r+1)
€B —_— | < < v
& e (om0} 055

2(r+1)
(r+2)a

o . (r+2)o

ala+2)’ 7 < 2(r+1)(a+2) "

O(pr,1—Prk,1)
Oc?

for any v > 0 s.t. v <

Now, since in this regime

< %, we can deal with py; in a similar way as before,
and we can conclude that

. 2 2 2 . 2 _
lml U U AP €ldandan] (@) <9} =0, (5.1.21)
0<|k|<r I>N
supp(k)C{1,....N

Case a <0, ¢ > )\}\,/27*1/2: since

N 2
<

Z kj)\j < T’)\N i
L+ /T+N/2|~ 2 2’

=1

we have that pp; can be small only if Ay < rAy. So, in order to get the result, we apply
Proposition with N := 712N, ¢' :=r + 1. O

Theorem 5.1.7. Let r > 1 be fized. Then ¥y >0 IR, := Ry s, CJ1,+00[XV with |R,| — 0 as
v — 0, and 37 > 1 such that ¥(c, (v;);) € (J1,+00[XV)\ Ry and ¥V N > 1

N
3 wiky + o1 + oawn| > % (5.1.22)
=1

for 0 < |k| <r, supp(k) C{Ll,...,N}, 01,090 € {£1}, m >1> N.

Proof. 1If o, =0 for i = 1,2, then we can conclude by using Proposition [5.1.6
Now, consider the case 01 = —1, 09 = 1, and denote

Prtm(c?) = Z wj(c2)kj —wi(?) 4w ().
j=1

Now fix § > 3. If m < N, then we can conclude by applying Proposition and So
from now on we will assume that m,! > N°.

We have to distinguish several cases:

Case ¢ < Aj*: we point out that, since

2 2 1
C\/62+>\z=c)\l1/2 1+i=ck;/2 14+ —+0 AR
Y N by

we get (denote m = [ + 5)

. 1 /vm e e 1 1
w7rb—wl—]c+2(m—l)+2/\ll/2—2)\}?{2+0 oo +0 B
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that is, the integer multiples of ¢ are accumulation points for the differences between the fre-
quencies as I, m — oo, provided that o < .

Case ¢ > A, in this case we have (again by denoting m = [ 4 j) that A\, — A\ =
GG +20) + (m —v) = 24l + j% + am, with |a;,| < $, so that

N

Prim = Y wikn £ 21+ 2 & ai.
h=1

IfI > 2CNT /~ then the term a;,, represents a negligible correction and therefore we can conclude
by applying Proposition On the other hand, if | < 2CNT7 /v, we can apply the same
Proposition with N’ := 2CN7 /v and ' :=r 4 2.

Case /\ll/6 <cgS All/2.' if we rewrite the quantity to estimate

al Ankn

Prim(c®) = ac + Y N
h=114/1+

N T
where o := )", ky,, we distinguish three cases:

+ W — Wi,

e if & > 0, then we notice that

N Ankn AN AN AN

< < < ;
hzzll+ /1+% L+/14+Ax/c2 7 141+ An/N 2

Am — At m>1 eA/?
wm —wy| =c¢ >
VE+An +VE+N T VE+ A FVE+ N
N5/3)\1/2

>0
N260/3 4 \M2 4/ N26/3 1 /\;/2

thus |pk.im| > |)\ll/3 — ZAn| >0, since [ > N3;

e if a =0, then we just notice that

m>l
1/2
|wm - wl| > 'Y()\m - >\l) Z Yo )‘l/ »

which is greater than vy /N7 for 7 > —1, since [ > N?3;

e if a < 0, then we just recall that |w,, — w;| > 70/\11/2, and by choosing 7, sufficiently small
(actually vy < |a|) we get that also in this case pg. ;. is bounded away from zero.

O
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5.2 Proof of Theorem 5.1.1

The proof is based on the method of Lie transform. Let s > s* be fixed.
Given an auxiliary function y analytic on H*®, we consider the auxiliary differential equation

) =iVix (¥, 9) = X\ (¢, 9) (5.2.1)
and denote by <I>§C its time-t flow. A simple application of Cauchy inequality gives

Lemma 5.2.1. Let x and its symplectic gradient be analytic in Bs(p). Fix § < p, and assume
that

sup | Xy (v, 9)]s < 0.
BS(R_‘S)

Then, if we consider the time-t flow <I>§< of X, we have that for |t| <1

sup )Il@i(iﬁﬂ/?) — (@, ¥)s < s 12 (%, ) s

B.(R-$

s

The map @ := (IJi will be called the Lie transform generated by x.
Given a homogeneous polynomial f of degree m, we denote, following [10], its modulus

mw@n;hm (5.2.2)
=
where f; is given by
F@) =2 87,
Pom Ay il_w’eil% 2= (e,

Furthermore, given a multivector

¢ = (¢(1)7 el (b(r)) — (1/}(1)7 1Z(l) o ’w(r), @(T))

we introduce the following norm

1 _ r
ol = =D 10PN 6D alls@ LVl . (5.23)
=1

Definition 5.2.2. Let X : H° ® H® — H® ® H*® be a homogeneous polynomial of degree r,

X(?/},?/;) = Z Xl(waz/;)eil.'

1€2\{0}

Consider the r-linear symmetric form X, such that f(;(z/), VY, .. 0,0) = Xi(¥,v), and set

X = Z Xl(¢7&)eil.7

1ezZ\{0}
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S0 that X(w’ 1;7 AR ’/lp’ /lE) = Xl(w’ 1;)'
Let s > 1, then we say that X is an s-tame map if there exists Ks > 0 such that

IX(6M, . 0l < KD N N e VIl @l V- o, (5.2.4)

1=1
Vo), . .. e e H o H.
If a map is s-tame for any s > 1, then it will be said to be tame.

Definition 5.2.3. Let us consider a vector field X : H* ® H® — H* ® H?, and denote by X, its
[-th component. We define its modulus by

(X1, ) := Z | X7 ] (0, )e.

lezZ\{0}

A polynomial vector field X is said to hace s-tame modulus if its modulus | X| is an s-tame map.
The set of polynomial functions f, whose Hamiltonian vector fields has s-tame modulus will be
denoted by T%,. If f € T, for any s > 1, we will write f € T,,,, and say that f has tame modulus.

Remark 5.2.4. The property of having tame modulus depends on the coordinate system.

Definition 5.2.5. Let X be an s-tame vector field homogeneous polynomial of degree r. The
infimum of the constants K, such that the inequality

X (0,6 < Kl (6™, 60)[s1
Vo) .. ¢ e H @ H?

holds will be called tame s norm of X, and will be denoted by | X|T.

The tame s norm of a polynomial Hamiltonian f of degree r» + 1 is given by

HX||L;]<¢)HS7 (5.2.5)

where the sup is taken over all multivectors ¢ = (gb(l), ceey (;5(’")) such that ¢(9) £ 0 for any j.

|f‘s ‘= sup

|s,1

Definition 5.2.6. Let f € T}, be a non-homogeneous polynomial, and consider its Taylor ex-
pansion

f = Z fmv
m
where f,, is homogeneous of degree m. Let R > 0, then we denote

(g =D [frls ™. (5.2.6)

m>2

Such a definition extends naturally to analytic functions such that (5.2.6)) is finite. The set of
functions of class T, for which (5.2.6) is finite will be denoted by T R.
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With the above definitions,
sup [| X5 (4, 9)lls <)y r-

B, (R)

It is easy to check that the set T p endowed with the norm (5.2.6) is a Banach space.
Now we introduce the Fourier projection

Iy () = / (k)e™ dk,
|k|<N
and we split the variables (¢, ) into
(d’lﬂ[’l) = (HNq/}a HN’l/_))a
(ns ¥n) := ((id — TN ), (id — TIN)Y).

The use of Fourier projection is important in view of the following result, whose proof can be
found in Appendix A of [10].

Lemma 5.2.7. Fiz N, and consider the decomposition 1 = ; + vy, as above. Let f € Tj, be
a polynomial of degree less or equal than r + 2. Assume that f has a zero of order three in the
variables (Yp,¥y), then one has

sup X, @)l = o

. 5.2.7
B.(R) Ns—1 (5.2.7)

Lemma 5.2.8. Let f,g € T}, be homogeneous polynomial of degrees n+1 and m+1 respectively.

Then one has {f,g} € T, and
[{f:g}s < (n+m)|flslgls- (5.2.8)

The proof of this lemma can be found again in Appendix A of [10].
Remark 5.2.9. Given g analytic on H* ® H?, consider the differential equation
)= Xy(0,9), (5.2.9)
where by X, we denote the vector field of g. Now define
D g(¢, d) := g o ®(¥,¥).
In the new variables (¢, ¢) defined by (,) = ®(p, ¢) equation (5.2.9) is equivalent to

¢ = Xavg(9,9). (5.2.10)
Using the relation
S (@)% = (@) (x.g)
dt X 9= X X975
we formally get
g=> g, (5.2.11)
1=0
go := ¢, (5.2.12)

1
g=7{00-} 121 (5.2.13)
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In order to estimate the terms appearing in (5.2.11) we exploit the following results
Lemma 5.2.10. Let h, g € Ts g, then for any d € (0, R) one has that {h,g} € Ts r—q4, and

(108 9.0 < 3 (A}l (5214

Proof. Write h =3, h; and g = > gk, with h; homogeneous of degree j and similarly for g.
Then we have

{h.g} = {hj. 01},

j.k
where {h;, g} has degree j + k — 2. Therefore
<|{h‘jvgk}‘>s7R_d = ‘{h’]vgk}‘s(R _ d)j+k—3
< ‘hj|s|gk|s(j + k- 2)(R _ d)j+k—3
1 ik 1
< Ihglolgils < B2 = = (s, o GlowD v

where we exploited the inequality k(R — d)¥~! < R¥/d, which holds for any positive R and
d € (0, R). O

Lemma 5.2.11. Let g, x € T, r be analityc functions; denote by g; the functions defined recur-
sively by (5.2.11); then for any d € (0, R) one has that g; € Ts p—q, and

o) - < o (5 o) (5:2.15
Proof. Fix [, and denote § := d/l. We look for a sequence CY) such that
{gml) s, roms X C%, Ym < L.
By we can define the sequence
o = (9o

2
O = 5-Cola (IxDar

2l
= Oy (X
One has

1 /21 :
Cl(l) = ﬁ (d <|X>37R> <|g|>S’R7

and using the inequality I' < lle! one can conclude. O

Lemma 5.2.12. Let f € T7; be a polynomial which is at most quadratic in the variables (1, Un).
Then there exist x,Z € Ts g in (v, 7, N)-normal form such that

{Ho,x}+Z = . (5.2.16)
Moreover, x and Z satisfy the following estimates
NT

(IXDs,r = - (fDs.r> (5.2.17)

<|Z|>S,R S <|f|>s,R : (5218)



64 CHAPTER 5. PROOF OF THEOREM

Proof. Expanding f in Taylor series, namely f(v, 1) = > fiad? 4p!, and similarly for y and Z,
equation (5.2.16) becomes an equation for the coefficients of f, x and Z,

w- (J=Dxj0+ Zji = fiu-

Then we define

Zjy = fi1, when |w-(j —1)| < NTv (5.2.19)
fjl ’Y

= ————, wh -1 > 5.2.20

X‘]’l 'LW . (] _ l)’ when |W (] )| NT ( )

By construction we get estimates (5.2.17) and (5.2.18). Furthermore, since f is at most quadratic
in (¢n,n), we obtain that ), n(jr +{x) < 2, and thus Z is in (7,7, V)-normal form. O

Remark 5.2.13. Let s > s*, and assume that x, F' are analytic on Bs(R). Fiz d € (0, R), and
assume also that

Sup ||XX(¢a’J))”S S d/3a
Bs(R)

Then for |t| <1

sup || Xty rr(¥:)lls = sup (| Xpoar (3, 9)|s (5.2.21)
B (R—d) Bs(R—d)
m 5

s age 1 (%, )l S 1XF (4, )]s (5.2.22)

<2 sup I\Xp(w,w)lls- (5.2.23)
B.(R)

Lemma 5.2.14. Let x € T, g be the solution of the equation (5.2.16|), with f € T};. Denote by
Hy,; the functions defined recursively via (5.2.11) from Hy. Then for any d € (0, R) one has that
Hy, € T p—q, and

e l

(Hoaly g <20/ era (5 (IXr) - (5.2.24)
Proof. Using (5.2.16|) one gets Ho1 = Z — f € T};- Then, arguing as for (5.2.15), one can
conclude. 0

The main step of the proof of Theorem is the following result, that allows to increase by
one the order of the perturbation. As a preliminary step, we take the Taylor series of N (v, )
up to order r + 2,

(¥,) = ZNz(ffﬂ/M/_)) (5.2.25)

+N (Y, 9) — ZNz (5.2.26)

(w,w + NI (g, ), (5.2.27)
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where NN; is a homogeneous polynomial in ¢ and 1) of degree I+2 with variable C*°-coefficients
(since V € C).
Now we consider the analytic Hamiltonian

HO .= Hy+ NW, (5.2.28)

Then for R sufficiently small one has that
<|N<1>|> = R?, (5.2.29)
<|N(1’T)|> LSRR (5.2.30)

Lemma 5.2.15. Consider the Hamiltonian (5.2.28)), and fix s > s*. Then for any m < r there
exists R < 1 and, for any N > 1 there exists an analytic canonical transformation

2r —m)
(m) . B ( *,2 HS
Tm) S<2N7r Rm>—>
such that
H™ .= HO o7 = gO 4 70m) 4 p0m) L pCm) o R, (5.2.31)

where for any R < R} /N7 the following properties are fulfilled

1. the transformation T™) satisfies

sup || 7™ —id|, < NT R% (5.2.32)
R)

s

2. Z™) s a polynomial of degree (at most) m + 2 in (v, 7, N)-normal form; ™ is a poly-
nomial of degree (at most) r + 2. Moreover

sup 1X zem (4, 9)||s < R?, Ym > 1, (5.2.33)
B ((1—m/(2r))R)

sup [ X ¢m) (W, P)||ls < R™T2NT™ | ¥m > 1; (5.2.34)
Bs((1—m/(2r))R)

3. the remainder terms Rgf,n) and ngm) satisfy

swp (X (6,0, % RFENTOH), (5.2.35)
Bs((1—m/(2r))R) r
- R?
sup ||XR§\7’W)(¢7¢)”9 = No1 (5.2.36)

B.((1=m/(2r)R)

Proof. We argue by induction. The theorem is trivial for the case m = 0, by setting c¢T'(®) = id,
7O =0, fO = NO R =R = 0.

Then we split f(") into two parts, an effective one and a remainder. Indeed, we perform a Taylor
expansion of (™) only in the variables (15, y,), namely we write

Fm = 7574
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where fém) is the truncation of such a series at second order, and fo(m) is the remainder. Since
both f(gm) and f](vm) are truncations of f(™), one has that

)
<|f° |s,(1—m/(27"))R_ f |s,(1—m/(2r))R

<|fj(vm)|>s,(17m/(2r))R = <|f(m)|>s,(17m/(2r))R.

Now consider the truncated Hamiltonian Hy + Z(™) + fém): we look for a Lie transform 7,,, that
eliminates the non-normalized part of order m + 4 of the truncated Hamiltonian. Let y,, be the
analytic Hamiltonian generating 7,,. Using (5.2.11) we have

(Ho + 2™ + f§™) 0 Ty = Hy + 2™

+ £§™ + {xm, Ho} (5.2.37)
+ Z z"™ + Z féT) + Z Ho,, (5.2.38)
1>1 >1 1>2

with Zl(m) the [-th term in the expansion of the Lie transform of Z(™), and similarly for the
other quantities. It is easy to see that the terms in the first line are already normalized, that the
term in the is the non-normalized part of order m + 3 that will vanish through the choice
of a suitable x,,, and that the last lines contains all the terms having a zero of order m + 4 at
the origin.

Now we want to determine Y., in order to solve the so-called “homological equation”

{XmaHO}"_f(gm) = Zm+1,

with Z,,4+1 in (7, 7, N)-normal form. The existence of x,, and Z,, 1 is ensured by Lemma|5.2.12]
and by applying ((5.2.18]) and (5.2.33) we get

(IXm s (1—myrmr < NT R (NT R)™, (5.2.39)
(Zm+1l) s 1—mymr < B® (NTR)™. (5.2.40)
In particular, in view of (5.2.23), we can deduce (5.2.32) at level m + 1. Now define Z(m+1) .=

Z0m) 4 Zoi, and fOTY = (R0.20). By [5.2.39) recalling that R < R¥,/NT, we can deduce
(5.2.33) at level m + 1. Moreover, provided that R, < 2~(m+1)/2 one has

2r T m
6= °R (XD s 1—my@ryr < (N7 R) <

| =

By (5.2.15) and (5.2.33) one thus gets

(m+1) < R26l+ R26l N™ R m+ R26l—1 N™ R m
<|fc |>s,(1—(m+1)/(2r))R - ; ; ( ) IZ; ( )

< R*(N" R)"™.
Write now fémH) = flm+1) 4 R, 1, where fm+1) ig the Taylor polynomial of order r + 2 of

émﬂ), and where R, 7 has a zero of order r + 3 at the origin. Clearly f(™+1) satisfies (5.2.34)
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at level m + 1, since it is a truncation of f(mﬂ). The remainder may be bounded by using
Lagrange and Cauchy estimates,
sup IIXRMT(Q/J Dlls = 2osup [OTEX e (4, 9) s
B.((1-m/(2r)R (r+ ) B.(Rx, /(2N7)) c
r+2 B
< R"t2 < ) sup ||Xf(m+1>(¢,¢)||s
Bs(Ry, /NT) ©
< (N"R)""

Now define R(m+1) ’R(m) T + Rom,7- By (5.2.23) we can deduce (5.2.35)) at level m + 1.

Then set R%”“’ = (R + U)o 7,.. By (5.2.34) and (5.2.36), together with (5.2.23) we
obtain (5.2.36) at level m —I— 1. O

Now we conclude the proof of Theorem [5.1.1
By taking the canonical transformation 7(") defined in the iterative Lemma [5.2.15{ we have that

H® = Hy+ 20+ RY + RE + NOD o 70, (5.2.41)
where Z(") is in (v, 7, N)-normal form, and for any R < R, /N the following holds
sup [|[7) (v,9) — (1,9)s = N*™ R?,

Bs(R)
RQ
Ns—1 ’

sup [|X o0 (4, 9)[ls < (N7 R)"™?,
B, (R) T

sup || X, (¢, 9)|ls =
Ry N

s

sup || X namoro (0, 9)]ls < (N7 R)2.
B.(R)

To conclude we have just to choose N and s sich that R%) and Rgf ) are of the same order of
magnitude. First take N = R™%, with a still to be determined; then, in order to obtain that

Rgf) is of order O(R"+3/2) we choose a := By taking s > 27r(r +2) + 1 we get that also

N7 is of the same order of magnitude. ) )
Now take K* = 1/24, and construct the canonical transformation (1,v) = 7 (,4'). Denote

1
27(r+2) "

by I’ the actions expressed in the variable (1/,¢’), and define the function N (¢’ ') := ||I']|2.
By one has that N (1), 14) < %RQ, provided that R is sufficiently small. Since
ON ) = (RO, N ),
and therefore, as far as N'(¢/,¢') < & R?,
'8J\f

(', ¢")| < K R™T°/2, (5.2.42)

Denote by T the escape time of (¢',1)') from B,(R/3); observe that for all times smaller than
Ty, (5.2.42)) holds. So one has

64 - -
5 R = NW/(T), 9/(Ty) < N(h, ) + K4 Ry,
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which shows that 7'; should be of order (at least) R™1/2_ Going back to the original variables
one gets (5.1.16]).
To show (5.1.17)), one has to recall that

11(t) = 1(0)] < [ (t) = I'(t)] + |I'(t) = I'(0)| + [I'(0) — 1(0)],

and that by (5.1.14) and (5.1.16]) one can estimate the first and the third term; the second term
can be bounded by computing the time derivative of ||I’||? with the Hamiltonian, and observing

that it is of order O(R"+%/2). ) )
Now, consider the initial actions (Iy, Ip) := (I(0),1(0)). By passing to the Fourier transform,

—

Ii(t) == 1(t)(4), 7 =1,
we have that for any r; <r

_ 2T1

(L, (), ;1)) — (1;(0), T;(0))] < }j < R, (5.2.43)

If we define the torus
T, := {("/}»d_}) € H”: (Ig(qﬁ??/;)a—fg(?/)ﬂ/_)) = (IJ(O)»jJ(O))v for any j > 1}7

we get

1/2

(.00 T < [ X2 (1560 - 5o 150 - Jrop)|
and by using we obtain
(00,500,720 < (5w P50 = LOR + 21560 - LOP) 3 .

which is convergent for s < s —1/2.



Appendix A

Proof of Lemma 3.2.3

In order to normalize system (3.2.1), we used an adaptation of Theorem 4.4 in [4]. The result is
based on the method of Lie transform, that we will recall in the following.

Let k > k1 and p € (1,400) be fixed.

Given an auxiliary function y analytic on W*P?, we consider the auxiliary differential equation

) =iVx($,9) = X, (¥, 9) (A.0.1)
and denote by <I>§< its time-t flow. A simple application of Cauchy inequality gives

Lemma A.0.1. Let x and its symplectic gradient be analytic in By, ,(p). Fiz 6 < p, and assume
that

sup | X (¥, 9) [kp < 0.
By, p(R—6)

Then, if we consider the time-t flow @ of X, we have that for |t| <1

sup )llq’;(wﬂﬁ)—(wﬂ/_})\lk,pé sup )”Xx(wﬂz)”km'

Bi,p(R—6 .o (R—6
Definition A.0.2. The map ¢ := ‘I’i will be called the Lie transform generated by x.
Remark A.0.3. Given G analytic on WP, consider the differential equation
b= Xe(v,9), (4.0.2)
where by Xg we denote the vector field of G. Now define
*G(¢,9) = G o B(,1)).
In the new variables (¢, ¢) defined by (1,v) = ®(¢,¢) equation is equivalent to
¢ = Xo-c(6,9). (A.0.3)
Using the relation

d t\* _ t\*
a(éx) G= ((px) {XvG}v

69
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we formally get

G=> G, (A.0.4)
=0
Gy := G, (A.0.5)
1
G = T{X,Gl_l}, [ >1. (A.0.6)

In order to estimate the terms appearing in (A.0.4]) we exploit the following results

Lemma A.0.4. Let R > 0, and assume that x, G are analytic on By, ,(R).
Then, for any d € (0, R) we have that {x, G} is analytic on By ,(R —d), and

(A.0.7)

ISHIN

sup || Xy, (0, )|lkp <
Bio.p(R—d)

Lemma A.0.5. Let R > 0, and assume that x, G are analytic on By ,(R). Let !l > 1, and

consider Gy as defined in (A.0.4); for any d € (0, R) we have that Gy is analytic on By ,(R—d),
and

l
sup X )y < (5) (208

Bj,p(R—d)

Proof. Fix [, and denote § := d/l. We look for a sequence C’g) such that

sup || Xa,, (0, )k < O, vm <1
By p(R—ms6)

By (A.0.7) we can define the sequence

Cél) = sup [ Xa (¥, ¥)|lkps

Bk‘p
2 I T
07(rl7,) = chrt)—l sup ||Xx(waw)||k7p
m Bk,p(R)
_ 2 OV sup [ Xy (0, 9) 1
dm Bip(R)
One has
1 (2] l
V=25 sup Xy ) lep | sup X (0, 9)lkp,
W\ d g, Bi.p(R)
and by using the inequality I! < Ile! we can conclude. H

Remark A.0.6. Let k > k1, p € (1,+0), and assume that x, F are analytic on By, ,(R). Fix
d € (0, R), and assume also that

sup [ Xy (4, 9) | < d/3,
Bk,p(R)
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Then for |t] <1

sup ([ X@t) r—r(, O)lep = sup [ Xroat—r(,9)|lkp (A.0.9)
By p(R—d) By p(R—d)
EoD 5 - .
< < osup [ X (@) ke sup ([ Xp(¥,9)[lkp- (A.0.10)

B p(R) Bg.p

Lemma A.0.7. Let k > ki, p € (1,400), and assume that G is analytic on By ,(R), and that
ho satisfies PER. Then there exists x analytic on By ,(R) and Z analytic on By ,(R) with Z in
normal form, namely {ho, Z} = 0, such that

{ho,x} + G = Z. (A.0.11)

Furthermore, we have the following estimates on the vector fields

sup ”XZ(wsz)”k,pg sup HXG(Z/%'I/_})H’C,P’ (A012)
Bk,p(R) Bk,p(R)
sup ([ Xy (1, 9)llkp = sup (| X (¥, 9)[kp- (A.0.13)
Bi,p(R) By.p(R)

Proof. One can check that the solution of (A.0.11) is

_ 1 [T _ _
xwd) = [ 160 w.0) - 20 0. 0)] dr
with T' = 27. Indeed,
(hoxh0.9) = 5 M@ (0.0)
1 [ d

- / (G5 (0, ) — Z(@"* (v, )] dt

% 0 £|s:0

_ ! ”t% [G(@! (4, ) — Z(" (1, )] dt

2m Jo
= o [1G(@' () — 12(" (1,
— G, 3) — 20, ).
Finally, follows from the fact that

27 1
t=0  or

2m
| 6@ @) - 2@ i) ar

_ 1 [T ., P
X0.0) = 7 [ 49700 Xo o (@ ()t

by applying property (3.1.2). O

Lemma A.0.8. Let k > k1, p € (1,+0), and assume that G is analytic on By, ,(R), and that ho
satisfies PER. Let x be analytic on By ,(R), and assume that it solves (A.0.11)). For any ! > 1
denote by ho, the functions defined recursively as in from hg. Then for any d € (0, R)
one has that ho; is analytic on By ,(R —d), and

l
sup || Xng, (¥, 9)llkp <2 sup [ Xa(¥,9)|kp (5 SUP)HXXWW)Hkm)- (A.0.14)

Bk,p(R_d) Bk,p(R) d Bkyp
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Proof. By using (A.0.11) one gets that hg; = Z — G is analytic on By, ,(R). Then by exploiting
(A.0.10) one gets the result. O

Lemma A.0.9. Letk; > 1, p € (1,4+0), R >0, m > 0, and consider the Hamiltonian
HO™ (4, 9) = ho(w, ) + eh(, ) + €2 (0, 4) + ™ P (4, ). (A.0.15)
Assume that hy satisfies PER and INV, that h satisfies NF, and that

sup |, (4, 9)[l1p < Fo,
Bk,p(R)

sup (| X po (¢, 9)|[rp < F.
Bkvp(R)

Fiz § < R/(m + 1), and assume also that Z™ are analytic on By, ,(R —md), and that

sup (| Xz (¥, ¥)||kp =0,

Bi,p(R)
B m—1
sup | X o0 (0, 0) ey S F Y €KL m> 1,
By, p(R—m$) e
sup ([ Xpom) (1, 9)||kp < FK, m>1, (A.0.16)
Bkyp(Rfmé)

with K, := 2L (18F + 5Fy).
Then, if eKs < 1/2 there exists a canonical transformation 7™ analytic on By p(R—(m+1)9)
such that

sup | T (0, 4) = (1, 9) |k < 2™ T, (A.0.17)
By, p(R—mJ)

HmHD .= gm) o T(m) has the form (A.0.15) and satisfies (A.0.16) with m replaced by m + 1.

Proof. The key point of the lemma is to look for ﬁ(m) as the time-one map of the Hamiltonian
vector field of an analytic function €™*'x,,. Hence, consider the differential equation

(0, 1) = Xemsry,, (,9); (A.0.18)

by standard theory we have that, if || Xcnt1y, B, ,(rR—ms) is sufficiently small and (o, o) €
By, (R — (m + 1)d), then the solution of (A.0.18)) exists for || < 1. Therefore we can define
T« Bep(R— (m+1)8) — By p(R —md), and in particular the corresponding time-one map

m—+1

ﬁ(m) = TTiE, which is an analytic canonical transformation, e™**-close to the identity. We have

(TN (hg + eh + 2™ 4 L EM)Y = by + eh + e2™)
+ 1 [{xm o} + F) +
+ (ho o T+ — hy — ™y, ho}) +e(hoTmHD) —h) +e (Z(m) o T(m+D) Z(m))
(A.0.19)
+emtl (F(m) o Tm+1) _ F<m>) . (A.0.20)
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It is easy to see that the first three terms are already normalized, that the term in the second
line is the non-normalized part of order m—+1 that will vanish through the choice of a suitable
Xm, and that the last lines contains all the terms of order higher than m+1.

Now we want to determine yx,, in order to solve the so-called “homological equation”

{Xmah0}+F(m) = Zm+17

with Z,,41 in normal form. The existence of x,,, and Z,,41 is ensured by Lemma [A.0.7, and by
applying (A.0.12)) and the inductive hypothesis we get

sup [ Xy, (¢, 9|, < 27F, (A.0.21)
Bk,p(R—mﬁ)
sup ||XZm+1 (¢7 /(/;) ||k,p < 2r7F. (A022)
Bk,P(R_m‘S)

Now define Z(m+1) .= z(m) 4 ¢m 7z | and notice that by Lemma, we can deduce the
estimate of X ;(m+1) on By ,(R— (m+1)§) and (A20.17) at level m + 1. Next, set e™+t2F(m+1) .=
(A.0.19) + (A.0.20). Then we can use (A.0.10) and (A.0.14)), in order to get

sup [ Xeme+2 pomsn (8, 9) 11, (A.0.23)
Bj,p(R—(m—+1)6)

m—1
10 5 5 .. 5 _
S| €K eF + ZeFy + <eF > €Ki+ <eFem KM ) e sup || Xy, (4,0 |lkyp
) ) R d By, p(R—m)
10 5. 5 .~ ., ., b .
=" K F 4 cFy+ =F Y €Ki+ <F K] sup | Xy, (0, 90)||kp-
1) ) 1) : 4 B R—md
=0 k.p ( )
(A.0.24)
If m = 0, then the third term is not present, and (A.0.24) reads
-~ 15 5
sup || Xezpw (¥, 9|k < €2 ( F+ F) 2rF < €K F.
B p(R—5) o g
If m > 1, we exploit the smallness condition eK < 1/2, and (A.0.24)) reads
- 18 )
sup | X cmt2 pemsny (0, ) |lk.p < (eF + eFO) 2meF emK™ = M2 PR
By p(R—(m+1)3) g §
O

Now fix R > 0.

Proof. (of Lemma |[3.2.3) The Hamiltonian (3.2.1)) satisfies the assumptions of Lemma with
m = 0, Fy,, in place of F() and Ay, in place of h, F = K,E,if) r22NTFy = K,g’;f) r22NT (for
simplicity we will continue to denote by F' and Fj the last two quantities). So we apply Lemma

with § = R/4, provided that

8 1

— (18F' + 5 F{ —

R ( + 0)6 < 5

which is true due to (3.2.12)). Hence there exists an analytic canonical transformation 7;(2 :
By, »,(3R/4) — By, p(R) with

sup TN (W, 0) — (1, 9)|lp < 27F e,

Bi.p(3R/4)
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such that
Hy, o TN = ho + ehn, +eZ§) + ERY, (A.0.25)
7Y = (Fn,), (A.0.26)

EQR%) =2
= (ho o 7-5(,}\; — hg — E{Xl, ho}) + G(iLNJ« o 7;(;\; - iLN,r) + € (Z](\P o 7;(7}\2 — ZI(\}))

+é (FN,T o TN — FN,,) : (A.0.27)
Bk,fé%m 15z (s ) [kp < Fo + F =2 Fo, (A.0.28)
_ 87 s
sup HXR(U (1/),1/))”]@4; < —(18F + 5Fy)F =: F. (A.0.29)
By, (3R/4) N R

Again satisfies the assumptions of Lemma with m =0, and hy., + 2 and R
in place of F© and h.

Now fix § := §(R) = £, and apply r times Lemma we get an Hamiltonian of the form
, such that

sup ||XZ(7") (W&)Hk,p < 2F7 (AOSO)
Bup(R/2) N

sup [ X g0 (8, 9) [l p < F. (A.0.31)
Bip(R/2) N

O



Appendix B

Properties of the Klein-Gordon and
Spinless Salpeter equations

B.1 Formula for the action of the ¢V
We now derive an explicit formula for the action of the unitary group generated by ¢(V).. To
the author’s knowledge, it is not easy to find in the literature such a formula. We proceed as in

[68] for the corresponding massless case.
Consider f € C>*(R3), g € S(R?) with g € C°(R3), and set

Ca(a) = [ = fhaTRa.

Notice that (4 is an entire function on C, and one has (4 (Ft) = <e’“‘3<v>“f7 g> for any t € R.
By [52] (Sec. 7.11) one has that for any ¢ > 0

Ca (i) = (7)<, g)
[ [ [ e A la -y s T
B /Rs {2# /]Rs 2+ |z — y[? fy)d y} g(z)d’z,

where K5 denotes the modified Bessel function of the third kind of order 2. We recall that the
modified Bessel functions of the third kind are defined in the following way (see [I]], formulae
9.6.10 and 9.6.2)

> 1 2\ 2k+v
1,(2) ;:I;]WM(Q) , (B.1.1)

7l ,(2) — L(2)

2 sin(vn)

when for integer v the right hand side of (B.1.2) is replaced by its limiting value.
— & Ficz Ky (c[lz—y|*—c?22]1/?) 3, 20 d3

Now, set 1+ (2) 1= [ps [W Jzs f(y)d y} g(z)d’z.

e—y[? 22

K, (2) = (B.1.2)

By exploiting the following formula (see [34], section 7.2.2, formula (16)),

K, (iz) = = e TPHP(2),

75



76APPENDIX B. PROPERTIES OF THE KLEIN-GORDON AND SPINLESS SALPETER EQUATIONS

(H,EQ) denotes the Hankel function of the second kind of order v) we get

n+(2) = /R3

One can observe that, since the Hankel functions are analytic in the complex plane cut along the
negative real axis, 1 is holomorphic on C; := C\ (RU(0,4]) (respectively n_ is holomorphic on
C_:=C\ (RU[-4,0)) ). Furthermore, since {4 (+£it) = ny(=%it) for ¢t > 1, one has that (. = n4
on C4 by analytic continuation.

Therefore for t > 1

c? :FczHg) (c[c?2? — |o — y|2]1/2)
27 222 — |z —y|?

fy)d®y| g(z)d®a.

<6*“<V>cf,g> = () = lim ¢ (¢ — i) = lim (¢ — ie)

e—0

2 g (2) e a1/ 20t g _at/2
_ % / c(t —ie)Hy (c[c-t ice — |z — y] . [ct —ice + |z — y] )f(y)d3y .
2m =0 Jps | Jrs (ct —ice — |z — y|)(ct —ice + |x — y])
-g(@)
/ [ e 10 e Pt 10l )
RS JR? (¢t —i0 — |z —y|)(ct —i0 + |z — y])

where the distributions s — (s £ ¢0)* are defined for example in [41], Sec. 3.2. On the other
hand, for t < —1

< —ite(V)e £ g > = lim ([t] + ie)

ct+zOH(2) ct 410 — |z — y[]Y/2[et +i0 + |z — y|]*/?
“w L L R e 2D pyaty glaata
RS JR3 (et 410 — |z — y|)(ct +i0 + |z — y|)

Corollary B.1.1. For any f € C*(R?), g € S(R?) with § € C>*(R?) and t > 1 (respectively
t < —1), one has

ite ctj:zOH() ct +140 — |z — y[]Y/2[et £ i0 + |z — y|]*/? -
(o) =5[] crs e —oll 2 2 =) £y a3y gt
"~ om RS JRS (ct £10 — |z —y|)(ct £i0+ |z — y])

(B.L.3)

Remark B.1.2. In [52] (Sec. 7.11) one also can find the explicit formula for the action of
e~tVe qlso for dimension d > 3. Since the expression is based on the modified Bessel functions
K(q41)/2, the previous argument applies also to higher dimensions. By exploiting this formula
one may derive the decay in weighted energy norm for the free equation arguing as in Proposition
0. 1.9l

B.2 Resolvent estimates

B.2.1 Free resolvent

Now we study the resolvent of the equation (2.1.1). Since we are interested in the non-relativistic
limit, we assume throughout this section that ¢ > 1. The resolvent of the operator Hg := ¢(V).
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(which in the literature is sometimes called relativistic Schrodinger operator) will be denoted by
Roc(2) = (Ho—2)"', 2€C\ [ +0).

Recall that we can write the resolvent through the Fourier transform F: L? — L2,

Roc(2) = F7H(c(§). —2)7'F

(in [86], [30], [49] and [6] the resolvent of the KG equation is handled by using the well known
Jensen-Kato estimates for the Schrodinger resolvent); however, in order to write the resolvent
kernel, we will not use this formula. Arguing as in [87], we will use the explicit expression of
the semigroup generated by —c(V), as a convolution with the following Poisson kernel ([52], sec.
7.11)

e Vep(z) = Prox(x) = / Pro(z —y)p(y)d’y, t>0,9 € L?, (B.2.1)
R3
2 ctKy (cf|lzf? + At?]1?)
P = & B.2.2
e () D) 212 + |2 ’ ( )

where K, is the modified Bessel function of third kind of order v (see (B.1.2))). We also recall
the following properties of modified Bessel functions (see formulae 9.6.6, 9.6.26 and 9.6.28 in [I])
that we will use in the sequel,

2v
Ko11(2) = K,-1(2) + ?K,,(z), (B.2.3)
K!\(2) = —K,_1(2) — gKl,(z), (B.2.4)
1ay* .
(Zdz> (2Ve™ K, (2)) = 2" RPN K, 4 (2), K=0,1,2,..., (B.2.5)
1d g —v _imv —v—k in(v+k)
e (z7Ve"K,(2)) =z e K,ik(z), E=0,1,2,.... (B.2.6)

We then take the Laplace transform of e~*(V)e to get the free resolvent ([47], ch. 9, (1.28)):
+oo
Ro.c(z) = / et?e=tNVledt, for Re(z) < 0. (B.2.7)
0

By integration by parts and by exploiting (B.2.6)-(B.2.4), we obtain that for any a > 0 and for
Re(z) <0

c2 +oo . ctKo (c[a2 + 82t2]1/2) . c2 Kl(ca) 5 /+ i Kl(c[a2 + 62t2]1/2)

I = — e

272 J, 22 + a? 272 0 [a? + c2t2]1/2
(cla® + 2t2]1/?) t]

1 [Ki(ca) s /+°° =K
0 [a2 + 62t2]1/2

c2a c?

o2 a

(B.2.8)

where the last Laplace transform is well-defined for Re(z) < 2. In order to study the dis-
persive properties of equation (4.1.6) we need the asymptotics of the free resolvent for |z| — oo
and for |2| — ¢2. These will be obtained by using the so-called Abel theorems for the Laplace
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transform (see for example [88], ch. 5, theorem 1 and corollaryla and corollary 1b).
First we define, for any z € C with Re(z) < ¢?, the function g, . : R® — R,

||

L [, [ oSl e
0

gzo(@) == 2 [|z]2 + c22]1/2 )

and the associated operator G, . on L?(R?) given by

Goc(2) = goe * P(a) = /

92,6(1' - y)"/}(y)d3y
R3

Notice that for Re(z) < 0 one has that g, .(z) = fOJrOO e'* Py o(x)dt.

Proposition B.2.1. If z € C with Re(z) < ¢2, then Ro .(2)¢ = G 4 for all 1 € C°(R3).

Proof. Without loss of generality it suffices to show that

<R0,c(z)¢7 ¢>L2 - <Gz,c1;zj; ¢>L2 5

for all z € C\ [¢?,+00), and all ¥, ¢ € C2°(R3?). Since

400
(Ro.o(2), 8) 2 = /0 (e~ ™oy, ), dt

+o0 -
_ / et [ / ( / Pz — y)w(y)d?’y) qﬁ(x)d?’m] dt (B.2.9)
0 RS \ /RS

for Re(z) < 0, in order to make a change of integration in the previous formula, we have to show

that €' P; .(z — y)¥(y)¢(z) is absolutely integrable with respect to z,y and ¢ for Re(z) < 0 and
¥, ¢ € C2°(R3). Indeed, by integration by parts

[ e RNy, Fen) | Bele) [ ol 2
= — e
0 ¢ c?t? 4 a? c2a 2 Jo [a2 + c2t2]1/2
~ Ky (ca) + Re(2)K:(ca) /+Oo et Re(2) g4
-~ c%a c2a 0
< Kl(ca).

c2a
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Therefore, this implies

/Rﬁ ot ‘e Pre(z —y)(y)o(z )‘d3xd3ydt< 5 Q/RG W( )¢(z )| Ky (clz — y)d3zd3y

|z — yl
; / [y (y)le—cl==vl o 3
s dly + @™ 13 g3,
271-2 )| < |z—y|<1 C|x*y|2 o—y|>1 61/2|x—y|3/2
Wl s e
) 2”2 7 ( p— ooy e el | d
=Yy

57 / 6(2)] <1|1/)||L°° e C||7/1||L1>d3

c21
= ol (¢l + 19]lLr) < +oo.
Hence we can make a change of integration in (B.2.9),

(Roc2) )12 = | [ [ ([ e pate o) ¢(y)dsy] T,

and if we apply (B.2.8) to the integral with respect to the ¢ variable, we get that

(Ro,c(2)V,0) 1> = (G, ) 2, for Re(z) <0
Finally, differentiating

/ / 9zc(z — Y)Y (y)p(z)d®y Az
R: JR2

with respect to z under the integral sign, and by applying the properties of the Laplace transform,
we obtain that (G ¢, ¢),. is a holomorphic function for Re(z) < ¢. Since (Rq(2), @), is
also a holomorphic function for Re(z) < ¢2, we finally get

(Ro.c(2)0,8) 12 = (G2 e, 0) 1, for Re(z) < ¢
O

Remark B.2.2. By exploiting the definition of the free resolvent through the Fourier transform,
Roo(2)f = F (&), = 2) 7' f(€)], ¥ feL? zeC\[ +),

we can show the boundedness of Ro.. : L> — L?. Indeed, since the symbol of the free resolvent
for z € C\ [c?, +00) satisfies

[Im(2)|~Y if Im(z) >0,

B.2.10
|2 — 2|71 if Im(2) <0, ( )

[(c(€), — 2) 7 = Noe(2) = {

for any & € R3, we can deduce that for z € C\ [¢?,+00) the free resolvent Ro.(z) : L* — L?
exists and is continuous. Similarly one can show that also Ro.(z) : L?* — H' is continuous.

Furthermore, , combined with the previous proposition, implies that also G, . : L* —
L? is bounded for Re(z) < c®. On the other hand, the function x — Ki(c|z|)/|z| does not define
a bounded operator on L2, and it would have been difficult to verify directly from —
the boundedness of G ..
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Remark B.2.3. By using the same technique of [I7] one can prove that for any ¢ > 1 and
for any o > 1/2 the resolvent Rg .(z) : LZ(R3) — L2 _(R3) for z € C\ [¢?,+00) is a bounded
operator, and that for o > 1/2 the following limiting absorption principle (LAP) holds

lim [[Ro,c(A % i€) — Ro.c(c£i0)| 22 =0, A > (B.2.11)
e—0 “ I

(Just set f(0) := /¢ + 02 in [I7], Theorem 24).

Remark B.2.4. From the resolvent identities
7%,5(2):1’_1[( (). —2)72F) = Ro.c(2)?,
Rio(2) = F7[2(c(€), — 2)°F] = 2Ro,c(2)?

one can derive the boundedness of R, .(2) and R .(z) from LZ(R?) to L? ,(R®) (for sufficiently
large 0 > 0) from the boundedness of Ro..(z). Indeed, for o > 1

IRG (M2 sz, = 1) Roe(2)? () I rassre
<N Roe(2) ()72 ()P Roe(2) ()77 22 (B.2.12)
1T Ro () Roe(2) ()77 e e (B.2.13)
TP Roe(2) ()7 Roel2), ()17 ponre (B2.14)
(notice that is finite for o > 1) and since [Ro ., () 7"%] = Op(b(x, £)), where
be,€) = =5 (c(€). =) (€); € )T,

we have that |b(z,£)] < Np.(2)? (x)fl*gﬂ, and that Op(b(x,&)) is an integral operator with
kernel

Kz, y) = (Feb)(2,y — @) = (2m) 7/ /R LT, d%

Furthermore, by the previous computation one may observe that the PDO in is a Hilbert-
Schmidt operator if and only if —20 —1 < =3; 0 > 1.
A similar argument leads to the boundedness of |Rg .(2)l| L2 (ms)—r2 (rs) for o > 3/2.

For the Schridinger operator, estimates for the derivatives of the free resolvent were found in
46 by exploiting a Lavine-type identity that links the resolvent to its derivatives. To the best of
our knowledge, there is no analogue of such an identity for the relativistic Schrédinger operator.

Lemma B.2.5. For z € C with Re(z) < ¢* we have
IRoc()2z2 = O1/?), 2= ¢ 0 >3/2. (B.2.15)
IRE)(pzsrz = Oz = AM27F), 252 0 >3(k+1)/2, k=1,2. (B.2.16)
Proof. Again, observe that for any o > 0, kK = 0,1, 2, the quantity
IRS ()lez a2, = 109 Ro.c(2)2 )22, a0,

is finite for ¢ > 3(k + 1)/2, and that for Re(z) < c? the operator (z) 7 0% R o(2) (x) ™7 -
L?(R3) — L%(R?®) is the integral operator with kernel

3 (@, y) = (@) 7 0W g (x —y) (1) 77,
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where g, . is given by

dit| .

1 [Ki(clz —y|) I Z/+OO ot Ki(c[|z — y|? +02t2]1/2)
0

gz,c(l‘ - y) = [|9C _ y|2 I 02t2]1/2

2w | fo—y

Furthermore, by simple computations we have that for o > 3(k + 1)/2 and Re(z) < ¢?
1RSI = [ 2) ™" RE (=) (@)™ = RGN () S
0.c(Plrzor2, = (2 0,c(2) (@) 7 llL2@o) - L2(m9) o ()" R (2)((z) 7 )l 2
2=
(B.2.17)
5 1/2

Bz

/]Rz OWMg. oz —y) )7 fy)d®y

= sup / (z)~%
Ifllg2=1 | /RS
(B.2.18)

Now, one can relate the asymptotic of a function with the asymptotic of its Laplace transform
via the so-called Abelian Theorems (read [88], chapter V, Theorem 1 and Corollary la and 1b);
these results generalize the remark that if f(s) is defined for real s > 0 by the convergent integral

o= " etdal),

then
lim f(s) = lim «(t),

s—0+ t—o0o

provided that the limit on the right-hand side exists.
We apply the Abelian Theorems for the Laplace transform to g, . and to its derivatives.

We exploit Corollary 1b in ([88], Chap. 5); since

Ky (c(lz +C2t2)1/2) t—00 0’1/2(|x|2 +CQtQ)73/4efc(|w\2+02t2)1/2
(|22 + c2t2)1/2 ’

we get
Fo0 2 42\1/2
/ etzKl(C(m +1)Y )dt a—c? 2z — A2,
0 (|l|? +¢2)1/2
Hence
z—c? 1 KI(C|(E|) 2\1/2
»c ~ — | — — . B.2.19
geot) % o (B ) (B.2.19)
Since [ps LS ‘(;llm‘)dm = 5, for 0 > 3/2 we can apply the weighted Young inequality for convolu-

tion, in order to estimate (B.2.17)) by a constant times

z 02
sup gzl ()77 FW)llzz < llgzcllzr sup [Ifll2 *~ O(1/?), (B.2.20)
£l 2=1 11l 2=1

and this proves (B.2.15]).
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In the case k = 1, by exploiting the L.h.s. in (B.2.7) and through the same kind of argument
of Proposition we have that for Re(z) < ¢?

I ct 2 | 2,2\1/2
029z.c(x) = e'*t Ko(e(|z]® + %)/ *)dt
0

272 c2t? + |z|?
1 K 2 4 2421/ K 2 4 242)1/2
2n? { 1[(|Zf[||;v|+ 6232]1/]2 )] )+ #ﬁ [ﬁ 1[(lciﬂ[lf|+ 626112]1/]2 )] )

and that for Re(z) <0

o0 tK 2 2t2 1/2 +o0 d
/ oz el + e t) )dt:/ = [ K (e |a:|2+ct2>1/2)}d
0 ( d
z
3

|2 + c2t2)1/2

By Proposition we get that

2 2 4211/2 2
0.gec(a) = 5L [Kﬁx{:'jﬁf/] >] (2) + gz Kolclal) + 355 £ | Kolelle” + & £)1/2)] (2),

272

and similarly

9 Ky (c]|z]? + #2]1/? Koy(clz z 9 Lon1/2
0.oe) = 53 | PO (0 SRR b o [Ratetial + 209 0

2,2

tomat {ﬁKo(c(m? + ﬁz)w)} (2).

To prove (B.2.16) for the case k& = 1,2, we can argue as before, and Corollary 1b in ([88],
Chap. 5) gives us that

0.9..o(x) “2 02|z — EV2) + 3 Ko(ela]) + Oz — 272, (B.2.21)

0. o(@) "X Oz — A7) + e Ko(clel) + Oz — ATV?) + O(|z - A7),
(B.2.22)

and by replacing g, . with (’9§k)gZ7C in (B.2.20) we can conclude. O

B.2.2 Asymptotic behavior of the resolvent of H,

In this section we want to prove the asymptotic of the resolvent of H as |z| — oo, by generalizing
the approach of [86] and [67]. These allow us to deduce the asymptotic (B.2.35)). Here we deal
only with the 3-dimensional case, but a slight modification of the argument works also for R¢
(d > 3).

Remark B.2.6. In order to deduce the asymptotic for |z| — oo one cannot apply the Abelian
Theorems for the Laplace transform to g. . and to its derivatives, as we did in Lemma [B.2.5
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Indeed, in the case k =0, since as t — 0F

Ky (c[|z|* + 2t2)Y/?) N Ki(cz|) C3K0(g\x|) +2C2K1(c|x|) N C3K2(§\x|) ﬁ + o)
(]2 + c2t2]1/2 | || |z[3 || 4
Ki(clz|) 3 Ka(c]z]) o 1
R

by the Abel theorem for the Laplace transform we would get that
K (cllz> + ")) _ /+°° otz (el +17'72)

e+ 82112 |7 [l=[> + ¢2]1/2
e Kilelal) | s Ka(elal)

dt

+0(|2[7?),

|| |z[223
hence

K.
gz.c(T) ~ 03222;2759, |z| = 00, Re(z) < c?, (B.2.23)

but the function xr — KZ"EEC‘LID, unlike the functions we considered in Lemma is not inte-

grable on R3. One can check that such a problem persists also for the derivatives of Ro ().
First, we will prove the following;:

Proposition B.2.7. Let ¢ > 1 and z € C\ [c?,+00). Then

liminf R ()| 12 p2 . > O(/c?), o> 3(k+1)/2,k=0,1,2. (B.2.24)

|z|—00
The previous proposition will readily follow from

Lemma B.2.8. For each k = 0,1,2 and for ¢ > 1 there exist sequences (hy, ;)jen, C S(R?),
(Zh,e,j)jeny, C R with |2k c ;] T2 400 such that

(i) sup; [|hr.cjllz2 < +oo for every o > 0;

(ZZ) limjﬁoo <Ré{€2 (Zk‘,c,j)hk,c,jv hk,c,j> 75 0.

In the proof of this lemma we will need the following result of residue calculus (often found
as Sokhotski-Plemelj theorem on the line):

Lemma B.2.9. Let a <0< b, and let ¢ € C([a,b],R). Then

b b

where p.v. denotes the principal value of an integral.
Furthermore, if » € C1([—1,1],R) and $(0) = 0, then the last integral may be replaced by the term

/11 ( /01 ¢’(09)d0) do.
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Finally, if k > 0 and ¢ € C*((a,b),R), then by integration by parts we get
b by b (k)
/ ¢(0) da:}/ ¢'(o) .dgzl/sﬁ (f’)da,
 CF TR, GRS R, owin

b : b (k)
) (o) L) 1 »F) (o)
ilg%) o (0 Fip)kt? do ==+ k! $0)+ g P e O do

hence

Proof. (Lemma [B.2.8) Choose an even function ¢q such that

supp(¢o) C (=1, 1),
¢0(0) = 1.
Define the sequence (z;); C R by
2 =742, jeN, (B.2.25)

and the sequence of functions (hg;); := (ho.,;); € S(R?®) by

ho (€)== ¢ 21g] (7 (€). — 2), J € No. (B.2.26)

It is easy to check that

supp(ho,;) C {€ € R? : [¢] € (cy/23 — 225, ¢/2 +22))}.

Let o € N3 be a given multi-index: by the Plancherel theorem, we have

2

d3¢

AN
||$ah0,j||%2 = (271')_3 /1;3 ‘ (285) hO,](é)

j KOM% c

L -2,
Cy /272.72Zj<|§|<c, /z;+2z]-

where K, ¢, is a constant depending only on a and ¢g. Furthermore, a simple calculation shows
that the last integral may be bounded by a constant independent both of j and ¢. Thus we obtain

sup ||z%ho ;|| L2 < 400,
>1

J

and by the arbitrariness of o we get (7).
Next we show (ii). Passing to polar coordinates, we get

> 1
Ro.c(2)ho i, ho ) = (27) 3w cil/ — o V2 12— z)2dr,
< 0, ( ) 0,7 07]> ( ) 3 0 CW—Z¢O( J)
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where ws denotes the surface area of the unit sphere in R3. By setting o := ¢~ 'v/c2 +r2 — z; we
get

! 1 o+ 2z
<RO,C(Z)hQ’j,h0_j> = (27’1’)73&)3 Cil/ ¢0(0)2C J dO’, (B227)

L POt Pz -2 CETHEES

where we have used that supp(¢o) C (—1,1). Now take z = ¢*(z; + iu) with g > 0; taking the
limit as 4 — 0 and exploiting the prevoius lemma we obtain

w

—~

2m)

) 1 1
<R0’C(022j)h0’j7 h()’j> = C_2 ZWQSO(O)Zi] +/ (/ 1ﬁ3 (J&)d&) da 5
w3 Vi -1 /-1 \Jo

L o+z;
where ¢;(0) := ¢o(0)2m'

Now, from Lebesgue dominated convergence theorem we have

jlij& _11 ( /0 1 ¢;(ae)d9> do = /_ 11 ( /O 1(¢3)’(09)d9) do,

and since ¢2 is an even function, the integral on the r.h.s. vanishes. Hence

2 3
lim ( 7T) <R()yc(622j)h07j,h0’j> :i7TC_2, (B228)

Jj—o0 w3

and by setting 2o . ; := ¢?z; we obtain the thesis for k = 0.

To discuss the case k = 1, we again exploit Lemma Indeed, choose an even function
¢1 such that

Supp(¢>1) C (_1a 1)7
(bl(o) = 17
/ C61(0?)do £ 0,
0

and define

R (€) = V2 da((¢7H(E), — 7)), J € No. (B.2.29)

Arguing as before we get

(Roulelsotng) = @) ene™ [ (V4 = )

1
= 27Tw30_1/ ( . 2(;51(02)20

1 (o + 2z — 2)

o+ zj
(c+2)2—-1

do,
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and choosing as before z := ¢?(z; + iu) we obtain

e 1
<R6’C(CQ(ZJ‘ + i,u))hLﬁ hl’j> = (271’)_30.)3 C_1 /0 o _ i'uwl,j(O')dU
=I5 (),
where
R 2 o+ 2z 212 1 B (0 + z)?
Y1,5(0) 1= 2¢1(07)20 o+ Zj)2 1 + ¢1(07) ( o+ Zj)z 1 [(0+2)2— 1]3/2) :
Now,
_ 1
;lbii% I i(p) = (27) Bwge? [imbl(())z[zjz(_llilzm + [1 lel(c%;(a)dcr] , (B.2.30)

and by passing to lim;_,, we get by Lebesgue dominated convergence

1 1
: 2 w3 2 2 w3 2

jlglolo <R6}c(c Zi)h g, ha ) = (27T)3C ) ¢1(0”)do = 2.3 $1(0”)do, (B.2.31)

which is non-zero by definition of ¢;.
Finally, for the case &k = 2 choose an even function ¢- such that
supp(¢2) C (—1,1),
¢2(0) =4
1
| ox(*)es0%)d0 20
0
and define
haj(€) = ¢ PIE T gal( T (E), — 2)), d € No. (B.2.32)
By using the same approach as before we get
<1
(R (22 + )b johas) = (2m)Yn e [ (o)
o O
=:Iy,; (),
where
- 2(0 + ) (@ +2)1+200+2)°], 3y
wQJ(O—) -— [(0‘+Z]>2—1]3/2 [(U+Zj)2—1]5/2 ¢2(0' ) +

¢2(03)¢/2(03)
(o422 17
Lot 2j)[120¢2(0°)¢5(0°) + 180 (¢5(0%))* + 180 ¢2(0°) 5 (%]
(o +2)? 172 |

— 1262

+
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hence

1
lin (R, (P2 haohas) = o [ [20a(0%)05(0%) + 30%(65(0%))? +30°0a(0)04 (%] do
Jroo (2m) -1

(B.2.33)
3w !
— 627; $2(0*)ph(0)do (B.2.34)
which is non-zero by definition of ¢s. O

At this stage it is easy to deduce (B.2.24). Fixed k = 0, 1, 2 take the sequences (2x ¢ ;)jen, C R
and (hy.c.j)jen, C S(R?); for o > 3(k + 1)/2 we have
k k
(RS el cis e ) | < RS (e e W32

and the last inequality, combined with Lemma implies that

lim inf [ R (2h)l| 2z 22, > O/,

Inequality (B.2.24) gives us a lower bound to [|Roc(2)llz2 2 as |z| — co. On the other

hand, via an argument similar to the proof of Theorem 2.3 in [67], one can deduce the following
upper bound.

Proposition B.2.10. Let ¢ > 1 and z € C\ [¢?,+00). Then
IRS ()22 < O(L/e), |2 = 00, 0> 3(k+1)/2, k=0,1,2. (B.2.35)
In order to prove Proposition we begin by noticing that
(c{€)e = 2)(e(8). +2) = (2 (). = %),

and that

Rolz) = F~* c2<s>i—z2<c<g>c+z> F, 2 €C\ ((—00, ~¢*] U[¢%, +oc)).

Proposition is a consequence of the following lemma.

Lemma B.2.11. Let ¢ > 1 and o > 3/2, then
sup{[[Ro,c(2)llrz 2 : [Re(2)] = 2¢2,0 < [Im(z)] < 1} < O(1/c). (B.2.36)

Proof. Let ¢ > 1, and set J, := {z € C||Re(z)| > 2¢%,0 < [Im(z)| < 1}.
Now choose p € C*°(R) such that

p(t) =1, for |t| < 1/2,
p(t) =0, for [t] > 1.
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Now, for each z € J,, we define a cutoff function v, . : R® — R,
V2,e(€) = p(c(€), — Re(2)), for Re(z) > 2¢,
7€) = ple(€), + Re(2)), for Re(z) < —2¢*
Using the cutoff v, . we decompose the resolvent Rg .(z) into three parts:
Roe(2) = (—PA+c* —22) A, o+ B o + 2(—A + ¢ = 247,
where

Ase= F! [Vz,c(§) ¢ <£>c} F,

-1 1*726(5)
B,.=F ———=c). | F
| [ i <f>]

Note that for ¢ > 1, z € J. and for £ € supp(7z,c)
€[> < ¢7*(Re(2) +1)° = ¢
this implies that for any multi-index o 3K, > 0 such that

() O=c©(©)

< Kol(c* =257,

hence
1Az c¥llzz =122 =)0 Lz (B.2.37)
On the other hand, by the well-known estimate for the Schrodinger resolvent, we have that for

z € J,

2 —1/2
eate =, 2 (5-0)  —@od e

and by combining (B.2.37) and (B.2.38), we get

[(—c2A 4 ¢* — zz)flAz,CHLg_)LgU <cl zeJ. (B.2.39)

Furthermore, since for ¢ > 1, z € J;, and £ € supp(l — 7, )

2 4 1
e €)e = (27 =) 2 5e{6),

we can deduce that also

IBecllpz e, 2ty z€ e (B.2.40)
By combining (B.2.39) and (B.2.40) we finally get (B.2.36). O

Analogous estimates for the derivatives Rékg(z) of the free resolvent follow by exploiting
resolvent identities, and by arguing as before.

Remark B.2.12. We just remark that the behavior of the resolvent of the pseudo-relativistic
Schridinger operator is quite different from the one of the resolvent of the Schridinger operator,
since the latter decays like O(|z|7'/2) as |z| — oo. This difference was already reported in the

case ¢ =1 in [{9].
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B.2.3 Resolvent of equation (4.1.6) with a time-independent potential

Now, consider the operator

H(x) = e(® — A)YV2 +V(z) = Ho(1+c (V)1 V), (B.2.41)
where V € C(R3,R) is a potential such that
V(z)| + |VV(2)| = ()7, zeR?, (B.2.42)

for some 8 > 0 sufficiently large (we will specify more precise conditions on V' later).
Let Vp := mingers V(z). Then we can define the perturbed resolvent

Re(2) = (H(z) —2)7 ', 2€T:=C\ [Vo, +o0). (B.2.43)

One can construct R, from the free resolvent Ry . using the decomposition formula

H(z) — 2 = Ho(1+c (V) V() —
= (Ho — 2){1+ Ro(2)c <V>c (L4 (V) V() — 1]} (B.2.44)
= (Ho — 2){1 + Ro,c(2)V(2)} (B.2.45)
={1+V(z) Ro.(2)}(Ho — 2). (B.2.46)

In order to deduce the boundedness of the perturbed resolvent we perform a variant of the
Jensen-Kato approach for the Schrédinger operator (see [46]).

Theorem B.2.13. For z € I" the operators
1 + R()’C(Z)V({L'), 1 + V(.’L‘)R(]’C(Z)
are invertible in L?.

Proof. We show the thesis only for 1+ V(z) Ro,(z); the estimate for the other operator follow
from the fact that

1+ Roc(2)V(x) ={1+V(x) Roc(2)}".

First step: we prove that equation (H — z)¢ = 0 for ¢ € L? admits only the trivial solution
=0 for z eT.
First, (H — 2)v¥ = 0 implies

(V) + 1) = (V(z) + 2+ 1)ib.
Then (¢(V), + 1)y € L?, hence ¢ € D(H,). Therefore,
(M = =)0, ) = (M, ¥) = =[] 7.
Consider the case z € C\ R. Then

Im(((H = 2)¢,9)) = —Im(z]|¢72) # 0
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for ¢ # 0, since the scalar product (Hi, ) is real (because (V), is symmetric and ¢ € D(Hy)).
Hence, (H — 2)¢ # 0 for ¢ # 0.
Now consider the case z € R, Re(z) < Vp. Then

Re({(H — 2)1,¢)) = (Ho, ¥ ) + ((V(z) — Re(2))¢, ¥)
> (Vo — Re(2))9,4) # 0,

since (How, ) > 0 Vi € D(Hy).
Second step: the above decomposition for the perturbed resolvent, together with the previous
step, allows us to deduce that also the equation

1+V(z) Roc(2)]p =0, z€T

with v € L? admits only the trivial solution 1 = 0.

Third step: one shows, via an approximation argument and Sobolev Embedding Theorem, that
V(2)Ro.(2) is compact in L? for z € T.

Indeed, for any § > 0 we can write V(z) = Vs(x) + rs(x), with Vs € C°(R?) and ||rs||z~ < .
Then, by and pseudo-differential calculus we have

lim |V (2)Ro.e(2) — Vs(@)Roo(2) 212 =0,

i.e. VRo,(2) is the limit of the operators VsRo .(z) in the operator norm, and therefore VR ((2)
is compact as an operator from L? to itself if VsRo,.(z) is compact. Since the multiplication by Vs
is continuous in L? and since R .(z) is continuous from L? to H!, we have that the composition
VsRo,c(z) is bounded, and also

supp(VsRo,c(2)) < supp(Vs), (B.2.47)

and supp(V;) is bounded because V5 € C°(R?). Now, by using and recalling that
Ro,c(2) : L? — H' is bounded, we can deduce by compact Sobolev Embedding Theorem the
compactness of V5Ro (z).

Fourth step: We exploit Fredholm Theorem in order to invert the operator

V(;'RO’C(Z).

Indeed, Fredholm Theorem states that, given a Hilbert space X and a compact operator K :
X — X, then the operator 1 + K : X — X is invertible iff the equation (1+ K)y =0, ¢ € X,
admits only the trivial solution ¢ = 0.

The result follows by choosing X = L? and K = VsRo (), for z € T. O
Now, recalling , we have

Re(2) = [1+ Ro(2)V(@)] " Roe(2) (B.2.48)

=Roe(2) 1+ V(x) Roel2)]" (B.2.49)

This splitting, combined with the previous proposition, leads to

Corollary B.2.14. Let z € T', then

Re(gaox SNel) = s (B.2.50)
_ {Im(znl i Be(2) 2 Vo, (B.2.51)
Vo — 2|71 if Re(2) < Vp.
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Actually, we may argue by standard arguments from complex analysis in order to extend
the resolvent R.(z) as an holomorphic operator for z € C\ ([¢, +00) U X(V)), where 3(V) is a
discrete subset of [Vp, ¢).

Using the estimate in the previous subsection, and the fact that the multiplication by

V(z): L*, — L2
is compact for 5 > 20, we can deduce the following

Lemma B.2.15. Let (B.2.42)) hold for some 8 > 2. Then for any ¢ > 1

(i) For \ > c* the operators
Ro.AE£i0)V(z): L2, — L%,

are compact for o € (1/2,3/2].

(ii) The operators

Ro,c(c) V(z) : - LQ_Z77

V(z) Ro.e(c): L2 — L2,

o

are compact for o € (1,8/2].

Now consider the space

My ={pe L, :[1+V(z) Roclc)tb =0}, o€ (1,5/2).

One can show that M, does not depend on o (just consider the space defined through the
adjoint operator 1 4+ Rg(c) V(z)), hence we can denote the space M, by M. Functions in
M N L? are the zero eigenfunctions of the operator #, while functions in M \ L? are called the
zero resonances of the operator H.

As usual in this framework ([66], [49]), we will assume that the point z = ¢
eigenvalue nor a resonance for the operator #, ie

2 is neither an

M =0. (B.2.52)

The above spectral condition (B.2.52)) ensures the invertibility of

1+ Roelc) V() : L2, —» L2, o€ (1,58/2),
and it holds for generic potentials V' satisfying (B.2.42).

One can also deduce

Lemma B.2.16. Let the potential V(z) satisfy (B.2.42) for some [ > 2, and let the spectral
condition (B.2.52) hold. Then for any o > 1

lim [[Re(z) — Re(A)|p212 =0, 2€C\[c?, +00). (B.2.53)
z—C “ -
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Remark B.2.17. By using (B.2.50) and pseudo-differential calculus, one can show that the
perturbed resolvent is bounded not only from L? to L?, but also (for any ¢ > 1) from L% to L?,
for o > 1/2. Indeed, just notice that for z € T

IRe(2) ez or2, = IRoc(2)[1+ V(@) Roe(2)] iz oz,
<Roe()lzz—r2,

+[Roe(z) {1+ V(@) Roe(2) ™ =1} 12 p2
but for ¢ > 1 the last term can be bounded (up to a remainder which is smoother) by
)77 Roe(2) -V (@) Roe(2)] )77

< H<.>—" Ro.(2)V(2)Ro.e(2) ()77

L2— L2

L2512’

and the P.D.O. in the last norm has symbol

L EEDEED )

(@) (c(€)e — )TV (2)(c (&) — )7 (2)

0,c(#z

The above argument may be easily extended to R&k)(z) (k =1,2); thus for any ¢ > 1 one obtains

IRP (2)p2sp2 <400, 2€T, 0>k+1/2, k=0,1,2. (B.2.54)
The previous remark allows us to deduce the asymptotics for the perturbed resolvent.

Corollary B.2.18. For any ¢ > 1 sufficiently large

IR® ()2 sz < O/e), |2l = 00, 0> 3k +1)/2, k=0,1,2, (B.2.55)
IRe(2)L2 L2 = O(1/c?), z—c* o >3/2. (B.2.56)
||R£k)(z)||L§_>Lgu =0(z—d"?7 ), 25 0>3k+1)/2, k=1,2. (B.2.57)

Finally, we recall that the free resolvent Ry .(z) and the perturbed resolvent R.(z) are related
through the Born perturbation series,

Re(2) = Roc(2) — Ro,c(2)V Re(z)

= RO,C(Z) — RO’C(Z) \%4 RO’C(Z) (B258)
+ RO,C(Z) V ROVC(Z) V RC(Z), (B259)

which follows by iterating the formula (B.2.48). An important property in order to deduce
dispersive estimates for H(z) is the asymptotics for large |z| of the following operator which

appears in (B.2.58),

We(2) :=Roc(2) V Roc(z) V.

Proposition B.2.19. Let the potential V' satisfy (B.2.42) with § > 20 4+ 3(k+ 1), where 6 > 0
and k =0,1,2. Then for any ¢ > 1

IWE ()12 ps, = O(12172), |2l = 00, Re(z) < 0. (B.2.60)
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Proof. By recalling that R .(z) commutes with powers of (V)_, we have
IWE ()2, —sr2, =
= 09 Roc(2) V(@) Ro.e(2) V(@)

L? —L2%

which reduces to estimate terms of the form

IR (2)V () RED ()V (@) |12, 12,
with k1, ks € {0, 1,2}, k1 + k2 = 2; but these may be bounded by
IRED ()V (@)l 22 12, IRED )V (@)l|22 12,
The asymptotics follows from
IRS )V (@)ll2 ,r2, = O (12 7) , 2] = 00, Re(z) < 0.
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(B.2.61)

Now we want to show (B.2.61) under the assumptions (B.2.42) for V, for 6 > 0, 8 >

20 +3(k+1), k=0,1,2 and for ¢ > 1. We have

k
|RE V]

= [RE2E 077

)

2 2 2 2
L2 s— L2 L2 s— L2

= |0 RO
B>25 H R(k) ) () B/2+6 <.>7ﬂ/275 <.>5‘

L2—L2

< |[R§2)

2
LE—L% )

+ H<'>75 {R(()kg(z)a ()~ /2+5] <.>*6/276 <.>5’
= T +1I.

L2— L2

First we estimate I for the case k = 0. In this case we exploit the trivial identity

in order to get

IRoc(2)lyz, e, = O (1217) [e] = o0, Re(2) <.

Next we estimate I for the cases k = 1,2. This follows from

k
IRE2 (a3, 12, = IR0 M s e,
R Ra (o) ||Lg/ﬁL_w
< [[Roc(2)llez LQMHRO,A ez, 13,
()

= Ro.c(2 ” [Ro,c(2 )”L%M%Lz

252 8/2’

(B.2.62)

(B.2.63)
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and
IRo.c(2)llz2 , o2z, = 1) Roe(2) (V772 N2 p2 (B.2.64)
= Roc( e + (02 [Roc2), 02| (B2:69)
= No.e(z) + Noo(2)? (B.2.66)

because [RO,C(z)(k), (V72| = Op(b(=,&; 2)), where

[b(z, & 2)| = (@) 7727 Ny o(2)F+2.

)

Therefore, by recalling the definition of Ny .(z), we can conclude that

IR ()2 e =O(2[7Y), |2 = o0, k=1,2. (B.2.67)

B/2 -B/2

Finally, we point out that term I7 in (B.2.63) may be bounded by Np.(2)**2, by using
standard theorems of PDO calculus. O



Appendix C

Interpolation theory for relativistic
Sobolev spaces

In this section we show an analogue of Theorem 6.4.5 (7) in [18] for the relativistic Sobolev spaces
WEP KER, 1< p< +o0.

They have been used in Theorem in order to get Strichartz estimates for .

We begin by reporting the so-called Phragmén-Lindeldf principle (see Chapter 4, Theorem 3.4
in [80]).

Proposition C.0.1. Let F' be a holomorphic function in the sector S = {a < arg(z) < B},
where f — a = w/\. Assume also that F is continuous on S, that

|F(2)] <1 Vzeds,
and that there exists K > 0 and p € [0, \) such that
|F(2)| < B vz e 8.
Then |F(z)| <1VzeS.

By Proposition one can prove the 3 lines theorem.

Lemma C.0.2. Let F' be analytic on {0 < Re(z) < 1} and continuous on {0 < Re(z) < 1}. If

|F(it)| < My Vt € R,
|[F(1+it)] < My VteR,

then |F(0 +it)| < M3~ MY for allt € R and for any 0 € (0,1).
Proof. Let € >0, A € R. Set

F.(z) = eEZzH‘ZF(z).
Then F.(z) — 0 as |[Im(z)| — +oo, and

|[Fe(it)] < My Vt e R,

|F.(1+it)] < Miest™ Vt € R,

95
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By Phragmén-Lindeldf principle we get that |F.(2)| < max(My, M1et), namely
|F(0+it)] < e (07 =1%) max(Moe %, M=) vg ¢,
By taking the limit ¢ — 0 we deduce that
|F(0 4 it)| < max(Moe % Me1=9%).

The right-hand side is as small as possible for Mye=?* = Me(1=9* je. for e* = My /M;. Thus,
if we choose A = log(My/My), we get

|F(0+it)| < My~ M.
O

Now we introduce some notation used in the framework of complex interpolation method
(read [18], chapter 4).
Let A = (A, A1) be a couple of Banach spaces, and denote by Ay + A; the space for which the
following norm is finite,

lallag+a, := _inf ([lao]la, +[lar]la,)-
=ao+a1

The space Ay + A1, endowed with the above norm, is also a Banach space.

We then define the space .#(A) of all functions f : C — Ay + A; which are analytic on the open
strip S := {2z : 0 < Re(z) < 1}, continuous and bounded on S = {z : 0 < Re(z) < 1}, such that
the functions

t— f(j+it) € C(R,4;), j=0,1,

and such that lim,_, f(j +it) = 0 for j =0, 1.
The space .# (A), endowed with the norm

11l ay = max(sup [ (it)] 4o, sup |l (1 + it} 4,),

is a Banach space (Lemma 4.1.1 in [I§]).
Next we define the interpolation space

Ap:={a€ Ao+ Ay : a= f(0) for some f € F(A)},
lallo == inf{||fll.#(a) : f € F(A), f(0) = a}.
Now we show a classical result of complex interpolation theory (Theorem 5.1.1. in [18]).
Theorem C.0.3. Let pg, p1 > 1, and 0 < 0 < 1. Then
1-6 0

1
(LP, LP)y = LP for 5: - eril' (C.0.1)

Proof. We prove that ||al|(Lro,1e1), = |la] e for all a € C°(R?). Set
f(2) === alPPDaJa),

where 1/p(z) = (1 —z)/po + z/p1.
Assume that ||a||p» = 1, then f € F(LPo, LP1), and || f]lz < e°. Since f(0) = a, we conclude
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that [lallczeo, £, < ¢, hence [lalzro. zo1), < llallze-
On the other hand, since

lallLe = sup{| (a,b) | : [[b]l o = 1,b € C*(RY)},
we can define
g(z) 1= e VP P p

where 1/p'(z) = (1 — 2)/py + z/p). Writing F(z) = (f(z),9(2)), we have |F(it)] < e and
|F(1 + it)| < e, provided that ||al|(fro rr1), = 1. Hence, by the three line theorem it follows
that | (a,b) | < |F(6)| < e?. This implies that [|al|r < [|lal/(zro,Lr1),- O

In order to study the relativistic Sobolev spaces, we have to introduce the notion of Fourier
multipliers.

Definition C.0.4. Let 1 < p < 400, and p € S'. We call p a Fourier multiplier on LP(RY) if
the convolution (F~'p) x f € LP(RY) for all f € LP(R?), and if

| ﬁup I(F~1p) * fllr < +o0. (C.0.2)
fllLp=1

The linear space of all such p is denoted by M,, and is endowed with the above norm (C.0.2).

One can check that for any p € (1, 400) one has M, = M, (where 1/p+1/p’ = 1), and that
by Parseval’s formula My = L°°. Furthermore, by Riesz-Thorin theorem one gets that for any
p € M,, N M,, and for any 6 € (0,1)

1 1-6 0
-6 16 1 v
lollag, < llpllv,, ol 2= 0 o (C.0.3)
In particular, one can deduce that || - [|5s, decreases with p € (1,2], and that M, C M, for any
l<p<q<2.
More generally, if Hy and H; are Hilbert spaces, one can introduce a similar definition of

Fourier multiplier.

Definition C.0.5. Let 1 < p < 400, let Hy and Hy be two Hilbert spaces, and consider p €
S'(Hy, Hy). We call p a Fourier multiplier if the convolution (F~1p) * f € LP(H,) for all
f € LP(Hy), and if

sup  [[(F~1p) * fllecmy) < +oo. (C.0.4)

£l (mg)y=1

The linear space of all such p is denoted by M,(Ho, H1), and is endowed with the above norm
(1C.0.4).

Next we state the so-called Mihlin multipier theorem (Theorem 6.1.6 in [18]).

Theorem C.0.6. Let Hy and H, be Hilbert spaces, and assume that p : RY — L(Hgy, Hy) be
such that

€I D p(E Lo,y < K, VE € RY, Ja < L
for some integer L > d/2. Then p € M,(Ho, H1) for any 1 < p < 400, and

lpllar, <Cp K, 1<p< +oo.
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Now, recall the Littlewood-Paley functions (¢;);>0 defined in (3.1.1), and introduce the maps
J:8 -8 and P: S — & via formulas

(Tfj=djxf j=0, (C.0.5)
Pg = Zfi;j %95, J =0, (C.0.6)
>0

where g = (g;) ;>0 with g; € &’ for all j, and
o = Go + 61,

Gj = i1+ & + b1, =1
One can check that Po Jf = fVf € &, since gz;j *¢; = ¢; for all j. We then introduce for ¢ > 1
and k& > 0 the space
2k = {(2))jez : ¢ * Z:(c2 +171%)%12* < +ool.
jez
Theorem C.0.7. Letc> 1,k >0, 1< p < +oo. Then (V)XLP is a retract of LP(I>*), namely
that the operators
T W D)
P LP(I2F) — ke
satisfy P o J =id on WP,
Proof. First we show that J : #%? — LP(I>*) is bounded.
Since Jf = (F~x.) * ¥ f, where
(xe(€)); 1= (2 + [€1)7*26;(¢), j =0
JEF = F (e + €2 F),
we have that for any o € N¢
D )l 2y < I 3@ ID (e E))s] < K
Jj=0
because the sum consists of at most two non-zero terms for each £. Thus J € M, (#.}P, LP(12*))
by Mihlin multiplier Theorem.
On the other hand, consider P : LP(I1>F) — w/ k.
Since JF o Pg = (F16c) * g(), where
9= (95);z0;
9w = (2%g) 20,
0e(&)g =D 277 (c + €)%, (€)g;.

j>0
we have that for any o € N¢
1/2
EI DY) g2 oy < 161 [ D@D + 1) 26,()? | < Ka,
Jj=0

because the sum consists of at most four non-zero terms for each €. Thus P € M, (LP(I2F), #.}-»)
by Mihlin multiplier Theorem, and we can conclude. O
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Corollary C.0.8. Let 0 € (0,1), and assume that ko, k1 > 0 (ko # k1) and po, p1 € (1,+00)
satisfy

k=(1-0)ko+ 0k,
1 1-46 0
N + —.
p Po P1

Then (7/!%,1)7 y/ckhp)e = y/ck,p'

Proof. It follows from the abstract result that if B = (By, By) is a retract of A = (Ag, A1), then
By is a retract of Ay (Theorem 6.4.2 in [1§]). O

The previous corollary, combined with Lemma|[C.0.2] immediately gives a proof of Proposition
234

We also give a formulation of the Kato-Ponce inequality for the relativistic Sobolev spaces.

Proposition C.0.9. Let f,g € S(R?), and let ¢ >0, 1 <r < oo and k > 0. Then

1 gllyer 2 Wy llgllzre + 1 fllzrs gl e (C.0.7)
with
1 1 1 1 1

—=—+—=—4+—, 1<r,ry<+o0.
r T1 T T3 T4

Remark C.0.10. For c =1 Eq. (C.0.7) reduces to the classical Kato-Ponce inequality.

Proof. We follow an argument by Cordero and Zucco (see Theorem 2.3 in [28]).
We introduce the dilation operator S.(f)(x) := f(z/c), for any ¢ > 0.
Then we apply the classical Kato-Ponce inequality to the rescaled product S.(fg) = S.(f) Sc(g),

1Se(fPllwnr = NSe(H)llwer [1Se(9)lLr2 + [1Se(F)llLrs [1Se(@)wra (C.0.8)

where

1 1 1 1 1
—=— 4 —=—4—, 1<7r,ry<+00.
r 1 T2 T3 T4

Now, combining the commutativity property
(V)*Se(f)(@) = " S((V)e f)(@),
with the equality ||S.(f)||z- = ¢~*/"||f||L-, we can rewrite (C.0.8) as

) Dl = Il lgllzre + 1F 1l (V) gl

and this leads to the thesis. O
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Appendix D

Analytical tools

In this chapter we give an outline of the theory of pseudodifferential operators. This theory has
been developed since 1960s to treat problems in linear and nonlinear PDEs. We will not prove
all the results in detail; for the interested reader we will address to the literature ([42], [84]; see
also [3] for a nonlinear PDEs-oriented approach).

We define pseudodifferential operators with symbols in Hérmander’s classes S;’}l;; then we derive
some useful properties of their Schwartz kernels, and discuss their properties. We proceed to
a discussion of mapping properties on L? and on the Sobolev spaces H”; we also discuss LP
estimates, in particular some fundamental results of Calderon-Zygmund, and applications to
Littlewood-Paley Theory of “dyadic decomposition”. This decomposition, which is based on
frequency space localization, allows one to rapidly obtain interesting properties of operators on
Sobolev spaces.

D.1 Fourier Transform
In this section we briefly recall some classical notion of Fourier analysis on RY. We first recall
the definition of the space of Schwartz (or rapidly decreasing) functions,
S(RY) := {f € C®(R,R)| sup (1 + |2[2)°/2|0° f(z)| < 400, Vo € N4, V5 e N4} (D.1.1)
zER?

In the following we will denote by (x) := (1 + |z|?)'/2. The space S(R?), endowed with the
above family of semi-norms for «, 8 € N%, is complete. Now, for any f € S(RY) we introduce the
Fourier transform of f, f : R? — R,

f(€) == (2m)~ /2 g flx)e @8 ddy ve € RY, (D.1.2)

where (-,-) denotes the scalar product in R?. Using the above seminorms one can show that the
linear mapping F : f +— f is continuous from S(R?) to itself. The map F is also continuous from
LY(RY) to L>°(RY), since

£l oo ey < 27) "2 1l 11 ey

101
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Now, introduce the operator D; := —i% for 1 < j <d, and more generally
J
D*:= D¢ ...D5*, aeN?,

and let us introduce also the translation operator 7, f(-) := f(-—y), y € RY. We can easily check
the fundamental properties of the Fourier transform,

D; f(€) = &(8), V&R, (D.1.3)

T/y?(f) ( —y) = e WO f(e), (D.1.4)
TwIF(E) = 7, f(©), (D.1.5)
z;u(8) = —D; f(€)- (D.1.6)

A linear form on S(R?) which is continuous with respect to the semi-norms defined in (D.1.1))
is called a tempered distribution on R%. The space of tempered distributions is is denoted by
S'(R%). In particular, by defining the following endomorphism of S(R?) into itself

T:S(RY) — S'(RY),
T(u):v — {(u,v):= /]Rd u(z)v(z) dz, Yo € S(RY), Vu € S(RY),

we can deduce that S(R?) C &'(R?) (actually, it is well known that S(R?) is dense in S’'(R?)).
As for all linear maps, one can observe that by Fubini’s theorem

[ @@= [ u@ite)s. vuo e S@.

Rd

hence the formula
(,v) = (u,9), Yuec S'(RY),v € S(RY)
defines a linear map F : S'(R?) — &'(R9), which is the unique continuous extension of F :

S(R?) — S'(R?). In particular, F satisfies (D.1.3) - (D.1.6).
Moreover, using (D.1.4) and (D.1.5), one gets

f(x) = f(-=), VfeSERY.

Another well-known result is the Fourier inversion formula,

Lemma D.1.1. The Fourier transform F : ¢ — ¢ is an isomorphism from S(R?) to itself, with
inverse given by the following formula

fl@) = @m)~ 2 [ f(©e=0de. (D.1.7)

Rd
Proof. See the proof of Theorem 7.1.5 in [41], Ch. VIL O

By the Fourier inversion formula one can deduce the Plancherel inequality,

(F.9) = (.90, ¥f.g€ L*RY). (D.1.8)
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D.2 Symbols

We begin by noting that if one differentiates the above Fourier inversion formula (D.1.7)), one
gets

Daf(x):(Qﬂ)_d/z/ £f(€)et ™8 de, Ya e NY, (D.2.1)
Rd
Hence, if
pm(z, D)= > aq(x)D” (D.2.2)
lal<m

with a, € C®(R?) for all a, is a differential operator of order m, we have that

P, D) () = (27) /2 /

R

= 3 en | aala)en e g,

Rd

[ Pr(@, ) f (e dg (D-2.3)

la|<m

The above computation suggests that if we consider a suitable class of functions, called
symbols, we can write the action of the associated (pseudo-)differential operators acting on
L?(R9) by using the Fourier integral representation (D.2.3).

Definition D.2.1. Let p,d§ € [0,1], m € R. We define the class of symbols S5 as the set of
functions a € C°°(R? x RY) such that for all o, 3 € N? there exists K, 5 > 0 such that

0208 a(, )] < Kap (€)™ A1 (D.2.4)

The real number m is called order of the symbol.
Furthermore, if there exist smooth functions am—;(x,&) homogeneous in & of degree m — j for
€21, ie.

am*j(xa’rf) = Tmijamfj(x7£)a fOT T, ‘€| 2 1;

and if
a(x,§) ~ Zam,j(a:,f), namely (D.2.5)
J=0
N
a=) am_j €SN VN €N, (D.2.6)
7=0

we will write that a € S™ = S{’fo. We will also denote by S™>° = NyperS™.

Remark D.2.2. o Any differential symbol of order m, p,(x,&) = Z\a|§m ao (x)E> with
aq € C®(R?) for all a, is clearly in S™.

o Let a € C°(R?\ {0}) be a positively homogeneous function of degree m. If x € C§°, with
X =1 in a neighborhood of 0, then the function

a(§) == (1= x(£))a(§)

is a symbol of order m.
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o Let Q be an open subset of R?, and let p,, be a differential symbol of order m defined on
Q. Assume that p,, is elliptic in 0, namely

pm(@,€) #0, Yo € Q,¥E € RT\ {0}.

Let ¢ € C§°(Q), and x € C°(R?) with x = 1 in a neighborhood of 0, then for sufficiently
large K > 0 the function

a(z,§) == ¢(x)(1 = x(§/K))/pm(x, )

is a symbol of order —m.

o Let a € S(RY), then a(§) € S~°°.

e The function a(x, &) = e“%E is not a symbol.

o A symbol a(x,&) with x,& € R? is not necessarily a symbol in the variables y = (z,2'),
n=(&¢) with 2',& € R*, k > 1, except when it is differential.

The following properties follow readily from the definition of symbol.

Remark D.2.3. o Leta € S)s, then 8?85(1 c S;:b;pla\%lﬁ\'

o Letae S5, be Sy, then ab e S;'f;‘".
Lemma D.2.4. Ifay,...,ar € S°, and F € C>®(C¥), then F(ay,...,a;) € S°.

Now let us define the following family of semi-norms on 5™,

woi=  sup (7" I9g0la(w, 6|, a8 e N (D-2.7)
(z,£)ERE xRd

la

Space S™, endowed with the above family of seminorms, is complete; the convergence a, "
in 5™ means that for every a, 3 € N% we have that |a, —a|Z 5 = 0.

Lemma D.2.5. Let a € S°(R? x RY), and set as(x,&) = a(z,5¢). Then as is bounded in S°,
and limg_.g as = ag in S™ for all m > 0.

Proof. We will show that for 0 < m < 1,0 < § < 1, and for any o, € N¢ las — aowﬁ <
Ko gm0™. Indeed, for o =0

1
0% (a5 — ao) (. €) = b¢ / 0c0P a(x, 15) dt,

thus
ds ds
(s)
ds ds
ngKg/O T3 = K Kglog(1l+ sd),

108 (a5 — a0)(x.€)| < K /
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and the estimate follows directly from the inequality log(1 + z) < K,,z™ (which holds for any
x > 0, and for any m > 0).
On the other hand, for o # 0 we have that 997 ag = 0, while

0F 0 as(x, )] < Kap6'*! (56)
and the result follows, since () > (0€). O

Just observe that the convergence as — ag does not take place in S°. In particular, if
x € S(R?), x = 1 in a neighbourhood of 0, and a € S™, then the symbols as(z, &) = x(5¢)a(z, £)
are of order —oo, and as — a in S™ for all m’ > m.

In Definition[D.2.1] we have already introduced the notion of asymptotic expansion of a symbol
a € S™; we will say that a admits the asymptotic (in the sense of the behaviour of symbols as

|€] = 00) expansion,
o0
z,€) =< Zaj
=0

if there exists a decreasing sequence m; — —oo, and a sequence of symbols (a;) jen with a; € S™
for all j such that for any N >0
N
a— Zaj € SmNHL
j=0

In practice, one will often have that m; = m — dj for some § > 0. In order to beccome
familiar with the notion of asymptotic sum, we first show the following result proved by Borel.

Lemma D.2.6. Let (b)) en be a sequence of complex numbers. Then there exists f € C°(R)
such that fU)(0) = b; for all j, or equivalently such that

Zb ', xz—0

72>0

Proof. Let x € C°(R) be such that x = 1 if |z| < 1, and such that supp(x) € B(0,2], and
let (A\;)jen be a sequence of positive numbers such that A; — +oco. We will prove that we can
choose (Aj);en such that the function f defined by

Zb] 'X)\x
7=0

has the properties of the statement. First note that the above series is simply convergent by
properties of (A;); and x.
Let k € N; if j > k, then the k-th derivative of the term of rank j is given by

k it
f;k) (@)= > <l)bj hx““&@ﬁﬂ
0<i<k ’

Since Ajz remains bounded on the support of x and its derivatives, we get that there exists a
constant Cy > 0 such that
k—j

(k) ]
|f; ()] < Ck|bj|m7
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and if we choose A; > 1+ |b;[, then the series 3 |fj(k)(x)| converges uniformly for € R, which
ensures that f is of class C*°, and that we can compute its derivatives by differentiating term
by term. Hence for all k& we have f()(0) = by,. O

By adapting the previous lemma, we get

Proposition D.2.7. There exists a € S™ such that a ~ 3 a;.
Furthermore, we have supp(a) C |, supp(a;).

Proof. By taking the asymptotics for % — 0, we take
a=> d;=>» (1-x(8)ay,
J J
with x € C2°(R?), x = 1 near 0, for a suitable (¢;); — 0. More precisely, we require that
|ogaa,| <279 (&)™ it ol + 18] < i

the existence of such (¢;); is ensured by the approximation Lemma [D.2.5] since 1 — x(e€) tends
to 0 in S'. Then the sum is locally finite, and therefore a € C*. Now, given «, 3 and k, we
have that for N > |a| +|8] and my + 1 < mg41

0g0] [a— > ay || < g,
J<N-1
Hence a — >,y a;=a—3 ,cn 185+ D 1<jen—1 85 T 2 ;<,(a; — a;) satisfies
0¢0% | a3y || < Capu (O™ 71,
J<k
because a; —a; € S7°°, and a; € S™. O
The above proposition suggests the following definition.

Definition D.2.8. A symbol a € S™ is called classical if a ~ Zj a;, where the functions a; are
homogeneous of degree m — j for |€] > 1, namely aj(z, ) = A\™Ja;(z,€) for [€] > 1, A > 1.

D.3 Action of pseudo-differential operators in S(RY) and
S'(RY)
Lemma D.3.1. Let § € [0,1) and a € S5, then a(z, D) := Op(a) : S'(RY) — S'(RY).

Moreover, the linear mapping Op from S}'s to S'(RY) is injective, and satisfies

[Op(a)aDj] =1 Op(azja)a 1< <d,
[Op(a), z;] = =i Op(9g,a), 1<j<d,

Cas

where x; denotes the multiplication by the function x — x;.
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Proof. Given u € §'(R?), v € S(R?), we have formally
<U7 a('v D)U> = <ava '&> 5 (D33)
where

ay(€) = (2m) "2 /R ) v(z)a(z, £)e! ™) dz. (D.3.4)

Now, by integration by parts we obtain

£a,(€) = (2m)~* [ DS (va(,€)) 9,

Rd

hence
lau ()] < Ko (€)ool

thus for § < 1 we have that p, is decreasing, and the same is true also for its derivatives. There-
fore a, € S(RY), and the right-hand-side of (D.3.3) is well-defined.

Relations (D.3.1)) follow from integration by parts: indeed,for example
Opla)Dyu(w) = (2m)" 7 [ e, ) Dru(e)d
R4

= (2m) 2 [ et )

while
DyOp(ayu)(a) = =i | (2m) " [ = igjalo, Qa(€)ae + Oplr )]
R
so we get the first formula of (D.3.1). O

Arguing as before, one can show that if a € S)'s with p, ¢ € [0,1], then a(z, D) is bounded
as an operator from S(RY) to itself.

Definition D.3.2. For a € S the operator Op(a) is the pseudo-differential operator with
symbol a. A pseudo-differential opemtor is called of order m if its symbol in Spts for some p, 4.
We denote the space of pseudo-differential operators with associated symbol in S by OPSP,(;

An altenative representation for a pseudo-differential operator can be obtalned via the family
of unitary operators

ei<q’X>ei<p’D>u(x) = ei<q’“’>u(x +p). (D.3.5)
Indeed, given a € S(R? x RY), we have
/R (g p)e @ P Phu(z)dgdp
=@~ | a(y, e @80Tz + p)dydgdgdp
= @m)~ "2 [ a(r,§)e” P u(z + p)dedp

L.
— (2m) /2 /R oz, €)™ a(€)d,
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hence
a(a@D)u(m):/ &(q,p)ei<q’X>ei<p’D>u(x)dqdp;
R2d

this is analogous to the Weyl calculus, where
e Dyute) = [ alaup)e 0 ua)dadp
R2d
1 .
= (2m)~/? / a ((m + y),é) ¢! u(y)dyd€.
R24d 2

However, we will not use Weyl calculus: we defer to Ch. 18.5 of [42] for a more detailed exposi-
tion of this topic.

To an operator a(z, D) € OPS}"; defined by
a(z, DYu(z) = (2m) 412 /R (. (OO dg (D.3.6)
corresponds a Schwartz kernel K € &'(RY x R?), satisfying
(ula)ola). K) = a4 [ u(wale. ile)e I agas
=) [ ul@)ae, e () dydd.

Thus, the kernel K of the operator a(x, D) corresponds to the oscillatory integral
K(z,y) = (27r)‘d/ a(x,&)e' = v de. (D.3.7)
Rd

Proposition D.3.3. Let p > 0, then K is C* off the diagonal in R? x R%.
Proof. For given a > 0

(@)K (.9) = [ 9 DEala . (D.38)

The last integral is absolutely convergent for || so large such that m — p|la] < —d. Similarly
one can check that applying [ derivatives to gives an absolutely convergent integral,
provided that m + [ — p|a| < —d, hence in that case (z —y)*K € C'(R? x RY). This allows us
to conclude. O

More generally, if T" has the mapping property
T : D(RY) := C*(R?) — £(R?) := C®(RY),
T:&'RY — D'(RY),
and its Schwartz kernel K is C*° off the diagonal, it follows that
sing supp Tu C sing supp u, for u € &'(R?). (D.3.9)

This is called pseudolocal property. By Lemma [D.3.1]it holds for any T' € OPS]’; for p > 0 and
0 € (0,1]. By arguing as in the proof of Proposition [D.3.3|one gets also that

|Dg,yK(xvy)| = |Z‘ - y‘_k’

where k is any integer strictly greater than p=!(m +d + |3]).
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Proposition D.3.4. If a(x, D) € OPST's, then its Schwartz kernel K satisfies
5 ~m—d—|p

provided that m + |3 > —d.

The results follows easily from the case a(xz,D) = a(D), for which its kernel is given by
K(x,y) = a(y —x). It suffices to prove Proposition for such a case, for § = 0 and m > —d,
by exploiting the following

Lemma D.3.5. Let p € C®°(R?). Then p € S™ if and only if
pr(&) :==r""p(rg)
is bounded in C>(1 < |£] < 2), for any r > 1.

For further details we defer to [83], ch. 7, §2.

D.4 Adjoints and products of pseudo-differential operators

Given a € S7'5(R? x R?), one readily obtains
a(a, D)"u(w) = (2m) " [
R

but this is not in the form (D.3.6)), since a(y, ) is not a function of x and £. In order to tackle
this problem, we study a more general class of operators of the form

Laly, €)e VS (y)dyde,

Au(x) = (277)_d/2/ a(x,y,f)e“‘r—y’&)u(y)dydg, (D.4.1)
R2d

where we assume that
—plal+61|8]+6
Dy DD aw,y,€)| < Ko s, ()"0,
we will denote this class by ST 5 . By exploiting the unitary operators (D.3.5)) one gets

Au(x) = (27r)_d/2/ q(w,f)ei(’”_y’5>u(y)dyd§,
R2d

where

qlz,€) = (2m) "2 /de a(z, y,n)e *vn=8 dydny

= eiDs.Dya(xayvgﬂy:aﬁ
Note that a formal expansion e'?<Pv = Id + iD¢ - D,y — £(D¢ - Dy)* + ... leads to
jlol
¢ [0 @

a>0

Let a € S5, 5, with 0 < d5 < p <1, then the general term in (D.4.2) is in S;'?é_(p_é)‘al with
0 = min(dy, d2), hence the sum on the right is formally asymptotic.
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Proposition D.4.1. Let a € S)% 5, with 0 < d < p < 1, then the operator (D.4.1) is in
OPS"s with 6 = max(01,02). Indeed, A = q(x,D), where q admits the asymptotic expansion

13,

Proof. To prove the proposition, one can show that the Schwartz kernel

K(a,y) = (2m) 2 [

a(z,y, €)e v de
R4

satisfies Proposition [D.3.3] and therefore, up to an operator in OPS™°°, we can assume a is
supported on |z —y| < 1. Let

b €) = 07 [ awa sy, ey,
hence
a(x,§) = /Rd b(x,, & +m)dn.
Our assumptions on a imply that

IDED2b(x,1,6)| < Kap,, (€)™ 01Ol gy =

where § = max(d1,d3), and for any v > 0. Since d2 < 1, it follows that a and its derivatives can
be bounded by some power of (¢). Now, an asymptotic expansion of b(x,n,& + n) in the last
argument about ¢ gives that for any N > 0

7 1. ai a —v m—+dav—
b(x,m,&+m) = —(iDe)*b(z, )™ | < Ko [nl™ () Sup (€ + i) o,
la|<N ’ ==

With 57 = N the right-hand side is bounded by a constant times (&)™~ "N for |n| < |¢]/2,
and if v is large we get a bound by any power of ()~ for |¢| < 2|5|. Hence,

1 o
a(w.§) = Y —(iDe)* Dya(r,z +y,6)ly=o| < (677N,
|a| <N ’

that leads to the thesis. O
If we apply Proposition to a(x, D)*, one gets
Proposition D.4.2. Let a(z,D) € OPS};, 0 <6 < p <1, then
a(r,D)" = a(x, D) € OPS},
with
at(z,8) ~ ) %D?Dga(x,f). (D.4.3)
>0

The results for products of PDOs is the following
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Proposition D.4.3. Let a;(z, D) € OPS)} s, forj=1,2. Assume that
0<d<p<l,
where p = min(p1, p2). Then
a1 (z, D)ag(x, D) = b(x, D) € OPS"“erz,
with 6 = max(dy,02), and
bz, &) ~ ;Jilpgal(x €) D%ay(z, §). (D.4.4)
Also a result for the commutator of two PDOs holds.

Proposition D.4.4. Let a;(z,D) € OPS} 5. for j=1,2. Assume that
0<d<p<l,
where 6 = max(d1,02), p = min(p1, p2). Then
[a1(z, D), az(x, D)] =: {a1,a2}!(x, D) € OPSm1+m2 L
with
{a1,a2}%(x,&) ~ —i{a1,a2}(x,£), mod S;'f§+m2_2, (D.4.5)

where

(ar.a2b.€) = Z(gf T 0.6) - G O G .9

is the Poisson bracket of the two symbols a1 and as, and mod S;"§+m2_2 denotes that such an
expansion holds up to a symbol in ngé.

Remark D.4.5. The above commutator of two PDOs, {a1,a2}?, sometimes called the Moyal
bracket between a1 and as, has a very concrete physical interpretation. Indeed, if one considers a
quantum particle in a box, then the canonical commutation relation between the position operator
Q@ and the momentum operator P

[Q,P] =ih

can be simply regarded as the commutation relation between a PDO of order 0 (the operator
Q) and an operator of order 1 (the operator P), which gives as a result a multiplication-by-a-
constant operator, which clearly belongs to S°. Similarly, asymptotic expansions of operators can
be studied within the context of the semi-classical limit h — 0.

D.5 Action of pseudo-differential operators on Sobolev spaces

Here we want to obtain H*-estimates for pseudo-differential operators. We begin with a simple
estimates, which holds also for L? spaces.
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Proposition D.5.1. Let p >0, m < —d + p(d — 1), and let a(x, D) € OPS]';. Then
a(z, D) : LP(RY) — LP(R?), 1 < p < +o0. (D.5.1)
Furthermore, if a(z, D) € OPST';, then (D.5.1) holds for any m < 0.

Proposition follows from the following measure theory result.

Lemma D.5.2. Let (X, ) be a measure space. Assume that k : X x X — R is measurable, and
that

l/;|k<x,yndu<x>f;cn7 vy,
/ Ik(z, 9)lduly) < Ca, V.
X

Then Tu(x) == [ k(x,y)u(y)du(y) satisfies
ITullr < GG lullir, 1<p <o,
where p and p' are conjugate exponents, namely % + 1% =1.

For the proof of the Lemma, we refer to section 5 of Appendix A in [82].
To prove Proposition apply the previous Lemma with X = R? and k = K as the Schwartz
kernel of a(x, D) € OPS}s, which by Proposition satisfies

|K(z,y)| < Cnlx _y|_N7 for |z —y|>1, VN,
when p > 0, whereas
K (2, y)] < o=y~ @7, for |z —y| <1,

for m < —d+ p(d — 1).

Theorem D.5.3. Let 0 <6 < p <1, and let a(x,D) € OPSgyé. Then
a(x, D) : L*(RY) — L*(RY). (D.5.2)

Proof. First step: we begin by proving (D.5.2)) for a PDO a(z, D) € OPS;;, with0 <d<p<1,
and a > 0. Since |la(z, D)u|%. = (a*au,u), it suffices to prove that some power of p(z, D) :=
a(z, D)a(z, D)* is bounded on L?; but p* € OPS;?’W, so for k large enough this follows from
Proposition

Second step: in order to prove the Theorem, we now consider
p(z, D) = a(z,D)*a(z, D) € OPSS’(;,
and assume that |p(x,&)] < M — b, b > 0, so that
M — Re(p(z,£)) > b> 0.
In the matrix case, take Re(p(x,€)) = 3 (p(z, &) + p(x,£)*). Hence

A(ﬂ?,f) = (M — Re p(xvf))l/Q € 52,57
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and
A(z, D) Az, D) = M — p(x, D) +r(z, D), r(x,D) € OPS, V™.
By applying the first step to r(x, D), we have that there exists K > 0 such that

Mluli> = lla(z, D)ulz> = [|A(z, D)ullj2 — (r(z, D)u, u)
—KulZ.,

Y

or
la(z, D)ull7. = M|ull7..
and we can conclude. O

Now PDO-calculus, namely (D.4.4) and Theorem gives
Theorem D.5.4. Let 0 < < p <1, let k,m € R, and let a(x,D) € OPS}'s. Then

a(z, D) : H¥(RY) — HF=™(RY). (D.5.3)

D.6 [P estimates

As shown in Proposition [D.3.4, if 0 < § < 1 and a(x, D) € OPSY ;, then its Schwartz kernel K
satisfies

K (z,y)| = |z —y|77, (D.6.1)
Voo K (2, y)] < o -y, (D.6.2)
lla(z, D)ullrz = [lul|r2; (D.6.3)

also the smoothing of the PDO a(z, D) have smooth Schwartz kernel satisfying (D.6.1)-(D.6.3).
We want to prove the following result, due to Calderon and Zygmund.

Theorem D.6.1. Assume that a(z, D) : L?(RY) — L?(R%) is a weak limit of operators with
smooth Schwartz kernel satisfying (D.6.1)-(D.6.3) uniformly. Then

a(x, D) : LP(RY) — LP(RY), 1 < p < +o0. (D.6.4)

Actually, the hypotheses imply a stronger property, namely that a(z, D) is of weak type (1,1).
An operator P is of weak type (p,p) if for any A > 0

”UH%Q

meas({z : |Pu(x)| > \}) = N\

Note that any bounded operator on LP is of weak type (p,p), due to the Markov inequality

meas({z : [v(z)| > A}) < %
Hence, in order to prove (D.6.4), we just prove

Proposition D.6.2. Assume that a(z, D) : L?(R?) — L*(R%) is a weak limit of operators with
smooth Schwartz kernel satisfying (D.6.1)-(D.6.3)) uniformly. Then a(xz, D) is of weak type (1,1).
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Once Proposition is proved, then one can readily prove (D.6.4) via Macinkiewicz Inter-
polation Theorem (see ch. 1.3 of [I8] for a proof of this result).

Theorem D.6.3. Let r < p < q, and assume that T is both of weak type (r,r) and (q,q). Then
T : LP(R%) — LP(RY).

Now we deal with the proof of Proposition we exploit the following intermediate results
(whose proofs can be found in ch. 13.5 of [84]).

Lemma D.6.4. Let u € L*(R?), and A\ > 0 be given. Then there exists v,w;, € L*(R?), and
disjoint cubes Qy, with centers xp, 1 < k < +00, such that

oo
uU=uv-+ Zwk,
k=1
o0
vl + > llwellr < 3lJullz,
k=1
lo(z)| < 29N,

/ wy(z)dz =0, supp wr C Qy,
Qk

Z meas(Qr) < A\ H|ul|L1.
k=1

Note that the function v of the previous lemma can be estimated by ||v]|2. < 29)[|ul| 11, hence

la(e, Dol < oll3e < 22l o1, (D.6.5)

<;\>2 meas <{x :a(z, D)v(z)| > /2\}) 2 AJufl e

In order to estimate the action of a(x, D) on w =), wy, we exploit

which gives

Lemma D.6.5. There exists a positive constant Ko such that, for any t > 0, |y| < t, and
o € R4

/ | K (z,z0 +y) — K(z,z0)|dz < K.
|z|>2t
Note that

a(z, D)wy, = » K(z,y)wi(y)dy

:/Q (K (z,y) — K(z, zx)] wi(y)dy. (D.6.6)

Now let @}, be the cube concentric with @y, enlarged by a factor 2d'/2. For some t;, > 0, we
have

Qr S {z: |z — x| < ty},
Qi) CHz: |z — xp| > 2t}
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Furthermore, if we set Q* := Uy Qj,, we have

2ddd/2
meas Q* <

l[ullz1; (D.6.7)
from we can deduce
| law Dyun(a)jas
(@p)e

< / / K (@ + 2p,y + a1) — Kz + 2 )] Jwi(y + 2)|dedy
ly| <ty J|z|>2t
j Hwk||L17

where the last inequality follows from Lemma, Therefore
/ la(z, D)w(x)|dz =< 3||ul/L1.
(@p)°

The last inequality, combined with (D.6.7)), gives

A A
5 meas {:17 ¢ |a(x, D)w(z)| > 2} = iz

which, along with (D.6.5)), allows us to deduce the weak (1,1) estimate

meas {x:|a(z, D)u(x)| > A} =< %

We just point out that Theorem can be restated in a more general context. Indeed, let
‘H1 and Ho be Hilbert spaces, and assume that

A(D) : L*(R%, H1) — L2(RY, Hs).

The operator A admits an L(Hj, Hs)-operator valued Schwartz kernel K. If one assumes the
hypotheses of Theorem [D.6.1} and replaces |K(z,y)| with the L(H1,H2) norm of K(x,y), one
obtains

Proposition D.6.6. Let A € C®(R?, L(H1,Hsz)), and assume that

1D A 1.3 31) < Ko (€)1
for all . Then
A(D) : LP(RY, Hy) — LP(RY, Hy), 1< p < +oo.

D.7 Pseudodifferential operators on a manifold

Now we consider a C'*° manifold M, and a continuous linear operator A : C°(M) — C*°(M).
We want to extend the definition of pseudo-differential operator by imposing that the expression
of A in any coordinate system is of the form a(z, D), for some local symbol a. By simplicity we
will consider only operators in OPS™ := OPSTY,.

We first define the PDOs in an open subset of R%, and then we study how the expression of a
PDO behaves under change of variables.
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Definition D.7.1. Let Q C R? be an open set, then we define Si.(Q x RY) to be the set of

loc

A€ C®(Q x RY) such that pA € S™(RY x RY) for all € C(Q).

Proposition D.7.2. Let A : C°(Q) — C®(Q) be a continuous linear operator such that for
all ¢, v € C(Q) we have that Ay € OPS™. Then there exists A’ € S (Q x RY) with
A(z, &) = A'(z,€) + R(z,£), where R is the symbol of an operator with kernel in C*(Q x Q).

The symbol A’ is determined up to a remainder in S;,2°(2 x R?).

Proof. Omitted (see, for example, Ch. I, § 6 of [3]). O

If A satisfies Proposition we say that A is a pseudo-differential operator of order m on
Q, and the class of A" in ST /S, °° is called the symbol of A.

loc/ ~loc

Proposition D.7.3. Let x : Q@ — Q', y = x(x), be a smooth diffeomorphism between two open
subsets of RY. Let us assume that the PDO A(x, D) has kernel with compact support in € x Q.
Then

i. the function
Al(y,n) = A'(x(@),n) = e XD Az, m)eX @

(A" =0 fory ¢ Q) is a symbol in S™. Moreover,
A(x(@)m) ~ 3 08 Al X (@) DG (PO =,
where p.(y) = x(y) = x(z) = X' (2)(y — z);
it. the kernel of A'(x,D) has compact support in Q' x '

iii. for any u € S'(V) we have A(z,D)(uo x) = (A'(z,D)u) o x.
Proof. Omitted (see, for example, Ch. I, § 7 of [3]). O

Remark D.7.4. We remark that if A € S™, then A(z, D)e'*¢ = e¢*¢a(x,£). Indeed, if i € C°,

Mame@w*=é“@m%”/’wﬁﬂax+mﬁ@ﬂm
Rd

which, if u(0) = (2r)~4/? Jga @(n)dn =1, tends to
e A(r,€) € S'(RY;

as § — 0; moreover, u(dz)e'™s — ¢ in S'(R?) as § — 0.
Note also that in iii. A(x,D)(u o x) is well-defined, since the kernel of A(x, D) is compactly
supported in Q x €.

Definition D.7.5. The operator A : C°(M) — C*°(M) is called a pseudo-differential operator
of order m if for any coordinate system ¢ : V — V' C R? the transported operator A : u —
[A(uo @) o™t from C°(V') to C(V') is pseudodifferential of order m in V', namely for any
@, b € CX(V') we have that pAp) € OPS™. In this case we write A € U™ (M).
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Now we have defined the notion of PDO on M, but there is still an issue with the associated
symbols: indeed, in each coordinate system, the transported operator has an associated sym-
bol determined mod S™°°, but this depends on the given coordinate system. It is therefore
relevant to study whether for a PDO A of order m on M there exists an intrinsecally defined
function, whose expression in local coordinates is the symbol of the operator.

We briefly show that it is possible to define such a function, but under the restriction that the
associated symbols coincide mod S™~!, namely, only the principal symbol may be defined
intrinsecally.

We recall that for a manifold M the cotangent bundle 7% M is the set of points (p,w) such

that p € M, and w € (T, M)*. The projection 7 : T*M — M is given by 7 (p,w) = m, while we
denote by m~!(p) the dual space of T, M.
If (x1,...,24) are the local coordinates on V' C M, then the vector fields (9i,...,04) form
a basis of T,M at any point p € V, while the forms (dz1,...,dz,) form a basis for 7—!(p).
Denoting a 1-form by w = Z?:l &;dx;, we obtain local coordinates (x,&) on 7= (V). In another
coordinate system 2’ = x(z), the point m will have coordinates z’(p) = x(x(p)), whereas the
form w = 2?21 &;dx; wil be written as

S (3 L won |

!
- 6xj

hence

oxi .
B ()&

[N

d
&=
=1

therefore, the same point (p,w) will be written as (z,x'(x)"n) and (x(z),n) in the coordinate
systems (z, &) and (2/,&’) respectively.

Now, let A = A,, mod S™ !, where a,, is homogeneous of degree m; the same holds for
A’ and

ArL(x(2),m) = A (X (2)"n).

We say in this case that A has principal symbol A,,. If, in any local map, the representative of
A € U™(M) admits a principal symbol, then the previous considerations allow us to deduce that
these different principal symbols are the expressions in local coordinates of a unique function on
T* M, which we call the principal symbol of A.

Theorem D.7.6. Let A; € U™i(M), i = 1,2, be properly supported and assume that they admit
principal symbols a;, i = 1,2, then A = A1 Ay € W™ ™2(M) is properly supported and admits
principal symbol aias.

Furthermore, the commutator [Ay, As] admits principal symbol {a1,as}.

Proof. Omitted (see, for example, Ch. I, § 7 of [3]). O
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