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Chapter 1

Introduction

1.1 Abstract

This thesis is about new methods of signal representation in time-frequency domain,
so that required information is rendered as explicit dimensions in a new space. In
particular two transformations are presented: Bivariate Mixture Space and Spectro-
Temporal Structure-Field. The former transform aims at highlighting latent com-
ponents of a bivariate signal based on the behaviour of each frequency base (e.g.
for source separation purposes), whereas the latter aims at folding neighbourhood
information of each point of a R2 function into a vector, so as to describe some topo-
logical properties of the function. In the audio signal processing domain, the Bivari-
ate Mixture Space can be interpreted as a way to investigate the stereophonic space
for source separation and Music Information Retrieval tasks, whereas the Spectro-
Temporal Structure-Field can be used to inspect spectro-temporal dimension (segre-
gate pitched vs. percussive sounds or track pitch modulations). These transformations
are investigated and tested against state-of-the-art techniques in fields such as source
separation, information retrieval and data visualization.

In the field of sound and music computing, these techniques aim at improving the
frequency domain representation of signals such that the exploration of the spectrum
can be achieved also in alternative spaces like the stereophonic panorama or a virtual
percussive vs. pitched dimension.

1.2 Keywords

Sound and Music Computing; Signal Processing; Image Processing; Bivariate Signals;
Stereophonic Audio; Upmix; Linear Pattern Recognition; Pitched/Glissando/Percussive
Sounds; Fourier Transform; Radon Transform; Hough Transform.

1
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1.3 Motivation

From the author’s perspective, music can be the perfect playground for acquiring
knowledge about the world, since by definition it arouses the observers, and encour-
ages them to dive more into the exploration of that complex intangible system, related
to almost all fields of science. In fact, as Carl Stumpf pointed out between 1883 and
1890 [1], music cannot be explained as a sum of simple systems: its intrinsic non-
linearity forces researchers to find complex models to investigate signals which in
other disciplines are generally handled from a more elementary perspective.

This point of view led to major scientific leaps many times in history: for example
both Ehrenfels and Wertheimer (considered as the fathers of Gestalt psychology)
started their revolutionary work from the observation of musical phenomena [2, 3].
For what concerns the goals of this work, it can be said that music complexity can
be an interesting benchmark to test many signal processing techniques.

Furthermore, music is something that we can process instinctively, so music in-
tended as a human ability can also suggest new models of information processing. Of
course the Human Information Processing paradigm is now considered as obsolete in
the context of (music) psychology [4], nevertheless it suggested that there are pro-
cesses going on inside human mind that can be borrowed by those scientists interested
in signal processing. However, it is this writer’s opinion that the only reasonable path
that the white rabbit of psychology can suggest is the one that leads to neuroscience,
so it is by looking at the biology of perception that new ways to inspect signals can
be found.

This does not necessarily mean that the processing techniques of our brain should
be copied, instead it would be more interesting to learn which information is high-
lighted at each step, no matter how it is computed. This is important because it
helps in building models that can be meaningful in every intermediate state, in oppo-
sition to models that copy our mechanics but whose intermediate states are difficult
to interpret, such as deep neural-networks.

Finally, goals of this research can be put in a more explicit form. This work
is attempting to satisfy the need of a more meaningful spectral representation (i.e.
Fourier Transform and Short Term Fourier Transform) by answering two questions:

Q1 : How can the Fourier Transform be improved for considering the relationship
that underlies bivariate signals?

Q2 : How can the Short-Term Fourier Transform be improved for considering the
relationship between neighbour frames?

These questions will be answered in the context of Sound and Music Computing,
with expectations of serendipity, especially in fields like harmonic analysis, multivari-
ate analysis and image processing. For example, they can lead to the definition of
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new acoustic features together with alternative implementations of well-known source
separation strategies such as [57, 61, 52]. In particular Q1 is related to the analysis
of the stereophonic space, while Q2 enables the ability to explore new percussive
vs. pitched spaces.

At the time of writing, the only peer-reviewed publication related to this thesis
(especially to Q1) is [62], which addresses the basic mathematical machinery on which
the Bivariate Mixture Space is built, together with applications in data visualization.

1.4 Structure

In Chapter 2 a brief overview of the basic concepts of different disciplines are recalled
within the proposed perspective, then in Chapter 3 a quick review of some Sound and
Music Computing techniques is given to put this work in some context. In Chapter 4
a technique for representing bivariate signals is exposed, namely the Bivariate Mixture
Space, as an answer to Q1. In Chapter 5 Spectro-Temporal Structure Field is exposed
as an extensive answer to Q2. Finally, in Chapter 6, both techniques are put together
and tested in the context of source separation applications. Conclusions and future
works are discussed in Chapter 7. To help reading this thesis, a table of the acronyms
can be found in Appendix A, while Appendix B contains raw data from the tests
presented in Chapter 6.

Finally, a Matlab implementation of the proposed methods can be found as a
GitHub repository at the following URL: https://github.com/Kuig/LIM-Toolbox

https://github.com/Kuig/LIM-Toolbox


Chapter 2

Background

2.1 Signal Processing

José Moura, former president of the IEEE Signal Processing Society, defined signal
processing as

“[. . . ] an enabling technology that encompasses the fundamental theory,
applications, algorithms, and implementations of processing or transfer-
ring information contained in many different physical, symbolic, or ab-
stract formats broadly designated as signals.” [5]

Clearly, many disciplines are involved with this definition, and it would be very
hard to draw a general overview of the subject within this work, thus just the basic
concepts relative to fundamentals of the current context will be discussed. In partic-
ular the milestone work of Jean Baptiste Joseph Fourier [6] and the interesting work
of Johann Radon [7] will be examined.

2.1.1 Fourier Series and Transform

Through the Fourier series (FS) and its extension as an integral transformation,
a signal can be decomposed into a set of orthogonal trigonometric bases. This is
realized by taking the scalar product of the bases by the input: the only non-zero-
sum outcomes are those where the base matches a component of the signal, in which
case the result is the power of that base contained in the input. More precisely, FS
can be defined as follows.

4
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Let [−T/2, T/2] be an interval of length T of the signal x(t) to be decomposed,
and consider the definite integral:

T/2∫
−T/2

|x(t)| dt (2.1.1)

FS exists if and only if Eq. 2.1.1 is finite and the portion of x(t) within the interval
contains a finite number of type-1 discontinuities1 and a finite number of maxima and
minima. If these conditions are satisfied, the signal can be defined as the FS:

x(t) = a0 +
∞∑
k=1

ak cos(2πkt/T ) + bk sin(2πkt/T ) (2.1.2)

where k
T

is the frequency f of base k, and the “=” sign means that inside the interval
FS converges to x(t), while outside the interval it converges to a periodic repetition
of the x(t) portion within the interval.

The main reason why Fourier developed this technique is to simplify the study
of heat transfer, but his technique lately gave birth to the field of harmonic analysis
(from the Greek word “harmonikos”, meaning “skilled in music”), a branch of math-
ematics concerned with the representation of functions or signals as the superposition
of basic waves. In practice, thanks to FS, information is taken from the function
itself to the series coefficients, that can be calculated as follow:

a0 =
1

T

T/2∫
−T/2

x(t) dt (2.1.3a)

ak =
2

T

T/2∫
−T/2

x(t) cos(2πkt/T ) dt (2.1.3b)

bk =
2

T

T/2∫
−T/2

x(t) sin(2πkt/T ) dt (2.1.3c)

It is common to see Eq. 2.1.2 written in a more meaningful form, which uses only
cosines as bases, and highlights the magnitude Mk and phase Φk spectra:

x(t) = a0 +
∞∑
k=1

Mk cos(2πkt/T − Φk) (2.1.4)

1A discontinuity of type 1 occurs in x0 when limx→x+
0
6= limx→x−

0
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Moreover, considering Euler’s form of sine and cosine, Eq. 2.1.2 can also be written
as in Eq. 2.1.5. This is called the bilateral form of FS since k range is now extended
also to −∞:

x(t) =
∞∑

k=−∞

cke
i2πkt/T (2.1.5)

where negative frequencies (k < 0) can be interpreted as a different geometric repre-
sentation of Eq. 2.1.4, (in real signals c−k = ck). In this form, complex coefficients ck
can be calculated as:

ck =
ak − jbk

2
=

1

T

T/2∫
−T/2

x(t)e−j2πkt/T dt (2.1.6)

The relationship among the coefficients of all forms can be made explicit:

Mk = |ck| =
√

(ak)2 + (bk)2

2
(2.1.7a)

Φk = −∠ck = arctan(− bk
ak

) (2.1.7b)

Given that in Eq. 2.1.5 and 2.1.6 1
T

defines bases frequency quantization ∆f ,
letting T → ∞ takes the discrete series to a new, more general, continuous form,
where ∆f becomes df ; k∆f becomes f ; and the summation of Eq. 2.1.5 becomes an
integral (parameter ck is replaced with its definition):

x(t) =

∞∫
−∞

ej2πft df

∞∫
−∞

x(t)e−j2πft dt (2.1.8)

In particular, the second integral of Eq. 2.1.8 is called Fourier transform F and takes
a signal from time domain t to frequency domain f (a general form of Eq. 2.1.6):

F{x(t)} = X(f) =

∞∫
−∞

x(t)e−j2πft dt (2.1.9)

While the first integral of Eq. 2.1.8 can be considered as the reverse operation (a
general form of Eq. 2.1.5):

F−1{X(f)} = x(t) =

∞∫
−∞

X(f)ej2πft df (2.1.10)
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Figure 2.1: A signal in the interval ±T
2

with a periodicity of 2
T

Figure 2.2: FS of the signal in Fig. 2.1, now defined in the space of its periodicities

It is clear that the only difference between F and its inversion is the sign of the
exponent, which in case of real signals is negligible since it can be seen as a reflection
of the frequency axis.

The transformation of signal in Fig. 2.1 is shown in Fig. 2.2.

To see the evolution of spectrum over time, a signal can be split into shorter
segments of equal length transformed separately. This process is called short-term
Fourier transform (STFT ) and can be described as an extension of F , where the
signal is masked with a windowing function w(t) before taking F :

X(f, τ) =

∞∫
−∞

x(t)w(t− τ)e−j2πft dt (2.1.11)
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Figure 2.3: Short term Fourier transform of a triplet of DTMF tones, each one com-
posed of two harmonics, lasting about 0.125 seconds.

where the new parameter τ represent the time offset of window w. In particular w
should be non-zero only inside a finite interval around the origin (usually truncated
Gaussian or Hann windows are used). As it happens in FS with [−T/2, T/2] interval,
smaller windows provide higher time resolution (w is well localized in time) but lower
frequency resolution (less bases fit into the segment). An example of STFT is shown
in Fig. 2.3, where the finite interval visibly lowers the frequency resolution. What
should be a single line is spread into a more smooth and wide curve because - by a
property of F - the multiplication of the window w in the time domain, corresponds
to a convolution in the spectral domain.

As a final remark, let’s say that F can also be performed on n-dimensional sig-
nals, such as images or volumes, not to be confused with the multivariate condition
implied by Q1: existing methods for decomposing two spectra such as [8] are not
tailored on the exact desiderata of our context, even if they somehow share the same
mathematical principles.

2.1.2 Radon Transform

The Radon transform is the integral transform which takes a function defined on
the plane to a function defined on the (two-dimensional) space of lines in the plane,
whose value at a particular point is equal to the line integral of the function over
that line. The Radon transform is widely applicable to tomography, the creation of
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Figure 2.4: Line L through a domain D (adapted from [9])

an image from the projection data associated with cross-sectional scans of an object.
The following definitions are based on the work of [9, 10, 11]. 2

Let (x, y) be coordinates of points in the plane, and consider some function f
defined on a domain D of R2. If L is any line in the plane (see Fig. 2.4), then the
mapping defined by the projection (i.e. line integral) of f along all possible lines L is
the Radon transform of f :

Rf = f̌ =

∫
L

f(x, y) ds (2.1.12)

where ds is an increment of length along L. To define the transformation more
precisely, it will be useful to set up some coordinates and be more rigorous about the
integration along all lines L. Consider Fig. 2.5, where the equation of L is given in
the normal form by:

p = x cosφ+ y sinφ (2.1.13)

The line integral in Eq. 2.1.12 depends on p and φ. This can be indicated explicitly
by writing:

f̌(p, φ) =

∫
L

f(x, y) ds (2.1.14)

If f̌(p, φ) is known for all p and φ, then f̌(p, φ) is the two-dimensional Radon
transform of f(x, y).

2The Radon transform is closely related to the Hough transform [12], and they are equivalent
under certain circumstances [13]. In this context only the Radon transform will be examined, since
it has a well-founded mathematical basis and, for the goals of this thesis, is more intuitive as well.
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Figure 2.5: Coordinates to describe line in Fig. 2.4 (adapted from [9])

Figure 2.6: The line in fig. 2.4 relative to original and rotated coordinates (adapted
from [9])

Now suppose a new coordinate system is introduced with axes rotated by the
angle φ. If the axes are labelled by p and s as in Fig. 2.6, then:

x = p cosφ− s sinφ (2.1.15a)

y = p sinφ+ s cosφ (2.1.15b)

a more explicit form of the transform can be written as (of course, the limits of
Eq. 2.1.16 can be finite if f vanishes outside D):

f̌(p, φ) =

∞∫
−∞

f(p cosφ− s sinφ, p sinφ+ s cosφ) ds (2.1.16)

In Fig. 2.7 an example of the Radon transform of an image is shown.
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Figure 2.7: A function with its Radon transform. The three segments of the triangle
in Fig. 2.7a becomes peaks in Fig. 2.7b, whose coordinates represents the parameters
of the original segments.
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The Radon transform may be inverted in many ways, the most used one exploits
the connection with the n-dimensional Fourier transform Fn. Let f be a function in
Rn, then [11, 14] demonstrated that the following relation with the Radon transform
holds:

Fnf = F1f̌ (2.1.17)

where F1 is the one-dimensional Fourier transform along the radial direction of the
Radon transform. By this definition it is easy to see the inversion as:

f = F−1n F1f̌ (2.1.18)

Nevertheless, in this context it is interesting to see another method, which just
approximates a blurred version of f . It is called backprojection and works as follow.

Let ξ = (cosφ, sinφ) be a unit vector. Consider an arbitrary function ψ(t, ξ)
where t = ξ · x = x cosφ+ y sinφ. The backprojection operator B is defined by [15]:

Bψ =

∫ π

0

ψ(x cosφ+ y sinφ, ξ)dφ (2.1.19)

Since ξ is completely determined by specifying φ, and since Bψ is a function of (x, y),
it may be useful to write:

[Bψ](x, y) =

∫ π

0

ψ(x cosφ+ y sinφ, ξ)dφ (2.1.20)

Or, in terms of polar coordinates (r, θ), where x = r cos θ and y = r sin θ:

[Bψ](r, θ) =

∫ π

0

ψ[r cos(θ − φ), φ]dφ (2.1.21)

The backprojection operator for only two projections is illustrated in Fig. 2.8
and the operation for fixed φ is illustrated in Fig. 2.9. Observe that if ψ(p, φ) is
identified with the projection function f̌(p, φ) = Rf(x, y), then for fixed angle φ,
the incremental contribution to Bψ at the point (x, y) is just the value of f̌(p, φ)
multiplied by dφ when p is computed from p = x cosφ+ y sinφ. Of course, that value
may be found by integrating f along the line that passes through (x, y) and is at a
distance p = x cosφ+ y sinφ from the origin (this will be exploited in Chapter 5). If
this φ-backprojection is known for all angles φ, then the complete backprojection is
obtained by integration over φ as indicated by Eq. 2.1.20.

The fact that a single point in the Radon space tells something about the geo-
metrical relation of a set of points of the input function, is an interesting hint of how
Q2 can be answered. Precisely, backprojection will be exploited in Chapter 5 as a
way to back-propagate Radon information onto the input function.
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(a) Two profiles of a rectangular object (i.e. the Radon transform for two
values of φ).

(b) Backprojection of profiles and superposition to form an approximation
to original object

Figure 2.8: The backprojection operation (adapted from [9])
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Figure 2.9: Geometry for obtaining the φ-backprojection. For a fixed angle Φ, the
incremental contribution d(Bψ) to Bψ at the point (x, y) or, equivalently, (r, θ) is
given by ψ(t,Φ)dφ. The full contribution to Bψ at (x, y) is found by integrating over
φ as indicated in Eq. 2.1.20. Note that t = x cos Φ + y sin Φ = rcos(θ−Φ). (adapted
from [9])
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2.2 Multivariate Signal Processing

Multivariate signal processing is a set of techniques aimed at handling or modelling
multivariate signals. This branch of signal processing endows some of the knowledge
coming from multivariate statistics, a term which include all statistics where there
are more than two variables analysed simultaneously. Multivariate signal processing
is frequently used for data decomposition and reduction; clustering and classification;
investigation of signals dependencies; signal modelling and prediction.

Before describing very briefly some of the techniques used in sound and music
computing, a proper definition of a multivariate signal is called for.

A multivariate signal x(n) of dimension M consists of M signals xi(n)

x(n) = {x1(n); x2(n); . . . ; xM(n) | 0 ≤ n < N} (2.2.1)

where N is the signal length, and each xi(n) is called a mixture of S latent sources
sj(n) weighted by a scalar value aij such as

xi(n) = ai1s1(n) + ai2s2(n) + · · ·+ aiSsS(n) (2.2.2)

Introducing vector s(n) to collect all sources sj(n) and vector A to collect all weights
aij, a more compact definition can be given

x(n) = As(n) (2.2.3)

Finally, When M = 2, x(n) is called a bivariate signal.

Among the goals of multivariate signal processing, the most relevant in the con-
text of this work, are those relative to the possible approximations of sources s(n)
and weights A given certain constrains. In some cases, this is referred as a source
separation problem.

2.2.1 Principal Component Analysis

Defined between 1901 and 1933 by Karl Pearson [16] and Harold Hotelling [17], some-
times referred as the most simple linear decomposition method, the aim of principal
component analysis (PCA) is to rearrange x(n) as M linearly uncorrelated signals
called principal components (PC). A graphical example is shown in Fig. 2.10.

PCs are calculated as orthogonal transformations of the original space (a linear
combination of input variables which transformation vectors are determined by data
itself), defined in such a way that the first PC has the largest possible variance (i.e.
accounts for as much of the variability in the data as possible), and each succeeding
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Figure 2.10: Signal samples according to original space xi(n) and to new space defined
by orthogonal Principal Components

PC has the highest variance under the constraint that it is orthogonal to the preceding
components. The resulting vectors are an uncorrelated orthogonal basis set (that is,
with a very low absolute Pearson correlation).

Discarding PCs with the lowest variance allows the reconstruction of a simplified
approximation of the input, this is generally exploited in lossy data compression and
exploratory data analysis (i.e. dimensionality reduction).

2.2.2 Independent Component Analysis

The general framework that allowed the development of independent components
analysis (ICA) was prepared by Jeanny Herault and Christian Jutten in 1986 [18],
but it was only in 1994 that Pierre Comon better defined this technique [19].

The objective of ICA is to find a decomposition of a multivariate signal w(n) of
size M in terms of M independent non-Gaussian source signals

w(n) = As(n) (2.2.4)

In order to decide if two signals are truly independent it is not sufficient to consider
their correlation, because (with the exception of Gaussian distributed variables) two
signals which are uncorrelated may still be dependent. To achieve separation of
independent source components, a stronger measure of independence is needed. The
two broadest definitions of independence used in ICA are thus Minimization of mutual
information and Maximization of non-Gaussianity. The former family of algorithms
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uses measures like the Kullback-Leibler Divergence and maximum entropy, while the
latter uses kurtosis and negentropy.

Figure 2.11: Non-Gaussian signal samples according to original space xi(n) and to
new space defined by independent components

Even if the found s(n) are actually the original sources mixed in w(n), ICA is not
able to guess the correct scale and polarity of sources. Nevertheless ICA guarantees
that found sources are non-Gaussian and independent. As can be seen in Fig. 2.11,
if PCA can be informally described as a roto-translation of original space, ICA is
composed by a richer set of linear transformations.

2.2.3 Non-Negative Matrix Factorisation

Known by chemists as self modeling curve resolution since 1971 [20], proper non-
negative matrix factorizations techniques was used by Paatero et al. in 1994-1995
under the name positive matrix factorization [21, 22] and became more widely known
as non-negative matrix factorization (NMF) after Lee and Seung investigated the
properties of the algorithm and published some simple and useful algorithms in 1999-
2001 [23, 24].

NMF is a set of techniques based on linear algebra where a matrix V is factorized
into two matrices W and H. All of the matrices have no negative elements: in
applications such as processing of STFT -based spectrograms this property is inherent
to the data being considered. Since the problem admits no general exact solutions,
it is commonly approximated numerically with different approaches.

Matrix W is called a features matrix, while H is called a coefficients matrix. As
Fig. 2.12 shows, if target matrix V is a spectrogram, features can be seen as spectral
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V W H

×≈

Figure 2.12: Matrix V can be factorized as the product of W ×H

templates (or bases), while coefficients are temporal activation patterns.
Different types of NMF arise from using different cost functions for measuring the

divergence between V and WH. Each cost function leads to a different algorithm,
usually minimizing the divergence by using iterative update rules.

2.3 Sound and Music Computing

Sound and Music Computing (SMC) is a research field that studies the whole sound
and music communication chain from a multidisciplinary point of view. It aims at
understanding, modelling and generating sound and music through computational
approaches by combining scientific, technological and artistic methodologies.

This definition of SMC somehow depends on the one of signal processing given in
Section 2.1; what actually distinguishes SMC from other signal processing sub-fields
is the family of signals examined: as explained in Chapter 1 the music phenomena
has many peculiarities.

Even if harmonic analysis is born with the intent of simplifying the description
of functions through their decomposition into frequency spectra, music signals retain
their complexity even in the frequency domain. Moreover, in the context of SMC,
scientists are frequently interested in perceptual properties of sound. This led to the
proliferation of many acoustic features, i.e. many ways to summarize the information
present into the signal.

Acoustic features may refer to low-level signal properties as well as high-level ones,
but are always extracted from a signal represented in time- frequency- cepstral- lag-
and, in some cases, Radon-space (for an exhaustive review on this topic see [25]). An
enhancement of the frequency domain representation through the introduction of two
new spaces should provide new tools for the feature extraction task.

To define these spaces and answer Q1 and Q2, it is worth spending some time



CHAPTER 2. BACKGROUND 19

discussing a number of basic SMC concepts, in particular, those related to how mul-
tichannel audio signals are handled and how some timbral properties reflect onto the
spectrum.

2.3.1 Stereophonic Representation

In a music production and distribution context, low level digital audio signals are
generally represented as Pulse Code Modulation (PCM) streams, where stereophonic
information is encoded as a couple of channels, that may represent left (L) and
right (R) speaker signals. Alternatively, it is also common to represent the same
information as the sum M and difference S of the channels, that is just a 45 degrees
rotation of the original space:

M =
L+R√

2
(2.3.1a)

S =
L−R√

2
(2.3.1b)

This method is called mid-side (MS) and offers the ability to process what is per-
ceived in front of the listener separately from what can be perceived laterally, in
opposition to LR technique where the distinction is made for signals that come from
the left or from the right direction. Fig. 2.13 gives a qualitative example of how M ,
S, L and R channels can be placed in the azimuthal listening plane.

M

L R

-S+S

Figure 2.13: Exemplification of MS v.s. LR encoding in the stereo image

The most common way to distribute a sound between L and R is to exploit
intensity level differences (see Section 2.4.1): sound technicians use the panoramic
potentiometer (pan, for short) to feed different amounts of a monophonic signal to
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distinct speakers, giving the listener the illusion of a sound where azimuthal position
is located somewhere between the speakers (the ghost source effect) [26, 27]. Eq. 2.3.2
shows an implementation of pan

L = aL · source
R = aR · source

(2.3.2)

Here a2L + a2R = 1, and the relationship between aL,R and the perceived position of
the ghost source is explained by the stereophonic law of sines (for further readings
see [28]).

At this point the couple of signals composing the stereophonic mixture can be
thought as a bivariate signal, since many other sources may have been processed in
the same way and mixed together. Eventually, to increase realism, convolutive phe-
nomena are added (e.g. reverberation and delays between L and R). This introduces
a non-zero interaural time difference (and thus interaural phase difference) for each
frequency component, increasing the overall complexity of the mixture.

The listener perceives the final mixture as a dense panorama of sounds coming
from all directions between the two speakers. This virtual panorama is called the
stereophonic image or stereophonic field.

Finally, the stereo image becomes a comprehensive example of a complex mixture
of signals if it is considered that non-linearities are usually added at the end of mixing
phase in a process called mastering.

Some strategies can be found in the literature to explore these kind of mixtures,
such as those exposed in Sections 3.1 and 3.2. In Chapter 4 a novel generalization of
these techniques will be provided while answering Q1.

2.3.2 Pitched vs. Percussive Sounds

Pitch is a perceptual property of sound that allows the ordering on a frequency-
related scale [29], or more commonly, pitch is the quality that makes it possible to
judge sounds as “higher” or “lower” in the sense associated with musical melodies
[30]. It is implicit in this definition that not all pitched sounds must have a harmonic
structure (i.e. this makes the distinction between definite and indefinite pitch), nor
must they be perfectly periodic. The most important thing seems to be that the
energy must be concentrated around a finite number of peaks and this behaviour must
be clear and stable enough to be distinguishable from noise [31]. By these properties, a
steady pitch seen in the time-frequency domain of the STFT (where time is displayed
horizontally and frequency vertically) should appear as a concentration of energy in
horizontal structures.

On the other hand, percussive sounds are defined as short bursts of sound, usually
but not necessarily followed by a pitched component. The very beginning phase of
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this class of sounds is generally referred as transient: an abrupt change in sound
pressure made of a broad band of frequency components (the shorter it is, the more it
resembles a Dirac impulse), which can be represented in the time-frequency domain
as energy being organised in vertical structures.
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Figure 2.14: STFT of drum samples mixed with a vibraphone tone (harmonic sounds
can also be characterized by frequency modulations, as shown in the example of
Fig. 3.6a)

The horizontal v.s. vertical arrangement of energy of these two sound classes is
clearly visible in Fig. 2.14, where a drum track is mixed with a vibraphone tone. Also
patterns with different angles and shapes are possible if pitched sounds are performing
a glissando or a vibrato, nevertheless, after a certain modulation speed, they will be
perceived respectively as percussions 3 or new steady sounds (as in FM synthesis).

This kind of information is very interesting in the context of SMC, as suggested
by the works cited in Section 3.3, and answering to Q2 should enrich the STFT
enough to tell, for each point of the STFT , which class it belongs to. This is just the
more immediate use of the transformation proposed in Chapter 5, which in principle
can be used for many other goals, such as an alternative framework for works such as
those described in Section 3.4 and 3.5.

3Think of an electronic kick-drum sample, usually realized by a very fast descending tone
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Figure 2.15: The Auditory Scene Analysis framework

2.3.3 Computational Auditory Scene Analysis

Computational Auditory Scene Analysis (CASA) [32, 33] is a machine listening frame-
work that aims at the separation of sound mixtures in the same way humans do.

It starts from the assumption that perfect separation is not possible, thus the
proper goal is defined as the organization of available information into useful struc-
tures. This is realized thanks to the Auditory Scene Analysis proposed by Bregman in
the 1990’s [34, 35]. The process starts by breaking mixture into small elements, those
are then grouped into sources using perceptually motivated heuristics, then sources
are enriched with aggregate attributes. This architecture is shown in Fig. 2.15.

Frequency analysis can be performed simulating the cochlea with Gammatone
filterbanks [36, 37] (sometime referred as cochleagrams), while grouping rules are
inherited by Gestalt psychology such as: common onset and modulation; harmonicity;
spatial location [38].

Even if not directly related to this work, the paradigm of CASA is worth mention-
ing for being both a good example of biological-inspired computing and a possible
recipient of the proposed techniques.
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2.3.4 Source Separation Evaluation Tools

Most of the audio source separation techniques rely on technology such as ICA, NMF
and CASA, as well as other case-specific techniques. When evaluating the results
of those algorithms it is important to find objective measures that may be used to
compare separation results. Particularly relevant in SMC are those based on the
work of Vincent et al. [39], that is the decomposition of the recovered sources into a
set of components, respectively the target, the artefacts and the interference signals.
General purpose tools like BSS Eval toolbox [40] work on a matrix decomposition
of the signal, while audio-specific tools like PEASS toolkit [41] uses a perceptual
approach, thus providing results more similar to the subjective evaluation of users.
Since the latter tool is going to be used in this work, a brief description of the PEASS
output is called for.

PEASS returns set of 4 scores: overall perceptual score (OPS), target-related per-
ceptual score (TPS), interference-related perceptual score (IPS), and artefact-related
perceptual score (APS), all in the range 0− 100. These scores are computed by cal-
culating the energy ratio between the input signal (coming from a source separation
algorithm) and its decomposition in different components such as the proper target
signal, the artefacts, and the interference signal coming from other sources. This de-
composition is realized thanks to a comparison with original source signals, performed
in a cochleagram-like space. To achieve perceptual relevance, a weighting of the most
salient components followed by a non-linear mapping of the scores is performed.

Ideally OPS should provide an overall idea of the goodness of the separation strat-
egy, TPS should tell how much of the source has been recovered, IPS tells how much
of other sources ended in the extracted one, and APS should measure the artefacts in-
troduced by the separation algorithm (described by the authors as the musical noise).
Higher scores should correspond to better source separation techniques.

Unfortunately, even if these metrics may be useful to quickly compare different
strategies, they received some criticism among the SMC community, since in some
cases the results obtained with PEASS correlate extremely poorly with subjective
evaluation [42]. Nevertheless, for the purpose of this work, they still provide a good
starting point for the comparison with other methods.

Another interesting aspect that is worth to mention regards the datasets that may
be found to validate source separation techniques. Many datasets have been collected
in the last years, mainly grouped by the kind of task they are thought to validate.
For example in the Signal Separation Evaluation Campaign (SiSEC) community, the
following tasks are addressed:

• Underdetermined speech and music mixtures

• Professionally produced music recordings
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• Mixtures of speech and real-world background noise

• Asynchronous recordings of speech mixtures

• Biomedical signals

For the reasons expressed in Section 1.3, professionally produced music recordings
will be examined in this context. For this task SiSEC relays on the DSD100 dataset
[43], a database of 100 professionally produced songs provided with original tracks.

Unfortunately the evaluation proposed in Chapter 6 requires that, for every song,
each parameter of the tested algorithms must be tuned manually. For this reason a
smaller dataset will be used, namely the MASS dataset [44]. This dataset is composed
of 12 excerpts of 6 songs, 4 of which with alternative mixes, for a total of 16 test cases.

Unlike the DSD100 dataset, MASS comes with no State-of-the-Art scores, but
this does not represent a big issue, since the goal of the tests is not to evaluate the
overall source separation capabilities of the proposed approaches, but just to compare
them to similar techniques.

2.4 Neurophysiology of Perception

As it has been said in Chapter 1, a desideratum of this work is to represent information
in the most meaningful way while answering to Q1 and Q2. To achieve this goal it
is useful to look at the neurophysiology of perception to learn which data types our
brain (even if not consciously) is used to.

Of course a whole book can be filled with information about this topic (actually
many books), so just the most relevant part of the brain in respect to this context will
be examined, that are those parts responsible for the analysis of R2 functions (the
primary visual cortex and the inferior colliculus) and those dedicated to bivariate
signal processing (the superior olivary complex ).

2.4.1 Neural Pathway of Hearing

The cochlea is an astonishing organ, which behaves like an acoustic prism and (to-
gether with the cochlear nuclei) is capable of translating mechanical acoustic infor-
mation into a complex data stream comparable to a frequency domain representation
of sound. Frequency information is represented in many nuclei as tonotopically orga-
nized groups of neurons, that is, tones close to each other in terms of frequency are
represented in topologically neighbouring regions in the brain.

The neural pathway of hearing (shown in Fig. 2.16) that brings information from
the cochlea to the auditory cortex begins with the two cochlear nuclei performing
monaural non-linear spectral processing, then information from left and right ears is
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combined in the superior olivary complex (SOC). From this point of the neural path,
all sites receive almost the same information from the two ears. The inferior colliculus
(ICC) is involved in spectro-temporal processes and in the integration and routing
of multi-modal sensory perception, while the medial geniculate body relays auditory
information to the cortex and influences the direction and maintenance of attention
[45]. In this context, some of the SOC and ICC roles are considered.

cochlear
nucleus

superior
olivary
complex

medial
geniculate
nucleus

inferior
colliculus

primary
auditory
cortex

LEFT RIGHT

Figure 2.16: Hearing neural pathway (simplified)

SOC: The medial superior olive (MSO) is a specialized nucleus of SOC that is
believed to measure the time difference of arrival of sounds between the ears (the
inter-aural time difference or ITD and inter-aural phase difference or IPD). The ITD
is a major cue for determining the azimuth of sounds. The lateral superior olive (LSO)
is believed to be involved in measuring the difference in sound intensity between
the ears (the inter-aural level difference or ILD). The ILD is a second major cue in
determining the azimuth of high-frequency sounds.

This function of the SOC suggests that acoustic information is not merely repre-
sented in the brain as independent streams from the two ears, instead a compacted
spectral information representation with satellite information seems to be projected
to ICC and other nuclei [46].
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Since this kind of frequency domain data-integration seems to answer Q1, it has
been taken into account in the approach proposed in Chapter 4; at first applied to
audio signals, then extended to any bivariate signal. Information is taken into a new
space where magnitude and phase differences (corresponding to ILD and IPD) are
made explicit along with frequency domain data.

ICC: According to [47, 48, 49, 50], the ICC reacts to spectro-temporal patterns
in a way that, together with the primary auditory cortex (A1), it realizes auditory
receptive fields sensible to frequency variations over time, like glissando and vibrato.

These receptive fields are realized thanks to a virtual representation of spectrum
over time, as recently modelled by [51, 52]. These models are similar to those of the
visual cortex described in Section 2.4.2, where the STFT is processed as an image
(e.g. Fig. 2.14). In other words, some neurons are tuned to fire when certain pitch
movement are detected, rather than some others fires when pitch is steady.

Since the visual cortex is a better studied area, it will be taken as a model rather
than ICC.

2.4.2 Primary Visual Cortex

The primary visual cortex (V1) is the best-studied visual area in the brain. It is the
simplest, earliest cortical visual area. Among other tasks, it is excellent in pattern
recognition. Individual V1 neurons have strong tuning to a small set of stimuli:
the neuronal responses can discriminate small changes in visual orientations, spatial
frequencies and colours. They are organized in cortical columns, each one firing when
a certain feature is matched such as lines with particular orientation or frequency.
Pioneering works on this topic were made by Hubel and Weisel across the 20th century,
in particular in [53, 54] they shed some light on how different neurons of V1 can be
sensible to different patterns, thanks to the integration of information over simple-
and complex-cells.

Fig. 2.17a shows the organization of simple receptive fields: A large number of
lateral geniculate cells (of which four are illustrated) have receptive fields with on
centres4 arranged along a straight line on the retina. All of these project upon a
single cortical cell (which synapses are supposed to be excitatory). The receptive
field of the cortical cell will then have an elongated on centre as indicated by the
dashed lines in the receptive-field diagram to the left of the figure.

All of these neurons are arranged in V1 as cortical columns, each one sensible to
a certain angle of a certain receptive field. For example, in Fig. 2.17b it is possible to
observe the firing activity of a column of the striate cortex sensible to vertical lines.

4Retinal receptive fields with on centre are composed by ganglion cells that fire when the stimulus
is composed by a light in the centre of the receptor surrounded by a darker area
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(a) Neuron of the striate cortex sensible to a certain pattern thanks to the connection with
aligned ganglion cells

(b) Neurons fire rate as function of angle of stimulus

Figure 2.17: Receptive Fields organisation and activity
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Thanks to these structures visual stimuli are paired with structural informations
about the content of the perceived image.

Even if these features are usually simulated with Gabor filters [55, 56], in this
work a different approach is proposed, which is more useful in answering Q2. The
approach described in Chapter 5 is based on the similarities with the Radon transform
explained in Section 2.1.2: the array of receptive fields aligned at a certain angle φ,
merged into a single neuron, can be considered as the line integral over L shown in
eq. 2.1.14.

Finally, the similarities between auditory and visual receptive fields suggests that
this kind of techniques may be useful for both sound and image processing.



Chapter 3

State-of-the-Art Techniques

Since in next chapters some more punctual comparison with existing techniques will
be done, a brief discussion over cited works is called for.

3.1 A Bivariate Signal Decomposition Model

In 2009, Lilly and Olhede [8] defined a way to model a non-stationary oscillatory
bivariate signal as an ellipse evolving in time.

In their work the model has been tested on the signal coming from the path of
an oceanographic floater. As shown in Fig. 3.1, the path has been decomposed into
a time series of ellipses plus a residual. This basically corresponds to the separation
of the high frequency periodic component from a low frequency random walk.

Then, three features are extracted from the ellipses (represented in Fig. 3.2):
Root-mean-square amplitude, eccentricity and orientation.

This model works very well under the assumption that the path can be approxi-
mated by a frequency and amplitude modulated periodic signal, which is not conve-
nient in a general case (let alone complex audio mixtures), nevertheless, it is worth
mentioning since the assumption holds when considering single frequency bases, in
which case its rationale can be a possible interpretation of the method proposed in
Chapter 4, where Bivariate Spectrum metrics will be introduced. Those metrics will
be able to grasp the same information as the Root-mean-square amplitude, eccentric-
ity and orientation metrics of this context: by answering Q1, frequency, amplitude
and phase modulations of the x and y components of the ellipses can be studied in a
single framework.

29
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Figure 3.1: The trajectory of a freely drifting oceanographic float. The original
data (a) is decomposed into a modulated bivariate oscillation (b) plus a residual (c).
(adapted from [8])

3.2 Stereophonic Field Analysis

In 2004, Barry et al. developed a sound source separation algorithm called Azimuth
Discrimination and Resynthesis (ADRess) [57], that performs the task of separation
based purely on azimuth discrimination within the stereo field.

They assumed the use of pan as a means to achieve image localisation within
stereophonic recordings. As such, only ILD (more precisely inter-channel level differ-
ence, or ICLD) should exists between left and right channels for a single source (see
Eq. 2.3.2).

By using gain scaling and phase cancellation techniques they expose frequency
dependent nulls across the azimuth domain, then source separation and resynthesis is
performed by taking inverse Fourier transformation for only those frequencies which
azimuth position is within a certain range H. Frequency magnitude is retrieved by
taking its peak in the azimuth domain, while phase is kept as that in the input signal.

The tolerance H has been introduced because overlapping frequency components
in the input mixtures introduce errors in the calculation of their azimuthal position.

Two key aspects are relevant in this context. First, ADRess does not take into
account explicitly the phase of frequency bins. Second, they define an azimuth domain
which is worth some attention.

Taking a single time window of the whole signal as an example, let L(f) and
R(f) be the discrete Fourier transform of left and right channel respectively. Then



CHAPTER 3. STATE-OF-THE-ART TECHNIQUES 31

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Increasing Magnitude

(a)

−3 −2 −1 0 1 2 3

Increasing Eccentricity

(b)

−3 −2 −1 0 1 2 3

Precession

(c)
Di
sp
la
ce
me
nt
 N
or
th

Displacement East

Figure 3.2: An ellipse with uniformly increasing relative amplitude (a), uniformly
increasing relative eccentricity (b), and uniformly precessing (c). The bold portion of
the line in all three panels shows an initial single orbit. (adapted from [8])

frequency-azimuth planes are defined as

AzR(f, g) = |L(f)− g ·R(f)|
AzL(f, g) = |R(f)− g · L(f)| (3.2.1)

where 0 ≤ g ≤ 1 is the azimuthal dimension. An example of how the mixture behaves
in this space is shown in Fig. 3.3.

It must be said that the term azimuth is used loosely, authors are not dealing
with angles of incidence, instead, the azimuth they speak of is purely a function of
the intensity ratio created by the pan tool. Nevertheless, the most important concept
introduced by [57] is that of an underlying stereophonic space that exists between the
mixtures. This concept will be generalized considering phase in Chapter 4.

In 2006, Briand et al. [58] proposed a parametric representation of multichan-
nel audio based on PCA. They unified many models under the binaural cue coding
method (i.e. the use of ICLD and ICPD to infer panning and diffusion of each base
of the Fourier transform).

In their model, each frequency bin of the Fourier transform of the signals L(f) and
R(f) can be described with a magnitude value M(f) related to PCA, panned with
angle σ(f) and a measure of the phase difference between the two channels ∆φ(f).

M(f) =
√
|L(f)2|+ |R(f)2| (3.2.2a)

σ(f) = arctan

(
|R(f)|
|L(f)|

)
(3.2.2b)

∆φ(f) = ∠L(f)− ∠R(f) (3.2.2c)
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Figure 3.3: The Frequency-Azimuth spectrogram for the right channel. Two synthetic
sources are visible, each comprising of 3 non-overlapping partials. The arrows indicate
frequency dependent nulls caused by phase cancellation.
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Figure 3.4: The PCA is equivalent to a rotation of the stereo signal coordinate system,
and results in one principal component signal (direct) and a remaining orthogonal
ambient signal
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An example of these concepts translated in the time domain can be seen in Fig. 3.4.
From the aforesaid work, many others derived interesting strategies to handle

stereophonic data: For example in 2007 Goodwin and Jot [59] discussed a spatial
analysis-synthesis scheme which applies PCA to an STFT representation of the orig-
inal audio to separate it into primary and ambient components.

Here, each STFT sub-band is treated as a vector in time and each channel vector
is modelled as a sum of a primary component and an orthogonal ambience component.

In 2009, Vickers [60] proposes a similar technique, but with other geometrical
interpretations, while working on an upmixing problem. He also considers anti-phase
signals as legitimate direct sources from the back direction by using a geometric mean
approach.

Finally, in 2015, Kraft and Zöler [61] drops some constrains and with an even
more simple calculation based on Mid-Side decomposition in the frequency domain,
can separate ambient sound from direct sound, always for upmixing purposes.

The underlying assumptions for all of these works are the following:

1. As in many pan algorithms, panning conserves signal power

2. Pan only works on ICLD, thus there is no phase distortion in the distribution
of the source in L and R

3. Both time and frequency resolutions are high enough to minimize component
overlapping of multiple sources

4. Left and right ambient signals are similar in magnitude, but different in phase

5. Ambience power is much less than direct signal power.

Interestingly it can be already seen how the measures of Eq. 3.2.2 can qualitatively
describe also the features depicted in Fig. 3.2. In Chapter 4 these models will be
merged with the idea of stereophonic space as a comprehensive answer to Q1.

Finally, it is worth citing the writer’s work of 2014 [62] which provided a primary
introduction to the present thesis, but failed in formalizing it properly. In that work
just an information visualization strategy based on the very same principle proposed
in Chapter 4 was proposed.
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Figure 3.5: Top plot shows the STFT of a drum loop mixed with a note of Vibra-
phone, the bottom plot shows percussive feature detection signal

3.3 Pitched and Percussive Sounds Detection

In 2005, Barry et al. [63] developed a drum source separation technique using per-
cussive feature detection and spectral modulation.

At first a percussive temporal profile is derived by analysing each frame of a STFT
of the signal. The frame is then scaled according to this measure. That regions of the
spectrogram with low percussive measures are scaled down significantly (Fig. 3.5),
thus only the percussive regions remain.

The percussive feature detection (PFD) is performed for each frame by counting
how many frequency bins of the log-difference of consecutive STFT frames exceed a
certain threshold. The output of the comparison with the threshold value can also
be used as a binary spectral mask for isolating percussive sound from non-percussive
sound. Section 3.4 will provide some perceptual motivation for this approach.

In 2012 Salamon and Gómez [64] introduced a system for automatically extracting
the main melody of a polyphonic piece of music from its audio signal. In their work
four signal processing steps are involved:
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1. Sinusoid extraction: An STFT analysis, enhanced by some pre- and post-
processing, provides a number of spectral peaks.

2. Salience function: Peaks are given a score based on their harmonic relationship.

3. Pitch contour creation: A first selection subdivides the peaks into best candi-
dates and reserves. Best candidates are used to create pitch contour segments,
while reserves are used in case they can fill small gaps. Various statistics are
gathered for each pitch contour.

4. Melody selection: Pitch contours are grouped based on gathered statistics in
order to guarantee a monophonic and glitch-free melody line.

In a broad sense, this technique can be described as a way to track over time
the fundamental frequency f0 of a sparse and almost-harmonic signal in a noisy en-
vironment, relaying on prior statistical knowledge about the phenomena. Answering
to Q2 could introduce further information useful in steps 2 and 3, since information
about neighbour frames can help predicting pitch trajectories.

The same year, they also proposed a different strategy, where f0 tracking is en-
hanced based on vocal signal separation from other pitched or percussive sound [65].
The main motivation is that certain contexts, or music genres, are more difficult than
others (for a review on this topic see [66]).

The assumption they made is that pitched sounds are modelled by sparseness in
frequency and smoothness in time; percussive sounds are modelled by smoothness in
frequency and sparseness in time; while vocal sounds are modelled by both sparseness
in frequency and in time.

The proposed singing voice separation is realized with NMF, and is composed of
three stages: a manual subdivision of signal in singing v.s. non-singing segments; a
training phase where percussive bases and pitched bases are learnt from non-singing
segments; and a separation phase where voice is extracted from singing segments as
a remainder.

The most important thing about these works is that they all rely on how energy is
organized in linear patterns in the (log)spectrum. This remark has been exploited in
two different ways, as exposed in the next sections. Of course, this context is strictly
related to Q2.
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3.4 Auditory Receptive Fields Models

In 2015 Lindeberg and Friberg [51, 52] described a theoretical and methodological
framework to define computational models for auditory receptive fields (ARF). The
proposal is based on a two-stage process: (i) a first layer of frequency selective tempo-
ral receptive fields, where the input signal is represented as multi-scale spectrograms,
which can be specifically configured to simulate the physical resonance system in the
cochlea spectrogram; (ii) a second layer of spectro-temporal receptive fields which con-
sist of kernel-based 2D processing units in order to capture relevant auditory changes
in both time and frequency dimensions.

The model is closely related to biological receptive fields (i.e. those that can be
measured from neurons in ICC and A1). This work unifies in one theory a way to
axiomatically derive representations like Gammatone or Gabor filters.

A set of new auditory features are proposed, being the result of the output 2D
spectrogram after the kernel-based processing, using different operators like: spectro-
temporal smoothings, onset and offset detections, spectral sharpenings, ways for cap-
turing frequency variations over time and glissando estimation. An example of some
of these kernels is shown in Fig. 3.6.

The work is interesting in this context since the information highlighted by the
proposed operators can be compared with that addressed in Chapter 5, which, in turn,
is aimed at answering Q2. Moreover, it is interesting to see that with the correct
kernels, this model can be used to isolate percussive or pitched signal in a way similar
to how Gabor filters are used to find contours in image processing. Finally note
how the act of differentiating along the time direction for the computation of PFD
described in Section 3.3 resembles the onset kernel depicted in Fig. 3.6, providing a
perceptual motivation to the model.

3.5 Radon-Based Spectral Features

It is not rare to see image processing techniques applied to audio, and vice versa,
but only a few works have been found in the literature regarding Radon transform
applied to audio. After providing an example of the Radon transform applied to a
|STFT | in Fig. 3.7, some of these works are described.

In 2003, Özer et al. [67] presented a statistical method to detect the presence of
hidden messages in audio signals (steganalysis). The basic idea is that, the distribu-
tion of various statistical distance measures, calculated on cover audio signals and on
stego-audio signals compared to their denoised versions, are statistically different.

Among other features, the Short-Time Fourier-Radon Transform Measure is in-
troduced: the mean-square distance of Radon transforms of the STFT of two signals
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CHAPTER 3. STATE-OF-THE-ART TECHNIQUES 38

0 50 100

φ

-500

-400

-300

-200

-100

0

100

200

300

400

500

P

0

50

100

150

200

250

300

350

400

450

500

Figure 3.7: Radon transform of the |STFT | in Fig. 3.6a. The three arrows highlight
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the speed of the glissando.

is defined as a new objective audio quality measure.
In particular, given the |STFT | of a signal, its time projection gives the magnitude

spectrum while its frequency projection yields the magnitude of the signal itself.
More generally, rather than taking only the vertical and horizontal projections, they
considered all the other angles, obtaining the Radon transform of the STFT mass.

In 2001 Ajmera et al. [68] presented a new feature extraction technique for speaker
recognition based on Radon transform and discrete cosine transform (DCT). The
rationale of this technique lies in formulating the speaker recognition problem as the
pattern recognition of images, and resolving it using machine learning tools.

In the proposed method the Radon transform is used to derive the effective acous-
tic features from the speech spectrogram: projections for seven orientations capture
the acoustic characteristics of the spectrogram, then a DCT is applied on Radon
projections to lower feature vector dimensionality.

In the same year, Myung Kim and Hoirin Kim [69] focused on the problem of
classifying pornographic sounds, such as sexual scream or moan, to detect and block
the objectionable multimedia contents. To represent the large temporal variations
of pornographic sounds, they proposed a novel feature extraction method based on
Radon transform.
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They suppose that, compared with speech and music signals, the pornographic
sounds show large temporal variations, fast spectral transitions among neighbouring
frames, and a typical pitch at about 500 Hz. In addition, these characteristics tend
to periodically repeat.

In their proposal, the Radon transform of time-frequency spectrograms is used to
effectively capture the spectral characteristics of a pornographic sound.

In this context, their work outperforms strategies based on other features, such as
mel-frequency cepstral coefficients. The technique is very effective for pornographic
sound detection because the large variations among adjacent spectral signals produce
distinct orientations in Radon domain.

All of these works exploit Radon based features, but no proposal has been found
able to perform masking of signals directly (or depending on) manipulations in the
Radon space. The main reason is that is very hard to describe non-linear operations
in the Radon space, the effects of which can propagate back to the original space. In
Chapter 5 a solution to this problem is given while answering Q2.



Chapter 4

Bivariate Mixture Space

4.1 Rationale

The basic idea behind the concept of bivariate mixture space (BMS) is to interpret
a bivariate stationary signal in the spectral domain X(f) = {X1(f), X2(f)} as two
orthogonal observations of an underlying continuous space X̃(f, α) such that

X1(f) = X̃(f, 0)

X2(f) = X̃(f, π
2
)

(4.1.1)

Moreover, their rotation Xm(f) and Xs(f) (see Eq. 2.3.1) should sample the space in
α = π

4
and α = 3

4
π respectively.

In other words X̃(f, α) can be seen as a revolving surface that interpolates X(f).
This is done on the Fourier decomposition of the input, since the spectral domain
enables the ability to work on each trigonometric base separately.

Actually no assumptions are made explicit regarding sources mixed in X(f), nev-

ertheless correlated components of the signals should appear as peaks in
∣∣∣X̃(f, α)

∣∣∣
for some α, based on how they are distributed into the mixtures, while uncorrelated
components should present no peaks (i.e. they are equally distributed in X̃(f, α)).

Any source Ui(f) will spread its energy differently in X̃(f, α), according to how
it has been mixed in X(f), in this case X̃(f, α) can be seen as an analysis tool. On
the other hand, some knowledge on how sources are distributed, renders X̃(f, α) a
decomposition tool.

Finally, studying X̃(f, α) it should be possible to represent X(f) in a more com-
pact form, which encapsulates all the properties of the starting set of variables but
in a more meaningful way.

40
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4.2 Definition

4.2.1 Bivariate Mixture Space

Let suppose a stationary latent signal U1(f) is distributed in X(f). The act of feeding
the observations X1(f) and X2(f) with different amounts of U1(f) can be generalized
by placing the source at some angle σ(f) between the orthogonal axes (that is, the
basic principle behind PCA)

X1(f) = cos(σ(f)) · U1(f)
X2(f) = sin(σ(f)) · U1(f)

(4.2.1)

Now let define the transformation of X(f) space into the BMS X̃(f, α) that sat-
isfies the desiderata described in Section 4.1:

X̃(f, α) = X1(f) · cos(α) +X2(f) · sin(α) (4.2.2)

This complex function has a periodicity of π and its magnitude peaks in correspon-
dence with the angle σ(f) with a value equal to |U1(f)|. The behaviour of X̃(f, α)
varying σ(f) for a fixed f can be seen in Fig. 4.1 and 4.2.

If U1(f) is distributed in X(f) by some convolutive phenomena, difference in phase
between X1(f) and X2(f) occurs, which in turn affects X̃(f, α) as depicted in Fig. 4.3.



CHAPTER 4. BIVARIATE MIXTURE SPACE 42

0.0

0.5

1.0

|X(α)| - Linear |X(α)| - Polar~ ~ Time domain scatterplot

0.0

0.5

1.0 |X₂|

-π/2 0 π/2 π
0.0

0.5

1.0

|X₁|

x₁

x₂

σ σ
(A)

(B)

(C)

Figure 4.2:
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column) for a fixed f . In the first two rows X1 and X2 share same phase but different
magnitude, while in the third row they have different magnitude and opposite phase.
In A X1 = X2, in B X2 = 0 and in C X1 = −0.2X2. For a legend of symbols and
axes see Fig. 4.1.
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Despite those phase differences,
∣∣∣X̃(f, α)

∣∣∣ will always peak in correspondence of the

principal component angle (as long there is one).

4.2.2 Bivariate Spectrum

To better represent the information present in the two spectra contained in X(f),
a more compact transformation can be used. First, the angle σ(f) where energy is

concentrated can be inferred by finding the peaks of
∣∣∣X̃(f, α)

∣∣∣, that are the zeroes of

its first derivative, occurring at (= and < denote Imaginary and Real parts):1

σ(f) =
1

2
arctan

2=X1=X2 + 2<X1<X2

|X1|2 − |X2|2
(4.2.3)

Then, note that the linear correlation C(f) between bases in X1(f) and X2(f)
can be computed as a function of their phase difference:

C(f) = cos(∠X1(f)− ∠X2(f)) (4.2.4)

Finally, instead of computing the whole X̃(f, α) surface, just the principal com-
ponents for each f can be saved as a principal spectral content (PSC) X(f) which
somehow discards the relational information:

X(f) = X̃(f, σ(f)) (4.2.5)

then the relational information contained in σ(f) and C(f) can be stored as a new
Relational vector R(f):

R(f) = |C(f)| · eiσ(f) (4.2.6)

finally all of this information can be packed into a vector ~X(f) called bivariate spec-
trum (BS)

~X(f) = {X(f), R(f)} (4.2.7)

which is more meaningful than X(f) since it discards no information, but organizes
it in a more straightforward form separating spectral content from relational content:

• X(f) accounts for the overall magnitude and phase of the spectral content of the
bivariate mixture (note that by simply summing X1(f) and X2(f) destructive
phase interference may occur)

• σ(f) accounts for the balance of the energy, i.e. it provides information about
how each input mixture contributes to the PSC, and can be used to retrieve the
principal components of the signal

• C(f) provides information about correlation and phase differences of the input
mixtures at a single base frequency level

1for the sake of readability, the f argument has been omitted for X1 and X2
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Figure 4.3:
∣∣∣X̃(f, α)

∣∣∣ and scatterplot in the time domain for a fixed f with X1 and

X2 with same magnitude but different phase. Phase difference in each row is A: 0;
B: 1

4
π; C: 1

2
π; D: 3

4
π; E: π. Note the negative angle for anti-phase cases D and E,

also characterized by a destructive interference in the space between X1 and X2. Also
note the ambiguity in case C of uncorrelated signals. For a legend of symbols and
axes see Fig. 4.1.
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4.3 Properties and Applications

A way to visualize the BS together with properties and examples of use for BMS are
provided in the next sections. What follows is a recap of the notation introduced,
from now on the argument f will be omitted for improved readability

• Ui is a phenomenon observed by X (Eq. 4.2.1)

• X = {X1, X2} is the input bivariate signal, composed of two mixtures

• X̃(α) is the bivariate mixture space (Eq. 4.2.2)

• ~X = {X, R} is the bivariate spectrum (Eq. 4.2.7)

• X is the principal spectral content (Eq. 4.2.5)

• R is the relational content vector (Eq. 4.2.6)

• σ is the value of α that maximizes X̃(α) (Eq. 4.2.3)

• C is the correlation between X1 and X2 (Eq. 4.2.4)

In this chapter also the following symbols will be introduced as manipulators of the
input mixture

• γ is the power which |C| is usually raised to weight correlation relevance

• (·){M} is a masking operation M , in particular:

– (·){θhl } is a selection of components within θ − l < σ < θ + h (Eq. 4.3.1)

– (·){+} is a selection of in-phase components (Eq. 4.3.2b)

– (·){−} is a selection of anti-phase components (Eq. 4.3.2c)

– (·){1} is a selection of clear, correlated components (Eq. 4.3.3a)

– (·){0} is a selection of cluttered, uncorrelated components (Eq. 4.3.3b)

• Xθ = X̃(θ) is a new observation of X at angle θ (Eq. 4.3.4)

• Xθ = {Xθ, Xθ+π
2
} is a new bivariate signal after a rotation θ (Eq. 4.3.5)

Examples and applications of BMS manipulation and visualization can be found
in the GitHub repository.
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4.3.1 Signal Manipulation

X̃(α), σ and C can be exploited to perform two different kinds of data manipulation:
spectral masking and mixture resampling.

Spectral masking is a simple way to control the magnitude of specific bases of the
mixture by using σ as key to mask parts of the spectrum, thus isolating components
at particular positions of the BMS. For example, given an angle θ and upper and
lower bounds h and l, a simple notation of masking can be introduced as (in principle
also non-binary masks are possible):

mask =

{
1 if θ − l < σ < θ + h

0 otherwise
(4.3.1a)

X{θ
h
l } = X ·mask (4.3.1b)

Special masks can be realized by using C as key, for example to split any X in
X{+}+X{−} containing respectively positively and negatively correlated components.
The first may also be referred as the in-phase signal, while the latter is the anti-phase
signal

mask =

{
1 if C ≥ 0

0 if C < 0
(4.3.2a)

X{+} = X ·mask (4.3.2b)

X{−} = X · (1−mask) (4.3.2c)

C can also split X in X{1}+X{0} containing respectively correlated and uncorrelated
components. The first may also be referred as the clear signal, while the latter is the
cluttered signal (γ is a clarity parameter used to emphasize relevance of |C|)

X{1} = X · |C|γ (4.3.3a)

X{0} = X · (1− |C|γ) (4.3.3b)

Finally, it may be useful to define some simple syntaxt for expressing basic boolean
operations between two masks a and b such as

• a · b or logical AND : X{a,b}

• a+ b or logical OR: X{a},{b}

• 1− a or logical negation: X{a}
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Mixture resampling is a resynthesis process which relays on X̃(α) to generate new
mixtures or to rotate the mixture space. A new mixture Xθ can be synthesized by
choosing any θ as argument for X̃(θ).

Xθ = X̃(θ) (4.3.4)

In principle, mixture resampling may provide new observations of X. Those observa-
tions may seem to not overcome the constraint of ICA to provide as many mixtures
as the latent sources, since new observations are basically a linear combination of the
input ones. However, a recent work by Fitzgerald et al. [70] demonstrates how, under
certain conditions, it is possible to get over these limitations by working on ensembles
of resamplings in combination. This aspect will be properly addressed in the future.

Finally, rotation is realized simply by resampling the input at an angle θ and θ+ π
2
,

in order to create new orthogonal output mixtures.

Xθ = {Xθ, Xθ+π
2
} (4.3.5)

4.3.2 Distributions of Components in the BMS

Among the information that can be collected from the BS, it is worth citing the
distribution of components in the BMS. However collecting the mere distribution of
σ can produce misleading graphs, since bases with different magnitudes have the
same influence on the distribution. So, to plot the components dispersion correctly,
it may be useful to weight the distribution by

∣∣X∣∣ to account for the actual signal

content. Nevertheless, in some cases, also the
∣∣X∣∣ weighting can be misleading, since

bins with low |C| are placed at an angle σ which is very likely incorrect (see Fig. 4.3,
row c). To overcome this issue, it may be useful to consider the more sophisticated

weighting
∣∣∣X{1}∣∣∣ to see the distribution of correlated components, or

∣∣∣X{0}∣∣∣ to see

the contribution of uncorrelated components. Differences are shown in Fig. 4.4.
Note that in case of STFT inputs, the same distributions may be computed also

in a per-frame or per-frequency base, providing more punctual information about the
mixture, as shown in Fig. 4.5.

4.3.3 BS-Enhanced Spectrogram

When analysing signals, visualizing data is part of the process. Usually spectrograms
(i.e. plotting STFT across time and frequency using colours for coding magnitude)
are the first tool that comes in mind for inspecting signal frequency content over time.
Unfortunately, the relationship between the components of bivariate signals are hard
to see with this method. A naive approach is to display the sonogram of the sum of
X1 and X2. In this way, those components which are not in phase are cancelled from
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α axis has been shifted to display the common components aligned with the centre
of the picture.
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the plot. So, a more refined way to mix the spectra is to sum only the magnitude.
Anyhow, in the classic |X1|+|X2| spectrogram, no relational information is preserved.
At the same time, the display of two separate sonograms for the inspected bivariate
mixture is not really easy to interpret and introduces a lot of redundancy.

A new kind of sonogram, visible in Fig. 4.6, is introduced as a way to represent BS,
which encodes

∣∣X∣∣ with brightness, σ with hue and |C| with saturation. Of course
magnitude can be expressed in dB and the frequency axis can be in a logarithmic scale.
Since variation in saturation may be hard to notice, correlation visualization may be
tuned by choosing proper γ. Empirical tests show that values between γ = 0 (ignoring
correlation and thus relative phase information) and γ = 4 (strongly emphasizing
correlation) may fit most of the situations.

This method reduces the redundancy of having two separate sonograms and high-
lights mixtures differences, without discarding any information but absolute phase
(relative phase is encoded with |C| and σ sign). Moreover low-level visual cues such
as brightness, hue and saturation are processed by our brain faster than the pattern
recognition task needed to compare two separate sonograms [71].

For example, if a colourful image appears, it means that the observed signals are
strongly correlated, while if a grey-scale image appears, it means that signals have a
very low absolute correlation.

This kind of spectrogram helps interpreting the bivariate couple more as a con-
tinuum than a discrete set of mixtures, and packs a wide range of information in a
compact area, letting the user recognize signal properties at a glance.

On the other hand, the subjective visual brightness of different colours could
reduce the perception accuracy of the components magnitude, but this issue is not
critical, since precise magnitude measurements are more affordable in a classical 2D
magnitude profile plot.

4.3.4 Relation With Other Methods

Let’s compare this work with some of the SMC techniques described in Section 3.2.
The azimuth space described in ADRess [57] is very similar to BMS, but with

some key difference. As it can be seen comparing Fig. 3.3 with Fig. 4.7, the azimuth
space is only defined between the centre position and a channel side, while BMS is
defined in proper angles between ±1

2
π, spanning across all possible signal positions.

Moreover, sources are found in ADRess by scanning the whole space for some minima,
then source magnitude is properly reconstructed and phase is taken as that of the
input. In the BMS sources are visible as peaks, whose position can be found with
Eq. 4.2.3 without scanning the whole space, while exact source magnitude and phase
at position θ can be properly computed as a mixture resampling operation X̃(θ).

Moreover, excluding or adding back cluttered components from the masked signal
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Figure 4.6: BS-enhanced spectrogram. Hue is linked to σ, saturation to |C|γ and
brightness to log(

∣∣X∣∣). In this example an audio file containing different instruments
panned in the stereo image is shown. Visible sources are: a violin in green; a kick
drum and a snare in light blue; a bass guitar in teal; an electric piano in dark blue;
a hi-hat in yellow, and a taiko drum in purple. σ = 0 is left, σ = π/2 is right and
σ = π/4 is the middle position. σ = −pi/4 denotes anti phase signals.
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Figure 4.7: Sources as peaks of the BMS, compared with sources as minima of the
azimuth space of Fig. 3.3.

may help in properly reconstructing the sources. Two new extraction methods of a
source Uθ may then be defined as

Uθ = X
{θhl }
θ (4.3.6)

as a simple masking and resampling operation (M&R), and

Uθ =

{
X
{+, θhl }
θ if excluding all cluttered components

X
{+, θhl }, {−}
θ if including cluttered components outside θhl

(4.3.7)

as masking and resampling with taking into account also cluttered and clear compo-
nents (M&R+C).

A comparison of the three methods can be seen in Fig. 4.8.
The test has been run over the signal in Fig. 4.6, with the same masking windows

for ADRess, M&R, and M&R+C. STFT settings are the same described in [57], and
the scores are those from PEASS software.

It turns out using the correct phase information in the resynthesis process slightly
improves the separation quality, while considering clear and cluttered components
may improve the separation of some sources, but in general it can be used to trade-
off between a good score in interference IPS and artefacts APS.
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gies based on stereo panning. Input is composed of a mixture of 6 sources.
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Unfortunately, PEASS scores do not recognize the great improvement of transient
quality that arises from using the correct phase instead of the original phase (more
tests can be found in Section 6.1).

For what concerns execution time, ADRess took 0.624 seconds to perform the
separation of a 6 seconds excerpt, while M&R and M&R+C took respectively 0.281
and 0.471 seconds. The test was ran in Matlab with a 64 bit operating system over a
desktop computer equipped with an Intel i7 processor running at 3.1 Ghz and 16 Gb
of ram memory. The azimuth space investigation of ADRess has been replaced with σ
function, which was also used in M&R and M&R+C. A profiling of the execution time
showed that the most time consuming task was the arctangent function needed to
compute σ, C and the phase of input bins required by ADREss resynthesis technique.

Regarding the distinction between direct and diffuse signal realized by Kraft [61],
note that the principal components (considered as direct signal) are all contained by
definition in X, while diffuse signal (defined as orthogonal to the direct one) can be
retrieved by computing X̃(σ + 1

4
π). Also in this case, phase must not be guessed,

since all functions are defined natively in the complex domain. Endowing Kraft’s
assumptions, direct and wet signals Ud and Uw can be defined as the PSC and its
orthogonal resampling

Ud = Xσ = X (4.3.8a)

Uw = Xσ+π
4

(4.3.8b)

Another method (referred as PSC+C) could consist in considering in part of the
ambience signal also the uncorrelated components of the signal

Ud = X{1}σ = X
{1}

(4.3.9a)

Uw = Xσ+π
4

+X{0}σ (4.3.9b)

Again, to test the improvements of correct phase estimation and C weighting,
a PEASS test has been run over a sample signal, composed of a mixture of a dry
voice with some reverberation (achieved by convolution with the impulse response of
a large hall). Results are shown in Fig. 4.9.

It is clear how correct phase interpolation drastically improves the performance
regarding the direct signal, while phase interpolation and C masking does not seem
to help with the wet signal. Nevertheless the degradation in the wet signal seems to
be outweighed by the improvements in the dry one.
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Figure 4.9: Comparison of PEASS results for three different dry/wet separation
strategies based on frequency domain stereo decomposition. Input is composed of
a mixture of voice and reverb.
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With respect to execution time, Kraft took 0.212 seconds to separate 8 seconds
of audio, while other methods took respectively 0.120 and 0.155 seconds. As usual as
before, arctangent is the most time consuming operation.

Finally, note the similarity between the metrics of Eq. 3.2.2 and the BS defined in
Eq. 4.2.7. They basically provide the same kind of information but, again, the main
difference is that phase information is properly encoded as argument of X, thus the
original signal X can be reconstructed properly. Morover, as displayed in the third
column of Fig. 4.2 and 4.3, BS information are suitable also for describing the ellipses
parameters delineated in Section 3.1.

4.3.5 Other SMC Applications

With respect to music production techniques, decomposition of stereo audio mixtures
through masking and resampling may be useful in upmixing, mastering, restoration,
and noise suppression processes. For example, it is possible to generate multichannel
audio S from a stereo track resampling x in more than two points. For example

S = {Xπ
4
, Xπ

8
, Xπ 3

8
, X−π

8
, X−π 3

8
} (4.3.10)

corresponding respectively to centre, left, right, surround-left, and surround-right
channels.

Moreover, X{+} and X{+} can be exploited to perform selective phase correction
along the spectrum, such as creating a mono compatible stereo signal M without
interfering too much with the original stereo image

M = {X0, X
{+}
π
2
−X{−}π

2
} (4.3.11)

that is inverting phase only for those components which are in anti phase.
Eventually, X can be used as a conservative mono version of the signal which

minimizes phase interference usually introduced with channels summation.
Finally, from the study of ~X statistics it is possible to introduce new audio features

based on stereophonic properties of the signal. An investigation that is left to future
works on this topic.



Chapter 5

Spectro-Temporal Structure Field

5.1 Rationale

Sonograms (STFT s magnitude) are a useful tool for observing signal spectral be-
haviour in time, but it is hard to gather objective information regarding the features
caught by the eye. One way to do this can be to apply the Radon transform to the
STFT matrix of a signal with the purpose of findings vertical, horizontal and oblique
features of the spectrum (transients, periodicities and frequency modulations). Un-
fortunately the Radon transformation discards information regarding time and fre-
quency. Starting from the study of a back-projection strategy that brings feature
information back to the time frequency domain, a new analytical transformation has
been found, which avoids completely the computation of the Radon transform and
can add a layer of information upon the STFT regarding the distribution of energy
in linear patterns. 1

This approach for spectral description is based on a more general idea regarding
any R2 function, realized in two steps: first a Signal Energy Angular Distribution
(SEAD) is computed for each point of the input function, that is a measure of how
much energy is surrounding the point. Then the SEAD of each point is condensed
into a single vector aligned with the direction where most of the function energy lies,
thus the input function is paired with a Linear Structure Field (LSF) embedding into
each point information about straight lines drawn by the function. If the input for
these processes is the magnitude of an STFT representation of an audio file, this
technique provides information about the spectro-temporal organization of sound
such as described in Sections 2.3.2, 3.3, 3.4, and 3.5, and can be referred as the
Spectro-Temporal Structure Field (STSF).

1At a first sight, the same information contained in a STSF may seem similar to the detection of
collinearity of |STFT | peaks, which can be probably computed more efficiently. Nevertheless STSF
is thought to produce a non-sparse (and theoretically continuous) output.
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5.2 Definition

5.2.1 Signal Energy Angular Distribution

First a definition of some useful functions is called for. Let P = (xP , yP ) be a point
inside the domain of an R2 function f(x, y), and let L(P, α) be a family of straight
lines, all intersecting in P with angle α:

L(P, α) : (x− xP ) sinα = (y − yP ) cosα (5.2.1)

then let WP (x, y) be an isotropic weighting function that masks f(x, y) in some neigh-
bourhood of P , but assigning a null weight to the point itself (the Gaussian kernel of
this example is just one of the many weighting functions that may be used):

WP (x, y) =

0 if (x, y) = P

1

2πσ2
e−

(x−xP )2+(y−yP )2

2σ2 otherwise
(5.2.2)

The SEAD D{f, P,WP} of the point P of a given function f(x, y) (such as a
picture) is a new function P̊ (α), that is a line integral that scans all the straight lines
L(P, α) and for each α outputs a vector whose magnitude is the sum of all the points
of f(x, y) ·WP (x, y) along L(P, α) and whose angle is simply α:

P̊ (α) = D{f, P,WP} =

∫
L(P,α)

f(x, y) ·WP (x, y) · eiα ds (5.2.3)

since L(P, α) ≡ L(P, α + kπ), then P̊ (α) can be restricted to the domain:

− π

2
≤ α < +

π

2
(5.2.4)

An illustration of SEAD can be found in Fig. 5.1 and 5.2. The pictures show the
accumulation around P for each angle α. In a sense, SEAD can be considered as a
local or introspective Radon transform, since it endows all projections of f(x, y) on a
single point of itself.

5.2.2 Linear Structure Field

Having a complex function for each point of f(x, y) may be redundant, so a strategy
to reduce the information of SEAD into a field (one vector for each point of f(x, y))
is called for.

The main desideratum is to obtain a Linear Structure (vector) Field (LSF) such
that if P is part of a linear pattern it should be paired with a vector f̂(P ) that reflects
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f(x,y)

PP
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L(P,  )

L(P,  )
sum of f(x,y)
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(a) (b)

|P(  )|
o

Figure 5.1: Input function f(x, y) on the left, and SEAD P̊ (α) of one point P ∈ f(x, y)
on the right (only 3 angles have been calculated in this example). The value of SEAD
is equal to the integration of the input function over the line that passes through P
with angle α.

the angle of that pattern. Moreover
∣∣∣f̂(P )

∣∣∣ should be proportional to the certainty

of being over a single pattern. Finally, values of the vector where the function is zero
are not of interest, while points of the function that form curved patterns should be
paired with vectors at a tangent to that pattern.

In principle, by taking the α that maximizes P̊ (α), the leading direction should be
selected, and this may work for P in Fig. 5.2a. Nevertheless, the situation depicted
in Fig. 5.2b shows how this approach may fail in recognizing ambiguous conditions,
the same could be said for the average P̊ (α), which returns a strong vector pointing
where there is no energy accumulation of f(x, y).

The main problem that arises when summing SEAD vectors, is that orthogonal
components should cancel out each other instead of deviating the result. Similarly
vectors with opposite direction should sum up instead of cancelling out, since their
direction does not matter as long as they lay on the same straight line.

Therefore, to turn P̊ (α) into a proper LSF, a method called non-linear vector
summation (NLVS) is proposed.

NLVS consists in doubling the angle of all vectors before summing them up, then
the angle of the result is halved to bring it back in the original domain (for better
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Figure 5.2: Input function f(x, y) on the left, and SEAD P̊ (α) on the right. All
points of SEAD are the tip of vectors with angle α and magnitude P̊ (α). A proper
way to sum them up is called for.
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Figure 5.3: A detail of the LSF plotted on-top of the original function, vectors point
toward the direction of the linear pattern where they lay.

readability an auxiliary variable ς is used):

ς(P ) =
1

π

∫ π/2

−π/2

∣∣∣P̊ (α)
∣∣∣ · ei2α dα (5.2.5a)

f̂(P ) = |ς(P )| · ei
1
2
∠ς(P ) (5.2.5b)

The LSF of a detail of the function shown in Fig. 5.2 can be seen in Fig. 5.3
The main difference with the function gradient or Sobel operators is that the LSF

does not work only on the edges of the function, but instead it can work out linear
patterns also when the gradient is zero, i.e. in those points where the function is
constant. The coverage area (that is the locally flat area of a function where LSF is
still able to recognize the presence of a pattern) is proportional to the size of the WP

function, while the precision of the answer (i.e. how reliable are the pointed patterns)
has an inverse proportion to the same parameter, since increasing the window size
can make SEAD consider also patterns which are actually far away from P . In a
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Linear Structure Field
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Figure 5.4: Thanks to LSF, lines with different angles are shown in different colours,
except for the intersection area, where vectors have minimum magnitude (input image
is shown on top left corner). This image can also be used as colour legend.

discrete context, LSF quality also depends on the sampling resolution of P̊ (α) on the
α axis. these parameters will be explored in Section 5.4.

Finally, with respect to the BS, a way to visualize LSF may be to encode ∠f̂(P )

with hue,
∣∣∣f̂(P )

∣∣∣ with saturation and f(P ) with brightness, as shown in Fig. 5.4 and

5.5.

5.2.3 Spectro Temporal Structure Field

If f(x, y) is the |STFT | of a signal x(t), then f̂(x, y) could be called Spectro-Temporal
structure field (STSF), and can be written as X̂(t, f), where t is time and f is fre-
quency. An example is shown in 5.6: amplitude is represented in decibels and then
rescaled to 0 . . . 1 values before taking the X̂ (f and t arguments will be omitted for
brevity). The STSF is computed on a linear-frequency representation of the signal,
and then displayed in log-scale. Note that in STFT, linear patterns correspond to a
frequency gliding in time, thus ∠X̂ can be converted to modulation speed v(P ), that
is the Hz per second of continuous frequency changes:

vhz/s(P ) =
∆f

∆t
tan(∠X̂(t, f)) =

∆f

∆t
· =X̂
<X̂

(5.2.6)
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Linear Structure Field
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Figure 5.5: An 8 surrounded by a circle. Colours depict the tangents of the curves
(as in Fig. 5.4, input image is shown on top left corner).
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Figure 5.6: STSF of a segment of the same signal of Fig. 3.6a. Colour encodes the
angle of lines in a time-frequency space, thus the speed of changes in frequency
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where ∆t is the time resolution of the STFT (i.e. the hop size), while ∆f is the
frequency resolution. Unfortunately, as it can be seen from Fig. 5.6, speed expressed
in Hz/sec colours different harmonics of the same sound differently, for this reason a
logarithmic measure may be preferable.

Once ∆n is defined as the frequency resolution expressed in semitones:

∆n(f) = 12 log2

f + ∆f

f
(5.2.7)

Speed information can be represented in log scale as semitones per second, thus
resolving the issue that linear speed retain for harmonic signals:

vn/s(P ) =
∆n(f)

∆t
· =X̂
<X̂

(5.2.8)

This operation avoids the computation of X̂(t, f) in the log frequency domain, a
conversion which from a computational perspective calls a trade off between memory
usage and proper high frequencies resolution.

As shown in Fig. 5.7, it is possible to see the distribution of log-speed to check
for accumulation around certain points, corresponding to the concept of common fate
used in CASA. Note that, as well as the one realized for the BMS, the distribution is

weighted by
∣∣∣X̂∣∣∣ · |X|, to account only for relevant STFT bins.

5.3 Properties and Applications

Now some properties and applications of the discussed techniques will be investigated.
Examples and applications of LSF and STSF can be found in the GitHub repository.

5.3.1 Radon as a Distribution

By definition f̂ is a set of straight lines passing through P with angle ∠f̂ . Being
able to convert those lines in to the same form used by the Radon transform (i.e.
coefficients p and φ of Eq. 2.1.16) enables the ability to approximate the Radon
transform by plotting the joint distribution of these parameters, as shown in Fig. 5.8.

φ is actually ∠f̂ , while distance from the centre p can be calculated using φ and
P coordinates:

p =
√
x2P + y2P · sin

(
α− arctan

yP
xP

)
(5.3.1)

Again, the distribution is weighted by
∣∣∣f̂ ∣∣∣ · |f |, to account only for relevant vectors.
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Figure 5.7: Same signal of Fig. 5.6, but coloured by log-speed (semitones per second).
The distribution shows peaks for ±∞ (percussive sounds), 0 (pitched sounds), and
10 (the gliding sound).
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Figure 5.8: Top: an input function and its LSF. Bottom: the Radon transform of the
function and the joint distribution of a transformation of LSF vectors

Grey areas visible in the Radon transform shown in Fig. 5.8 corresponds to the
information packed in P̊ , which is discarded in f̂ . In principle from P̊ it should be
possible to reconstruct a complete Radon transform, but this possibility will not be
explored since the mere approximation of its peaks is usually sufficient.

This concept, together with the speed distribution, demonstrates how useful STSF
representation can be in context such as those described in Section 3.5, where the
STFT of a signal is Radon-transformed to gather some features about the underlying
audio signal.

5.3.2 Anisotropic Masking

In the audio processing context, segregation between percussive and pitched material
may be useful in many situations as described in Chapter 3. Thanks to the STSF it
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Figure 5.9: PEASS results for 3 algorithms of pitched v.s. percussive audio separation.
Input sources are the same of Fig. 3.6a, grouped by type (i.e. percussive or pitched).

is possible to create masks based on spectral features which not only helps in sepa-
rating transients from periodic sounds, but can also enable the possibility of selecting
portions of sound where frequency changes at a specific St/sec rate. Moreover masks
parameter can vary in time, which is not possible when using methods such as those
described in Section 3.4.

To compare the separation capabilities of the STSF, a PEASS test has been run,
comparing the results provided by 3 algorithms: The Auditory Receptive Field based
separation (ARF) [51, 52], the Percussive Feature based (PFD) [63], and the STSF
based. Results are shown in Fig. 5.9. It is hard to properly compare the results of the
3 algorithms, since they do slightly different things, but in general it seems that STSF
may provide similar outcomes with respect to the other strategies. One thing that
the PEASS framework fails to highlight is that STFT is the only one that completely
rejects the glissando signal from the extraction of the percussive signal (more tests
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Figure 5.10: Complex kernel for the representation of the LSF as a quasi-convolutive
operation

can be found in Section 6.1). Execution time are 1.57 seconds for ARF, 0.16 for PFD
and 0.15 for STSF, but STSF time only accounts for the masking time. It does not
take into account the computation of the STSF, since once it is computed it can be
used for any masking instance. Unfortunately it took about 77 seconds to compute
the STSF, an issue that will be discussed in the next section.

5.4 Optimization

The computation of f̂ (and especially P̊ ) may be very slow due to the great number
of integrals calculated for each point of the function, especially when high α resolu-
tion is required. Moreover, in a discrete context, pixels close to the point may be
overweighted due to the aliasing of the sampling line L(P, α).

Looking at Eq. 5.2.3, Eq. 5.2.5b, and Fig. 5.1, it may be noticed that, except for
the non-linear summation, those operations are similar to a complex convolution of
f̂ ≈ f ∗ h, with h being a complex function depending on WP , and which sums are
calculated by scanning the function radially. In particular h(x, y) can be written as:

h(x, y) = W0(x, y) · ei tan
y
x (5.4.1)

where W0 is WP for P = (0, 0). This kernel h is depicted in Fig. 5.10.
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Now, in a discrete domain, a convolution-like form could be very useful since it
avoids aliasing issues, it computes f̂ without explicitly finding each P̊ (thus avoiding
the sampling operation over α).

For these reasons, to express the calculation of f̂ in a simpler way, it is useful
to introduce a custom operator called NLV-Convolution f ~ h, which replaces the
implicit summations of the convolution with the NLVS used in Eq. 5.2.5, that is
defined as the sum of two complex numbers a⊕ b:

ς = |a| ei2∠a + |b| ei2∠b (5.4.2a)

a⊕ b := |ς| · ei
1
2
∠ς (5.4.2b)

such that f̂ can be calculated as:

f̂ = f ~ h (5.4.3)

In this form, STSF can be seen as an approximated pre-computation of many
Auditory Receptive Fields, which response can be retrieved by masking the STSF,
based on the desired ARF angle (consequently, LSF can be seen as a pre-computation
of many Gabor filters).

Fig. 5.11 compares average execution time and overall accuracy for the two imple-
mentations (with different resolutions of α for the canonical implementation). The
test was run upon a random set of synthetic pictures of 100 × 100 pixels generated
automatically together with theoretical ground truth gr. Error was measured as
absolute difference between result pixels and gr pixels.

The test shows how, for WP size set to 12, the computational cost is comparable
for a P̊ computed on 8 equally spaced α angles, while accuracy becomes comparable
from a resolution of 9 equally spaced α angles. In conclusion, it seems that the
canonical method is preferable only when expected α angles are known a priori or
when low α resolution is required, so that the function can be sampled only on a
small number of angles, otherwise the NLV-Convolution method is more reliable.

Finally,a profiling of the test executed on a 100 × 100 image with 8 angles reso-
lution, underlines how the highest computational cost comes from: the line sampling
for the canonical implementation; the NLVS for the NLV-Convolution implementa-
tion; and from the arctangent function, which is used in both implementations. In
particular the canonical approach calls atan2(·) 10000 times, and the line sampling
function is called 44264 times, while in the NLV-Convolution method no line sampling
function is called, but atan2(·) is called 30000 times: 3 times for each of the 10000
calls to the NLVS function. This means that a fast atan2(·) approximation should
drastically improve performance, especially for the NLV-Convolution method, while
a fast way to sample a function over a straight line should also improve the canonical
implementation.
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Chapter 6

Combined Methods Use Cases

6.1 Source Separation

6.1.1 Experimental Setup

To evaluate the usability of proposed techniques in the real world, a typical SMC task
will be explored, that is the separation of vocal signal within a complex mixture. In
particular the MASS database [44] will be used as dataset, since it contains real world
samples, thus providing a realistic scenario (details about the dataset are provided in
Section 2.3.4). In case of instrumental songs, an alternative pitched instrument has
been separated, such as bass or guitar.

The proposed architecture is composed of a first masking and resampling opera-
tion in the BMS, followed by a rejection of percussive sounds, realized by attenuating
components with almost-vertical STSF (percussive signals, such as drums, are fre-
quently found in the same azimuth position of vocals [57, 63]).

As a baseline, ADRess algorithm will be used to isolate the azimuth portion
containing lead vocals, followed by PFD for rejecting percussive signals. Moreover,
also ARF-based separation is performed over ADRess output as an alternative to
PFD as second stage baseline.

Both baseline and proposed techniques are enhanced by a final hi-pass filter that
should remove any component under 100 Hz. In the case where a non-vocal signal is
targeted, the cut-off frequency is modified according to the lowest note playable by
the instrument.

All algorithms have been implemented from scratch in the Matlab environment,
and are available for download in the repository hosted on GitHub. The azimuth dis-
crimination part of ADRess has been realized by computing BS angles, in such a way
that component position in the azimuth plane are expressed in the same measure-
ment units of the proposed technique. PFD has been implemented by meticulously
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following the original definition [63]. ARF has been implemented as a set of convolu-
tions with different kernels in the log-frequency domain, using bin numbers (instead
of Semitones and Seconds) as measurement units. Finally, BMS and STSF separation
algorithms have been implemented with no exploitation of speed conversion or other
metrics of the proposed spaces, since a fine source separation is not the aim of this
work. Indeed, a basic implementation is tested as a working space alternative to the
ones of the baseline.

The STFT is performed on L1-normalized input, divided into frames of 2048
samples, a hop size of 512 samples, and with input and output Hann windowing.
ADRess and BMS mask parameters are set to equivalent values, manually selected
for each song, while PFD, ARF, and STSF mask parameters are set to fixed values,
that aim at isolating pitched signals.

6.1.2 Results and Discussion

The results of each algorithm have been analysed with PEASS software, whose output
is shown in Fig. 6.1, and whose raw results are reported in Appendix B. In partic-
ular, 5 techniques are visible: ADRess and BMS labels are relative to the output
of the first stage, while +PFD, +ARF, and +STSF are relative to the three final
outputs. Finally, since every song behaved very differently, PEASS results have been
normalized by song.

ADRess and BMS performs very similar, with no significant differences in any of
the scores. On the second stage of the processes, PFD, ARF and STSF performs
quite differently: PFD seems to sacrifice part of the target sound and the presence of
artefacts in order to achieve a better separation from other sources, STFT discards
significantly less target signal and it is milder in terms of separation, but is able to
improve the signal to artefact ratio, resulting in a more natural sound even in presence
of artefacts coming from the previous stage. Finally, ARF seems to mediate between
PFD and STFT results, significantly improving the overall perceptual score. One
thing that does not emerges from the PEASS scores is that STSF is more linear in
the frequency response, in opposition to ARF and PFD which tend to darken the
sound, rejecting a consistent amount of high frequencies.

The fact that the results are dependent on the analysed song might indicate that
the proposed methods works better for some classes of signals. For what concerns
PFD, ARF and STFT, analysing algorithms scores in detail reveals how ARF consis-
tently gets the best OPS, PFD gets the best IPS and STFT gets the best TPS and
APS, thus confirming the previous observations.

Dependency on the song kicks in when talking about ADRess and BMS. In mu-
sical genres such as pop, rock (and some hip-hop songs) chorus effects and unison
instruments are frequently used. These effects can spread a source all-over the stereo
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Figure 6.1: Normalized PEASS results for a voice extraction task performed on the
MASS dataset. Raw PEASS scores can be found in Appendix B

image and can decorrelate stereo channels. When this happens, the differences be-
tween ADRess and BMS get stressed. ADRess ignores everything is outside the target
mask, and this may include uncorrelated components of the target source, while BMS
can also consider uncorrelated elements as ubiquitous in the stereo image, including
those which do not belong to the target source. It is easy to see how these characteris-
tics may be either positive or negative depending on the circumstances, but in general
test data support the idea that ADRess is slightly biased towards the minimization of
interferences, while BMS minimizes artefacts and target loss. Data also show that, in
case sources are not spread by the aforesaid effects, ADRess and BMS behaves very
similarly, with almost identical scores.

In general, data show that the OPS of any algorithm drastically drops when the
target is not a vocal signal, or when a metal song is analysed: in both situations the
scores that drag OPS down are TPS and APS. On the other hand, as expected, best
case scenarios are those where a minimalistic set of instruments is played (such as in
bossanova or reggae music), or where loud leading vocals are mixed in the centre of
the stereo image, such as in some hip-hop songs.

Given the aforesaid results, and considering that the proposed techniques can be
parametrized far more than the baseline approaches, the proposed spaces can be seen
as promising helpers in the field of source separation and other SMC tasks.
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6.2 Information Visualization

BS-enhanced spectrograms and colour-coded STSF can be effective ways to visually
represent a variety of spectro-temporal information. But in case they are used simul-
taneously to seek for patterns inside the |STFT |, the task of looking at two pictures
at the same time may be hard to accomplish. In such a situation, what is relevant is
not the actual value of the BS or STSF, but some kind of distance measure among
bins properties, ideally packed into a single image. These premises seem to point
towards Multidimensional Scaling, but at the cost of a high computational expense.
What follows is instead an information processing and visualization technique based
on PCA, where data dimensionality is reduced preserving Euclidean distance among
bins properties, and then represented into a colour space able to express most of this
distance information.

Relational BS information R can be seen in polar coordinates as described in
eq. 4.2.6, but bases at σ = 0 are actually close to those at σ = π due to the periodicity
of eq. 4.2.2. Moreover, bases with low C values should be considered very close to
each other since, for those bases, angle σ loses its meaning. These proximity features
can be rendered in Cartesian coordinates by:

xa = |C| cos(2σ)
ya = |C| sin(2σ)

(6.2.1)

The same can be said for the bases in STSF, where bases at ∠f̂ = π
2

are close to

those at ∠f̂ = −π
2
, since they are both vertical. Furthermore, also bases with low

∣∣∣f̂ ∣∣∣
should be considered similar, since they share the property of being upon no linear
patterns. Again, in Cartesian coordinates this translates to:

xb =
∣∣∣f̂ ∣∣∣ cos(2∠f̂)

yb =
∣∣∣f̂ ∣∣∣ sin(2∠f̂)

(6.2.2)

Now suppose to take the STSF of the PSC
∣∣X∣∣, which is notated as �̂, and to

augment the aforesaid Cartesian representations by also considering bases level as a
proximity feature. The signal is now projected on a four-dimensional space O:

x = |C| cos(2σ)
y = |C| sin(2σ)

u =
∣∣∣�̂∣∣∣ cos(2∠�̂)

v =
∣∣∣�̂∣∣∣ sin(2∠�̂)

(6.2.3a)

O = {x, y, u, v} ·
∣∣X∣∣ (6.2.3b)
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Figure 6.2: In the PC subspace only differences in colour are relevant, rather then
the absolute colour value.

If two bases are close to each other in this space, it means they share both mix-
ing properties (stereo position in an SMC scenario) and spectro-temporal properties
(percussive or pitched sounds in an SMC scenario). On the other hand, in this space,
bases with similar mixing properties but different spectro-temporal features are dis-
tant from each other.

Unfortunately, this space is not useful to approximate source separation, since the
proper way to consider STSF in a bivariate context is to take it on a precise sampling
of X̃(α) rather than the messy X. Nevertheless, this space can be used to visually
differentiate mixture information.

Let PC1−4 be the 4 principal components of O; a simplification of O called Prin-
cipal Component subspace Ω can be defined as:

Ω = {PC1, PC2, PC3} (6.2.4)

This three-dimensional space can be mapped onto RGB colours simply by scaling
its values in the range [0..1] (that is a saturation scaling between [0..1]). An example
is shown in Fig. 6.2.
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Most comfortable Least comfortable

PCss 5 1
STSF 2 1
BS 2 3
PSC 1 5

Table 6.1: Users visualization preferences for the source-counting task

The proposed design is based on the idea that similar input properties will produce
similar output colours, which the brain will cluster into consistent regions only in case
of moderate differences in the original space. Moreover, cluster colours will reflect
cluster distances in terms of BMS and STSF similarity.

To validate this approach, 10 music production experts were asked to count how
many instruments they could spot by looking at different graphical representations
of 4 music excerpts. The same 4 representations of Fig. 6.2 were rendered for each
sample, so that, in total, each expert had to count sources in 16 different pictures,
presented in random order. Experts were also asked if they suffer from some colour
deficiency, and which representation they found to be the most and the least fitting
for the proposed task.

Pictures were shown on a 21′ calibrated desktop-pc monitor. A Google Form
version of the test can be found at the URL: https://goo.gl/XZx3DS. Raw data
results can be found in Appendix B.

The music excerpts were chosen so that the number of sources was clearly distin-
guishable by listening to them1. In order of increasing mix complexity, the excerpts
were taken from:

• The Beatles – When I’m Sixty-Four (4 sources);

• John Coltrane – In a Sentimental Mood (5 sources)

• A synthesized example with no stereo effects (8 sources);

• Amy Winehouse – Back to Black (8 sources).

Unfortunately the standard deviation of the error data shown in Fig. 6.3 is too
large to draw definitive conclusions, suggesting that more investigation is needed.
Nevertheless, some preliminary observations can be done.

First, by analysing the same picture, it seems that counting sources only by looking
at the sonograms always leads to an underestimation of the total number of instru-
ments. Nevertheless, on average Principal Component subspace (PCss) performed

1A source is defined as a percussive or pitched instrument in a particular stereo image position

https://goo.gl/XZx3DS
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Figure 6.3: Error distribution and mean of relative errors for a source-counting task,
grouped by visualization type. Raw data can be found in Appendix B

better than the other visualization strategies, presenting the lowest mean error to-
gether with the smallest standard deviation.

In detail, Fig. 6.4 shows how PCss significantly improves results only for those
excerpts made of 5 sources or more, while there is no significant improvement in case
of the simpler excerpt, where colours seem to be misleading, and a classic sonogram
may be enough to accomplish the requested task.

Finally, as shown in Table 6.1, users reported a moderate preference for the PCss
when asked to tell which visualization strategy they felt more comfortable for the
proposed task, while it was among the least mentioned when asked to tell which was
the least adequate visualization strategy. Interestingly, even if BS was among the
most disliked, it ranked second in terms of error.

These results suggests that PCss may be an interesting design, but more tests are
needed to properly validate the proposed approach.
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Chapter 7

Final Remarks

7.1 Conclusions

Two new techniques have been presented, one aimed at better representing bivariate
spectral information in an effective way (as an answer to Q1), and the other aimed
at folding spectro-temporal information onto a single point of a STFT representation
of a signal (as an answer to Q2).

The first technique is based on the idea of Bivariate Mixture Space, that is an
interpolation of two mixtures in the frequency domain. From this auxiliary space
different representations of the signal can be rendered, such as the decomposition
into Principal Spectral Content and Relational Content. Eventually, some of the
techniques present in literature can be generalized by manipulations of the BMS, like
masking and resampling, or by reading bivariate spectrum statistics.

The second technique is based on the idea of creating a Structure Field onto a
function, that is a vector field where each vector is aligned with linear patterns created
by the function itself. This technique is useful in image processing contexts whenever
the Radon transform is called for, but it can also be applied to |STFT | to obtain a
Spectro-Temporal Structure Field, useful to track frequency modulations or transient
presence. Again, this space can be considered a generalization of other techniques,
such as an approximated pre-computation of any possible auditory receptive field
output.

Both techniques can be combined in the context of SMC to perform source sep-
aration tasks, or more in general, they can be used in signal processing context as
valid signal representation spaces, which in turn can be visualized very efficiently.

A Matlab implementation of these techniques is provided as a GitHub reposi-
tory at https://github.com/Kuig/LIM-Toolbox, together with instructions to eas-
ily produce custom audio examples. The very same implementation has been used to
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Figure 7.1: C v.s. Pearson Correlation for different classes of sounds. Zero-frequency
and silent components have been excluded from the computation of C, since correla-
tion should not be defined for those values.

provide an experimental demonstration of how this proposal can compete with state-
of-the-art signal processing algorithms such as Azimuth Discrimination and Resyn-
thesis, Percussive Feature Detection, and Auditory Receptive Fields. The test-bed of
the validation process consisted in a PEASS comparison of a vocal separation task
performed on the MASS dataset, which demonstrated the validity of the proposed
approach.

7.2 Future Works

Many aspects of the BMS should be explored in the future. For example, among
the many ~X statistics that can be used as new features, it has been noticed that the
weighted mean of C values C is a good approximation of linear correlation, as can be
seen from fig.7.1, providing results within ±0.016% for most of the signals (Gaussian
and uniform distributed noises, periodic signals with different random phase offsets
and ring-modulated signals), except for 2 classes of signals, where error is within
±5.69% (mixtures of different frequencies and mixtures with only positively correlated
components). In other words, C can be considered as a new measure of correlation
based on spectral properties which deserves further attentions.
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Another interesting observation arises when plotting σ distribution peaks over a
time domain scatterplot of the input mixtures. Those plots can give hints about the
presence of independent components in the mixtures, which in turn can be approxi-
mated as the BMS signal present at σ distribution peaks, as shown in Fig. 7.2. Thus,
a possible separation technique could exploit ICA for cleaning up a masked portion
of the BMS.

In case of joint distributions such as those in Fig. 4.5a and 4.5b, it should be
noticed how those matrices are actually an approximated non-negative decomposition
of
∣∣X∣∣, as shown in Fig. 7.3. This is another aspect that deserves some attention in

the future.
Finally, since the original form of BMS is blind to components that are distributed

in the mixture space with delay operators, the computation of σ distributions can be
extended to the lag-domain, by repeating the transformations for different offset of
the input observations, preferring those offsets where a peak in the cross-correlation
of the observations occurs.

Regarding SEAD and LSF, a detailed study regarding the relationship between
the canonical form and the Radon transform is called for, as well as relationship of
the NLV-convolutive method with the Gabor filtering techniques (or ARF if STSF is
considered).

Some of the implications cited for the BMS also hold in the context of STSF,
for example the same phenomena depicted in Fig. 7.3 can be observed in the joint
distribution of angles ∠f̂ in time and frequency.

LSF can be exploited to improve many image processing algorithms, such as fea-
ture detection, rescaling, vectorization and so on.



CHAPTER 7. FINAL REMARKS 82

Matrix product

0 1 2 3 4 5 6 7
PSC

0 2 4 6
40
60
80

100
120

Frequency distribution

-1 0 1

40

50

60

70

80

90

100

110

120

130

Time distribution

0 1 2 3 4 5 6 7

-1

0

1

Figure 7.3: Product of the two weighted joint distributions of σ approximates
∣∣X∣∣



Bibliography

[1] Stumpf, Carl. “Tonpsychologie (Vol. 1-2).” Leipzig: Hirzel (1883-1890).
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What follows is a list of all acronyms used in this thesis, listed in alphabetical
order. Important acronyms used very frequently (or used far away from their defini-
tion) ar written with a bold font. Also note that the beginning of Section 4.3 consists
in a list that resumes the mathematical symbols about the BMS introduced by this
thesis.

A1: Primary Auditory Cortex, defined in Section 2.4.1

ADRess: Azimuth Discrimination and Resynthesis, defined in Section 3.2

APS: Artefacts Perceptual Score, defined in Section 2.3.4

ARF: Auditory Receptive Fields, defined in Section 3.4

BMS: Bivariate Mixture Space, defined in Section 4.2.1

BS: Bivariate Spectrum, defined in Section 4.2.2

CASA: Computational Auditory Scene Analysis, defined in Section 2.3.3

DCT: Discrete Cosine Transform, defined in Section 3.5

FS: Fourier Series, defined in Section 2.1.1

ICA: Independent Component Analysis, defined in Section 2.2.2

ICC: Inferior Colliculus, defined in Section 2.4.1

ICLD: Inter Channel Level Difference, defined in Section 3.2

ICPD: Inter Channel Phase Difference, defined in Section 3.2

ILD: Interaural Level Difference, defined in Section 2.4.1

ITD: Interaural Time Difference, defined in Section 2.4.1

IPD: Interaural Phase Difference, defined in Section 2.4.1

IPS: Interference Perceptual Score, defined in Section 2.3.4

LR: Left-Right encoding, defined in Section 2.3.1

LSF: Linear Structure Field, defined in Section 5.1

MS: Mid-Side encoding, defined in Section 2.3.1

M&R: Mask and Rotate, defined in Section 4.3.4
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M&R+C: Mask and Rotate, accounting for Correlation, defined in Section 4.3.4

NMF: Non-negative Matrix Factorization, defined in Section 2.2.3

NLVS: Non-Linear Vector Summation, defined in Section 5.2.2

OPS: Overall Perceptual Score, defined in Section 2.3.4

PC: Principal Component, defined in Section 2.2.1

PCA: Principal Component Analysis, defined in Section 2.2.1

PCss: Principal Component subspace, defined in Section 6.2

PEASS: Perceptual Evaluation of Audio Source Separation, defined in Section 2.3.4

PFD: Percussive Feature Detection, defined in Section 3.3

PSC: Principal Spectral Content, defined in Section 4.2.2

Q1: How can the Fourier Transform be improved for considering the relationship
that underlies bivariate signals? (defined in Section 1.3)

Q2: How can the Short-Term Fourier Transform be improved for considering the
relationship between neighbour frames? (defined in Section 1.3)

SEAD: Signal Energy Angular Distribution, defined in Section 5.1

SiSEC: Signal Separation Evaluation Campaign, defined in Section 2.3.4

SMC: Sound and Music Computing, defined in Section 2.3

SOC: Superior Olivary Complex, defined in Section 2.4.1

STFT : Short-Term Fourier Transform, defined in Section 2.1.1

STSF: Spectre-Temporal Structure Field, defined in Section 5.1

TPS: Target Perceptual Score, defined in Section 2.3.4

V1: Primary Visual Cortex, defined in Section 2.4.1
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Song Taget ADRess +PFD +ARF BSM +STSF ADRess +PFD +ARF BSM +STSF ADRess +PFD +ARF BSM +STSF ADRess +PFD +ARF BSM +STSF
01_Pop_Rock Brushes 8,32 9,04 8,65 8,44 9,89 14,78 15,64 1,82 14,28 8,78 51,88 50,99 51,99 50,36 60,00 2,15 1,19 5,13 2,06 2,53
02_Pop_Rock_nofx Bass 7,62 11,51 11,72 7,65 7,25 10,13 6,67 3,22 10,61 8,50 48,30 64,46 41,34 48,33 43,26 7,20 5,21 6,07 7,20 11,31
03_Pop_Rock Vocals 33,34 23,78 31,92 33,35 30,81 58,19 9,91 26,77 57,94 52,66 51,49 58,58 57,43 50,79 47,09 47,92 18,67 31,78 48,32 48,54
04_Pop_Rock_nofx Vocals 26,26 22,69 27,73 26,22 26,70 51,72 11,03 20,78 52,13 58,56 48,03 57,22 52,44 47,85 45,72 41,21 20,68 29,08 41,66 40,99
05_Hip_Hop Vocals 45,26 32,85 43,62 45,39 43,77 67,76 36,55 49,31 67,85 66,87 62,73 67,21 65,33 63,06 61,67 52,06 35,71 45,65 51,78 51,23
06_Hip_Hop Vocals 18,98 32,84 18,15 8,33 8,23 75,99 46,93 39,78 66,62 49,41 18,89 42,34 18,55 12,18 3,91 75,23 48,06 60,31 86,74 82,61
07_Indie_Rock Guitar 20,17 18,13 21,64 22,36 23,14 55,99 13,01 25,52 73,14 54,35 56,53 65,42 57,13 38,19 41,47 31,04 20,46 31,73 46,37 50,06
08_Indie_Rock Vocals 27,63 23,81 27,75 27,55 26,53 44,19 15,51 19,15 44,04 45,36 45,96 54,46 49,46 46,25 42,85 40,38 24,53 29,70 40,16 41,08
09_Metal Bass 5,51 6,62 6,92 5,17 5,09 34,19 18,34 5,34 35,05 25,63 45,99 58,10 43,56 45,45 37,85 3,33 7,75 16,30 3,91 13,87
10_Metal_nofx Guitars 44,70 34,05 44,37 31,06 40,38 68,24 34,98 57,60 44,61 27,28 67,35 72,69 67,08 49,55 55,09 46,23 37,34 49,70 7,36 17,03
11_Metal Vocals 30,81 23,40 33,82 15,78 18,23 76,50 13,36 16,44 77,50 51,12 34,20 48,86 42,78 12,32 12,39 43,85 25,33 17,05 77,87 69,42
12_Metal_nofx Vocals 18,07 21,50 22,74 18,27 18,78 43,71 4,50 6,87 43,46 46,90 54,73 68,18 57,24 54,55 54,46 16,07 5,79 14,26 15,11 13,20
13_Bossanova Vocals 43,04 32,11 43,60 45,35 42,88 75,20 38,89 57,93 69,91 61,83 57,92 70,64 58,48 61,84 57,75 45,42 37,49 51,84 50,95 56,81
14_Bossanova Vocals 42,98 28,54 42,42 42,05 41,17 73,60 29,46 56,05 73,21 61,42 64,77 76,92 62,64 66,24 65,03 39,73 28,80 49,69 37,68 47,99
15_Reggae Vocals 37,85 29,75 41,43 37,83 38,74 81,96 47,84 59,22 82,04 69,69 46,41 57,96 53,41 46,35 48,37 45,87 36,58 54,65 45,89 55,72
16_Reggae Vocals 1,88 1,72 2,00 1,89 2,01 93,34 95,33 92,37 93,25 92,40 16,06 46,16 14,47 15,79 13,78 19,77 1,77 26,47 20,49 27,03

Song Target ADRess +PFD +ARF BSM +STSF ADRess +PFD +ARF BSM +STSF ADRess +PFD +ARF BSM +STSF ADRess +PFD +ARF BSM +STSF
01_Pop_Rock Brushes ● ○ ● ○ ● ○ ● ○
02_Pop_Rock_nofx Bass ○ ● ● ○ ○ ● ● ● ○
03_Pop_Rock Vocals ○ ● ● ○ ● ○ ● ○
04_Pop_Rock_nofx Vocals ● ○ ● ○ ● ○ ● ○
05_Hip_Hop Vocals ● ○ ● ○ ○ ● ● ○
06_Hip_Hop Vocals ● ○ ● ○ ● ○ ● ○
07_Indie_Rock Guitar ● ○ ● ○ ● ○ ● ○
08_Indie_Rock Vocals ● ○ ● ○ ○ ● ● ○
09_Metal Bass ● ○ ● ○ ● ○ ○ ●
10_Metal_nofx Guitars ● ○ ● ○ ● ○ ● ○
11_Metal Vocals ● ○ ● ○ ● ○ ● ○
12_Metal_nofx Vocals ○ ● ● ○ ● ○ ● ○
13_Bossanova Vocals ○ ● ● ○ ○ ● ● ○
14_Bossanova Vocals ● ○ ● ○ ○ ● ● ○
15_Reggae Vocals ● ○ ● ○ ● ○ ● ○
16_Reggae Vocals ● ○ ● ○ ● ○ ● ○

Input OPS TPS IPS APS

OPS TPS IPS APSInput

Table B.1: Table of raw PEASS results of experimental data described in Chapter 6. The bottom part marks with
a black dot the maximum between BMS and ADRess, while black circles marks the maximum between ARF, PFD
and STSF.
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PSC STSF BS PCss PSC STSF BS PCss PSC STSF BS PCss PSC STSF BS PCss

M 18-25 No Frequently 2 3 4 4 2 2 3 3 4 2 3 4 5 5 5 6 PCss PSC

M 26-35 No Sometimes 4 4 5 5 5 5 4 4 5 5 4 5 3 5 4 5 PCss PSC

F 26-35 No Sometimes 4 4 5 7 3 4 3 5 4 4 4 4 3 3 4 7 PCss PSC

M 26-35 No Sometimes 4 4 4 4 3 3 2 4 4 3 4 3 3 3 3 4 PCss PSC

M 26-35 No Sometimes 4 4 4 3 1 1 1 1 4 6 2 2 10 10 3 10 PSC BS

F 26-35 No Never 3 3 4 4 3 2 5 3 4 2 3 4 1 1 3 4 BS BS

M 36-55 No Never 3 3 4 5 3 4 3 3 4 3 4 3 10 2 10 10 STSF PSC

M 26-35 No Sometimes 3 2 3 3 2 4 3 4 2 3 1 2 2 4 3 10 STSF PCss

M >55 No Frequently 5 5 6 5 4 4 5 4 4 3 3 3 3 4 5 5 BS BS

F 36-55 No Sometimes 3 4 5 6 3 3 4 4 3 3 4 4 3 3 3 5 PCss STSF

DislikeGender Age
Use 

sonograms

Synthesized Beatles Coltrane WinehouseColor 

blind
Like

Table B.2: Table of raw results from the visualization validation described in Chapter 6.
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