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Abstract 
 

The past decade has witnessed an exponential growth in the use of digital supports for big data 

archiving. However, the expected lifespan of these supports is inadequate with respect to the actual 

needs of heritage institutions. Stemming from the issues raised by UNESCO [1, 2], we address the 

problem of alleviating the effects of aging on optical discs. To achieve this purpose, we propose a 

novel logical approach that is able to conteract the physical and chemical degradation of different 

types of optical discs, increasing their life expectancy. 

In other words, the objectives of this thesis are the design and the implementation of a new 

intelligent strategy aimed at increasing the life expectancy of optical discs. An experimental setup 

has been developed in order to investigate the physical and chemical degradation processes of discs, 

by means of accelerated aging tests that simulated the operational disc-use conditions. Critical 

areas are identified where disc degradation is statistically faster than average, while in safe areas 

the degradation is relatively slow. To collect the needed data, two experimental devices have been 

built. The first is a climatic chamber, which is able to induce artificial disc aging. The second is a 

robotic device, which is able to detect the amount of errors in each data block prior to the “Reed 

Solomon” error correction stage (before and after the accelerate aging stage, without dust and in an 

environment with controlled temperature and humidity). The analysis of the data allows to identify 

the aforementioned physical areas where data blocks have a number of errors that approaches or 

exceeds the data correction capability of the standard Reed Solomon code.  

The results of these analyses have led to develop an “Adaptive Reed Solomon Code” (A-RS code) 

that allows to protect the information stored within the critical areas. The A-RS code uses a 

redistribution algorithm that is applied to parity symbols. It is calculated from the fitting of the 

experimental errors obtained through the “degradation function”. The redistribution algorithm shifts 

a certain number of parity symbols from Data Blocks in safe areas to Data Blocks in critical areas. 

Interestingly, these processes do not diminish the memory capability of Digital Versatile discs 

(DVDs) and of Blu-Ray discs (BDs). This strategy therefore avoids the early dismission of optical 

discs, due to possible losses of even minimal parts of the recorded information. 
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CHAPTER 1 

 

1 Introduction 

Three generations of optical discs appeared in the market in the last 30 years. The reduction of the 

laser wavelength λ from Compact Discs (CDs) with λ= 780nm to Blu-Ray discs (BD) with λ= 

405nm) and the increase of the numerical aperture (Na) of the lens (from CDs with Na = 0.45 to 

Blu-Ray discs with Na = 0.85) allowed the reduction of the laser spot dimension and, as a 

consequence, the enhancement of the information density. Fig.1.1 shows the dimension of the laser 

spot in the case of CDs, Digital Versatile Discs (DVDs) and BDs. The technological progress could 

be further improved (i.e. the latest storage system “Optical Disc Archive” developed by Sony which 

is based on high capacity BD (300 Gbytes) and can register on a single cartridge (Generation-2) up 

to 3.3 Tbyte). 

 

CD BDDVD

780nm Red Laser

Na=0.45

650nm Red Laser

Na=0.6

450nm Blue Laser

Na=0.8

One 1.2mm

Polycarbonate layer

Two 0.6mm

Polycarbonate layers

One 1.1mm

Polycarbonate layer

Track pictch=1.6u Track pictch=0.74u Track pictch=0.30u

CD BDDVD

780nm Red Laser

Na=0.45

650nm Red Laser

Na=0.6

450nm Blue Laser

Na=0.8

One 1.2mm

Polycarbonate layer

Two 0.6mm

Polycarbonate layers

One 1.1mm

Polycarbonate layer

Track pictch=1.6u Track pictch=0.74u Track pictch=0.30u  

Fig.1.1 - Laser spot dimensions and track pitched for CDs, DVDs and BDs. 

 

1.1 Optical Writing and Reading Systems 

During the burning process the data bits are imprinted, with a high power laser beam, onto the 

optical disc in the form of marks of various lengths. These marks create a minimum reflectivity  

zone, called pit, that is different from the maximum reflectivity zone, called land. During the 

reading process the disc surface is scanned by a low power laser beam, and the reflected light is 

measured by a photodetector.  The reading system recognizes the signal patterns formed by pits and 

lands and recovers the original information. 

The write/read process of an optical disc can be considered as a transmitter/receiver system of a 

digital communication system [3] whose transmitter channel, with a time delay, is the disc.  
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Fig.1.2 illustrates the block diagram of this kind of system. 

 

 

Fig.1.2 - Write/ Read system of an optical disc. 

 

The system consists of three parts: the write channel (transmitter), the read channel (receiver) and  

the recording channel (the disc itself). The write channel converts the input binary data into a 

suitable form for writing onto the storage medium. The read channel recovers the original data by 

processing the output of the optical head in accordance with the appropriate algorithms. 

In what follows a brief description of the write and read channels is given. 

The error correction  encoder (ECC) adds extra parity symbols to the data stream. These parity  

symbols are devoted to enable the ECC decoder to detect and correct errors in the data. There are 

many different types of ECC codes, [4, 5] among which the Reed-Solomon codes [6] are widely 

used.  Reed-Solomon codes are a subset of Bose Chaudhuri-Hochquenghem (BCH) codes and are 

linear block codes. They are powerful error-correcting codes whose symbols are chosen from a 

finite field, [7] GF(pm) where p is prime (usually p=2) and m is an integer. A Reed-Solomon code is 

specified as RS(n,k). The encoder takes k data symbols of m bits each and adds parity symbols to 

make a code-word with at most n symbols where n=2m-1. Therefore, in a code-word there are n-k 

parity symbols of m bits each. A RS decoder can correct up to t symbols that contain errors in a 

code-word, where t = (n-k)/2. 

Constrained codes [8] are used to improve the detector performance and to help in the operation of 

control loops at the receiver. A constrained code is characterized by the so called (d,k)-runlength-

limited (RLL) constraint, where d,k are integers. The encoder imposes two conditions at the finite 

length binary sequence: 

1. the binary sequences of 0’s have a maximum length k 

2. the binary sequences of 0’s between successive 1’s have a minimum length  d.  

In a binary transition-sequence the d-constraint reduces the effect of inter-symbol interference and 

the k-constraint is devoted to synchronize the time control. 
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The write circuit converts the constrained coded data into a write-current waveform on the storage 

medium by laser. 

The read circuit collects the reflected light from the photo detector and converts it to a suitable 

signal. 

Both constrained and ECC decoders operate on the output of the detector to provide an estimate of 

the original input to the recording system. 

 

1.2 Optical Disc Reliability 

The memory life-expectancy of a disc defines its reliability. In fact, the ISO/IEC 18927 states that 

the end-life of an optical disc is reached when the number of errors, in a single data block, exceeds 

the maximum number of errors correcting capability of the ECC.  Many manufacturers advertise the 

“long-life” of their products, whereas life-expectancy between 1 and 10 years are estimated by 

several studies [9, 10, 11]. 

The optical disc is a removable storage (mainly made with polycarbonate),  without electronic, 

electrical, and mechanical components. Optical discs are water resistant and insensitive with respect 

to magnetic fields. As a consequence, the disc deterioration is mainly due to physical and chemical 

degradation of the materials. 

By testing on some CD-Rs and DVD-Rs recorded more than ten years ago I have found that the disc 

deterioration increases while moving towards the outer areas of the disc. Fig. 1.3 shows an error test 

of a CD-R more than10 years old. 

 

 

Fig.1.3 - Error test of a 10 years old CD-R. Block Error Rate (BLER) is the ratio of erroneous blocks to total 

blocks measured at the input of the RS decoder. Limit is the maximum number of errors correction capability. 

 

This phenomenon suggests that system of errors correction within the burning devices  (which   
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uniformly distributes the parity symbols) is not efficient. Actually, the RS decoder uses only a small 

portion of the parity symbols to correct the data written in the slightly degraded areas of the disc. 

However, in general, the RS decoder has not enough parity symbols to correct the errors in the most 

degraded areas. 

 

1.3 Advantages of Adaptive RS codes (A-RS) 

We suggest to use an Adaptive Reed Solomon (A-RS) code [12, 13] which, if implemented in the 

usual burning devices, could provide three new functionalities: 

1 Add extra parity symbols, in Adaptive mode (A-RS), according to a suitable degradation 

function. 

2 Allow the customer to define the reliability of the disc in Tunable mode (T-RS). 

3 A combination of 1 and 2. 

Difference between a uniform RS code and an Adaptive-RS code is illustrated in Fig.1.4. 

 

Fig.1.4 – Differences between an uniform RS code and an Adaptive RS code. From the top: errors in the 

disc immediately after burning, errors in the disc with uniform RS code after accelerate aging, errors in 

the disc with Adaptive RS code after accelerate aging. 
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A different parity symbols distribution will allow the reduction of the effects of the physical 

chemical degradation of the materials on the information data and prevent the early end-life of the 

disc. 

 

1.3.1 A-RS code for Blu-Ray Discs 

In order to develop an A-RS code suitable for optical device system, the best solution is to keep the 

code-word length  n fixed and to change the number of parity symbols n-k. Obviously, if we 

increase the number of code-word parity symbols we will have less information symbols k for each 

code-word. 

The RS code in the BD [14] is RS(248,216) where each code-word of n=248 bytes length contains 

k=216 bytes information data and n-k = 32 bytes parity symbols. The maximum number of symbols 

(or bytes) the RS decoder can correct in each code-word is t=(n-k)/2 =16 bytes so 2t=n-k. 

The Block Correction (BC) defines the percentage of amendable symbols over the total number of 

symbols in each code-word. For the Blu-Ray discs BC=t/n=16/248=6,45%. 

As it will be shown, by adopting some changes to the data encoding system the Blu-Ray burning 

device and substituting the uniform RS code with an A-RS code, it is possible to continuously  

increase the BC value from 6,45% up to 25%. Fig.1.5 illustrates a Blu-Ray write/read system with 

A-RS code. 

 

Fig.1.5 - Write/read system of Blu-Ray discs with Tunable/Adaptive RS code. 
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Fig. 1.6 shows the amount of data information compared to the different parity symbols within the 

A-RS (in tunable mode) in a Blu-Ray disc. 

 

 

Fig.1.6 - Amount of data compared to the different parity symbols with a T/A-RS in a Blu-Ray disc. 

 

With an A-RS the amount of information of the discs does not change because the parity is 

redistributed between Data Blocks according to a “degradation function”.  

 

1.4 Experimental Part: Overview 

To collect the information necessary to define the degradation function to be used for the adaptive 

distribution of the A-RS parity symbols, several discs have been submitted to an accelerated aging 

test. The amount of degradation on each disc was evaluated as the difference between the number of 

errors present before and after the artificial aging. 

Using the equipments provided by electronic laboratory of the Department Industrial Chemistry 

“Toso Montanari” (University of Bologna) and “mechanical laboratory” of the Department of 

Industrial Engineering (University of Bologna) the candidate has designed and built two devices: 

 

1. Climatic Chamber 

2. Optical Discs Automatic Testing Machine 
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1.5 State of the Art 

 

1.5.1 Backup and Archiving 

There is often confusion between a data archive and a backup [15]. Essentially, a backup is 

designed as a short-term insurance policy to facilitate disaster recovery, while an archive is 

designed to provide ongoing rapid access to decades of business information. 

A backup application takes periodic images of active data in order to provide a method for 

recovering records that have been deleted, corrupted, or destroyed. Most backups are retained only 

for a few days or weeks as later backup images supersede previous versions. 

Archived records, instead, are placed outside the backup cycle for long periods of time. An 

effective data archiving strategy is a necessary part of every IT organization. 

 

1.5.2 Data Storage Technologies for Archiving 

To date, the most commonly employed means of data storage are magnetic disks, optical discs, 

magnetic tapes, and solid state disks. Digital information does not have the same life expectancy of 

physical media (as for example books and other written documents). This remark applies to all the 

aforementioned digital types of storage, and therefore it is important to set early intervention 

measures to ensure long-term preservation of the data. 

According to the guidelines submitted by the UNESCO/PERSIST Content Task Force in 2016  

[1, 2], it is fundamental for heritage institutions to adapt their existing approaches to digital 

environments, meaning that the quantity of digital data will constantly increase over time. However, 

since digital data storages can be compromised a periodic media refresh is required - by reading the 

digital data, checking for errors, and rewriting on new media. Due to this, the knowledge of the 

mean life expectancies of different types of data storages is fundamental, and the topic has been 

deeply investigated. For example, data stored on magnetic tapes may still be accessible after 10 to 

30 years, [16] yet it is known that this type of support has many limitations [17]. For magnetic hard 

disks the estimated life expectancy is within 5-7 years [18, 19]. For Solid State disks the life 

expectancy is even lower, of about 4 years [20, 21]. Instead, the life span of optical discs is 

estimated not to be longer than 10 years [9, 10, 11]. 

Still, it is important to remember that different types of supports belonging to the same group may 

display different and reduced life spans, due to manufacturing technologies, to different external 

environment, to different quality and nature of the materials,. Therefore, it is difficult to foresee 

whenever a storage media will break and lose data. To overcome this problem it should be 



 
 

8 

necessary to perform extensive statistical analyses on large numbers of specimens, [22, 23] with a 

significant investment in terms of time and economical resources. 

 

1.5.3 Latest Development and Applications of Optical Discs 

Despite what may appear, technologies related to optical supports are far from obsolete. To date, 

notable efforts are still focused in this field. For example, Sony in collaboration with Panasonic has 

recently presented new Optical Disc Archives based on high capacity Blu-Ray discs: Generation 1 

(dated 2014) has cartridges with a storage capacity of 1.5 TB,  Generation 2 (dated 2016) has 

cartridges with a storage capacity of 3.3 TB, and Generation 3 (still in development) should have 

cartridges with a storage capacity of 5.5 TB [24]. 

However, it is important to remember that as data volumes rise, so do storage costs. Therefore, it 

would be essential to implement storage systems that distinguish between “hot” (frequently 

accessed), “warm” (occasionally accessed), and “cold” (infrequently accessed) data, selecting the 

best type of storage media solution for each category (see Fig.1.7)  

Hot storages demand high performances, and are therefore best implemented with high-cost 

memories, as for example flash memories or SSDs. For what concerns warm data and cold data, the 

performances are less important. What is fundamental to achieve are a long-term reliability, the 

ability to maintain large quantities of data at relatively low costs, and the ability to maintain data 

integrity with limited environmental controls. Sony is convinced that optical discs storages could 

provide all of these requirements, and are therefore the ideal type of support for warm storages and 

cold storages. [24]  

 

 

Fig. 1.7 - Hierarchy in Storage Systems 
 

Optical discs are the most widely used medium for cold storages. Since there is backwards 

compatibility between new-generation disc systems and older, “conventional” optical discs, the 

need for data migration is essentially eliminated when considering optical discs. Moreover, discs 

are usually quite durable, water-resistant, and allow for random access. 
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Magnetic tapes are another widely used medium for cold storages. Magnetic tapes offers relatively 

high recording densities, and relatively low cost per unit of capacity. However, random access is not 

suitable, and magnetic tapes are also susceptible to damage when exposed to high humidity, water, 

or electromagnetic waves. 

 

As one can see, optical discs and magnetic tape use entirely different technologies. While each has 

its own benefits, optical discs offer clear advantages when it comes to long-term cold storages. 

The aforementioned Sony’s Archival Discs are one of the newest implementation of Blu-Ray 

technologies, in terms of performances and reliability. A notable application of these supports is 

Everspan, the first producer of Optical Archives [24]. The total capacity of a single Everspan 

robotic system can reach 181 Petabytes, and up to four systems can be linked to offer 724 Petabytes 

of total addressable storage. 

Facebook, for example, has noticed that only about the 8% of its records is continuously used, while 

the remainder is seldom, if ever, used. In 2014 -2016 these could records were moved to an 

Everspan system consisting of 10.000 BDs that can store 1 Petabyte of data. In this way Facebook 

has halved the cost and has improved the energy usage by the 80%, compared to the previous 

system that was based on magnetic supports [25]. 

 

1.5.4 RS codes: Current Applications 

All data storage technologies and most digital communication systems use Forward Error 

Correction (FEC) systems. These protocols allow to protect data before their storage on physical 

devices, or before their transmission. Usually, FEC systems add redundancy to the information, that 

can be later used by the decoding systems to detect and correct errors that were generated during the 

writing and the reading tasks, or those due to the noise caused by the transmissive media. In 

particular, most FEC systems are based on Reed-Solomon codes.  

Reed-Solomon codes are a group of error-correcting codes that were introduced by Irving S. Reed 

and Gustave Solomon in 1960.[CIT] In coding theory, the Reed-Solomon code belongs to the class 

of non-binary cyclic error-correcting codes. The Reed–Solomon code is based on univariate 

polynomials over Galois fields. They have many applications, the most prominent of which include 

consumer technologies such as CDs, DVDs, Blu-ray Discs, QR Codes, data transmission 

technologies such as DSL and WiMAX, broadcast systems such as DVB and ATSC, and other 

storage systems. More in detail, they can be employed in: 

 storage devices (compact disk, DVD, Blu-Ray, barcodes,etc….) [26, 27], 
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 wireless and mobile communications (including cellular telephones, microwave links, etc…)  

[28, 29],  

 digital satellite communications [30],   

 digital television, digital video broadcasting (DVB) [31],   

 high speed modem such as ADSL [32], 

 power line communications (PLC) [33], 

 digital vestigial sideband (VSB) system [34],  

 cable modem [35].  

 

1.5.5 A-RS codes: Current Applications 

RS codes have been used as bases for the coding of Adaptive Reed-Solomon codes (A-RS codes). 

A-RS codes are useful as they can provide variable redundancy to the information [12]. These 

codes are versatile, due to the fact that different code rates and hence variable correcting 

capabilities can be applied. In a conventional Forward Error Correction FEC [36] technique, where 

the error-correcting capability is fixed, the design principle is to obtain the desired average 

performance under the worst-case channel environments. However, in many applications the 

channel remains in its worst state during only a small fraction of time. So, it results in low 

efficiency, and can not meet the varying requirements. On the contrary, a A-RS code can provide a 

flexible trade-off between transmission efficiency and power consumption [37]. 

 

A-RS codes can be used for a wide set of systems. The redundancy increase/decrese is dynamically 

fixed between the transmitter and the receiver, depending on the noise level of the transmissive 

channel. For example, they are employed in:  

 

 ATM communication systems [38], 

 WiMax Networks [39],   

 DVB and wireless technologies [40],   

 

By considering these applications, it is possible to notice that, to date, they all are refer 

communication systems. This is due to the fact in all cases the A-RS codes are designed to respond 

to the channel conditions. This observation suggests a possible way for implementing the same 

approach for physical supports as optical discs. At this purpose we need to predict a priori in which 

physical locations a higher degree of redundancy would be needed. 
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CHAPTER 2 

 

2. Equipment and Tools 

 

To experimentally evaluate the degradation in time of optical supports, two devices have been 

designed, engineered, and developed in both their hardware and software components. The 

motivation behind the choice of building our own machines has been to ensure that only the effects 

due to the aging of the disc materials are taken into account. Moreover, these customisations are 

significantly more efficient with respect to our scopes, and more affordable, than any available 

technology currently available, at least to the knowledge of the author. The candidate has built two 

devices: 

1. A climatic chamber, used to induce on the discs an accelerated aging process comparable to 

a natural aging process.  

2. An Automatic Testing Machine (ATM), developed to automatically perform the analyses on 

50 discs at a time, before and after having performed the accelerated aging process. 

Furthermore, the ATM ensured the integrity of the experimental protocol. Both aging and 

burning tasks have been performed in a controlled, dusts-free environment, and without any 

manual operator.  

Both  machines were based on two Open Source projects: 

 

1. Arduino Uno [41, 42] (Fig. 2.1): It is a microcontroller board based on 

the ATmega328P. Arduino has 14 digital input/output pins (of which 6 can be used as PWM 

outputs), 6 analog inputs, a 16 MHz quartz crystal, 32 Kbyte EEPROM and USB 

connection.  

Arduino  consists of both a physical programmable circuit board (often referred to as 

a microcontroller) and a piece of software, or IDE (Integrated Development Environment) 

used to write code and execute it on the physical board. The programming language is a 

simplified version of C++. 

 

2. Theremino [43] (Fig. 2.2):   It is a 16-bit Flash Microcontroller with USB connection. 

Unlike Arduino, through real time commands sent from a computer, it can write and read 

both analogue and digital signals. Thanks to the modularity of the system Theremino, HAL 

(Hardware Abstraction Layer), the slots (Inter process Communication), the UDP 
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(Communications via network and Internet) and the OSC Protocol (Open Sound Control), 

all components can communicate with each other, in a particularly efficient way.  

 

  

Fig. 2.1 - Arduino Uno R3 Board. Fig. 2.2 – Theremino Board. 

 

2.1 Climatic Chamber 

The climatic chamber [44] consists of a steel box with internal dimensions 505x300 mm.  Its weight 

is  2.24 kg, thickness 0.8 mm and capacity 26.5 l. The steel cover box has weight 1,12 kg, 

dimensions  530x325mm and thickness 0.7mm. A gasket cover hermetically closes the chamber. 

The chamber is equipped with a safety valve to prevent over-pressurisation. Finally, the steel box is 

placed inside a thermally insulated container which decreases the possible heat losses. There are 

many electronic circuits, transducers, sensors, and even hardware systems whose functions can be 

controlled and programmed by using Arduino board (see Fig. 2.3 and 2.4). 

 

 

Fig.2.3 - Picture of the Climatic Chamber. 
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Fig.2.4 - Block diagram of the Climatic Chamber. 

 

 The heating system is composed by an electrical resistor (900W), which is placed inside an 

aluminium plate (400x 250 x 20 mm) called heating cell. 

  A type-k thermocouple records the temperature of the plate. The electric resistor is powered 

by a dimmer, that allows to tune the voltage that is applied to the resistor itself, and 

therefore the emitted heat. The dimmer is controlled by a binary sequence of 8 bits, through 

the software of the Arduino board. The air temperature within the chamber is registered by 

an electronic sensor. 

 The humidity system is formed by a tank of distilled water, a water pump, and a nebulizer.  

The water pump transports the water from the container to the chamber through the 

nebulizer. 

 The dehumidity system is formed by a vacuum pump and a dehumidifier cell. 

The dehumidifier cell is composed of a vacuum filter with a Peltier cell [45], and a cooler.   

The vacuum pump takes the air from the chamber and transfers it through the vacuum filter. 

The Peltier cell generates a thermal jump that condensates the humidity (at dew 

temperature) [46]. The resulting air is quickly cooled and therefore humidity is dropped in 

the water tank in liquid form. At last, the dried air goes into the chamber.  

 

2.1.1 Relative Humidity Control System 

The dehumidifier cell, as well as the humidifier cell, operates in a ON/OFF modality (Fig. 2.5) [47]. 

The control is activated when the registered value rises over a set threshold (i.e. 85%), and acts by 
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interrupting the dehumidification process. The ON/OFF control operates with a maximum error 

equal to ±1%. 

  

 

Fig. 2.5 – ON/OFF Dehumidity Control System. 

 

2.1.2 Temperature Control System 

The software developed to control the temperature uses a system called PID (Proportional-Integral-

Derivative) [48, 49] see Fig.2.6. The error signal, E, is equal to the difference between the set 

reference value (the temperature that has to be reached) and the actual of the temperature. This 

signal is elaborated through three blocks, one proportional, one integral, and one derivative.  

 

 

Fig. 2.6 – PID System Control. 
In each block the error signal is evaluated under a different operator. 

 

In proportional regulators the output is linearly related to the input: 

( ) ( )pu t k e t  ,  

where kp is the proportionality constant equal to the transfer function of the regulator. 

In integrative regulators, the output is equal to the summation of a function over a given interval. In 

this case is the sum of error over time is equal: 

0

( ) ( )
t

iu t k e t dt       where ik  is the integral constant. 

In derivative regulators the output is given by the derivative of the error with respect to time: 
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( )

( ) d

de t
u t k

dt
     where kd is the derivative constant. 

Therefore, a PID regulator has all these three types of regulators, combined as follows: 

0

( )
( ) ( ) ( )

t

p i d

de t
u t k e t k e t dt k

dt
        

 

The proportional, integral, and derivative terms are summed in order to calculate the output of the 

PID controller.  

All three of these PID controller components create output based on measured error of the process 

being regulated. If a  control loop functions properly, any changes in error caused by set reference 

changes or process disturbances are quickly eliminated by the combination of the three terms P, I,  

and D (i.e kp, ki, and kd). 

 
2.1.3 Stress Conditions 

The control system that operates over humidity and temperature has been programmed by following 

the International Standard guidelines [23], by means of the Arduino_E software.  

The stress level that has been used for the accelerated aging tests of the discs is reported in the 

following Table 2.1: 

  

Test stress 
Tinc/RHinc 

Incubation duration (h) 
Minimum 

equilibration duration (h) 
80°C/85% RH 500 6 

Table 2.1- Stress conditions. 
 

The process that is described in the International Standard guidelines requires a transition from 

ambient conditions to stress condition, and back. The transition duration (ramp) and its operative 

conditions have been chosen in order to allow a sufficient equilibration of adsorbed moisture by the 

substrate. Large departures from equilibrium conditions may result in the build-up of condensation 

inside the substrate, or at the interface between the substrate and the information-recording layer. 

Gradients in the water concentration through the thickness of the substrate shall also be limited, 

because they can cause significant disc curvature. 

In order to minimize the effects of moisture-concentration gradients, the ramp profile outlined in 

Table 2.2 shall be used. The objectives of the profile are: 

 Avoidance of any situation that may cause moisture condensation within the substrate; 

 Minimization of the time during which substantial moisture gradients exist in the substrate; 
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 Production, at the end of the profile, of a disc that is sufficiently equilibrated to proceed 

directly to testing without delay. 

 

 
Table 2.2 – Stess conditions. Tamb and RHamb are room ambient temperature and relative humidity. Tinc 

and RHinc are the stress incubation temperature relative humidity.[23] 
 

The profile accomplishes this by varying the moisture content of the disc only at the stress 

incubation temperature, and allowing sufficient time for equilibration during ramp-down based on 

the diffusion coefficient of water in polycarbonate. 

Fig. 2.7 graphically portrays the temperature and humidity changes that would occur during one 

cycle of incubation. 

 

 

Fig. 2.7 - Graph of nominal  80°C / 85% RH transition.[23] 

 

The left ramp specifies the increase of the temperature and humidity values when the testing starts. 

The right ramp specifies the decrease of the temperature and humidity values when the testing ends. 
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When the testing starts, it is necessary to increase the humidity after that the temperature  reaches 

 80°C. When the testing ends, it is necessary to decrease  the humidity  before the  temperature 

 drops to external ambient temperature, to prevent condensation on the disc surface.  

 

2.2 Automatic Testing Machine (ATM) 

An automated testing machine (ATM) has been one of the cores of this work, because it allows to 

test several optical discs in a clean environment (to avoid the errors that could be triggered by the 

presence of dust [50]), with controlled temperature and relative humidity. This machine is necessary 

for burning and checking discs, and is also used to detect errors produced by chemical and physical 

degradation of the materials. In addition, the machine considerably reduces the time needed for the 

tests and it is able to keep track of each disc during the steps of the testing procedure. The 

temperature and humidity control allows one to perform the tests with identical environmental 

conditions, so that the laser works with the same light power on each disc [51]. In Fig.2.8 the block 

diagram of the system is illustrated while a picture of the testing system is presented in Fig.2.9 – 

2.10. 
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Fig.2.8 - Schematic representation of the Automatic Testing Machine. 
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Fig.2.9 - Picture of the Automatic Testing Machine. 

 

Fig.2.10 - Picture of the Automatic Testing Machine. 

 

The ATM consists of a sealed chamber made of plexiglass (1 x 0.5 x 0.5 m) which is equipped 

with: 

 4 test devices P4-P7 (each of which is wired to a computer slave PC4-PC7) 

 1 burning device P3 (wired to the master computer PC3) 

 2 chargers for P1-P2 discs (each of which can contain up to 50 discs) 

 1 robotic system (which automatically moves the discs inside the chamber) 

 1 cleaning system (which controls the presence of dusts) 



 
 

19 

 1 T/RH control system 

All the automatic systems of the ATM are controller by PC3 (master). PC3 communicates to the 

“Theremino” board (master) via USB, communicates to PC4-PC7 via LAN, and is connected to the 

burning device. PC4-PC7 are connected to the tester devices via USB. 

The Theremino board is linked to several other boards via bidirectional bus. In particular: 

a) Arduino E – controls the environment of the chamber 

b) Arduino X, Arduino Y, Arduino Z – each one controls the movements of the robot on a 

specific axis. 

 

2.2.1 System control by Aduino_E 

Arduino E runs a specific C++ software, which is aimed to control the presence of dusts, the 

humidity and the temperature. Moreover, there is a bidirectional bus which connects Arduino E to 

Theremino. 

 

2.2.1.1 Clean Chamber System 

The cleaning system that controls the air consists of two shutters. These shutters are electronically 

controlled by two step motors (Fig.2.11), that are placed in the upper part of the chamber. 

 

 

Fig. 2.11 – Picture of the clearing system. 

 

While performing the automatic cleaning task, air flows through the input shutter and is filtered by 

a pm10 filter. The air then flows out of the chamber through a powerful fan, which eliminates the 

dusts. The amount of dusts inside the chamber is monitored by an internal sensor. 
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2.2.1.2 Temperature Control System 

The system that controls the temperature is formed by a external heating cell, that introduces hot air 

in the chamber through a vacuum pump. 

 

  

Fig. 2.12 – Pictures of the heating cell, closed (left) and open (right). 

 

The heating cell (Fig.2.12) consists of an electrical resistor (800W), placed within two perforated 

aluminium plates. The air is heated inside this plates and then re-introduced into the chamber. 

A k-type thermocouple records the temperature of the plates, and another electronic sensor records 

the temperature inside the chamber. 

 

2.2.1.3 Humidity Control System  

The humidity control system is composed of an external dehumidification cell (Fig.2.13). This cell 

“extracts” air from the chamber through a vacuum pump, dries it and then re-introduces it in the 

chamber. 
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Fig. 2.13 - Picture of the dehumidification cell. Fig. 2.14 - Picture of the Peltier cell. 

 

The dehumidification cell is a tubular squared-sectioned cylinder (70 x 8 cm) which cooled by six 

Peltier cells (75W). The Peltier cells (Fig.2.14) are cooled by five powerful fans. A k-type 

thermocouple records the temperature of the Peltier cells, and another electronic sensor records the 

humidity inside the chamber. 

 

2.2.2 Robot System  

The robot system is shown in Fig.2.15. 

 

 

Fig. 2.15 – Picture of the Robot System. 
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Due to the complexity of the robotic system, we decided to perform a logical modelling of the 

apparatus, by means of a  Finite State Automaton (FSA) [52]. 

It is based on the description of the evolution of the system, and therefore is able to describe the 

following state of a system starting from the initial state. 

 

Definition. [Finite State Automaton] A Deterministic finite automaton (DFA) is a five-tuple: 

0( , , , , ),A Q q F     where: 

 Q  is a finite set of states  

   is a finite input alphabet 

 0q  is the initial / starting state, 0q Q  

 F  is a set of final/accepting states,  F Q  

   is a transition function, which is a map of Q Q  

 :Q Q      is defined for any q Q  and s  

 ( , ) 'q s q     is equal to some state 'q Q , could be 'q q  

 

Definition. [from   to strings] *: ( *)Q  , where *  is the alphabet of available strings. The 

transition function in this case is ( , )q w  where w  is a word. 

 

Definition. [Language] Let 0( , , , )A Q q F  be a DFA and let w  be in * . 

Then w  is accepted by A iff 0( , )q w p   for some state p in Q. 

Let 0( , , , )A Q q F  be a DFA. Then the language accept by A is the set: 

0( ) ( . . * ( , ) }L A w s t w q w F     

 

An automaton evolves as follows: when the automaton is in a qj state, then the wk event changes the 

state of the automaton, according to the function  . It is clear that, in order to trigger a change, the 

wk event has to be allowed by qj state – meaning that the (qj, wk) couple needs to belong to the   

dominium. 

An example of a simulation of the system that uses the Jflap platform [53] is shown in Fig.2.16. 

The robot is initially in the Start state, and upon receiving the vector sequences, moves to 

appropriate state. The active state is indicated in brown colour.   

In this example the robot  moves two discs from P1 position to P3 and P4 positions.  
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a) 000000  robot is in the initial position P0  (where X=0,Y=0, Z=0) – the disc tray is close –  

No disc; 

b) 000001  robot  moves to P1 position -  the disc tray  is closed –  sucker head takes the 

disc;  

c) 000011  robot moves to  P3 position –the disc tray  is opened –  sucker head  releases the 

disc; 

d) 000100  robot moves to P1 position -  the disc tray is closed  -  sucker head  takes the disc  

e) 000101  robot moves  to P4 position - the disc tray is opened - sucker head  releases the 

disc; 

f) 001000  Moves sucker head to  initial position – the disc tray is closed  – No disc;  

 

The commands are binary sequences (w) which are sent from Theremino via bus to Arduino boards 

(see Fig.2.17). 
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Fig. 2.16 - An example of a simulation of the robot system. 
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Fig. 2.17 – Theremino – Arduino Bus. 

 

In Fig.2.18 the bus that connects the Theremino board and the X,Y,Z Arduino boards is shown. 

 

Fig. 2.18 –  bus that connects the Theremino board and the X,Y,Z Arduino boards. 
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In Fig.2.19 the block diagram of the robot system is shown. 

 

 

Fig. 2.19 -  Block diagram of the robot system. 

 

A script file on the PC-master allows to program all the operations for the automatic tests. 

In Fig. 2.19 the summary table of the commands is reported. 

It is possible to control the execution of each single task. (i.e. the Robot shifting after the input of 

the command "move"), or to control several tasks through macro-instructions (i.e. MTEST, multi 

tests) which allow to automatically play a full cycle of tests on n disks. 
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Fig. 2.20 - Summary table of the robot commands. 
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CHAPTER 3 

3.Algebraic Preliminaries, Standard RS Code, and Adaptive RS Code 

After introducing some basics concepts of Algebra and Galois theory [18], we will describe the 

Reed Solomon code (RS), that is widely used  in applications such as digital data storage  and 

digital transmission. Afterwards, the core of this thesis, which is an adaptive version of the Reed 

Solomon code (A-RS) will be presented. 

 

3.1 Algebraic Preliminaries 

In this section some basic algebraic concepts will be introduced in order to clarify the role that 

Galois theory occupies in the RS and A-RS codes. Although the main concepts are defined, some 

technical details have been skipped on purpose. A detailed introduction to field theory, and Galois 

theory can be found in [54]. 

 

3.1.1 Groups, Rings, and Fields 
 
Definition [Group]: Let G be a non-empty set, and the operator · : G × G → G .  

A pair ( G , · ) is a group if 

1. G is closed under ·, i.e. for every a,b ∈ G, a·b ∈ G; 

2. it exists e ∈ G such that e·a = a·e = a, for every a ∈ G; 

3. for every a ∈ G it exists a-1 ∈ G, such that a·a-1 = 1. 

4. for every a,b,c∈ G  ( ) ( )a b c a b c      

Remark: A group ( G , · ) is said to be Abelian if · : G × G → G is commutative, i.e. a · b = b · a 

for every a, b ∈ G. 

 

Example:  the set of integer numbers Z is a group with respect to the sum, however it is not a group 

with respect to the multiplication. Let  z ∈  Z in fact this would require the existence of an element 

 z-1 ∈  Z such that z · z-1 = 1, this element is  
1

z
Z . 

 

Definition [Ring]: A ring is a set R equipped with two binary operations +,· : R × R → R, such that: 

1. (R, +) is an abelian group; 

2.  is associative and there exists an element 1R in R such that  1R· a = a · 1R = a for every a ∈ R; 

3. the distributive law holds, i.e. for every a,b,c ∈ R, we have: (a + b) · c = a · c + b · c. 
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Definition [Field]: Let F be a set, and +,· : F × F → F two operations defined on F. (F,+,·) is a 

field if the following conditions hold: 

1. ( F , + ) is an abelian group; 

2. ( F0 , · ) is an abelian group, where F0  = F \ {0}; 

3. for every a,b,c ∈ F, (a + b) · c = a · c + b · c. 

 

Example [Field]: The set of rational numbers Q is a field when equipped with the usual operations 

of sum and multiplication.  

 

Example [Polynomial ring]:  Let F be a field, the polynomial ring F[X] over F is the ring whose 

elements are of the form  

a0 X 0+a1 X 1+ ··· + am-1 X m-1+am X m, 

where X 0 = 1, X kX l=X k+l, and {a0 , …, am}⊆ F. 

 

3.1.2 Galois Fields 

A second key-concept for the introduction of the RS code is the one of Galois field. 

 

Definition [Galois field]: A field whose underlying set F is finite (it has finite cardinality) is a 

Galois field (or finite field) denoted by GF(pn), where p is the (prime) number of elements of F and 

n is a positive integer.  

 

We motivate the above definition by the following result: The order of a Galois field is always a 

prime number, or a power of a prime number [55]. Moreover, a unique Galois field is associated to 

each prime number.  

 

Remark: Uniqueness in the category of fields has to be intended up to isomorphisms. Let (F1’ +,· ), 

(F2’ ,✴ , Δ ) be two finite fields. If there exists a homomorphism φ: F1 → F2 , such that φ is 

bijective, φ is said to be a field isomorphism. 

 

Example: The simplest representation of finite field is given by set of integers modulo a certain 

prime number. Consider the set  R of residue classes of a prime number p. For example, for p= 2, 

R={0,1}. The set R equipped with the sum and multiplication modulo 2 is a field denoted by Z/2Z. 

In particular Z/2Z is isomorphic to GF(2). 
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3.1.3 Field Extension and Primitive Polynomial  

Galois theory and some powerful results in abstract algebra assure the effectiveness of the RS code. 

First, we present the concept of field extension, that allows to enlarge a field, in order to solve 

otherwise impossible expressions. Second, we will show how the polynomial ring introduced in 

Sec. 3.1.1 plays a fundamental role in the representation of the element of a finite field. 

 

Definition [Field extension]: Let L be a field. A subset K ⊊ L is a subfield of L if it is e field and it 

inherits its operations from the larger field L. In particular, L is said to be an extension of K, denoted 

by L / K. 

 

Example: As a trivial example, one can observe that the field C of complex number is an extension 

of the real number R. As a second, more interesting example, consider the field of rational numbers 

Q equipped with usual operations. In this setting, the polynomial p(x) = x2-2 has no root, since both 

 2 Q  . It is possible to extend the Q in order to include the roots of p(x) and keep the field as 

small as possible by considering the field extension ( 2) { 2, , }Q a b such that a b Q   . We 

denote this extension by ( 2) /Q Q . 

 

Definition [Primitive element]: Let L / K be a field extension. An element α ∈ L is primitive if L = 

K(α), and L / K is said to be a simple extension. 

 

Example: Trivially, 2  is a primitive element for the extension  ( 2) /Q Q . It is also possible to 

prove that ( 2, 3) /Q Q  is simple. It suffices to set 2 3    and show that it is possible to 

express both 2  and 3  as a linear combination of power of γ, with coefficient in Q. For instance 

we have  

3 9
2

2

 
 . 

 

Given a finite field extension L / K, if the primitive element exists, any element of L can be written 

as a polynomial of the form  

k0 +k1 α 1+ ··· + km-1 α m-1+km α m, 

where ki ∈ K for every i,  α ∈ L is fixed. 
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Considering a Galois field E = GF(pn), a field of order n over GF(p). E has q = pn elements, its 

nonzero elements are roots of the polynomial  X (q - 1) - 1, and all elements of E are roots of X q - X. 

From this simple observation, we can conclude that all the finite fields of q elements are 

isomorphic, in the usual sense for fields. 

 

Definition [Minimal polynomial]: Let L / K be a field extension, K[x] the ring of polynomial in x 

over K, and  α an element of L. The minimal polynomial of α is the  monic polynomial f(x) ≠ 0K[x] 

 of least degree in K[x], such that f(α) = 0 

 

It is important to observe that a minimal polynomial is irreducible. To proof this fact it is sufficient 

to assume by contradiction that f = gh, where g,h ∈ K[x], and observe that this assumptions 

contradicts the hypothesis of minimality on the degree of f. 

 

Definition [Primitive polynomial]: Let K(α) / K be a simple field extension. The primitive 

polynomial is the minimal polynomial associated to the element α. 

 

It is possible to reformulate this definition by using the concept of irreducibility. Consider the field 

GF(p) for p prime. An irreducible polynomial f(x) ∈ GF(p)[x] of degree m is primitive if the 

smallest n for which f(x) divides xn - 1 is n = pm - 1.  

Example: The polynomial x2 + x + 1 is primitive in GF(2).  Thus the degree m = 2 and p = 2. 

According to the statement above, it has to be that xn - 1 = x4 - 1 - 1 = x3 - 1  is the smallest degree 

polynomial of the form xn - 1 that divides  x2 + x + 1. This is easy to show by remembering that 

 

x3 - 1 = (x - 1)(x2 + x + 1), equivalently 

x3 + 1 = (x + 1)(x2 + x + 1) in GF(2)[x]. 

 

3.1.4 Polynomial Representation of Finite Fields 

Primitive polynomials are used to give a particularly effective representation of the elements of a 

finite field. This is done by observing that the root α of a m-th degree primitive polynomial has 

degree q = pm - 1. Thus, α0, …, αq = 1 form a multiplicative group of size q. It follows that the 

elements of the group GF(pm) can be written as a linear combinations of powers of α of degree less 

than m. 
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Example [Construction of GF(4)]: We already proved that x2 + x + 1 is primitive in the case of p = 

2 and m = 2. Let α be a root of x2 + x + 1. Since x2 + x + 1 divides x3 + 1 in GF(2)[x], we have α3 

= 1. Hence α0 = 1, α2= α + 1, α3 = 1, and GF(4) can be represented as {0, 1, α, α + 1}. 

 

Example [Field symbols for GF(16)]: With a primitive polynomial i.e. 4( ) 1F X X X    of 

degree m=4, we can generate a Galois Field GF(pm)= GF(24)= GF(16). Since we want to generate 

the GF(24), we need any fourth order F(X).  

Beside the elements {0,1} of GF(2) subfield of GF(2m) in order to develop our field, set the 

primitive element  ( )a X , often denoted as α,  equivalent to 1 20 0 1 0m mX X X X      .  

We set ( )a X X   to obtain the 4-tuple 3 2 1
3 2 1 0i X i X i X i    for each element i  of GF(16). 

Therefore 0    and  1o  . To develop the field elements i  we will use a modulo method [56, 

57]. We can performed directly from 3 2 1
3 2 1 0( ) mod ( ) ( ) mod ( )X F X i X i X i X i F X      where 

4( ) 1F X X X   . Thus we have (Table 3.1): 

 

0 0 0 mod ( ) 0F X    

1 1 1mod ( ) 1F X    

mod ( )X X F X X        

2 2 2 2mod ( )X X F X X     

3 3 3 3mod ( )X X F X X     

4 4 4 mod ( ) 1X X F X X      

5 5 5 2mod ( )X X F X X X      

6 6 6 3 2mod ( )X X F X X X      

7 7 7 3mod ( ) 1X X F X X X       
8 8 8 2mod ( ) 1X X F X X      

9 9 9 3mod ( )X X F X X X      

10 10 10 2mod ( ) 1X X F X X X       

11 11 11 3 2mod ( )X X F X X X X       

12 12 12 3 2mod ( ) 1X X F X X X X        

13 13 13 3 2mod ( ) 1X X F X X X       

14 14 14 3mod ( ) 1X X F X X      

Table 3.1 -  Definition of α elements. 
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Summary of the field representations is reported in Table 3.2. 

 

GF(16) 
elements 

Power 
represent. 

Polynomial 
representation 

Vector 
 represent. 

Decimal 
 represent. 

0 0 0 0000 0 
1 1 1 0001 1 
  X  X  0010 2 

2  2X  2X  0100 4 
3  3X  3X  1000 8 
4  4X  1X   0011 3 
5  5X  2X X  0110 6 
6  6X  3 2X X  1100 12 
7  7X  3 1X X   1011 11 
8  8X  2 1X   0101 5 
9  9X  3X X  1010 10 
10  10X  2 1X X   0111 7 
11  11X  3 2X X X   1110 14 
12  12X  3 2 1X X X    1111 15 
13  13X  3 2 1X X   1101 13 
14  14X  3 1X   1001 9 

Table 3.2 - Representations of the Equivalent Elements.  

 

In Table 3.2 there are some equivalent ways to represent a finite field symbol. Since we chose the 

special case of setting the primitive element ( )X  equivalent to X to generate the field, we will 

represent the field elements j  in terms of the j instead of the jX .  The power and vector 

representations are most popular. Multiplication by hand is easily performed using the power 

representation and addition using the vector representation and addition is performed using the 

vector representation.  

 

3.2 Reed Solomon Codes 

Reed Solomon codes [6] are non binary cyclic codes with code symbols from a Galois field, GF(pm)  

where p is prime, which in our case is equal to 2, and m is an integer. A Reed-Solomon code is 

specified as RS(n,k). The encoder takes k data symbols of m bits each and adds parity symbols to 

make a code-word with at most n symbols where n=2m-1. Therefore, in a code-word there are n-k 

parity symbols of m bits each. A RS decoder can correct up to t symbols that contain errors in a 

code-word, where t = (n-k)/2. 
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3.2.1 Reed Solomon Encoding 

Given a single value of the Galois field extension m, GF(pm), a set of RS codes with varying error 

correction capabilities, block lengths, and rate can be constructed. The pm unique code symbols are 

constructed from the field primitive polynomial F(X) and the primitive element ( )X . The parity 

symbols are obtained using the generator polynomial ( )g X  with roots from GF(pm). A RS(n,k) 

code is defined given values for m, n and ( )g X . 

However, when we get into implementation we need to also know p (which for us is always 2), 

F(X) (a primitive polynomial p(X), ( )X (for us it is X  ), and G (which is any primitive 

element of GF(pm) using F(X) and is almost always set to 1 ). 

The generator polynomial is a generic polynomial that is used to generate the encoding polynomial; 

for an RS code takes the following form: 

 

2 2 1 2
0 1 2 2 1( ) t t

tg X g g X g X g X X
       

 

Since the generator polynomial is of degree 2t, there must precisely 2t (where t=(n-k)/2) successive 

powers of  that are roots of the polynomial.  We designate the roots of ( )g X as: 2 2, , , t    

Consider as an example, the RS(15,9). We describe the generator polynomial in terms of its 2t=n-

k=6 roots, as follows: 

 

2 3 4 5 6
2

1
( ) ( ) ( )( )( )( )( )( )

t i

i
g x X X X X X X X      


          

6 10 5 14 4 4 3 6 2 9 6( )g X X X X X X X             

 

To  generate the encoding  in systematic form  we have to shift a message polynomial m(X) into the 

rightmost k stages of a codeword register and then appending a parity polynomial, p(X), by placing 

it in the leftmost n-k stages. Therefore, we multiply m(X) by Xn-k, thereby the message polynomial is 

positioned on the left part of the code-word, before of n-k. Next, we divide n kX   by the generator 

polynomial ( )g X , which is written as, where ( )q X is quotient and ( )p X  is remainder polynomial: 

 

( ) ( ) ( ) ( )n kX m X q X g X p X    

 

The remainder polynomial is the parity. 
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To generate a parity symbols p(X) we have to divide the message Xn-km(X) by modulo-g(X) 

At last the resulting codeword polynomial V(X) is: 

 

( ) ( ) ( )n kV X p X X m X   

 

3.2.2 Reed Solomon Decoding 

3.2.2.1 Syndrome Calculation 

The Syndrome [58] is the first step in the Reed Solomon decoding process. This is done to detect if 

there are any errors in the received sequence. Since the code-word is generated by multiplying the 

message by the generator polynomial, if the receiver code-word is error free then its modulus with 

respect to the generator polynomial should evaluate zero. 

The Syndrome can then be defined as S=R(X) mod g(X). The Syndrome is the remainder obtained 

by dividing the received sequence by g(X) and  R(X) = V(X)+E(X).  

Since V(X) is a multiple of g(X), S actually evaluates to S=E(X) mod g(X). 

 

Let: V(X) be the code-word without any error, R(X) be the received code-word and E(X) be any 

error that the transmission channel introduce.  Rewriting V(X), E(X), and R(X), in polynomial form 

we have the following, where , , , 0,1,2,..., 1i i iv e r i n   are elements of GF(2n): 

 

2 1
0 1 2 1( ) n

nV X v v x v x v x 
           (1) 

2 1
0 1 2 1( ) n

nE X e e x e x e x 
       (2) 

2 1
0 1 2 1( ) n

nR X r r x r x r x 
       (3)  

 

R(X) is related to the error polynomial E(X) and the code-word polynomial V(X) as follows: 

 

( ) ( ) ( )R X V X E X   

 

where the error pattern E(X) added by channel is expressed as: 

 

 ( ) ( ) ( )E X R X C X   

 



 
 

36 

3.2.2.2 Error Location 

E(X) can be described by a list of values and locations of its non-zero components. The error 

location [59] will be given in terms of an error-location number, which is j  for the ( )n j th 

symbol. 

 We called  p the couple (xj,ej) where xj indicates the error location number and ej indicates the error 

value.  Assume that E(X) is an error pattern of p errors at locations j1,j2,….,jp. Then: 

 

1 2

1 2
( ) .... p

p

jj j
j j jtE X e x e x e x       where p t    and  1 20 .... pj j j    .        (4) 

  

If V(X) codeword does not contain errors, the syndrome is equal zero. A nonzero syndrome 

indicates that an error has been detected.  For RS codes the Syndrome is defined as vector S with 2t 

components as follows:  

 
1

1 0 1 2 1( ) ... ( )i i i i n
nS r r r r r    
       for   i=1,2,3,   ,2t    (5) 

Since   ( ) ( ) ( )t t tR X V X E X  , we have  ( ) ( )i i
iS V E      (6) 

Since   ( ) 0iV   ,   we have ( )
l j

i i
i j jS E e x     (7) 

 

From equations (4) and  (7) we have: 

 
1 2

1 2

2( ) ( ) ( ) ... ( )p

p

jj jt i i i
i j j jS r e e e          for i=1,2,,…,2t   (8) 

By expanding equation (8): 

 
1 2

1 21 ( ) ... p

p

jj j
j j jS r e e e                 (9) 

1 2

1 2

2 2 2
2 ( ) ( ) ( ) ... ( )p

p

jj j p
j j jS r e e e         

                                                  
1 2

1 2

2 2 2 2
2 2( ) ( ) ( ) ... ( )p

p

jj jt t t t
t j j j pS r e e e         

 

Equation (9) is non linear equation. 

We define an error locator number as 
jl

p  . We obtain the 2t syndrome symbols by 

substituting i  into the received polynomial (9) for i=1,2,...2t:   
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1 21 1 2( ) ...
pj j j pS r e e e                                                                                                                   (10) 

1 2

2 2 2 2
2 1 2( ) ...

pj j j pS r e e e                             

                                                      

1 2

2 2 2 2
2 1 2( ) ...

p

t t t t
t j j j pS r e e e          

 

We have 2t unknown t error values and t locations, and 2t simultaneous non linear equations. To 

solve this equations we used a Reed Solomon decoding [60]. 

Once a nonzero syndrome vector has been computed, that signifies that an error has been received.  

We have need to learn the location of the error or errors. 

An error locator polynomial [61], ( )X , can be defined as follows: 

 

2
1 2 1 2( ) (1 )(1 )....(1 ) 1 .... p

p pX x x x x x x                   (11) 

 

The roots of ( )x  are 1 1 1
, ,....,

1 2 p  
 . The reciprocal of the roots  ( )x are the error location numbers 

of the error pattern ( )E X  .  Then, using autoregressive modeling techniques, we form a matrix 

from the syndromes, where the first t syndromes are used to predict the next Syndrome: 

 

1 2 3 1 1

2 3 4 1 21

1 1 2 3 2 2 2 12

1 2 2 2 2 1 21

t t tt

t t tt

t t t t t t

t t t t t t

S S S S S S

S S S S S S

S S S S S S

S S S S S S







 

 

    

   

    
         
     
         
         




       



                 (12) 

 

We apply the autoregressive model of previous equation by the largest dimensioned matrix that has 

a nonzero determinant.  

To solve for coefficients 1 2, , , t    and of the error locator polynomial ( )X , we first take the 

inverse of the matrix in previous equation. 

The inverse of a matrix is equal: 

 

   
 det

cofactor A
Inv A

A
                                           (13) 

 



 
 

38 

When we have found: 

2
1 2( ) 1 .... p

pX x x x                                                 (14) 

 

The error location number are the reciprocals of the roots of ( )X .  

The roots of ( )X  can be found simply by substituting  0 1 2 1, , ,... n      into ( )X .   

( ) 0X   indicates that one root exists at 1/ l
i   and then 1/ i i

l       where the   index 

“l” refer to the first, second,…pth error. 

We have p symbol errors, so that the error polynomial is the following form: 

 

1 2

1 2
( ) ..... p

p

jj j
j j jE X e X e X e X                                                                             (15) 

 

The location errors will be indicated with pj

p   i.e 2
1

ij      

 

3.2.2.3 Error Values 

An error had been denoted 
1j

e  where index  j refers to the location and the index p identifies the jth  

error. We will determinate the error value 
pje associate with locations p  [61]  

We write the equation (10) in matrix form: 

 

1

2

1 2 1
2 2 2

1 2 2

1 2
p

jp

jp

p p p
p pj

e S

e S

Se

  
  

  

    
    
        
    
        




    


                                (16) 

  

To solve for error values e1,e2,..ep we have to  invert the equation (16) 

   
 det

cofactor A
Inv A

A
  

Correcting the Received polynomial 

 We have the equation  

1 2

1 2

^

( ) ..... p

p

jj j
j j jE X e X e X e X                                                                             (17) 

^ ^ ^

( ) ( ) ( ) ( ) ( ) ( )U X R X E X U X E X E X                                                               (18) 
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3.3 Adaptive Reed Solomon Code A-RS(n,k) 

In an adaptive RS code [12] it is possible to increase or decrease the correction capability by 

increasing or decreasing the redundancy (that is the number of parity symbols in each code-word).  

By considering as example the standard RS(15,9) code (Fig 3.1), it has: 

 

n = 15          number of symbols of each code-word 

k = 9            number of symbols of message in each code-word 

n-k = 2t = p = 6  number of parity symbols in each code-word (redundancy) 

(n-k)/2 = t = 3   maximum number of symbols that can be corrected. 

 

Fig. 3.1 - Standard RS(15,9) code. 

 

To increase the correction capability t by one, the number of  parity symbols p=2t  must increase by  

two. At this point, in order to transform the standard code into an Adaptive Reed Solomon code (A-

RS code) there are two different strategies, to change the correction capability changed: 

1. The length of the message can be kept constant, and the number of parity bytes is increased 

or decreased. In this case the code-word length must change [62].  For example, to obtain an 

increase the correction capability by 1 symbol  (from t = 3 to t = 4) the length of one code-

word should rise from 15 to 17, as shown in Fig. 3.2. 

 

 

 

Fig.3.2 - The code-word displayed in the lower figure has a correction capability  

higher than that of the upper code-word, but is longer. 
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2. The length of the code-word is kept constant and the number of parity bytes is increased or 

decreased. In this case, the length of the message decreases or increases, respectively. For 

example, increase the correction capability by 1 symbol (from t = 3 to t = 4) the length of 

the message should decrease from 9 to 7, as shown in Fig. 3.3.  

 

 

 

Fig 3.3 - The code-word displayed in the lower figure has a correction capability  

higher than that of the upper code-word, but its message part is shorter. 

 

In this work, I used the second approach. That is to say, the length of the code-words is kept 

constant while changing the number of parity symbols. The proposed coding scheme may be 

interpreted as a form of spatial unequal error protection [63], applied statically, as the code rate 

profile obtained from the degradation function is not modified throughout the disc life.  

This choice is made to allow the implementation of the A-RS code into burning devices without the 

need of significant hardware modifications. In fact, most codification systems are subjected to some 

constraints in terms of length of the code-words, according to ISO standard regulations.[CIT] for 

CD, DVD and BD.  

 

As a simple example, we present in table 3.3 the A-RS(n,k) with n=15. The number of the messages 

symbols k can be 3,5,7,9,11 or 13 and  the number of parity symbols is then one of n-k = 

12,10,8,6,4  or  2. We thus have six different levels of A-RS coding reliability p=2t = 1,2,3,4,5 or 6 

with six different couples of (k,n-k)  = (3,12),(5,10),(7,8),(9,6),(11,4) or (13,2) see Table 3.3. 
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Number of parity symbols 
Number of message symbols 

n-k 2t=parity 
Number of correctable erroneous symbols 

k=3 15-3 12 6 
k=5 15-5 10 5 
k=7 15-7 8 4 
k=9 15-9 6 3 
k=11 15-11 4 2 
k=13 15-13 2 1 

Table 3.3 – A-RS code (15,k) – The standard code with k=9 is evidenced in red. 
 

To generate the Galois field elements for a A-RS(15,k) with   k = 3,5,..,13  a unique Galois Field is 

sufficient.  

The Galois Field is defined by GF(pm), where p is prime and m is integer. 

For our RS(n,k) with n=15 we need a GF(24) since n=24-1. Furthermore, “m” will be the number of 

bits for each A-RS symbol.  

The number of elements in Galois Field must be q= pm =24  (see Table 3.3).  

Galois Field  elements  are generated from the primitive polynomial p(x) of degree m=4 

p(x)=x4+x+1.  

Let   be a root of p(x). This implies that 4 1 0    , or equivalently, 4 1   .  

The field elements representation is in Table 3.2. 

 

3.3.1 Polynomial Generator 

A-RS(15,k)t code has six polynomial generator with t= 1,2,3,4,5,6: 

2

2
1

( ) ( )
t i

n t
i

g x X 


            

 

Therefore: 

2
13( ) ( )( )kg x X X             t=1    

2 3 4
11( ) ( )( )( )( )kg x X X X X               t=2 

                                                                      
2 3 12

3( ) ( )( )( )................( )kg x X X X X          t=6 

 

A-RS(15,k)t  code has six different symbols in a codeword for each different value of t= 1,2,3,4,5,6:   

1 2 1
2 0 1 2 1( ) ... n t

n t n tm X m m X m X  
        
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Therefore: 

with t=1 2 12
13 0 1 2 12( ) ....km X m m X m X m X        

                                                                   

with t=6 2
3 0 1 2( )km X m m X m X       

 

3.3.2 Adaptive Reed Solomon Encoding  

To generate the encoding in systematic form we have to shift a polynomial message m(X) into the 

rightmost k stages of a codeword register, and then append a parity polynomial, p(X), by placing it 

in the leftmost n-k stages. Therefore, we multiply m(X) by Xn-k, thereby the message polynomial is 

positioned on the left part of the code-word, before of n-k. 

To  generate a parity symbols we have to divided the message Xn-km(X)n-2t  by g(X)n-2t 

 

( 2 )
2 2 2( ) ( ) mod ( )n n t

n t n t n tp X X m X g X 
      and t=1,2,3,4,5,6  

 

Therefore: 

with t=1    2
13 13 13( ) ( ) mod ( )k k kp X X m X g X    

                                                                       

with t=6    12
3 3 3( ) ( ) mod ( )k k kp X X m X g X    

 

for each t=1,2,3,4,5,6 we have t different code-words: 

2( ) ( ) ( )n t
t t tC X p X X m X  ,     for  t=1,2,3,4,5,6  
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3.3.3Adaptive Reed Solomon Decoding 

The A-RS decoder is the same as the RS standard decoder except for the number of syndrome 

equations, which changes according to the value of t. 

The summary diagram of the encoding and decoding process of an A-RS code is shown in Fig. 3.4. 

 

 

Fig. 3.4 – Adaptive-Reed Solomon (15,k). 
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CHAPTER 4 

4. Our Contribution: a New Error Correction Approach for Optical Discs 

 

In the ensuing chapter we will introduce a new system, whose application will redistribute parity 

symbols through an “intelligent” criteria, based on the information obtained from the degradation 

function and the analysis of the experimental tests.  

As a starting point, we will analyse encoder systems and correction systems that are used for 

different supports – BDs, DVDs, and CD.  

The information coming from the host reaches the optical disc coding system in the form of a 

Frame constituted by 2048 bytes. After being formatted in a number of steps, several frames form a 

Data Block which is protected by a specific Reed Solomon code (RS), depending on the optical disc 

type. 

By analysing the standard correction system a new A-RS software will be defined, one for each 

type of optical disc. This A-RS software will simulate the behaviour of a hypothetical A-RS 

hardware that should be implemented onto the burning device. The A-RS software has to be defined 

so that its correction capability is comparable to that of the A-RS hardware. 

 

On one hand, an A-RS encoder (software) codifies the information data in code-words, before they 

are burned onto the disc. On the other hand, an A-RS decoder translates the code-words recorded on 

the disc into data, while correcting possible errors.  

In this chapter, the analysis of the previously obtained data from the degradation function will 

provide a parity file, that contains the parity symbols. These codes, along with information data, 

will be used by the A-RS code to generate new code-words. The new code-words will be contained 

into a binary file, then this file will be converted into an ISO image and so it will be possible to 

record it onto the discs. 

 

4.1 Blu-Ray discs (BDs) 

4.1.1 Data Encoding with Standard RS Code 

The BD [14] coding system is reached by information data coming from the host 32 Frames. To 

each of the 32 Frames, 4 bytes of Error-Detection Code (EDC) are added.  

The 32 Frames constitute the Long Distance Code Block (LDC Block) which adds extra protection 

codes to the data information. The LDC Block (see Table 4.1) is a two-dimensional array 

constituted by 304 columns, 248 bytes each, leading to a total of 75.392 bytes (65536 of which are 
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 information data).  In the LDC Block the information data are arranged in 304 column of 216 bytes 

(k). To each of the 216 bytes is applied an RS(248,216) which adds to each column 32 bytes of 

parity (p). This code can correct up to 16 errors or erasures symbols (t) in each code-word having a 

length of 248 bytes (n). 

 

 

Table 4.1 LDC Block structure.[14] 

 

The LDC RS code is defined over the finite field GF(28). The non-zero elements of the field GF(28) 

are generated by primitive element   that is a root of the primitive polynomial p(x): 

8 4 3 2( ) 1p x x x x x      

The symbols of GF(28) are represented by bytes, in polynomial-base representation, with   

( 7 6 5 2, , , , , ,1)     , as basis. The root is represented as: 00000010  . Each code-word can 

be represented by a polynomial of degree 247 where the highest degrees correspond to the 

information part of the vector and the lowest degrees correspond to the parity part of the vector  (RS 

in systematic form).    

Each polynomial  is a multiple of the generator polynomial g(x).  

31

0

( ) ( )i

i

g x x 


  . 
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4.1.2 A New Approach: Data Encoding with A-RS Code  

In order to carry out a simulation and to burn test discs by using the proposed new correction 

system, the data information are substituted by code-words (generated by an A-RS software code) 

before the burning task. For the RS code internal to the BD device (RS hardware) the “virtual” 

code-words (those generated by the A-RS code) are completely indistinguishable from “standard” 

information data.*  

Since the standard Data Block consists of 32 Frames, we have chosen to subdivide each Frame into 

256 blocks (B) constituted by 256 bytes each (see Fig. 4.1 ).  

 

 

Fig. 4.1 - The smallest unit of the A-RS code is constituted by 256 bytes-lock Block (B), whose first byte 

encodes the parity value, while the code-word is encoded in the rest of the block. 

 

In the first byte of each B block it is memorized the incremental parity value (pi) is stored, and it 

will be used by the A-RS software for the decoding task. In the other 255 bytes are stored the code-

words generated by the correction code software A-RS(255,k0) where k0 (default bytes number of 

information data) must have a value such that the RS hardware and A-RS software are equivalent, 

in terms of correction capacity. The parameter which allows for the comparison of the two codes is 

named Block Correction (BC)(%). (BC)(%) is defined as t/n, where t represents the number of bytes 

that each code-word can correct, and where n represents the length of the code-word expressed as 

number of bytes. Since the RS(248,216) has a BC=6.45%, the best value of k0 is 238.. In this case 

the ARS(255,238) has a BC=6.66%. 

 

The number of parity symbols assigned by the A-RS software to the code-words contained in each 

Data Block is calculated by an optimization algorithm which, starting from the errors in the 

degradation function of each Data Block, moves the parity bytes from the Data Blocks containing 

the smallest number of errors (adding further k bytes instead of them) to the Data Blocks having the 

highest number of errors (decreasing in this case the number of k bytes). 

Data Parity pi 

n-k bytes 

K 
bytes 

n =255 bytes 

1 byte 

Bi =1/32 Frames =256 bytes 
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The 8 B Blocks consisting of 256 bytes will form a single Frame of 2048 bytes and the 32 Frames 

will constitute a Data Block of 65536 bytes (see Fig. 4.2) .  

 

 

Fig. 4.2 – Data Blocks in a Blu-Ray disc. 

 

Therefore the total number of Data Blocks burned to the disc is equal to 379541. This will generate 

a file of 24.873.598.976 bytes (see Fig. 4.3 ). 

 

 

Fig. 4.3- Data Blocks in a Blu-Ray disc. 

 

4.1.2.1 How to Pack the Binary Data File 

An A-RS hardware allows for storage of 24.873.598.976 bytes of total data information on the disc 

(379541 Data Block x 65536 bytes) whereas, using an A-RS software, total number of the bytes of 

information data will decrease due to the substitution of some data with the code-words. 

The total number of data bytes recorded by the A-RS encoder can still be calculated by assuming 

that k=k0 for each code-word, even if k has in fact different values. The algorithm just substitutes 

data bytes with parity bytes (or vice-versa) in each code-word, and so the sum of all k still is equal 

to nk0. This is due to the fact that for each k=k0-2, there will always be a k=k0+2, and so on. The 

result is a total of information data equal to 21.472.911.616 bytes (221 bytes x 256 B x 379541 Data 

Block). The number of bytes containing the parity value have to subtracted to the total amount of 

information data. 

Eventually, the file of recordable data obtained through the new encoding will have  21.375.749.120 

bytes (21.472.911.616 – 97.162.496). Therefore starting from a file of random data of 
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21.375.749.120 bytes, the A-RS code will generate only code-words of 255 bytes, with k bytes of 

data which can have:  

 

 k equal to k0 in the case of default parity=34 bytes,  

 k smaller than k0 if it is necessary to increase the parity in the i-th Data Block, 

 k greater than k0 if it is necessary to decrease the parity in the j-th Data Block).  

Where i indicates any Data Block that needs a higher redundancy, while j indicates any Data 

Block that can afford a lower redundancy. 

 

In any case the sum of all the (kDBi + kDBj)/ DBn = 221, where DBn = total number of Data Blocks of 

the whole disc. 

The test binary file (Fig.4.4) that contains the code-words generated by the A-RS will be constituted 

by 24.873.598.976 bytes which after the conversion to ISO image (Fig.4.5), have been burned onto 

the BDs discs. 

 

4.1.2.2 How to Pack the Parity File 

The parity file generated by the degradation function for the BD contains exactly 379541 

incremental parity values pi. Each of these pi indicates how much the default parity p0 must be 

increased (or decreased) in a Data Block. Since p0 is the default parity of the A-RS code (p0 = n - k0 

= 34), the pi value (with i=1,2,…,379541) will be algebraically added to p0 and the result will be 

applied to the A-RS code in order to generate the code-words with the defined correction capacity. 

Each byte contained in the parity file is a relative even number since 2  parity bytes increase or 

decrease the code correction capacity of 1 byte. 

The values contained in the parity file are inferred from the degradation function which contains the 

prediction of the errors produced in each Data Block of the BD after the accelerated aging process. 

Since 304 errors in a LDC Block correspond to 1 error byte in each code-word, this value has been 

used as a threshold value in order to increase or decrease the parity symbols of the A-RS code. 

Thus, in order to correct 304 errors in a LDC Block, 2 parity bytes must be added to each  of the 

code-words of the LDC Block.  

These 2 parity bytes will be taken from Data Blocks that have a number of errors below 304. If 

there are not enough Data Blocks with less than 304 errors available, the parity will be taken from 

Data Blocks with a number of errors lower than 608, then lower than 912, and so on until reaching a 

threshold of 4256 (value that would leave just 2 bytes of residual capacity correction in each Data 

Block). 
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A small part of the binary file is shown as example in Fig 4.4. 

 

Fig. 4.4 – Part of the binary file of a Blu-Ray disc. 

 

A section of the ISO file [64] of a Blu-Ray disc is shown in Fig.4.5: 

 

 

Fig. 4.5 – Part of the ISO file of a Blu-Ray disc. 
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4.2 Digital Versatile Discs (DVDs): Data Encoding and Error Correction Code 

 

4.2.1 Data Encoding with Standard RS Code 

The DVD [65] coding system is reached by information data coming from the host 16 Data Frames 

(1 Data Frame=2048 bytes). 

To each of the 16 Frames, 4 bytes of the Identification Data (ID), 2 bytes of the Error Detection 

Code (IED), 4 bytes of the Copyrigth Management Information (CPR_MAI) and 4 bytes of the 

Error Detection Code (EDC) are added (Table 4.2). 

  

 

Table 4.2- DVD Data Frame.[65] 

 

The 16 Frames constitute the Error Correction Code Block (ECC Block) witch adds extra 

protection codes to the information data. The ECC Block (see Table 4.3) is a two dimensional array 

constituted by 208 rows, 182 bytes each, leading to a total 37.856 bytes (32.768 of which are 

information data). 



 
 

51 

 

Table 4.3 - ECC Block.[65] 

 

In the ECC Block the information data  are arranged in 192 rows of 172 bytes. 

To each of the 172 bytes, denoted as k, is applied an RS(182,172) which adds 10 bytes of Parity 

Inner (PI). 

This code can correct up to 5 errors or erasure symbols (denoted as t) in each code-word having a 

length of 182 bytes, denoted as n. 

An RS(208,192) adds, to each of 182 columns constituted  by 192 bytes,  further 16 bytes of Parity 

Outer (PO). This code can correct up to 8 errors or erasure symbols in each code-word having a 

length of 208 bytes. 

The PO and PI shall be obtained as follows: in each of columns j=0 to 171, the 16 PO bytes are 

defined by the remained polynomial to form the outer code RS(208,192). 

In each of rows i=0 to 207, the 10 PI bytes are defined by the remainder polynomial to form the 

inner code RS(182,172). 

 

4.2.2 A New Approach: Data Encoding with A-RS Code  

In order to carry out a simulation and burn test discs using the proposed new correction system, the 

information data are substituted by code-words (generated by an A-RS software code) before the 

burning task. For the RS code internal to the DVD device (RS hardware) the ‘virtual’ code-words 

(those generated by the A-RS code) will continue to be treated just as data. 
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We decided to simulate only the RS(182,172) since it is the first correction code system that applies  

to the data in the ECC code.  Since the standard ECC Block consists of 16 Frames, we have chosen 

to subdivide 32768 bytes of information data into 190 code-words of length 172 bytes (see Fig. 4.6). 

 

 

Fig. 4.6 - Data Blocks = 190 B Data (32.680)  + pi (88 bytes). 

 

In the first 88 bytes of each Data Block  is memorized the incremental parity value (pi) which will 

be used by the A-RS software during the decoding task. In the remaining part of the Data Block are 

stored the 190 code-words generated by the correction code software A-RS(172,k0) where k0 

(default bytes number of data information) must have a value such that the  RS hardware and A-RS 

software are equivalent in terms of correction capacity. The parameter that allows for the 

comparison of the two codes is named Block Correction (BC)(%) = t/n and, since the RS(182,172) 

has a BC=2.74%, the best value of k0 is 162 indeed. In this case, the A-RS(172,162) has a 

BC=2.90%. 

The number of parity symbols assigned by the A-RS software to the code-words contained in each 

Data Block is calculated by an optimization algorithm which, starting from the errors in the 

degradation function of each Data Block, substitutes the k parity bytes from the Data Blocks 

containing the smallest number of errors with k bytes in the Data Blocks having the highest number 

of errors. 

Therefore the total number of Data Blocks burned to disc is 140996. This will generate a file of 

4.620.156.928 bytes (see Fig. 4.7). 

 

 

Fig. 4.7 – Data Blocks of a DVD disc. 
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4.2.2.1 How to Pack the Binary Data File 

The A-RS hardware allows for the storage of 4.620.156.928  bytes of total data information on the 

disc (140996 Data Blocks x 32768 bytes) whereas, using the A-RS software, the number of bytes of 

the total information data will result decreased due to the substitution of data with the code-words. 

The total number of data bytes recorded by the ARS encoder can be calculated by considering in  all  

code-words k=k0 (as the algorithm just shifts the parity from a data block to another). The result is  

a total of information data equal to 4.339.856.880 bytes (30780 bytes x 140996  Data Block), to 

which the bytes containing the parity value must be subtracted.   

Definitely, the file of the recordable data obtained by the new encoding will have 4.339.732.112 

bytes (4339856880 -12.407.648).  Therefore, starting from a file of random data of 4.325.757.280 

bytes, the A-RS will generate only code-words of 172 bytes, with k bytes of data which can have:  

 

 k equal to k0 (162 bytes) in the case of default parity=10 bytes (p0),  

 k smaller than k0 if it is necessary to increase the parity in the i-th Data Block, 

 k greater than k0 if it is necessary to decrease the parity in the j-th Data Block).  

Where i indicates any Data Block that needs a higher redundancy, while j indicates any 

Data Block that can afford a lower redundacy. 

 

In any case (kDBi + kDBj)/ kDBn = 162, where kDBn = total number of Data Blocks of the whole disc. 

The test binary file that contains the code-words generated by the ARS will be constituted by 

4.620.156.928 bytes  which, after the conversion to ISO image, have been burned onto the DVDs 

discs. 

 

4.2.2.2 How to Pack the Parity File 

The parity file generated by the degradation function for the DVD contains 140996 incremental 

parity values pi. Each of these pi indicates how much p0 must be increased or decreased in a Data 

Block. Since p0 is the default parity of the A-RS code (p0 = n - k0 = 10), the ‘pi’ value (with 

i=1,2,…, 140996) will be algebraically added to p0 and the result will be applied to the A-RS code 

in order to generate the code-words with the defined correction capacity. 

Each byte contained in the parity file is a relative even number since 2  parity bytes increase or 

decrease the code correction capacity of 1 byte. The values contained in the parity file are calculated 

from the degradation function which contains the prediction of the errors produced in each ECC 

Block (PI) of the DVD after the accelerated aging process. Since 172 errors in a ECC Block 

correspond to 1 error byte in each PI code-word, this value has been used as a threshold in order to 
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increase or decrease the parity symbols of the A-RS code. This means that, in order to “delete” 172 

errors in a LDC Block, 2 parity bytes must be added to each of the code-words of the Data Block. 

These 2 parity bytes will be taken from Data Blocks that have a number of errors lower than 172. 

If the amount of Data Blocks having a number of errors less 172 is not sufficient to add parity to the 

Data Blocks containing higher numbers of errors, the same algorithm will be reiterated by taking 

the parity from Data Blocks having a number of errors lower than 344, than 516, and so on, up to a 

maximum value of 688 (leaving 2 bytes of residual capacity correction in each Data Block). 

 

4.3 Compact Discs Rom (CD-ROM): Data Encoding and Error Correction Code  

 

4.3.1 Data Encoding with Standard RS Code 

The CD-Rom [66] encoding system is reached by information data coming from the host in Frames 

(of 2048 bytes). To each Frame, 12  bytes for synchronization plus 4 bytes for header are added (see 

Table 4.4) for a total of 2964 bytes. 

 

 

Table 4.4  Sector of a Digital Data Track (mode 1).[66] 

 

The 2064 bytes are divided in two groups of 1032 bytes. Each group constitute the Error Correction 

Coding  (RSPC) which adds extra parity protection codes to the information data (see Table 4.5) .  

 

In the RSPC the information data are arranged into 43 column of 24 bytes (1032 bytes of which 

1024 are information data) . To each of the 24 bytes is applied an RS(26,24), named C1, which adds 

2 bytes of parity (P-Parity). C1 can correct up 1 error or erasure symbol in each code-word having 

length of 26 bytes. Another RS(45,43), named C2, adds to each of the 26 diagonals of the matrix 

further 2 bytes of parity (Q-Parity). C2 can correct  1 error or erasure symbol in each code-word 

having a length of 45 bytes. 
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The RSPC is a product code over GF(28) producing P-parity and Q-Parity bytes. The GF(28) field 

is generated by the primitive polynomial : 8 4 3 2( ) 1P x x x x x     . The primitive element 

(00000010)   where the right-most bit is the least significant bit. 

 

 

Table 4.5 - Error Correction Coding.   

 

4.3.2 A New Approach: Data Encoding with A-RS Code 

In order to carry out a burn test simulation using the proposed correction system, the information 

data are substituted by code-words (generated by an A-RS software code) before the burning task. 

For the RS code internal to the CD device (RS hardware) the virtual code-words (those generated 

by the A-RS code) will continue to be treated just as data. 

 

The ISO 18927  defines the Block Error Rate (BLER) as the number of erroneous blocks per second 

measured at the input of the C1-decoder at the standard (1X) data rate. The total number of blocks 

per second in input to the C1-decoder is 2048 bytes/block   (75 blocks/s) = 153600 bytes/s of 

information data.   

IEC 60908:1999 states that the BLER averaged over any 10s should be less than 3x10-2 blocks/s. 

Thus, the maximum value of BLER  is 7350   3x10-2 =220 block per second. 

Furthermore, following the  International Standard the data are considered to have reached end-of-

life when the BLER, measured as erroneous blocks per second, exceeds 220 anywhere on the disc. 

A BLER of 220 is an arbitrary level chosen as a predictor of the onset of uncorrectable errors and 

thereby of the end-of-life. 
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Since the evaluation of the errors is made on 153600 bytes (for convenience we consider 153660 the 

number bytes in the Data Block) we have chosen to subdivide the Data Blocks in 6400 code-words 

of 24 bytes (see Fig.s 4.8 – 4.9). 

 

 

Fig. 4.8 - RS(24,k0) code-word. 

 

 

Fig. 4.9 - Data Block of a CD-ROM. 

 

In the first code-words (Fig. 4.9) is stored the incremental parity value (pi) which will be used by 

the A-RS Software for the decoding task. The other code-words are generated by the correction 

code software A-RS(24,k0) where k0 (default number of bytes of the information data) must have a 

value such that the RS hardware and A-RS software are equivalent, in terms of correction capacity. 

The parameter which allows for the comparison of the two codes is named Block Correction 

(BC)(%)=t/n. 

Since C1 error can be indicated by C1= E11, E21, E31 (where E11 is the number of single errors per 

second in the C1 Decoder, E21 is the number of double errors per second in the C1 Decoder and   

and E31 is the number of triple or more errors per second in the C1 Decoder )  and since each RS 

hardware can correct just 1 erroneous symbol, we have chosen, in this simulation,  to consider  only 

the C1 code with 2 errors correction capability.  In this case the RS(26,24) hardware becomes an 

RS(26,22) and has a BC=15.38%. Thus the best value for A-RS software with n=24 is RS(24, 20) 

which has a BC=16.66%.  

The number of parity symbols assigned by the A-RS software to the code-words contained in each 

Data Block is calculated starting from the errors in the degradation function of each Data Block. 
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The missing k bytes in the code-word are taken from empty space of the disc (decreasing the total 

capacity for the data). 

  

Therefore the total number of Data Blocks burned in the disc is 4440. This will generate a file of 

681.984.000 bytes decreased by the total number of  bytes used for the extra parity (see Fig. 4.10). 

 

 

Fig. 4.10 –Schematisation of all Data Blocks of a CD-ROM. 

 

4.3.2.1 How to Pack the Binary Data File 

Synthesizing the above discussion, the A-RS hardware allows for the storage of 681.984.000 bytes 

of total information data on the disc (4440 Data Blocks x 153.600 bytes) whereas using the ARS 

software, the number of bytes of the total information data will result decreased due to the 

substitution of data with the code-words. 

Since the A-RS(24,k0) has just 4 parity bytes in each code-words, we have chosen to increase the 

parity in the Blocks (which have a higher number of errors) taking the extra bytes from the empty 

space of the disc. Thus, the total number of information data bytes, before the burning task, has to 

be calculated by including the extra parity bytes. 

In any case the A-RS will generate only code-words of 24 bytes with k bytes. The k bytes can be: 

 

 equal to k0 (162 bytes) in the case of default parity=10 bytes (p0),  

 smaller than k0 if it is necessary to increase the parity in another Data Block, 

 greater than k0 if it is necessary to decrease the parity in another Data Block.  

 

Thus the test binary file that contains the code-words generated by the A-RS is ready to be recorder 

onto the CD-R disc,s after the ISO image conversion.  

 

4.3.2.2 How to Pack the Parity File 

The parity file generated by the degradation function for the CD contains 4441 incremental parity 

values pi. Each of these pi indicates how much p0 must be increased or decreased in a Data Block. 
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Since p0 is the default parity of the A-RS code (p0 = n - k0 = 10), the ‘pi’ value (with i=1,2,…, 

140996) will be algebraically added to p0 and the result will be applied to the A-RS code in order to 

generate the code-words with the defined correction capacity. 

Each byte contained in the parity file is a relative even number since 2  parity bytes increase or 

decrease the code correction capacity of 1 byte. The values contained in the parity file are calculated 

from the degradation function which contains the prediction of the errors produced in each RSPC  

Block  of the CD after the accelerated aging process. Since 50  errors in a RSPC Block correspond 

about to ¼  of the max BLER) this value has been used as a threshold in order to increase or 

decrease the parity symbols of the A-RS code. This means that, in order to correct 50  BLER errors 

in a LDC Block, 2 parity bytes must be added to each of the code-words in the Data Block.  
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CHAPTER 5 
 

5. Tests and Data Analyses 

This chapter is devoted to the investigation of the evolution of the distribution of errors in optical 

discs. For this purpose a large number of different types of optical discs will undergo an accelerated 

aging cycle. A failure in the reading process is produced when the reflection of the incident laser 

beam is not information enough to discriminate correctly between land areas  (areas of maximum 

reflection) and pit areas (areas of minimum reflection). We will show how the degradation of the 

materials composing the supports induces the creation of particular zones with higher error rate 

which we call critical zones. These degraded areas produce errors in some Data Blocks.  The Data 

Blocks of the discs are numbered as shown in Fig.5.1. 

 

 

Fig. 5.1 - Data Blocks of an Optical disc..  

 

Different types of recordable discs have been subjected to the tests: 48 Blu-Ray recordable discs 

(BD-R discs), brand 1, 48 Blu-Ray recordable discs (BD-R discs), brand 2, and 48 Recordable 

Compact Discs (CD-R), brand 3. For comprehension purposes, in the following chapter all the 

recordable discs will be addressed to as discs. 

For each type of disc the errors have been read by the ATM Automatic Testing Machine, before and 

after an accelerated aging stage the climatic chamber. 

 

The ATM allows to execute automatic tests without dust, and by controlling the temperature and the 

humidity of the environment so that all the burning stages are performed in comparable conditions. 

 

In this chapter the files containing the number of errors found before and after having performed the 

accelerated aging stage will be illustrated and it will be possible to observe that: 

 Data Block 1 

Optical disc - Data Blocks 

Data Block 2 Data Block 3 Data Block n 

Inner part Outer part 
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 Before the aging, the discs present a really low number of errors (much lower than the 

correction capability of the correction code). At this stage, errors are uniformly distributed 

on the surface of the disc.  

  After the aging process, on the contrary, errors clearly accumulate in a specific area of the 

discs. In this area, located in the external part of the disc, the errors increase exponentially. 

This behaviour characterized a statistically relevant amount of discs (more than 90%). In 

the remainder, we will refer to the area in which errors accumulate after the accelerated 

aging as the critical area. Symmetrically, the region of the surface of the disc where the 

distribution of the errors remains uniform will be named safe area. 

 

Tests performed before the accelerated aging process indicate that the standard correction code 

system can correct errors that were created in the burning process. In fact, in BDs the maximum 

number of errors is equal to 600, and for CDs it is equal to 25. In both cases the values are sensibly 

lower than the correction limit, respectively equal to 4864 and 220. 

Tests performed after the accelerated aging process indicate that the standard correction code 

system is not able to correct all errors. It has been determined that BDs have, in some areas, a 

number of errors higher than 9000, and that CDs have a number of errors higher than 800.  

 

5.1 Blu-Ray Discs - Brand 1 

 

5.1.1 Before Accelerated Aging 

Before proceeding with the general analysis that was performed on all discs, the analysis of the 

errors on a single BD disc brand 1 will be illustrated as example. 

In Fig 5.2 it is possible to notice that the errors are uniformly spread over the whole surface of the 

optical disc – i.e. there are no particularly affected areas. The maximum number of errors (Max 

Error) that was individuated in a single Data Blocks is equal to 290. 

 

Fig. 5.2 - Blu-Ray, brand 1- Data Block errors before accelerate aging- max error<300. 
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In Fig 5.3 it is possible to see that, after the burning process, only a small percentage of Data Blocks 

– 21.33% – contains at least one error. 

 

Fig. 5.3 - Blu-Ray disc, brand 1 - only 21.33% Data Blocks has at least one error. 

 

Therefore, in this disc the 78.66% of the Data Blocks does not have errors, and the correction code 

still has a residual capability equal to the 100%. In the remaining Data Blocks the number of errors 

belong to the range between 1 and 290, and the correction code has a residual capability equal to the 

94% at least.  

This is important since the higher is the residual capability, the better is the life expectancy of an 

optical disc. 

 

In Fig. 5.4a the histogram of the errors and in Fig. 5.4b the best fit is the  lognormal probability 

density function [67] are shown.  

 

 

Fig. 5.4a - Blu-Ray disc 1, brand 1. Data Blocks 

errors distribution. 

count*=count of Data Blocks for each bin. 

Fig. 5.4b - Blu-Ray disc 1 brand 1. Lognormal 

distribution. 

(without the Data Blocks = 0 errors). 

 

21.33% 

78.66% 
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The lognormal distribution should be used to characterize the failure rate distribution. For example, 

the lognormal distribution fits many applications in the corrosion of thin metal films. It is likely to 

be the best distribution model for cases in which the dominant failure mechanism relies on chemical 

reactions. 

The errors that are created during the burning task are linked to physical-chemical processes that 

involve the dye. The dye is burned in order to create pit-zones and the burning occurs at circa 

200°C, thus is a chemical-physical transformation. Therefore, when the dye is burned it is not 

possible to completely avoid the generation of a number of errors. The distribution of these errors 

follows a lognormal distribution, which generally related to physical-chemical processes. 

Furthermore, this lognormal distribution is also used for the analysis of failure data of CD-R [9] 

 

For all BD-R discs brand 1 we have calculated  three different cumulative error files: 

1. Filemean : contains the errors calculated from the mean errors of each Data Block and for 

each type of disc   

2. Filemax : contains the errors calculated on the maximum 

3. Filemode : contains the errors calculated on the mode   

 

5.1.1.1 Mean Errors File (Filemean) 

The errors mean file is calculated as: 

 

Filemean = Data_Block1_mean, Data_Block2_mean,… Data_Block379541_mean     

 

where: 

DataBlock1mean = mean(DataBlock1Disc1, DataBlock1Disc2, …,DataBlock1Discn) 

DataBlock2mean = mean(DataBlock2Disc1,DataBlock2Disc2, …, DataBlock2Discn) 

DataBlock3mean = mean(DataBlock3Disc1,DataBlock3Disc2, …, DataBlock3Dn) 

                                                                                                             
DB379541mean  = mean(DataBlock379541Disc1, DataBlock379541Disc2, …, DataBlock379541Dn) 

 

1

1
( )

N

i
i

mean A A
N 

  ,   with N = total number of Data Blocks; Ai = ith Data Block error 

 

In Fig. 5.5 the block diagram to obtain the Filemean is shown. 
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Fig. 5.5 - Blu-Ray discs 1 brand. Mean errors. 

 

In this case the maximum value of all the mean errors is smaller than 250 (see Fig. 5.6). 

 

 

  Fig. 5.6 - Blu-Ray discs brand 1. Mean errors.  

 

In Fig. 5.7a the histogram of the mean errors is shown, and in Fig. 5.7b it is possible to notice that 

the best fit is again the  lognormal probability density function. 

 

 

Fig. 5.7a - Blu-Ray discs brand 1. Data Blocks errors 

distribution. 

Fig. 5.7b Blu-Ray discs, brand 1. Lognormal 

distribution. 
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count*=count of Data Blocks for each bin (without the Data Blocks with 0 errors) 

5.1.1.2 Maximum Errors File (Filemax) 

The maximum errors file is calculated as follows:  

 

Filemax = Data_Block1_max, Data_Block2_max,… Data_Block379541_max        

 

where: 

DataBlock1max = max(DataBlock1Disc1, DataBlock1Disc2, …,DataBlock1Discn) 

DataBlock2max = max(DataBlock2Disc1,DataBlock2Disc2, …, DataBlock2Discn) 

DataBlock3max = max(DataBlock3Disc1,DataBlock3Disc2, …, DataBlock3Discn) 

                                                                                                              
DB379541max = max(DataBlock379541Disc1, DataBlock379541Disc2, …, DataBlock379541Discn) 

 

In Fig. 5.8 the block diagram to obtain the Filemax is shown. 

 

Fig. 5.8 - Blu-Ray discs 1 brand. Maximum errors. 

 

In this case the maximum number of errors is smaller than 600 (see Fig. 5.9).    

 
Fig. 5.9 – Blu-Ray discs, brand 1. Errors calculated on the maximum value. 
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In Fig. 5.10a the histogram of the maximum errors file and in Fig. 5.10b the best fit is again the 

lognormal probability density function are shown. 

 

Fig. 5.10a - Data Blocks errors distribution.. 

count*=count of Data Blocks for each bin. 

Fig. 5.10b - Lognormal distribution. 

(without the Data Blocks with 0 errors) 

 

5.1.1.3 Mode Errors File (Filemode) 

The mode errors file is calculated as 

: 

Filemode = Data_Block1_mode, Data_Block2_mode,… Data_Block379541_mode        

 

where: 

DataBlock1mode = mode(DataBlock1Disc1, DataBlock1Disc2, …,DataBlock1Discn) 

DataBlock2mode = mode(DataBlock2Disc1,DataBlock2Disc2, …, DataBlock2Discn) 

DataBlock3mode = mode(DataBlock3Disc1,DataBlock3Disc2, …, DataBlock3Discn) 

                                                                                                              
DB379541mode = mode(DataBlock379541Disc1, DataBlock379541Disc2, …, DataBlock379541Discn) 

 

p s

fs
mode l c

f f

 
     

 
with: 

l = lower limit of the modal class 

fs = the frequency of the class succeeding the modal class 

fp = the frequency of the class preceding the modal class 

c = width of the class interval 
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In Fig. 5.11 the block diagram used to obtain the Filemode is shown. 

 

 

Fig. 5.11 - Blu-Ray discs 1 brand. Errors calculated on the mode. 

 

The maximum errors in the plot Filemode is smaller than 250 (see Fig. 5.12).  

 

 

Fig. 5.12 – Blu-Ray discs, brand 1. Mode errors. 

 

In Fig. 5.13a the histogram of the mode errors file and in Fig. 5.13b the best fit is the lognormal 

probability density function are shown. 

 

  

Fig. 5.13a - Data Blocks errors distribution.. 

count*=count of Data Blocks for each bin. 

Fig. 5.13b - Lognormal distribution. 

(without the data Block with 0 errors) 
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5.1.2 After Accelerate Aging 

In Fig. 5.14 the amount of errors in the Blu-Ray disc 1 of brand 1 are illustrated. Up to the middle 

of the disc the errors are uniformly distributed and in the remaining part they increase 

exponentially. 

 

Fig. 5.14 Blu-Ray disc1 brand 1. Data Block errors after accelerate aging. 

In Fig. 5.15 the experimental data are adequately reproduced by the exponential function [68] 

 kxy A e     where A = value at the start and  k is a constant. 

The exponential function is used to describe several physical phenomena like the radioactive decay 

and the avalanche effects inside a dielectric material [69].  

 

Fig. 5.15 Blu-Ray disc1 brand 1-  after accelerate aging - fit of errors. 

In Fig. 5.16a the histogram of the errors is shown. In Fig. 5.16b the histogram of the errors without 

the Data Blocks with errors equal to zero is shown.  

  

Fig. 5.16a  Blu-Ray disc1 brand 1- histogram. 

count*=count of Data Blocks for each bin. 

Fig. 5.16b 14a  Blu-Ray disc1 brand 1- histogram. 

(without the data Block = 0 errors) 
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In Fig. 5.17  the best fit is no more the lognormal function distribution but the generalized extreme 

value distribution [70].  

 

Fig. 5.17 Blu-Ray disc, brand 1-  fit generalized extreme distribution function. 

 

The extreme value distribution is appropriate for modeling the smallest value from a distribution 

whose tails decays exponentially fast. It can also model the largest value from a distribution, such as 

the normal or exponential distributions, by using the negative of the original values. 

In Fig. 5.18 the errors of the Blu-Ray disc of brand 1 before and after accelerate aging are shown. 

  

 

Fig. 5.18  –   Blu-Ray disc1 brand 1- errors before and after accelerate aging. 

 

In Table 5.2 a comparison of some statistical parameters of the plots in Fig. 5.18 is reported.  

 max error mean Standard Deviation 

before accelerate aging 217 39.3 11.3 

after accelerate aging 5550 278.5 365.2 

Tabella 5.2 – comparison of selected statistical parameters. The maximum number of errors, the mean 

number of errors and the corresponding standard deviations are reported, before and after the aging 

processes. 

 



 
 

69 

The maximum error before aging, equal to 217,  increases after aging to 5550.  This last value 

indicates that the disc has reached the end life.   

The mean of the errors before aging, 39.3, becomes 278.5 and the standard deviation [71] increase 

from 11.3 to 365.2. 

Standard deviation: 2

1

1
| |

1

N

i
i

S A
N




 
   

The standard deviation indicates that before aging the error dispersion is very low (the error 

distribution is uniform) but notably increases after aging. 

For all BD-R discs brand 1 we have calculated  three cumulative error files: 

4. Filemean : it contains the errors calculated on the mean   

5. Filemax :  it contains the errors calculated on the maximum 

6. Filemode : it contains the errors calculated on the mode   

Since the procedure to calculate this three files has been detailed in the previous paragraphs, I will 

discuss only the results. 

 

5.1.2.1 Mean Errors File (Filemean) 

In this case the errors mean is bigger than 5000 (see Fig. 5.19).   

 

Fig. 5.19  Blu-Ray discs brand 1 - errors calculated on the mean.   

In Fig. 5.20a the histogram of the errors and in Fig. 5.20b the histogram of the errors without the 

Data Blocks errors equal to zero are shown 

  

Fig. 5.20a Blu-Ray brand 1- histogram. 

count*=count of Data Blocks for each bin. 

Fig. 5.20b Blu-Ray disc1 brand 1- histogram. 

(without the data Block = 0 errors) 
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In Fig. 5.21  we observe that the best fit is again the generalized extreme value distribution. 

 

Fig. 5.21 - Blu-Ray discs, brand 1-  fit generalized extreme distribution function.. 

 

In Fig 5.22 the raw errors of Blu-Ray disc brand 1 before and after accelerate aging is shown. 

 

Figura 5.22 - Blu-Ray discs brand 1 - errors before and after accelerate aging. 

 

In Table 5.3  there are some statistical parameters calculated on the two plots 

 max  errors mean Standard Deviation 

before accelerate aging 200 50.1115 21.9431 

after accelerate  aging 5144 177.1787 202.1842 

Table 5.3- Selected statistical parameters calculated from the two plots. 

 

5.1.2.2 Maximum Errors File (Filemax) 

In Fig. 5.23 the plot calculated on the maximum errors is reported. The maximum errors is 10000. 

 

Fig. 5.23  - Blu-Ray discs, brand 1 - errors calculated on the maximum errors. 
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In Fig. 5.24a the histogram of the errors and in Fig. 5.24b the histogram of the errors without the 

Data Blocks errors equal to zero. 

 

Fig. 5.24a Blu-Ray brand 1- histogram. 

count*=count of Data Blocks for each bin. 

Fig. 4.24b Blu-Ray brand 1- histogram. 

(without the data Block = 0 errors) 

 

In Fig. 5.25 we observe that the best fit is again the generalized extreme value distribution. 

 

Fig. 5.25  Blu-Ray discs,  brand 1-  fit generalized extreme distribution function. 

 

In Fig. 5.26 the errors of Blu-Ray disc brand 1 before and after accelerate aging. 

 

 

Fig.5.26 - Blu-Ray discs, brand 1 - errors before and after accelerate aging. 
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In Table 5.4  there are some statistical parameters calculated on the two plots 

 mean  errors mean Standard Deviation 

before accelerate aging 423 85.8732 44.5075 

after accelerate  aging 9738 455.5537    710.1434 

Table 5.4- some statistical parameters calculated on the two plots. 

 

5.1.2.3 Mode Errors File (Filemode) 

In Fig. 5.27  the plot calculated on the maximum errors is shown. The maximum errors is 10000. 

 

Fig. 5.27 - Blu-Ray discs, brand 1 - errors calculated on the mode. 

 

In Fig. 5.28a the histogram of the errors and in Fig. 5.28b the histogram of the errors without the 

Data Blocks with errors equal to zero. 

Fig. 5.28a Blu-Ray discs,  brand 1- histogram. 

count*=count of Data Blocks for each bin. 

Fig. 5.28b Blu-Ray discs, brand 1- histogram. 

(without the Data Block = 0 errors) 

 

In Fig. 5.29  we observe that the best fit is again the generalized extreme value distribution. 

 

Fig. 5.29 Blu-Ray discs brand 1-  fit generalized extreme distribution function. 
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In Fig. 5.30 the errors of Blu-Ray disc brand 1 before and after accelerate aging. 

 

Fig. 5.30 - Blu-Ray discs, brand 1 - errors before and after accelerate aging. 

 

In Table 5.4  there are some statistical parameters calculated on the two plots 

 

 mean  errors mean Standard Deviation 

before accelerate aging 289 39.8255 20.2978 

after accelerate  aging 9000 110.2054 126.7373 

Table 5.4- some statistical parameters calculated on the two plots. 

 

For BDs brand 1, the analysis performed on the data has highlighted the presence of degradation 

phenomena (that, as shown in the previous sections, are linked to the nature of the dye). These 

phenomena affect the life expectancies of optical discs, if the standard correction code is used. The 

fact that errors are concentrated in specific areas of the discs will be the starting point for the 

development of a new, adaptive correction code system. With this adaptive code it will be possible 

to overcome these degradation effects and to improve the life expectancies of optical discs.  

 

5.2 Blu-Ray - brand 2  

After the accelerate aging, 36 out of 48 BD-R discs brand 2 became so damaged that they could not 

be analyzed. The defect in the polycarbonate layer is clearly visible in Fig. 5.31.  

 

Unfortunately, also the remaining discs were partially damaged. In the damaged zone high error 

peaks are observed. On some disc the peak errors already present before the aging process slightly 

increase after the aging (see Fig. 5.32). 
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Fig. 5.31 - Damaged Blu-Ray disc brand 2  

 

 

Fig. 5.32 Blu-Ray disc, brand 2 - errors before and after accelerate aging. 

 

Differently, for some discs the high error peaks appear only after the aging (see Fig. 5.33). 

 

 

Fig. 5.33 Blu-Ray disc, brand 2- errors before and after accelerate aging. 
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Since any disc of different brand presented the same behaviour we believe that the BD-R discs of 

brand 2 were made with defective material.   

Both Figs. 5.32 - 5.33, evidence that the errors outside the anomalous peaks have a distribution 

similar to that observed for BD-R discs brand 1.  

 

5.3 CD-R - brand 3 

5.3.1 Before accelerate aging. 

The plots of the analysis for the CD-R discs brand 3 are illustrated below. 

 

5. 3.1.1  Mean Errors File (Filemean) 

In this case the maximum value of all the mean errors is smaller than 12 (see Fig. 5.34). 

 

 
Fig. 5.34 CD-R discs brand 1 – errors calculate on the mean before accelerate aging. 

 
 In Fig. 5.35a the histogram of the mean errors is shown, and in Fig. 5.35b it is possible to notice 

that the best fit is again the  lognormal probability density function. 

. 

  
Fig. 5.35a CD-R discs brand 3 - Data Blocks errors 

distribution. 

count*=count of Data Blocks for each bin. 

Fig. 5.35b CD-R discs  brand 3 – lognormal 

distribution. 

(without the Data Blocks=0) 
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5.3.1.2 Maximum Errors File (Filemax) 

The maximum value of all the maximum errors is smaller than 25 (see Fig. 5.36). 

 

 

Fig. 5.36 CD-R discs brand 1 – errors calculate on the maximum errors -  before accelerate aging. 

 

In Fig. 5.37a the histogram of the mean errors is shown, and in Fig. 5.37b it is possible to notice 

that the best fit is again the  lognormal probability density function. 

 

Fig. 5.37a CD-R discs brand 3 - Data Blocks errors 

distribution. 

count*=count of Data Blocks for each bin. 

Fig. 5.37b CD-R discs  brand 3 – lognormal 

distribution. 

(withot the Data Blocks=0) 

 

5. 3.1.3 Mode Errors File (Filemode) 

The maximum value of all the maximum errors is smaller than 12 (see Fig. 5.38). 

 

Fig. 5.38 CD-R discs brand 1 – errors calculate on the mode errors -  before accelerate aging. 
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In Fig. 5.39a  and Fig. 5.39b the histograms of the mode errors is shown. 

  

Fig. 5.39a CD-R brand 3 - Data Blocks errors 

distribution. 

count*=count of Data Blocks for each bin. 

Fig. 5.39a CD-R brand 3 - Data Blocks errors 

distribution. 

(withot the Data Blocks=0) 

 

5.3.2 After accelerate aging 

The plots of the analysis for the CD-R discs brand 3 are illustrated below. 

 

5.3.2.1 Mean Error File (Filemean) 

The maximum value of all the mean errors is smaller than 40 (see Fig. 5.40). 
 

 

Fig. 5.40 CD-R discs brand 3 – errors calculate on the mean after accelerate aging. 

 

In Fig. 5.41 the best fit is generalized extreme value distribution . 

 

Fig. 5.41 CD-R discs, brand 3 – fit generalized extreme distribution function. 
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In Fig. 5.42 the errors of the CD-R discs of brand 3 before and after accelerate aging are shown. 

 

 

Fig. 5.42 – CD-R discs brand 3 - errors before and after accelerate aging. 

 

5.3.2.2  Maximum Errors File (Filemax) 

The maximum value of all the maximum errors is smaller than 800 (see Fig. 5.43). 

 

 

Fig. 5.42 CD-R discs, brand 3 – errors calculate on the maximum value - after accelerate aging. 

 

In Fig. 5.44  the histogram of the mode errors is shown. 

 

 

Fig. 5.44 CD-R discs brand 3 - Data Blocks errors distribution. 

count*=count of Data Blocks for each bin. 
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In Fig. 5.45 the best fit is generalized extreme value distribution. 

 

 

Fig. 5.45 CD-R discs, brand 3 – fit generalized extreme distribution function. 

 

In Fig.5.46 the errors of the CD-R discs of brand 3 before and after accelerate aging are shown. 

 

 

Fig. 5.46 – CD-R discs brand 3 - errors before and after accelerate aging. 

 

The analysis that were performed on the CD-R confirm the concentration of degradation 

phenomena in the outer areas of the discs. Therefore it is possible to affirm that the degradation 

processes are comparable for all the types and all brands of optical discs – DVDs, BDs, CD-R. 

Also for this type of support it would be possible to contrast the degradation by implementing a 

new, adaptive correction code system.
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CHAPTER 6 

 

6. How to implement an Adaptive RS code: computing the degradation function 

In this chapter we will discuss how to provide a proper fitting of the experimental data  sets 

obtained in Chapter 5, where we computed the errors degradation function. In the remainder, we 

will refer to the functions fitting the data as degradation functions. By using this functions, and also 

considering the discussion in Chapter 4, it will be possible to generate, for each type of disc, a 

parity file. The A-RS code will use this file before the burning process to counteract the degradation 

effects on the information data. 

 

We will discuss three types of degradation function computed on the mean (Filemean), local 

maximum (Filemax), and the mode (Filemode)  of the error data sets. 

 

6.1 Blu-Ray discs – brand 1 

6.1.1 Degradation function calculated from the Filemean 

From two plots (see Fig. 6.1), calculated on the mean value of the errors (before and after the 

accelerated aging), it is possible to calculate the increment of the degradation, from the different 

number of errors before and after the aging process, as follows. 

 

Fig. 6.1 - Blu-Ray brand 1 – Mean errors before (up) and after (down) the accelerated aging process.   

 

The degradation increment is given: 

1

( )
n

i i
i

EA EB


   ,  where EA=errors after aging  and EB= errors before aging 

The fit [72, 73] of   is the polynomial function of degree 6 (see Fig. 6.2) that follows: 

6 5 4 3 2( ) 51 2 3 4 6p x p x p x p x p x p x p       
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In this case I have used a polynomial function instead of an exponential function (that had been 

employed in the previous example regarding a single Blu-Ray optical disc) in order to avoid 

unnecessary complications. In fact, polynomial functions are more adaptable to various data sets 

than exponential functions, and their application is more straightforward. 

 

 

Fig. 6.2 – Blu-Ray discs brand 1 – the best polynomial fit. 

 

6.1.1.1 Fit Tests 

To verify that the polynomial of degree 6 is the best choice we will use two methods: 

 Residuals Sum of Squared (RSS)  

 Coefficient of determination (R2) 

 

The Residuals Sum of Squared (SSR) [74] is the sum of the squares of residuals (deviations 

predicted from actual empirical values of data). It is a measure of the discrepancy between the data 

and an estimation model. A small SSR indicates a tight fit of the model to the data. It is defined as: 

 

2

1

[ ]
N

i i
i

SSR p y


   
where: 

pi = predicted values 

yi = data values 

 

Calculating SSR for the three polynomials of degree 5, 6 and 7, we have that SSR5= 2.1668, 

SSR6=2.1447, SSR7=2.1443. 

 

Considering polynomial functions, the optimal value of SSR is obtained by polynomial of the 6 

because SSR6 <SSR5, and because the polynomial function of the 7 would not result in a significant 

reduction of SSR.  
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The coefficient of determination (R2) [75] is a statistical measure of how close the data are to the 

fitted regression line. It indicates the proportionate amount of variation in the dependent variable 

that is predictable from the independent one. The more the value  R2 approaches 1, the more the 

prediction is accurate. It is defined as: 

 

2

2 1
2

1

[ ]
1

N

i i
i

N

i
i

p y
R

y y








 

   




 

where: 

pi = predicted values 

yi = data values 

y


mean value 

 

       

Calculating R2 for the three polynomials of degree 5, 6 e 7  we have that R2(5)=0.9481, 

R2(6)=0.9487, R2(7)=0.9487. 

Also in this case, the best value of SSR is obtained by polynomial of the 6 . 

 

6.1.2 Degradation function calculated from the Filemax 

From two plots (see Fig. 6.3), calculated on the mean value of the errors (before and after the 

accelerated aging), now we calculate the degradation increment. 

 

 

Fig. 6.3- Blu-Ray discs, brand 1 - errors calculated on the maximum errors. 

 

The degradation increment is given as follows: 

1

( )
n

i i
i

EA EB


   ,  where: EA=errors after aging, and: EB=errors before aging 

The fit of   is the polynomial function of degree 6 (see Fig. 6.4). 
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Fig. 6.4 – Blu-Ray discs brand 1 – the best polynomial fit. 

 

6.1.2.1 Fit Tests 

To verify that the polynomial of degree 6 is the best choice we will use two methods: 

 Residuals Sum of Squared (RSS)  

 Coefficient of determination (R2) 

 

Calculating SSR for the three polynomials of degree 7, 8 and 9, we have that SSR7= 3.1202, 

SSR8=2.3934, SSR9=2.3934. 

In this case the best value of SSR is obtained by polynomial of the 8°  because SSR8 <SSR7, and 

because the polynomial function of the 9 would not result in a significant reduction of SSR.  

 

Calculating R2 for the three polynomials of degree 5, 6 e 7 we have that R2(7)= 0.9863, 

R2(8)=0.9895, R2(9)=0.9895.  

In this case again, the best value of SSR is obtained by polynomial of the 8 degree. 

 

6.1.3 Degradation Function Calculated from the Filemode 

From two plots (see Fig. 6.5), calculated on the mode value of the errors (before and after the 

accelerated aging), now we calculate the degradation increment. 

 

Fig. 6.5   - Blu-Ray discs, brand 1 - errors before and after accelerate aging.. 
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The degradation increment is given: 

1

( )
n

i i
i

EA EB


   ,  where: EA=errors after aging   and: EB= errors before aging 

 

The fit of     is the  polynomial function [22] of degree 7 (see Fig. 6.6).   

 

Fig. 6.6 – Blu-Ray discs brand 1 – the best polynomial fit. 

 

6.1.3.1 Fit Tests 

To verify that the polynomial of degree 7 is the best choice we will use two methods: 

 Residuals Sum of Squared (RSS)  

 Coefficient of determination (R2) 

 

Calculating SSR for the three polynomials of degree 6, 7 and 8 we have that SSR6= 1.7751, 

SSR7=1.7749, and SSR8=1.7749. 

In this case the best value of SSR is obtained by polynomial of the 7 degree because SSR7 <SSR6, 

and because the polynomial function of the 8 would not result in a significant reduction of SSR.  

 

Calculating R2 for the three polynomials of degree 6, 7 e 8  we have that  

R2(6)=0.7248, R2 (7)=0.7252, R2(8)=0.7252. 

In this case again, the best value of SSR is obtained by polynomial of the 7. 

 

6.2 CD-R discs – brand 3 

6.2.1 Degradation function calculated from the Filemean  

From two plots (see Fig. 6.7), calculated on the mean value of the errors (before and after the 

accelerated aging), now we calculate the degradation increment. 
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Fig. 6.7 - CD-R discs, brand 3 - errors before and after accelerate aging. 

 

The degradation increment is given as follows: 

1

( )
n

i i
i

EA EB


   , where: EA=errors after aging  and: EB= errors before aging 

The fit of   is the  polynomial function of degree 6 (see fig. 6.8). 

 

 

Fig. 6.8 – CD-R  discs brand3  – the best polynomial fit. 

 

6.2.1.1 Fit Tests 

To verify that the polynomial of degree 6 is the best choice we will use two methods: 

 Residuals Sum of Squared (RSS)  

 Coefficient of determination (R2) 

 

Calculating SSR for the three polynomials of degree 5, 6 e 7  we have that SSR5= 8.3040, 

SSR6=7.521, SSR7=7.7347. 

In this case the best value of SSR is obtained by polynomial of the 6 because SSR6 <SSR5, and 

SSR7>SSR6. 
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Calculating R2 for the three polynomials of degree 5, 6 e 7  we have that R2(5)=0.9689, 

R2(6)=0.9710, R2(7)=0.9710. 

In this case again, the best value of SSR is obtained by polynomial of the 6 . 

 

6.2.2 Degradation Function Calculated from the Filemax  

From two plots (see Fig. 6.9), calculated on the maximum value of the errors (before and after the 

accelerated aging), now we calculate the degradation increment. 

 

 
Fig. 6.9  – CD-R brand 3  - errors before and after accelerate aging. 

 

The degradation increment is given: 

1

( )
n

i i
i

EA EB


   ,  where EA=errors after aging  and EB= errors before aging 

The fit of     is the  polynomial function of degree 5 (see Fig. 6.10). 

 

 
Fig. 6.10 – CD-R discs brand 3 – the best polynomial fit. 

 
6.2.2.1 Fit Tests 

To verify that the polynomial of degree 6 is the best choice we will use two methods: 

 Residuals Sum of Squared (RSS)  
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 Coefficient of determination (R2) 

 

Calculating SSR for the three polynomials of degree 5, 6 e 7  we have that SSR5= 4.884, 

SSR6=2.5795, SSR7= 2.5793. 

 

In this case the best value of SSR is obtained by polynomial of the 6 because SSR6 <SSR7, and 

because the polynomial function of the 7 would not result in a significant reduction of SSR.  

 

Calculating R2 for the three polynomials of degree 5, 6 e 7  we have that R2(5)=0.9689, 

R2(6)=0.9710, R2(7)=0.9710. 

In this case again, the best value of SSR is obtained by polynomial of the 6. 
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CHAPTER 7 

 

7. How to Implement an Adaptive RS Code: Parity Redistribution 

Algorithm and Data Analysis 

By using the degradation function, it will be possible to generate a parity file for BDs and CD-R. 

For the two types of optical discs the algorithms will be operating differently. For BDs the parity 

algorithm will reposition parity from safe areas to critical areas. On the contrary, for CD-R the 

parity will be taken from empty areas, thus decreasing the disc capacity.  

 
7.1 Blu-Ray Discs - brand 1 

7.1.1 Testing the Parity Algorithm on the Filemean   

In Fig 7.1a the plot of the degradation function is shown. This function predicts where are the Data 

Blocks (after aging) with high number of errors . 

 

Fig. 7.1 – Blu-Ray discs - brand 1. (a) degradation function (prediction errors), (b) errors after the 

redistribution of the parity symbols, (c) parity vector calculated by the degradation function. 

 

The parity vector (Fig. 7.1c) assigns the amount of parity to each Data Block in according to the 

errors value indicated by the degradation function. During the burning process, the A-RS will use 

this information to assigns, to each Data Blocks, the appropriate parity value.   

The difference between plots of the Fig.7.1a  and in Fig.7.1b indicates the reliability difference 

 between a standard correction system and our new proposed correction system. An aged disc with 

an error distribution like the one shown in  Fig. 7.1a,  has already reached the end of life (since the 
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some errors are greater than 4864), the old disc, with an errors distribution like Fig. 7.1b, it will still 

have an high expectation of life (since the maximum error, on the whole disc is less than 1000). 

 

7.1.2 Testing the Parity Algorithm on the Filemax   

In Fig.7.2 it is shown that by using the adaptive parity redistribution it is possible to obtain an 

uniform the ratio between number of errors and parity symbols. Moreover, the residual parity 

capability for each Data Block is much lower than the maximum correction limit. It is also worth to 

mention that in this case, the worst-case scenario was analysed: The data we used are obtained from 

the disc presenting the maximal amount of errors, among the ones we analysed. In this original data, 

in most cases the number of errors was too high to be corrected by a standard RS-code, yet the new 

adaptive code is able to correct all of them.   

 

 
Fig. 7.2 – Blu-Ray discs brand 1. (a) degradation function (prediction errors), (b) errors after the 

redistribution of the parity symbols, (c) parity vector calculated by the degradation function. 

 

7.1.3 Testing the Parity Algorithm on the Filemode   

In Fig 7.3 it is also possible to notice that the same results can be obtain by considering the errors 

calculated from the mode errors.  
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Fig. 7.3 – Blu-Ray discs brand 1. (a) degradation function (prediction errors), (b) errors after the 

redistribution of the parity symbols, (c) parity vector calculated by the degradation function. 

 

7.2 CD-R discs – Brand 3 

7.2.1 Testing the parity algorithm on the Filemax   

When considering CD-R optical discs it is not possible to apply the redistribution algorithm 

without, at the same time, diminishing the overall memory capability of the disc. This 

inconvenience is due to the reduced length of the code-words, that therefore have a limited number  

of parity symbols. In order to increase the redundancy in the critical areas, the algorithm cannot 

relocate parity symbols from safe areas to critical areas. Instead, it takes data-free space from the 

disc. However, the loss in terms of memory capability is negligible. Compare Figs 7.3a - 7.3b.  

 
Fig. 7.4 – CD-R discs brand 3. (a) degradation function (prediction errors), (b) errors after the 

redistribution of the parity symbols, (c) parity vector calculated by the degradation function.. 



 
 

91 

CHAPTER 8 

8. Future developments 

In the time left after the completion of the thesis project, we tried to investigate what physical or 

dynamical phenomena could possibly generate this safe and critical regions on the disc. It was 

possible to observe that these zones are not randomly distributed on the disc, but follow a specific 

pattern. In particular, the distribution of the errors rises exponentially in the external zones of the 

discs.  

In order to understand this behaviour, burnable discs were compared to factory discs and it emerged 

that the latter did not form critical zones in their external areas. Due to the fact that the only 

difference between these two types of optical discs is the presence or the absence of a layer of dye - 

present in burnable discs and absent in factory discs - the dye itself was addressed as one of the 

cause of this behaviour.  

By focusing on the role of the dye, some interesting conclusions can be drawn when considering the 

coating methods. In particular, the spin coating is a procedure used to deposit uniform thin films to 

flat substrates. Usually a small amount of coating material is applied on the center of the substrate. 

The substrate is then spinned at high speed, to spread the coating material by centrifugal force. 

Rotation is continued while the fluid spins off the edges of the substrate, until the desired thickness 

of the film is achieved. The applied solvent is usually volatile, and simultaneously evaporates. So, 

the higher the angular speed of spinning, the thinner the film. The thickness of the film also depends 

on the viscosity and concentration of the solution and the solvent. 

However, when this method is applied to optical discs it emerges that the thickness of the layer of 

dye over the polycarbonate matrix is rather anisotropic [76]. In Fig. 8.1 it is shown that the 

thickness of the layer is minimal in the central zone of the discs, and then it increases in the external 

zones. Moreover, it is possible to notice that the thickness follows a trend which is similar to the 

graph of the inferred degradation function (Fig. 8.2).  

 

Fig. 8.1- Plot showing the thickness of the fluid as a function of the distance from the center. 
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Fig. 8.2- Errors of the BDs 

 

At this point, we speculated about the correlation between these two trends. The literature [77, 78, 

79] indicates that, during the first step of the burning process the power of the laser beam is tuned. 

The tuning is performed in the central area of the disc, that is in fact the area of minimum dye 

thickness, as well as the area with the minimum number of errors. Once the power of the laser beam 

is tuned, it is able to burn the central areas of the discs completely. Therefore we consider highly 

likely that  the laser will no more be able to completely burn the dye when it moves to the outer 

zones, where the dye layer is thicker.  

The exponentially increasing number of errors that was individuated in the critical areas could 

therefore be linked to the partially burned dye, which then degrades through time. In the safe areas 

there are less errors, probably because the dye can be completely burned from the polycarbonate 

surface of the disc, and therefore less decomposition processes will occur.  

In the future it would be interesting to further investigate the relation between spin coating, dye 

thickness, and number of errors. If the existence of a correlation between errors and spin coating is 

confirmed by further and dedicated analysis, two different technological solutions might be devised: 

 

1- The spin coating technique could be substituted by an alternative methodology, capable to 

provide a more uniform distribution of the dye on the surface of the discs. However, the 

development of such technology might require a sensible investment in terms of time and 

economical resources. 

2- The firmware of the burning device could be modified to vary the power of the laser source 

throughout the burning, in a way chosen to compensate  to the trend individuated by the 

degradation function.  
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CHAPTER 9 

 

9. Discussion and conclusions 

Nowadays, optical discs are still a great device for archiving data storage. Furthermore, they are of 

great interest for institutions working towards the protection of artistic and cultural heritages, as 

aforementioned.  

Optical discs present many advantages when compared to other types of data storages. For example, 

Hard Disks (HDs) and Solid State Disks (SSDs) are not bare supports and are affected by 

electromagnetic fields, among other interferences. On the contrary, optical discs are bare supports, 

since they have neither moving mechanical parts nor electronic circuits, are not affected by 

electromagnetic field or by moderate water exposures. As Henry Ford said: "All that is not there, 

it does not break". At the end of this work, it is still not possible to ascertain the real life expectancy 

of optical discs, yet it is possible to say that it can be extended, by applying the new methodology 

that we propose. 

 

The adaptive A-RS code is able to protect the critical zones of the optical disc by displacing parity 

symbols from the safe zones, without affecting the latter. This redistribution of parity symbols 

allows to increase the reliability and the life-span of the support. 

The achievement of these results has been a complex endeavour, by starting from the development 

of the necessary machineries, and leading to the implementation of the new adaptive system itself. 

First, the climatic chamber was developed and perfected. The most important feature of the 

chamber is the set of automatisms that allows to control vital parameters such as humidity and 

temperature, allowing to gather data by following a clean and reproducible protocol. With this 

apparatus it was possible to accelerate the aging process for optical discs. In order to reproduce this 

process with a high degree of accuracy, a complex system was tuned and the necessary software 

was developed as well.  

Second, an automatic testing machine (ATM) has been realised. As well as the climatic chamber, 

the ATM allowed to operate by controlling the environment, in terms of humidity, temperature, and 

dust. The combination of these controls allowed to perform the burning and testing tasks in 

consistent conditions and ensure the reproducibility of the experiences. A robotic system was set up 

to automatically perform the burning and testing processes. Moreover, the automatic system 

allowed to avoid any possible contamination of the optical discs.   
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By using these equipments, it was possible to collect the large data set the allowed us to infer the 

graph of the degradation function. Once defined, the degradation function was used to identify the 

optimal parity redistribution on which the adaptive Reed Solomon code is built.  

This step allowed a better employment of the parity symbols, that were moved from safe zones to 

critical ones. Ultimately, we show how this strategy permits to improve the life expectancy of 

optical discs, without decreasing their capacity 

 

To conclude, according to the proposed A-RS scheme, different areas of the optical discs are  

protected by different amounts of redundancy, according to their different needs. However, it might 

be possible to consider as each area was protected by different standard RS codes that had the same 

length but, at the same time, different dimensions. Due to this, it is important to appropriately 

evaluate the implementation of both the encoder and of the decoder. On one hand, multiple 

encoders and decoders may be used. On the other hand, it may be possible to adopt a certain degree 

of compatibility. However, in both cases there would be some serious problems concerning the 

complexity of the solutions. Nonetheless, the second case would probably be better, since rate 

compatibility is usually intended as the capability of an encoder/decoder system to support different 

code rates. Similar codes are already employed in wireless communication systems, and moreover 

in the case of optical discs we possess a priori knowledge of the position of the critical areas of the 

discs.
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