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1.1 Energy metabolism 

Metabolism is the set of enzyme-driven reactions that sustain and maintain all living organisms. 

Metabolism is usually divided into two complementary subsets of reactions: anabolism and 

catabolism. The former comprehends those reactions that use ATP, coming from catabolism, 

and little units like amino acids, sugars and fatty acids to build macromolecules. On the other 

hand, catabolism is the set of those reactions necessary to gain ATP from the breakdown of 

macromolecules. ATP is obtained by the oxidation of energetic substrates and the subsequent 

reduction of nicotinamide adenine dinucleotide (NAD+) and flavin adenine dinucleotide (FADH) 

cofactors. In eukaryotic cells, the breakdown of small energetic substrates takes place in three 

highly regulated metabolic pathways: glycolysis, β-oxidation, amino acid degradation and TCA 

cycle. Glycolysis is a ten-steps cytoplasmic pathway necessary for the conversion of glucose to 

pyruvate. The net yield of glycolytic reactions is two molecules of pyruvate, two ATP, two NADH 

and two H2O from one molecule of glucose. In addition to ATP, glycolysis provides the 

intermediates necessary for the synthesis of other molecules as purines, pyrimidines and amino 

acids. Under aerobic conditions, the main fate of pyruvate is to be converted into acetyl-CoA 

and entry the tricarboxylic acid pathway (TCA cycle) in the mitochondria. The TCA cycle is a 

sequence of eight different reactions that yields three NADH, one GTP, one FADH2, three H+ and 

two CO2 for each molecule of pyruvate. In addition, the cycle provides precursors of certain 

amino acids as well as the reducing agent NADH that is used in oxidoreductive biochemical 

reactions. Its central importance to many biochemical pathways suggests that TCA cycle was 

one of the earliest established components of cellular metabolism. The acetyl-CoA can also 

originate from the breakdown of fatty acids by β-oxidation. Even fatty acids with even-numbered 

chains of carbon atoms are shuttled into mitochondria and covalently bound to Coenzyme A, 

then β-oxidation repeatedly cleaves two carbons in form of acetyl-CoA that enters into the TCA 

cycle. All the reducing potential given by the oxidation of energetic substrates fuels the electrons 

transport chain, enabling the synthesis of ATP in the mitochondria by the oxidative 

phosphorylation (OXPHOS) (Fig 1.1). 
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Fig. 1.1 General overview of catabolic reactions in energy metabolism. Macromolecules like proteins, 

polysaccharides and triglycerides are broken in smaller energetic substrates. Glucose and fatty acids are converted to 

acetyl-CoA while amino acids are used in the TCA cycle trough anaplerotic reactions. Reducing cofactors generated 

by glycolysis, β-oxidation and TCA cycle transfer electrons to the electron transport chain enabling the production of 

ATP from ADP and inorganic phosphate by oxidative phosphorylation. 

 

1.2 Mitochondria 

The ability to generate chemical energy inside the cell represent the evolutionary push that likely 

led eukaryotic organisms to be the dominant living systems. Nowadays, mitochondria are widely 

recognized as the crossroads of the eukaryotic cell evolution. Beyond the energy metabolism 

pathways described above, these incredibly sophisticated structures are the primary site of 

heme synthesis, iron sulfur clusters (ISCs) biosynthetic pathway, apoptosis, calcium 

homeostasis and many other cellular processes. 

Originating from an α-protobacterion, mitochondria maintain many features of their ancient 

relatives as they possess their own genome (mtDNA) and a limited translation machinery. They 

vary from 1 to 10 µm of diameter and consist of an outer (OMM) and an inner (IMM) 

mitochondrial membrane. The OMM and the IMM define two different compartments: the 

intermembrane space, where the proton gradient necessary for the OXPHOS activity is 

generated, and the inner matrix, the site of the main mitochondrial reactions. The area of the 

IMM is greater than the OMM one due to the presence of specific invaginations, called cristae, 

that include the OXPHOS complexes and the ATP synthase. The mitochondrial aqueous 

compartments are separated from cytoplasm. For this reason, import and export of small 
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organic molecules and ions across IMM and OMM are controlled by specific transporters and 

carriers, whose activity is finely regulated by external cues like energy deprivation and stress 

(Harbauer et al., 2014; Qiu et al., 2013; Wenz et al., 2014) 

 

1.2.1 Mitochondria dynamics 

Mitochondria are organized in an intricate and extended network. Mitochondrial framework is 

shaped by continuous events of fusion and fission, orchestrated by different proteins located in 

the IMM and the OMM belonging to the GTPases superfamily. Mitofusin1 and 2 (Mfn1 and 2), 

Optic atrophy 1 (Opa1) are the main regulators of mitochondrial fusion events (Chen et al., 

2005; Chen et al., 2003; Rahn et al., 2013). On the other hand, Dynamin-related protein 1 

(Drp1) and Fission 1 (Fis1) are involved in mitochondrial fission (Chan, 2012; Friedman and 

Nunnari, 2014). Mitochondrial fusion and fission events not only merge the mitochondrial IMM 

and OMM but also mixes mitochondria matrices and redistributes mtDNA haplotypes among 

different organelles (D.C., 2010; Jourdain and Martinou, 2010). 

Mitochondrial fusion and fission events rapidly respond to external cues. Energy demand 

increases mitochondrial fusion bringing to the formation of hyperfused and tubular mitochondria. 

In line with this, physical exercise, cold exposure and nutrient withdrawal increase mitochondrial 

fusion to maximize energy production and increase mitochondrial mass (Wai and Langer, 2016). 

On the contrary, mitochondrial fission is associated with mitochondrial degradation (a 

physiological process known as mitophagy) and quality control, cell division and apoptosis (Mao 

and Klionsky, 2013; Mitra, 2013; Youle and Karbowski, 2005). Recent findings suggest that 

mitochondria shape is finely regulated also during cell reprogramming and differentiation. Stem 

cells are proliferative, low-energy demanding cells that mostly live in hypoxic niches (Mohyeldin 

et al., 2010). In this regard, new data show that during cell reprogramming to iPS there is a shift 

toward a more glycolytic metabolism and rounded, cristae-poor mitochondria, while cell 

differentiation needs hyperfused, cristae-rich and tubular organelles to support oxidative 

metabolism and great energy demand (Wanet et al., 2015; Xu et al., 2013b; Zhang et al., 

2016b). Furthermore, mitochondrial dynamics are regulated by the interaction with other cellular 

compartments like endoplasmic reticulum (ER), Golgi apparatus and cytoskeleton (Olga Martins 

de Brito, 2008; Reja et al., 2009; Yang et al., 2013). For instance, phosphorylated Drp1 is 

shuttled from the cytoplasm to the ER-mitochondria interaction points where it starts 

mitochondrial fission (Friedman et al., 2011) while mitochondria-cytoskeleton interactions are 

fundamental for mammalian cells cytokinesis and mitochondrial OXPHOS activity (Knowles et 

al., 2002; Kuznetsov et al., 2013). 
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1.2.2 Mitochondrial DNA 

In addition to their shape and dynamicity, mitochondria inherited a little genome from their 

ancestors, the mtDNA (Fig. 1.2). Unlike nuclear DNA (nDNA), mtDNA copy number can largely 

vary between different cell types and different tissue. For instance, in highly metabolic tissues, 

as skeletal muscle, liver and adipose tissue, mtDNA can reach 10.000 copies per cell, whereas 

in other tissues the mitochondrial density is lower due to a little energy demand (Mootha et al., 

2003a). mtDNA encodes for only 13 proteins, all belonging to the electron transport chain 

complexes, 2 rRNAs (mt-rRNA) and 22 tRNAs (mt-tRNA)(Kelly and Scarpulla, 2004). mtDNA is 

a 16.568 bp in humans, circular, double stranded genome, where the two strands show different 

percentage of guanine (G) and cytosine (C) (Patananan et al., 2016). Due to the different 

composition, the mtDNA strands are defined as heavy strand (HS, enriched in G) and light 

strand (LS, enriched in C). The components of the mtDNA replication and transcription 

machinery are completely encoded by the nDNA, as well as the greatest part of mitochondrial 

proteome. Among the others, the mitochondrial transcription factor A (Tfam) is one of the most 

important regulators of mitochondrial function, controlling mtDNA replication and transcription 

(Patti and Corvera, 2010). The mtDNA also contains a non-coding region, called D-loop, 

necessary for binding of Tfam and the regulation of mtDNA transcription and replication. In 

contrast to the limited coding capacity of mitochondria, the set of mitochondrial proteins encoded 

by the nuclear genome accounts for 1500 genes, as recently emerged from an extensive 

analysis of the mitochondrial proteome (Pagliarini et al., 2008). The great disparity between 

mitochondria-encoded proteins and the mitoproteome highlights the unquestionable relationship 

between mitochondria and nucleus. Nevertheless, at present, a comprehensive view of the 

signaling pathways operating between the two organelles is still incomplete. 
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Fig. 1.2 Mitochondrial DNA (mtDNA) structure. Schematic representation of the human mitochondrial genome. 

Genomic organization and structural features of human mtDNA are depicted in a circular genomic map showing 

heavy (outer) and light (inner) strands. Protein coding and rRNA genes are interspersed with 22 tRNA genes. The D-

loop regulatory region contains the L- and H-strand promoters (LSP, HSP1, and HSP2), along with the origin of H-

strand replication (OH). On contrast, the origin of L-strand replication (OL) is displaced by approximately two-thirds of 

the genome. Protein coding genes include the following: cytochrome oxidase (COX) subunits 1, 2, and 3; NADH 

dehydrogenase (ND) subunits 1, 2, 3, 4, 4L, 5, and 6; ATP synthase subunits 6 and 8 (ATPase 6 and 8); cytochrome 

b (Cyt b). ND6 and the 8 tRNA genes transcribed from the L-strand as template are labeled on the inside of the 

genomic map, whereas the remaining protein coding and RNA genes transcribed from the H-strand as template are 

labeled on the outside (Themitoblog.wordpress.com/tag/dna/). 

 

MtDNA integrity is maintained primarily by the mtDNA replication machinery. In fact, the 

mitochondria specific DNA polymerase PolG and Twinkle helicase possess exonuclease activity 

as well, and continuously proof-reads the mtDNA strand that is replicated (Kaguni, 2004). 

MtDNA mutations play a central role in stem cell commitment and differentiation. The non-

random segregation of mitochondria in stem cells has been observed in a recent research 

where mitochondria were shown to segregate asymmetrically in human stem-like cells during 

asymmetric cell division (Katajisto et al., 2015). The daughter cells that received mostly young 

mitochondria maintained stem cell mitochondrial pool, while those cells that retained most of the 

aged mitochondria were committed to differentiation. Further, when asymmetric segregation of 

mitochondria was inhibited by blocking Drp1 activity, the progeny lost its stem cell features 

suggesting that this asymmetric segregation of mitochondria is required to maintain stemness 
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(Katajisto et al., 2015). In contrast, excessive mtDNA mutations compromise cell differentiation 

blocking mtDNA replication and the following mitochondrial mass growth (Dickinson et al., 2013; 

Wang et al., 2011). In line with this, recent results also demonstrated that mitochondrial fusion 

safeguards mtDNA health, preserving mtDNA copy number and blunting mtDNA mutation rate in 

skeletal muscle and brain (Amati-Bonneau et al., 2007; Chen et al., 2010). 

 

1.2.3 Regulation of mitochondrial function at the transcriptional level 

Many nuclear encoded factors are involved in mtDNA expression and maintenance, sustaining 

the tight crosstalk between the nucleus and the mitochondria. Thanks to new experimental 

approaches and the increasing number of mouse models, the regulation of mtDNA replication 

and transcription is now largely described. The expression of Tfam is mainly regulated by Pgc-1α 

(Bonawitz et al., 2006; Patti and Corvera, 2010; Wu et al., 1999), which interacts with and co-

activates among the others the transcription factor nuclear respiratory factor 1 (Nrf1). It is 

worthwhile to mention that Pgc-1α controls the expression of many other mitochondrial genes 

through different transcription factors and nuclear receptors such as Nrf2, Pparα, and the 

estrogen related receptor α (Errα) (Scarpulla et al., 2012). Pgc-1α is highly sensitive to 

environmental conditions, representing one of the most outstanding links between external cues 

and nuclear transcription. Pgc-1α expression is deeply influenced by cold, physical exercise and 

cell energy status (Akimoto et al., 2005; Handschin et al., 2007; Oliveira et al., 2004). In addition, 

its activity is deeply affected by post-transcriptional modifications such as phosphorylation by 

AMP-activated protein kinase (Jager et al., 2007), acetylation by Sirt1 (Lagouge et al., 2006), or 

direct interaction with other proteins such as the mammalian target of rapamycin (mTOR) or the 

transcriptional repressor Yy1 (Yin Yang-1) (Blättler et al., 2012; Cunningham et al., 2007). 

nDNA transcription and replication are two distinct processes controlled by different machineries. 

In contrast, mtDNA transcription and replication are intimately dependent on each other and are 

carried out basically by the same large protein complex. The activity of the mitochondrial 

transcription complex is initiated by three transcription factors: Tfam, transcription factor B1 

mitochondrial (Tfb1m) and transcription factor 2B mitochondrial (Tfb2m). Their presence is 

necessary to activate the bacteriophage-related mitochondrial RNA polymerase (Polrmt) on 

heavy strand promoter (HSP) and the light strand promoter (LSP) in the D-loop, the only 

untranscribed region of mtDNA (Yakubovskaya et al., 2014). In this way, the transcription 

complex starts its activity along the HS and LS in a bidirectional way (Bonawitz et al., 2006). In 

addition to the transcription initiation complex, mtDNA need other factors as the Twinkle 

helicase, the mitochondrial DNA polymerase Polg and the single stranded DNA binding protein, 
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mitochondrial Ssbp1, which together constitute the mtDNA replication machinery (Bonawitz et 

al., 2006; Milenkovic et al., 2013; Rajala et al., 2014; Shutt et al., 2011). 

Tfam is the main mediator of a great variety of molecular cues directed to mitochondria (Kang et 

al., 2007). Tfam is a highly conserved protein with a molecular weight of about of 25 kDa and its 

ability to bind DNA is due to the presence of two distinct high mobility group (HMG) boxes (Kanki 

et al., 2004). The essential role of Tfam is demonstrated by the fact that its ubiquitous deletion in 

mouse brings to complete impairment of embryonic mitochondrial content and subsequent death 

at E10.5 (Silva et al., 2000). Recent findings indicate that Tfam control of mtDNA transcription 

and replication is not given just by its ability to coat the HSP and LSP. In fact, Tfam is the main 

component of mitochondrial nucleoprotein complexes called nucleoids, bound to the IMM in 

which it seems to have a histone-like function in mtDNA packaging and spatial organization 

(Bogenhagen, 2012; Kukat and Larsson, 2013). In line with this, Tfam:mtDNA ratios represent 

another important regulatory mechanism of mtDNA replication and transcription, as well as Tfam 

dimerization degree and the number of Tfam molecules bound to the HSP and LSP. Specifically, 

in a monomeric form, Tfam binds LSP within the D-loop thus allowing transcription of a short 

sequence that acts as a primer for HS replication. However, when dimer/monomer ratio 

increases, HS transcription starts while its replication halts. mtDNA transcription is interrupted 

when the Tfam:mtDNA ratio is very high (Fig. 1.3). Thus, mtDNA transcription and replication are 

finely tuned by the levels of Tfam, its degree of dimerization, and by the Tfam:mtDNA ratio. 

Furthermore, Tfam is able to bind mtDNA also at aspecific sites outside the D-loop. In this way, 

the random dimerization between Tfam molecules associated at distal position causes 

packaging of mtDNA and blocks the assembling of the transcription initiation complex (Ngo et al., 

2014). These models were recently verified experimentally in in vitro reconstituted nucleoids 

(Farge et al., 2014). 

Given its essential role in governing mtDNA transcription and replication, Tfam accessibility to 

mtDNA is tightly monitored. To this end, degradation of unnecessary and/or misfolded proteins is 

guaranteed by a quality control machinery containing typical proteases (Matsushima and Kaguni, 

2012). Specifically, mitochondrial levels of Tfam are regulated by the AAA+ Lon protease (LonP) 

in a phosphorylation-dependent manner (Lu et al., 2013). 
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Fig. 1.3 Tfam levels modulate mtDNA replication and transcription. At low concentration levels, Tfam binds to the 

LSP, predominantly in monomeric form, and promotes mtDNA replication (left panel). Increased expression and/or 

stability of Tfam protein leads to its dimerization, a condition that facilitates mtDNA transcription (middle panel). Very 

high levels of Tfam lead to its binding at many aspecific sites along the mtDNA; this event causes higher compaction 

of the mitochondrial genome and turns off of its replication/transcription (right panel) (Audano et al., 2014). 

1.2.4 Oxidative phosphorylation  

The oxidative phosphorylation is made up by five large complexes (complexes I to V) with 90 

individual genes products. The first four complexes represent the electron transport chain (ETC) 

whose activity is usually coupled to the ATP synthase or complex V. The proteins that constitute 

the different complexes are encoded from both nuclear and mitochondrial DNAs, exception for 

the complex II that is completely nuclear encoded. In Table 1 the number of subunits for each 

complex that are nucleus or mitochondria encoded are reported (Scarpulla, 2008b). 

  

Complex I 

 

Complex II 

 

Complex III 

 

Complex IV 

 

Complex V 

mtDNA 7 0 1 3 2 

nDNA 39 4 10 10 14 

Table 1 Number of genes belonging to oxidative phosphorylation and their encoding genome. 

 

The ETC transfers electrons from donors (NADH at complex I, FADH2 at complex II) to a final 

acceptor, molecular oxygen, forming H2O at complex IV. Two electrons (reducing equivalents 

from hydrogen) are transferred from NADH + H+ to the OXPHOS complex NADH dehydrogenase 

(complex I) or from FADH2 to the succinate dehydrogenase (SDH, complex II) to reduce 

ubiquinone (coenzyme Q10, CoQ) into ubiquinol CoQH2. The electrons from CoQH2 are 

transferred successively to complex III (bc1 complex), cytochrome c and complex IV 
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(cytochrome c oxidase, COX), and finally to oxygen (1⁄2O2) to give H2O. The energy that is freed 

during the electrons’ flow is used to pump protons out through complexes I, III, and IV creating a 

proton electrochemical gradient across the mitochondrial inner membrane. The energy contained 

in the proton electrochemical gradient generated by the ETC is then coupled to ATP production 

as protons flow back into the matrix through the mitochondrial ATPase (Fig. 1.4). Matrix ATP is 

then exchanged for cytosolic ADP by the inner membrane adenine nucleotide translocators. The 

high electronegative potential produced by the proton gradient also forces the rapid entry of Ca2+ 

into the mitochondrial matrix, protecting its concentration in the cytoplasm. In the mitochondrial 

matrix, Ca2+ can stimulate flux through the TCA cycle by rising dehydrogenase activities 

(Rimessi et al., 2008). The exit of Ca2+ from the matrix is driven by electroneutral exchange with 

Na+ or H+. The efficiency by which dietary reducing equivalents are converted to ATP by 

OXPHOS is known as the coupling efficiency (D.C., 2010). This is determined by the efficiency 

by which protons are pumped out of the matrix by complexes I, III, and IV and the efficiency by 

which proton flux through complex V is converted to ATP (D.C., 2010). The uncoupler 

compounds like 2,4-dinitrophenol (DNP) or carbonyl cyanide chlorophenylhydrazone (CCCP) 

and the nDNA-encoded UCP1, 2 and 3 render the mitochondrial inner membrane leaky for 

protons, by-passing complex V and dissipating the electrochemical energy potential as heat 

(Busiello et al., 2015). 

 

 

Fig. 1.4 Mammalian oxidative phosphorylation (OXPHOS) system. Depicted are the four respiratory complexes (I–IV), 

electron carriers coenzyme Q and cytochrome c and the ATP synthase complex. Arrows at complexes I, III, and IV 
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illustrate the proton pumping to the intermembrane space (www.boundless.com/biology/textbooks/boundless-biology-

textbook/cellular-respiration-7/oxidative-phosphorylation-76/electron-transport-chain-362-11588/). 

 

Electron transport chain complexes are usually represented in textbooks as independent entities 

that randomly flow in the IMM. Despite this common assumption, recent studies indicate that 

ETC is made up by quaternary structures named supercomplexes (RSC), in which complex I 

interacts with complex III and complex III binds to complex IV (Lapuente-Brun et al., 2013). 

Supercomplexes facilitate electron transfer through the ETC, reduce reactive oxygen species 

(ROS) formation from CI and make the system more responsive to metabolic cues (Genova and 

Lenaz, 2013). For instance, mitochondrial reprogramming during differentiation is characterized 

by supermolecular organization of CIV and by increased supercomplexes formation (Chen et al., 

2008; Hofmann et al., 2012). In this context, RSC establishment is also dependent on 

mitochondrial cristae shape regulated by Opa1 activity, corroborating the idea that mitochondrial 

shape and morphology deeply impact ETC activity and efficiency (Cogliati et al., 2013). 

 

1.2.5 Mitochondria and iron metabolism 

Iron metabolism is a set of reactions that control iron homeostasis at both systemic and cellular 

level. This metal is fundamental in both eukaryotic and bacterial cells since is required for the 

synthesis of iron-sulfur (Fe-S) clusters and heme prosthetic groups, both synthesized in 

mitochondria, participating to a large number of intracellular redox reactions (Rouault and Tong, 

2005). 

Systemic iron levels are mainly controlled by its absorption by enterocytes in the intestine, the 

spleen recycling rate of macrophages and its turnover in the liver. Iron fluxes through different 

organs and tissues are mainly regulated by hepcidin and the only characterized iron exporter 

ferroportin. Hepcidin is a hormone released by the liver that acts as negative regulator of 

ferroportin mediated iron absorption in gut and spleen (Ganz, 2013). On the other hand, cellular 

iron levels are controlled mainly by the presence of specific iron regulatory proteins and 

transporters (Ganz, 2013; Wang and Pantopoulos, 2011). The major amount of iron found in 

human diet, in form of ferritin, heme group and ferric ion, is absorbed by enterocytes by the 

divalent metal-ion transporter 1 (Dmt1/ Solute Carrier Family 11 Member 2, Slc11a2) and by a 

still unknown heme transporter. Inside the enterocyte, iron can be stocked in the cytoplasm 

bound to ferritin or can be exported into the bloodstream and transported by transferrin (Tf) that, 

thanks to its interaction with transferrin receptor 1 (TfR1), delivers iron to peripheral tissues 

(Wang and Pantopoulos, 2011). In erythrocytes, iron is internalized after TfR1 endocytosis, 

reduced by the ferric iron reductase Steap3 and directly transferred to mitochondria by Dmt1 in a 
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“kiss and run” fashion (Richardson et al., 2010). In other peripheral tissues (i.e. skeletal muscle, 

liver and macrophages), the widely accepted hypothesis is that ferrous iron is imported into 

mitochondria after creating a labile pool in the cytoplasm (Richardson et al., 2010). 

Mitochondrial iron import is carried out by specific transporters at the IMM that are differentially 

expressed in many cell types. For instance, erythrocytes mainly express Slc25a37 (mitoferrin 1), 

while mitoferrin 2 is ubiquitously expressed (Chen et al., 2009; Paradkar et al., 2008). Recent 

results also suggest that mitochondrial iron import in mammalian cells could be regulated directly 

by Dmt1, that unlikely to Slc25a37 is localized on the OMM (Wolff et al., 2014).However, the role 

of mitochondrial Dmt1 needs to be fully understood. 

Once in mitochondria, iron can be used to synthesize heme groups and iron sulfur clusters (ISC) 

proteins. All organisms start to synthesize the tetrapyrrol porphyrin ring of heme groups from 5-

aminolevulinic acid (ALA) (Barupala et al., 2016; Severance and Hamza, 2009). Most eukaryotes 

synthesize ALA in mitochondria by condensing succinyl-CoA and glycine by ALA synthase (Alas) 

activity. Mammals express a housekeeping (Alas1) and an erythroid-specific (Alas2) isoform of 

this enzyme. Finally, after several reactions, ferrochelatase inserts Fe2+ into protoporphyrin IX. 

Newly synthesized heme is then exported from mitochondria to the cytosol for incorporation into 

hemeproteins (Barupala et al., 2016). 

The assembly and repair of ISCs is mediated by a complex pathway (Fig 1.5). The cysteine 

desulfurase nitrogen fixation homologue 1 (Nfs1), by interacting with desulfurase-interacting 

protein 11 (Isd11), generates elemental sulfur, while the iron-binding protein frataxin (Fxn) acts 

as ferrous iron donor (Sheftel et al., 2010). The mitochondrial proteins Isu1/2 (also known as 

Iscu) and Isa1/2 (also known as Isca1/2) provide a scaffold for the first steps of ISCs 

biosynthesis. The mitochondrial proteins Grxl5 and the transporter Abcb7 participate to ISCs 

biogenesis, even if in a still unknown manner. The biogenesis of cytosolic ISC proteins requires 

mitochondria-derived ISC precursors, which are processed by a dedicated cytosolic ISCs 

assembly (CIA) machinery (Paul and Lill, 2015). 

Iron sulfur cluster proteins take part to fundamental processes in all organisms as they allow the 

proper function of mitochondrial ETC and TCA cycle but also nDNA replication, repair and 

mRNA translation (Khoshnevis et al., 2010; Sheftel et al., 2010; Veatch et al., 2009). In this 

context, recent evidences show that iron is a necessary component of cell cycle regulation and 

stem cell biology, rising new interest on its role in cancer stem cell (CSC) proliferation and cell 

development. Iron exposure increases cell proliferation, migration and invasiveness of 

glioblastoma cell lines (Chanvorachote and Luanpitpong, 2016; Schonberg et al., 2015), while 

other studies indicate that iron is necessary for proper mitochondrial development during 

adipogenesis, supporting the possibility that mitochondria can function as cell cycle clock 
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controlling iron homeostasis and ISCs biogenesis (Moreno-Navarrete et al., 2014; Moreno et al., 

2015). New data suggest that skeletal muscle of obese subjects are characterized by iron 

overload (Moreno-Navarrete et al., 2016), as well as skeletal muscle atrophy and muscular 

strength loss in humans, suggesting an iron-dependent regulatory circuit for skeletal muscle 

regeneration and development in adulthood (Mochel et al., 2008; Reardon and Allen, 2009). 

Moreover, iron overload has been associated with metabolic disorders, as type 2 diabetes (T2D) 

(Rajpathak et al., 2008), global mitochondrial dysfunctions (Cameron et al., 2011; Navarro-

Sastre et al., 2011) and neurodegenerative disorders as amyotrophic lateral sclerosis (ALS) 

(Faes and Callewaert, 2011; Hartig et al., 2011; Zhou et al., 2001). However, despite the great 

amount of data available in literature from decades, the molecular mechanism that controls iron 

homeostasis still need to be fully understood. Complete understanding of the relationship 

between metals and mitochondria through new methodologies and approaches will improve our 

knowledge about mitochondria biology and will give us more chances to identify and tackle iron-

related pathologies. 

 

 

Fig. 1.5 Iron sulfur cluster biosynthetic pathway. ISCs are synthesized in the mitochondria where ferrous iron (Fe2+) is 

imported by mitoferrin 1 and 2 (Slc25a37 and Slc25a28) in a potential-dependent manner, with the proton motive force 

(PMF) as a source of energy. The first step of ISC synthesis is the removal of sulfur from cysteine, while iron is 

internalized in the iron sulfur clusters thanks to the activity of frataxin, ferrodoxin reductase (Fdxr), ferrodoxin (Fdx2) 

and the scaffold protein Iscu. Finally, apoproteins (the recipient proteins) are converted to holoproteins by different 

chaperones as the ATP-dependent Hsp70 chaperone (Grp75), the DnaJ-like co-chaperone (Hsc20), the nucleotide 

exchange factor 1 (GrpE-L1/2) and the monothiol glutaredoxin 5 (Glrx5). Proteins of the aconitase family and radical 



Introduction 

14 
 

SAM proteins, as biotin synthase,specifically need Isca1, Isca2 and Iba57 for the complete maturation of their ISCs. 

Assembly of respiratory complex I also requires the P-loop NTPase Nubpl (Xu et al., 2013a). 

 

Nowadays, one of the most characterized mechanism that control iron homeostasis is the 

regulation of mRNA stability of transcripts involved in iron metabolism and utilization, also 

referred to as IRP/IRE regulatory network. Iron responsive element (IRE) is a specific motif found 

in the 5’UTR or 3’UTR of iron related genes as FTH1, FTL, TFRC, ALAS2, Sdhb, ACO2, Hao1, 

SLC11A2 (encoding DMT1), NDUFS1, SLC40A1 (encoding the ferroportin), CDC42BPA, 

CDC14A and EPAS1. In low iron condition, 5’UTR IRE is bound by ACO1 and ACO1 in low iron 

concentration and reduce translation rate of these gene. On the contrary, iron overload leads to 

the upregulation of 3’ UTR IRE genes stability and translation. 

 

1.2.6 Mitochondrial diseases 

In the last 20 years, mitochondrial dysfunction has been recognized as an important promoter of 

human pathologies. Mitochondrial defects play a direct role in certain well-defined 

neuromuscular diseases and are also thought to contribute indirectly to many degenerative 

diseases (Scarpulla, 2008a). Mutations in mitochondrial genes for respiratory proteins and 

translational RNAs, particularly tRNAs, appear in a wide range of clinical conditions, most of 

which affect the neuromuscular system (DiMauro et al., 2006; Schon et al., 2012; Wallace, 

2005). MtDNA mutations are maternally inherited, while a subset of mitochondrial diseases 

exhibits a Mendelian inheritance pattern, typical of nuclear gene defects (Suomalainen and 

Isohanni, 2010). Furthermore, dispersed and somatic lesions in mtDNA or, more generally, 

mitochondrial dysfunctions can accumulate over time and may be involved in a causative fashion 

in human pathologies, including neurodegenerative diseases and metabolic disorders like type I 

and type II diabetes (Dufour and Larsson, 2004; Lowell and Shulman, 2005; Ramadasan-Nair et 

al., 2013). 

 

1.2.7 MtDNA-related diseases 

 Leber’s hereditary optic neuropathy (LHON). 

LHON is the most common mitochondrial DNA (mtDNA)-related disorder, causing subacute loss 

of central vision predominantly in young men. LHON is usually due to homoplasmic mutations in 

one of three genes encoding complex I subunits (ND4, ND1 and ND6) (Edward J. Novotny et al., 

1986; Holt et al., 1990).  

 

 Leigh’s syndrome. 
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This disease is more commonly due to nuclear DNA (nDNA) mutations than to mtDNA mutations 

(Lake et al., 2015). The mutations are most frequently in subunits of complex I or in assembly 

factors of complex IV. Despite the striking variety of specific etiologies, Leigh’s syndrome has 

common clinical features (developmental delay or regression, respiratory abnormalities, 

recurrent vomiting, nystagmus, ataxia, dystonia and early death). 

 

 Mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes (MELAS). 

This is a multisystem disorder in which brain, muscle and the endocrine system are 

predominantly involved and is often fatal already in childhood (Kaufmann et al., 2011). Unique to 

MELAS are the transient stroke-like episodes, which are most often due to infarcts in the 

temporal and occipital lobes and are associated with hemiplegia and cortical blindness. Although 

we still do not understand the cause, their occurrence highlights the fact that MELAS is also an 

angiopathy, making it almost unique among the mitochondrial diseases (Tay et al., 2006). 

Although the most common causal mutation is m.3243A→G in tRNALeu (UUR), more than a 

dozen other mutations have been associated with MELAS, affecting both tRNA and protein-

coding genes. 

 

 Myoclonus epilepsy and ragged red fibers (MERRF). 

For unknown reasons, MERRF is due almost exclusively to mutations in tRNALys. It is 

associated with a rather different set of signs and symptoms from the other diseases, often 

including cervical lipomas as well as myoclonus and epilepsy (Chong et al., 2003). As in MELAS, 

the pathogenic cause seems to be a post-transcriptional failure to modify the tRNAs with taurine, 

thereby affecting translational efficiency (Suzuki and Nagao, 2011). Moreover, in MERRF and 

MELAS, there is mitochondrial proliferation not only in muscle (that is, the ragged red fibers 

(RRFs)) but also in blood vessels (strongly SDH-positive vessels (SSVs)) (Hasegawa et al., 

1993). 

 

 Neuropathy, ataxia and retinitis pigmentosa, and maternally inherited Leigh’s syndrome 

(NARP and MILS, respectively). 

These are two possible clinical outcomes of mutations at the same nucleotide (m.8993T→G or, 

less frequently, m.8993T→C) (Duno et al., 2012). In the family in which these were originally 

identified, three adults had one or more of the acronymic features, whereas a maternally related 

child had severe developmental delay, pyramidal signs, retinitis pigmentosa, ataxia and 

cerebellar and brainstem atrophy, features that are characteristic of Leigh’s syndrome. 
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 Reversible respiratory chain deficiency. 

Although it is rare, mutation in another tRNA — a homoplasmic m.14674T→C mutation causes a 

highly unusual disorder, namely a ‘reversible’ form of OXPHOS deficiency in which infants are 

severely ill but, if sustained vigorously during the perinatal period, recover full mitochondrial 

function spontaneously within 2 years (Horvath et al., 2009).  

 

 Random deletions of mtDNA. 

Kearns–Sayre syndrome (KSS) is defined by the onset before age 20 of ophthalmoplegia 

(paralysis of the muscles that move the eyeballs), ptosis (droopy eyelids), pigmentary 

retinopathy and at least one of the following: complete heart block, cerebrospinal fluid protein 

levels above 100 mg dL–1 and cerebellar ataxia. In this multi-systemic disorder, partially deleted 

mtDNAs (Δ-mtDNAs) are present in all examined tissues (implying that the deletion event 

occurred in the germ line or soon after fertilization). In chronic progressive external 

ophthalmoplegia (CPEO) (Moraes et al., 1989) – a peculiar form of myopathy with the defining 

features of ophthalmoplegia and ptosis - Δ-mtDNAs are found only in muscle (implying that the 

deletion event occurred after fertilization in the muscle lineage of mesoderm). In Pearson’s 

syndrome (Pearson et al., 1979), which is characterized by sideroblastic anemia and exocrine 

pancreas dysfunction, Δ-mtDNAs are initially abundant in hematopoietic cells. Patients with 

Pearson’s syndrome who survive their anemia often develop KSS as teenagers: as the Δ-mtDNA 

load declines in blood (a rapidly dividing tissue), the Δ-mtDNA load increases in more terminally 

differentiated tissues (for example, in the muscles or brain). This phenomenon demonstrates two 

other features of mitochondrial genetics: first, the different thresholds for dysfunction in different 

tissues and the autonomy of mitochondrial division (and mtDNA replication), even in completely 

differentiated cells. 

 

1.2.8 Mendelian hereditary mitochondrial diseases 

Mendelian mitochondrial diseases are due to mutations of several mitochondrial genes that are 

encoded by nuclear DNA. These alterations are typically divided into two subclasses of 

pathologies: first, mutations that affect electron transport chain genes, and second, alteration of 

nuclear genes indirectly associated to OXPHOS (i.e. iron metabolism and mitochondria 

dynamics). 

 

 Structural components of the respiratory chain. 

Complex I (Leigh's syndrome, Leukodystrophy, myoclonus). 

Complex II (Leigh's Syndrome, Hereditary Paragangliomas). 
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Synthesis of coenzyme Q (Ataxia, myoglobinuria, seizures). 

 

 Factors controlling OXPHOS or mtDNA metabolism. 

SURF1 (Leigh's Syndrome). 

SCO1 (infantile encephalomyopathy). 

SCO2 (infantile cardiomyopathy). 

COX10 (infantile encephalomyopathy). 

COX15 (cardiomyopathy). 

DGUOK (mitochondrial DNA-depletion syndrome, hepatocerebral form). 

TK2 (mitochondrial DNA-depletion syndrome, myopathy). 

POLG1 (progressive external ophthalmoplegia, Alpes syndrome). 

BCSI disorder (infantile encephalomyopathy, tubulopathy, hepatopathy). 

Twinkle helicase. 

Thymidine Phosphorylase (Mitochondrial Neuro-Gastro-Intestinal Encephalomyopathy, MNGIE). 

 

 Factors indirectly correlated to OXPHOS. 

OPA1 (dominant optic atrophy) 

Frataxin (Freidreich's Ataxia) 

Paraplegin (hereditary spastic paraplegia) 

Tim 8/9 transporters (X-linked deafness-dystonia syndrome) 

 

1.2.8 Mitochondrial dysfunction related pathologies 

 Neurodegenerative disorders. 

1. Parkinson's disease (PD). 

PD is the most common movement disorder and is characterized primarily by the loss of 

dopaminergic neurons in the substantia nigra pars compacta leading to a dopamine deficit in the 

striatum. The consequent dysregulation of basal ganglia circuitries explains the most prominent 

motor symptoms, including rigidity, resting tremor and postural instability. Little is known about 

the etiopathogenesis of PD. Accumulating evidence suggests that PD-associated genes directly 

or indirectly affect mitochondrial integrity, for example the MTPT compound (1-methyl-4-phenyl- 

1,2,3,6-tetrahydropyridine), an ETC complex I inhibitor, was found to induce Parkinson in 

humans (Davis et al., 1979; Langston et al., 1999). The most common sporadic form of PD 

seems to be an intricate multifactorial disorder with variable influences by environmental cues 

and genetic susceptibility. A major breakthrough in PD research was the identification of genes 

that are responsible for monogenic familial forms. Mutations in the genes encoding α-synuclein 



Introduction 

18 
 

and leucine rich repeat kinase 2 (LRRK2) are accountable for autosomal dominant forms of PD, 

apparently by a gain-of-function process. Increased α-synuclein expression as well as α-

synuclein deficiency may be associated with mitochondrial irregularities like ultrastructural 

abnormalities, impaired complex IV activity, reduced complex I/III activity and oxidation of 

mitochondria-associated metabolic proteins (Parihar et al., 2009; Song et al., 2004; Tabrizi et al., 

2000).  

Loss-of-function mutations in the genes encoding parkin and PINK1 mediate autosomal 

recessive PD. Sporadic and monogenic forms share important clinical, pathological and 

biochemical characters, notably the progressive demise of dopaminergic neurons in the 

substantia nigra (Winklhofer and Haass, 2009). Mitochondrial analyses carried out on tissues 

from parkin-mutant patients proved an important reduction in complex I activity both in patients 

with parkin mutations and sporadic PD patients, whereas complex IV activity was only impaired 

in sporadic PD patients (Mortiboys et al., 2008). Another report show how parkin mutant 

fibroblasts are characterized by a significant decrease in mtDNA copy number and an increased 

vulnerability to oxidative stress-induced mtDNA impairment (Rothfuss et al., 2009). The 

consequences of PINK1 deficiency on mitochondrial function and morphology are 

multidimensional, including decreases in mitochondrial membrane potential, complexes I and IV 

activities, ATP production and abnormal ultrastructural mitochondrial morphology (Gautier et al., 

2008; Gegg et al., 2009; Wood-Kaczmar et al., 2008). 

2. Alzheimer’s disease (AD). 

AD is the most common cause of dementia in elderly people. Epidemiologic studies show that 

ADonset has a prevalence of 7-10% in >65 years and 50-60% among >85 years old subjects 

(Martin, 2012). The greatest number of AD cases are due to sporadic events, even though 

mutations in amyloid precursor protein (APP) have been reported to be associated with some 

familial episodes. APP is highly expressed in the brain and it is able to bind to the outer 

mitochondrial membrane, specifically to the OMM transporter 40 (TOMM40) and IMM transporter 

23 (TIMM23). When overexpressed in cultured cells, APP inhibits mitochondria import machinery 

resulting in bioenergetic dysfunctions (Anandatheerthavarada et al., 2003). In postmortem 

human brain samples, APP variants were found to be associated with mitochondria from the AD 

brain but not mitochondria from control brain (Caspersen et al., 2005; Devi et al., 2006). High 

mitochondrial APP levels mirror deficiencies in respiratory chain subunit levels and activity and 

enhanced ROS production (Devi et al., 2006). In addition, APP transgenic mouse model present 

Aβ was also found to be associated with mitochondria isolated from cerebral cortex (Manczak et 

al., 2006). 

3. Amyotrophic lateral sclerosis (ALS). 
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The etiology of motor neuron degeneration in ALS need to be better understood, even though it 

is believed that ALS is a multifactorial and multisystem pathology. A number of studies in 

humans and animal models suggest that mitochondria are involved in the progression of the 

neurodegenerative process. Specifically, mitochondria morphology and physiology have been 

demonstrated to be affected already in the early phases of ALS onset (Bruijn et al., 2004; 

Manfredi and Xu, 2005). Approximately 10–20% of the cases are familial whereas the majority of 

them are sporadic. Among the familial cases, the most common disease-causing mutations are 

found in the copper–zinc superoxide dismutase (SOD1) gene (Rosen, 1993). In G93A Sod1 

transgenic mice, cytosolic release of mitochondrial cytochrome c was observed and levels of 

pro-apoptotic proteins Bad and Bax were upregulated. On the other hand, anti-apoptotic proteins 

Bcl-2, Bcl-xL and XIAP were decreased (Guegan et al., 2001). Data suggest that mutant Sod1 

can also sequester anti-apoptotic protein Bcl-2, reduce mitochondrial membrane potential, and 

trigger cytochrome c release from mitochondria (Pasinelli et al., 2004). In addition, caspase-1 

and caspase-3 were found to be sequentially activated in motor neurons and astrocytes in G93A 

Sod1 mice, as well as in G37R SOD1 and G85R Sod1 mice (Li et al., 2000; Pasinelli et al., 

2000). 

 

 Type 1 and type 2 diabetes. 

Mitochondrial dysfunction as a contributing factor in the onset of type 2 diabetes (T2D) represent 

a hot-topic in preclinical and clinical research (Patti and Corvera, 2010). Although the primary 

cause of this disease is unknown, it is clear that insulin resistance plays an early role in its 

pathogenesis and that defects in insulin secretion by pancreatic β cells are instrumental in the 

subsequent progression to hyperglycemia. Indeed, several lines of evidence indicate that insulin 

resistance is an early feature of T2D. Petersen et al. found that in comparison with matched 

young controls, healthy lean elderly subjects had severe insulin resistance in muscle, as well as 

significantly higher levels of triglycerides in both muscle and liver (Petersen et al., 2004). These 

changes were accompanied by decreases in both mitochondrial oxidative activity and 

mitochondrial adenosine triphosphate (ATP) synthesis. These data support the hypothesis that 

insulin resistance in human skeletal muscle arises from defects in mitochondrial fatty acid 

oxidation, which in turn lead to increases in intracellular fatty acid metabolites (fatty Acyl-CoA 

and diacylglycerol) that disrupt insulin signaling (Lowell and Shulman, 2005). Insulin resistance 

in healthy aged individuals with no family history has been correlated with a decline in 

mitochondrial oxidative phosphorylation (Petersen et al., 2004). The expression of a number of 

genes involved in oxidative metabolism is reduced in diabetic subjects as well as in those 

predisposed to diabetes because of family history (Mootha et al., 2003b; Patti et al., 2003). In 
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addition, in comparison with insulin-sensitive controls, the insulin resistant subjects were found to 

have a lower ratio of type I to type II muscle fibers. Alternatively, the reduction in mitochondrial 

oxidative phosphorylation activity in insulin-resistant individuals could be due not to mitochondrial 

loss but rather to a defect in mitochondrial function, hypothesis supported by muscle biopsy 

studies (Kelley et al., 2002; Vondra et al., 1977). 

Because obese individuals have also been shown to have smaller mitochondria with reduced 

bioenergetic capacity compared with lean controls (Kelley et al., 2002), the mitochondrial 

abnormalities in these subjects might be related to obesity rather than to insulin resistance. 

Although insulin secretion is also modulated by a number of stimuli that operate outside this 

pathway, it is clear that oxidative mitochondrial metabolism is central to glucose-stimulated 

insulin secretion (Maechler and Wollheim, 2001). The critical role of mitochondria is evident from 

the rare hereditary disorders in which diabetes with β cell dysfunction has been traced to specific 

mutations in the mitochondrial genome (Maassen et al., 2004; Maechler and Wollheim, 2001). 

Given the central role of mitochondria in glucose sensing, it is possible that decreased 

mitochondrial function in β cells might predispose individuals to develop β cell dysfunction and 

T2D. These associations of mitochondrial dysfunction with human degenerative disease raise 

the basic question of how mammalian cells control mitochondrial biogenesis. It has become 

increasingly apparent that transcriptional mechanisms contribute to the biogenesis of 

mitochondria including the expression of the respiratory apparatus. 

 

1.3 RNA metabolism and RNA binding proteins 

Till 15 years ago, RNA was considered a set of macromolecules that served as a template, in the 

form of mRNA, or scaffold and structural molecules, in the form of tRNA and rRNA, for protein 

synthesis. The intensifying development of large scale genomic next generation sequencing 

(NGS) and modern protein mass spectrometry technologies helped researchers to shed light on 

the large number of mechanism that control RNA metabolism after genomic transcription (Hafner 

et al., 2010a, b; Konig et al., 2012; Mann, 2006). Post-transcriptional gene regulation is carried 

out by a complex machinery made up by RNA binding proteins (RBPs) and non-coding RNA 

sequences (ncRNAs), also referred to as RNA operon (Kapranov et al., 2007; Rinn and Chang, 

2012). The interest in this multi-step process is raised in the last few years given its regulatory 

activity of fundamental pathways as energy metabolism, cell cycle and cell differentiation, to 

name a few, but also for the potential as future therapeutic target of its components. 
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1.3.1 mRNA splicing 

Pre-mRNA (messenger RNA) splicing is the process of removing introns from pre-mRNA and 

ligating together exons to produce a mature mRNA, which is the template for protein translation. 

Pre-mRNA splicing is the second regulatory step of mRNA metabolism and expression after 

RNA transcription, in fact more than 90% of human genes undergoes alternative splicing (AS) 

events (Scotti and Swanson, 2015). In eukaryotes, introns represent almost 95% of pre-mRNA 

sequence and the removal of these large sequences is completed by the splicing machinery in 

almost all cases before the mRNA can be transferred out of the nucleus (Mattick and Gagen, 

2001). Given the great importance of this process and the large number of proteins and non-

coding RNAs that take part to it, it is not surprising that almost 15% of human diseases are 

characterized by splicing mis-regulation. Among the others, the most important are retinitis 

pigmentosa, myotonic dystrophy, spinal muscular atrophy, and chronic lymphocytic leukaemia 

and myelodysplasia (Scotti and Swanson, 2015). Defects in pre-mRNA splicing can be divided 

into four different categories, based on two criteria. First, the mutation could affect gene 

expression by disrupting a splicing cis-element, or in trans on multiple genes by disrupting a 

splicing machinery member. Second, the mutation could cause aberrant splicing (expression of 

unnatural mRNAs) or aberrant splicing misregulation (the inappropriate expression of natural 

mRNAs) (Faustino and Cooper, 2003). 

Pre-mRNA splicing is catalyzed by the spliceosome, a huge nuclear ribonucleoprotein (RNP) 

complex that contains five small nuclear RNAs (snRNAs, U1, U2, U4, U5 and U6) that interact in 

a step-wise manner with more than 170 proteins, of which the most part are RBPs with specific 

RNA recognition motifs (RRM) (Zhang et al., 2013). Through AS events, pre-mRNAs can be 

processed to produce “mRNA isoforms” with diverse stability and/or coding potential. This 

enables the eukaryotic cell to control proteins synthesis in a quantitative way and to synthesize 

different proteins with qualitatively distinct functions and guaranteeing a high efficient extension 

of gene expression machinery (Nilsen and Graveley, 2010). On the other hand, the depth of the 

complexity of the RNA operon have yet to be fully understood. A major challenge is given by the 

presence of multiple possible interactions involved in the control of AS and the great specificity of 

all these interactions. For instance, a single RBP can bind different RRMs and, vice versa, a 

single RRM can be recognized by different RBPs or different isomers. Further, the distance of a 

RRM from a regulated exon controls the positive and the negative mechanism of action of a 

specific RBP. So far, different in silico models have been developed trying to predict alternative 

splicing outcomes, but the wide cellular composition of tissues and the great variability of 

possible interactions between RBPs and RRMs described above represent an important 

limitation to these kind of studies (Min et al., 2015). Making the whole process more complicated 
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is that spliceosome assembly seems to be finely regulated by the specific localization of RRM in 

respect to exons and introns. In fact, AS is typically controlled by numerous cis-regulatory RNA 

elements that serve as both splicing enhancers or silencers. On the basis of their locations and 

activities, these splicing regulatory elements (SRE) are classified in four different categories: 

exonic splicing enhancers (ESE), intronic splicing enhancers (ISE), exonic splicing silencers 

(ESS) or intronic splicing silencers (ISS) (Matlin et al., 2005; Wang and Burge, 2008). In addition, 

human introns, which consist of hundreds of kb (~5kb on average), contain numerous ‘decoy’ 

splice sites (that is, sequences that have a similar degree of consensus matching to authentic 

sites) (Sun and Chasin, 2000). Despite these prevalent decoy sites, splicing occurs with high 

fidelity as well, suggesting the existence of additional regulatory circuits to intronic-exonic 

sequence signals, maybe directed by non-coding RNAs. 

Splicing events seems to be horizontally involved in many biological processes. Certainly, the 

most relevant is cell differentiation, even though recent studies start to highlight the importance 

of splicing events in cell cycle regulation and energy metabolism as well (Liu et al., 2012; Ravi et 

al., 2015). Given its impact on energy metabolism and the fine regulation of its differentiation in 

both embryonal stages and adulthood, skeletal muscle is one of those tissues whose physiology 

is highly regulated by RNA splicing events (Cardinali et al., 2016; Wei et al., 2015). In addition, 

AS is necessary for the proper commitment of skeletal muscle precursors to the proper 

differentiated phenotype, as striated muscle, smooth muscle and cardiac muscle (Gils et al., 

2013; Yang et al., 2014). 

 

1.3.2 Nuclear export and cytosolic fate of mRNA 

After processing passages, mRNA is ready to be exported to the cytoplasm where it will be used 

as a template for protein synthesis. Until few years ago, mRNA export was considered one of the 

few constitutive steps of mRNA pathway to ribosomes, but it is now widely recognized that 

mRNA can be transferred from the nucleus to cytoplasm in both aspecific or specific fashion 

(Wickramasinghe and Laskey, 2015). mRNA nuclear export is controlled by the nuclear pore 

complexes (NPCs), which interact with the RNA export factors NXF1/p15 complex through a 

phenylalanine-glycine (FG) domain and the transcription-export complexes TREX and TREX2 

(Bachi et al., 2000; Wickramasinghe et al., 2009). The formation of nuclear ribonucleoprotein 

complexes for mRNA export is thought to happen in specific nuclei loci, the nuclear speckles. 

This notion could suggest that the formation of nuclear export complexes already occurs during 

mRNA splicing and processing. As a proofof this, the selective deletion of NXF1 leads to polyA 

mRNA accumulation in this structures, as well as TREX2 scaffold protein germinal centre-
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associated nuclear protein (GANP) knock-out (Wickramasinghe et al., 2014; Wickramasinghe et 

al., 2009). Once in the cytoplasm, mRNA is released from the RNP complex by the collaboration 

of the ATP dependent RNA helicase DBP5 and its cofactors, the mRNA export factor 

nucleoporin GLE1, small signalling molecule inositol hexakisphosphate (InsP6) and cytoplasmic 

nuclear pore complex protein NUP214 (von Moeller et al., 2009). Several studies suggest that 

cytoplasmic remodelling of mRNPs by NUP214 is crucial in imposing mRNA export directionality 

and setting up mRNA for translation (Hodge et al., 2011; Weirich et al., 2006). Evidences show 

that mRNA export in mammals can be a selective process. Diverse biological processes, 

including DNA repair, maintenance of stemness, gene expression, stress responses and cell 

differentiation can be regulated by selective mRNA export, and the large part of this selectivity 

seems to be mediated by components of the TREX and TREX2 complexes (Wang et al., 2013; 

Wickramasinghe et al., 2014).  

Once in the cytoplasm, mRNA is bound by translation initiation factors and translated into 

proteins. Nevertheless, due to its great impact on translation rate, mRNA cytosolic half-life is 

finely regulated by the activity of a large number of RBPs and non-coding RNAs (Gong and 

Maquat, 2011; Valencia-Sanchez et al., 2006). mRNA degradation is in competition with mRNA 

translation, since the mRNA that is not engaged by ribosomes is sequestered to specific 

structures, also referred to as P-bodies and stress granules, where it is degraded (Decker and 

Parker, 2012). A large amount of data indicates that posttranscriptional regulation of mRNA half-

life is necessary for the proper response to many cellular cues such as inflammation, energy 

metabolism and cell differentiation. Like the other members of this family, RBPs involved in 

mRNA degradation show a great affinity to specific mRNA sequences. The best-known cis-

element is AU-rich elements (AREs) localized in the 3′UTR that is bound by at least four ARE-

binding proteins (ARE-BPs). These proteins include HuR, ARE RNA binding protein 1 (AUF1), 

KH-type splicing regulatory protein (KSRP) and Tristetraprolin (TTP; also known as Zfp36). 

While HuR stabilizes ARE-containing mRNAs, other decay enzymes catalyze ARE-mediated 

mRNA decay (Uehata and Akira, 2013). In this context, one of the most posttrascriptionally 

regulated processes is the intracellular iron homeostasis. TTP is induced by iron deficiency and 

required for the survival of mammalian cells in low-iron conditions (Bayeva et al., 2012). TTP 

binds to AU-rich elements (AREs) in the 3’UTR of their target mRNA, recruiting DExD/H-box 

helicase 1 (Dhh1) RNA helicase, mRNA de-capping, and degradation (Pedro-Segura et al., 

2008). Among the main targets of TTP there are genes coding for proteins that need iron for their 

function such as lipoic acid synthase (Lias), but also enzymes belonging to TCA cycle including 

citrate synthase 1, mitochondrial aconitase 1, α-ketoglutarate dehydrogenase, succinate 

dehydrogenase 2 and 4 subunits, and mitochondrial fumarase 1. Moreover, TTP binds to the 
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mRNAs encoding some electron transport chain (ETC) subunits, including cytochrome C oxidase 

and ubiquinol cytochrome C reductase are degraded by TTP (Bayeva et al., 2013). 

 

1.4 Skeletal muscle  

Skeletal muscle is a highly dynamic tissue that represent almost 50% of total body weight in 

human adults. Human body accounts for 650 different skeletal muscles that, along with skeleton, 

control and sustain body movements. Nevertheless, skeletal muscle is involved in several 

systemic processes that do not concern only motility. In fact, it is now well known that skeletal 

muscle is fundamental for energy metabolism homeostasis and represent an important 

endocrine tissue producing molecules, .referred to as myokines (Pedersen and Febbraio, 2012). 

Furthermore, skeletal muscle is responsible for 85% of postprandial insulin dependent glucose 

uptake from the blood stream and it is responsible for ≈30% of the resting metabolic rate in adult 

humans (DeFronzo et al., 1981; Zurlo et al., 1990). It serves as an important stock site for 

glycogen as well, with an accumulation capacity ≈4 folds higher than the liver, while physical 

exercise can induce muscular glucose uptake in an insulin independent manner rising the 

expression and the translocation to the plasma membrane of the glucose transporter Glut4, 

increasing up to 100 fold the energy substrates utilization (Richter and Hargreaves, 2013). 

Skeletal muscle is also referred to as striated muscle and it is one of the three muscle types 

present in mammals, the others being cardiac muscle and smooth muscle. Unlike cardiac 

muscle and smooth muscle, skeletal muscle responds to voluntary stimuli of somatic nervous 

system. Skeletal muscle fibers, that consist of many multinucleated muscular cells, also referred 

to as myotubes, are surrounded by a tiny layer of connective tissue, the endomysium, while 

myofibers are enclosed in the perimysium and single muscles are surrounded by the epimysium, 

respectively(Turrina et al., 2013). Microscopically, skeletal muscle is organized by cytoskeleton 

structures mainly made up by myosin and actin, which are arranged in repetitive units, named 

sarcomere. The interactions of myosin and actin are responsible of skeletal muscle contraction. 

Mammalian skeletal muscle is a heterogeneous set of fibers types characterized by the 

expression of different myosin heavy chain (MyHC) isoforms and by diverse metabolic patterns 

(Schiaffino and Reggiani, 2011).Specifically, adult skeletal muscle comprehends slow-twitch 

oxidative fibers (red fibers) and three types of fast-twitch glycolytic fibers (white fibers). MyHC1β 

is a marker of slow-twitch fibers, which are very rich in mitochondria and myoglobin, given their 

high oxidative metabolic rate. On the other hand, MyHC2A and 2X in humans and 2B in rodents 

are expressed in fast-twitch fibers that mainly rely on glycolytic and anaerobic metabolism 

(Schiaffino and Reggiani, 2011). From a functional point of view, oxidative red fibers are 
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responsible for prolonged and mild physical activity, whereas white fibers are generally active 

during fast and intense physical effort. The percentage of different fibers in skeletal muscles is 

determined during embryonic development, as proof of skeletal muscle plasticity, and it can be 

modulated during adulthood by different cues, as physical exercise, cold exposition and by 

physiological conditions as blood flow and energy substrates availability (Egan et al., 2013). 

 

1.4.1 Skeletal muscle development 

Skeletal muscle stem cells (MuSC) are responsible for skeletal muscle development during 

embryonic life (Mokalled et al., 2012; Yin et al., 2013).  In the somites, MuSC proliferate and 

express myogenic determination and differentiation factors that start the formation of early 

skeletal muscle of the trunk and the limbs. The most relevant transcription factors involved in the 

regulation of skeletal muscle development are Pax3, Pax7, Myf5, Mrf4, Myod1 and Myogenin 

(MyoG), whose different temporal and spatial expression is fundamental for proper development 

of the tissue (Buckingham et al., 2003; Buckingham and Rigby, 2014). Pax3 is expressed in 

presomitic mesoderm and throughout the epithelial somite, on both sides of the neural tube, 

before becoming restricted to the dermomyotome. It is necessary for the proliferation and 

survival of uncommitted myogenic progenitors. On the other hand, Pax7 is expressed in the 

central domain of dermomyotome where it controls both muscle progenitor proliferation through 

direct interaction with Pax3 and myogenic specification factors (Buckingham and Relaix, 2015; 

Seale et al., 2000). In the epaxial domain of somites, Pax3/Pax7 complex activates Myf5. Here, 

Myf5 upregulates Myod1 and Mrf4 expression, inducing the migration of myogenic progenitors 

from the dermomyotome to the underlying myotome and more distal limbs, starting the 

differentiation to trunk muscles and skeletal muscles. Subsequently, the central dermomyotome 

loses its epithelial structure and different populations of progenitor cells differentiate and 

proliferate, providing a cell reserve for muscle growth during development and maintenance 

during adulthood (Deries and Thorsteinsdottir, 2016).  

Adult skeletal muscle is featured by high regenerative capacities. After injury or exercise, large 

numbers of newly formed muscle fibers are generated within few days as a result of expansion 

and differentiation of the self-renewing pool of satellite cells, which probably derive from a sub-

population of embryonic progenitors (Charge and Rudnicki, 2004; Dumont et al., 2015; Peault et 

al., 2007). Normally, satellite cells are mitotically quiescent and reside in specific niches beneath 

the basal lamina of muscle fibers. Upon regeneration, satellite cells are activated, and give rise 

to daughter myogenic precursor cells. After several rounds of proliferation, precursor cells 

contribute to the formation of new muscle fibers. During cell division, a little population of 

myogenic precursor cells stays into quiescence as self-renewal process (Motohashi and 
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Asakura, 2014). Given the great importance of satellite cell pool for muscle regeneration and 

maintenance, muscle precursor cells are characterized by relevant heterogeneity. Recent 

findings defined at least three different myogenic progenitor types: (i) Pax7+ cells that maintain 

progenitor pool, (ii) Myod1+ myogenic cells that have entered the myogenic program, and (iii) 

Myogenin+ myocytes partially differentiated and primed for fusion with existing or newly formed 

myotubes (Tierney and Sacco, 2016). 

Recent findings indicate that RNA-binding proteins play key roles in regulating gene expression 

during skeletal muscle differentiation both in vitro and in vivo. Furthermore, several RBPs are 

even mutated or in some way altered in patients with specific forms of muscular dystrophy. The 

best-characterized RBPs in skeletal muscle biology are human antigen R (HuR), KH-type 

splicing regulatory protein (KSRP), CUG-binding protein 1 (CUGBP1), poly (A)-binding protein 1 

(PABPN1), Lin-28, TTP and Muscleblind-like splicing regulator 1 (MBNL1) that all influence 

different stages of myogenesis (Thornton et al., 2006). HuR activity in skeletal muscle is primarily 

controlled through its compartmentalization that is mediated by the nuclear import receptor 

transportin 2 (TRN2). HuR is almost exclusively localized into the nucleus in myoblasts, but right 

after differentiation induction it accumulates in the cytoplasm (Figueroa et al., 2003). Upon 

differentiation, HuR is cleaved by caspases and generates a 24 kDa inhibitory polypeptide, which 

binds to TRN2 and blocks the import of HuR in the nucleus. This leads to the cytoplasmic 

accumulation of full-length HuR and subsequent stabilization of MyoD and myogenin mRNAs 

and increase of the relative proteins (Beauchamp et al., 2010). In addition, evidences suggest 

that HuR could lead to cell cycle withdrawal and subsequent induction of myogenesis (Guo et al., 

1995). Analogously to HuR, CUGBP1 leads to mRNA stabilization of p21 and Cyclin D1 mRNAs 

leading to cell cycle exit and myogenic program start (Salisbury et al., 2008). On the other hand, 

KSRP counteracts HuR activity repressing myogenic mRNAs stability during myoblast 

proliferation, while its phosphorylation leads to the decrease of its binding affinity to mRNA and 

skeletal muscle differentiation (Briata et al., 2005). Finally, less is known about the myogenic role 

of TTP, even though data indicates that it is rapidly induced after muscle injury, suggesting a key 

role of this protein in the myogenic program (Sachidanandan et al., 2002). 

 

1.4.2 MuSC and aging 

Multiple rounds of asymmetric division have been demonstrated to cause the gradual loss of 

quiescent MuSC pool observed in aged subjects. During aging, satellite cell number decreases, 

resulting in attenuation of muscle regeneration capacity and loss muscle mass (also referred to 

as sarcopenia) (Fig. 1.7). Gradual loss of muscle function has a detrimental impact on individual 
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health and lifespan, showing a prevalence between 5-13% among 60-70 years old people and 

11-50% after the age of 80 (Morley, 2008). In addition, it has been demonstrated that sarcopenia 

has huge costs for the healthcare system, reaching $18 billion in 2000 in US (Janssen et al., 

2003). 

 

 

Fig. 1.7 Role of skeletal muscle stem cells or satellite cells (MuSC) in adult skeletal muscle. MuSC are quiescent cells 

activated by different extrinsic cues as physical exercise or injury. MuSC, as well as activated cells, present specific 

intrinsic factors that control their faith, as epigenetic marks and gene expression patterns. During aging, extrinsic and 

intrinsic changes bring to altered self-renewal capacity and senescence of these cells leading to skeletal muscle 

weight and strength loss (Blau et al., 2015). 

 

Both intrinsic and extrinsic alterations have been associated to the alteration of skeletal muscle 

physiology during aging. After myofiber damage, extrinsic factors as cytokines and growth 

factors activate MuSC and favor skeletal muscle repair (Arnold et al., 2015; Kang et al., 2008). 

Simultaneously, MuSC undergo multiple rounds of self-renewing divisions that are essential to 

their function in regeneration (Bosnakovski et al., 2008; Cerletti et al., 2008; Kuang et al., 2007). 

In physiological conditions, feedback mechanisms ensure that asymmetric self-renewing 

divisions yield sufficient numbers of fusion-competent muscle progenitor cells that contribute to 

myofiber repair, and quiescent cells that serve as a bulk for subsequent skeletal muscle 

regeneration rounds (Chakkalakal et al., 2012; Gopinath et al., 2014). In aged muscles, self-

renewal signals diminish and pro-inflammatory and fibrogenic pathways are upregulated and 
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persistent, causing aberrant MuSC activation and loss of quiescence. By elderly ages, a 

subpopulation of aged MuSC become senescent. 

Less is known about the intrinsic factors that control MuSC self-renewal cycles and transition to 

senescence. New isolation methods are opening unknown perspectives on the molecular 

mechanism beneath quiescence loss that lead aged satellite cells to lose their ability to 

coordinate muscle regeneration (Cosgrove et al., 2014; Price et al., 2014). Recent findings 

suggest that intrinsic-dependent entrance in senescence depends on important signaling 

pathways that orchestrate cell cycle and differentiation, as aberrant and cell-autonomous 

activation of the stress-associated p38α/β mitogen-activated protein kinase (MAPK) signaling 

axis, the growth factor-stimulated FGFR–Sprouty1 signaling axis, the cytokine-stimulated Jak2–

Stat3 signaling axis, and p16Ink4a–Rb cell cycle inhibitors (Cosgrove et al., 2014; Price et al., 

2014; Tierney et al., 2014). p38α/β MAPK and Jak2–Stat3 signaling axes can inhibit MuSC self-

renewal by contrasting cell cycle progression and promoting myogenic differentiation increasing 

the expression of commitment genes such as Myod1, which is in fact activated in aged skeletal 

muscle (Sakuma et al., 2008; Tierney et al., 2014). Moreover, aberrant p38α/β activity 

suppresses Pax7 expression through repressive chromatin modifications, leading to impaired 

balance of MuSC asymmetric self-renewal and pool, forcing the commitment of both daughter 

cells (Palacios et al., 2010; Troy et al., 2012). Further experiments demonstrated that a 

significant fraction of MuSC from aged and geriatric mice show a premature cellular senescence 

phenotype, caused by the aging-associated upregulation of the cell cycle inhibitor p16Ink4a. The 

resulting senescent cells are characterized by p16Ink4a and p21Cip1 expression and cell cycle 

arrest (Sousa-Victor et al., 2014). Principal molecules of energy metabolism have been also 

demonstrated to be key regulators of MuSC commitment and stemness reprogramming. Recent 

data demonstrate that mitochondrial dysfunction is an early hallmark of MuSC, while animals fed 

with nicotinamide ribonucleotide (NR), a precursor of nicotinamide adenine dinucleotide (NAD+) 

precursor, show increased lifespan and prolonged MuSC quiescence during aging. In addition, 

NR diet increased MuSC number and muscle function in aged mice, as well as in muscle 

dystrophic mdx mice (Zhang et al., 2016a). The great relevance of NAD+ for MuSC 

reprogramming has been also demonstrated in selective skeletal muscle SIRT1 knockdown, a 

NAD+ dependent enzyme (Ryall et al., 2015). SIRT1 ablation in skeletal muscle leads to histone 

H4 lysine 16 (H4K16) hyperacetylation and alteration of the myogenic program in SC. 

Furthermore, these mice display reduced myofiber size, impaired muscle regeneration, and 

derepression of muscle developmental genes (Ryall et al., 2015).These works belong to the 

mounting number of evidences that demonstrate how intrinsic factors tune MuSC response to 
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nutrients, and ultimately lifestyle, strongly influencing genome-proteome-metabolome functional 

interactions and determining disease via mitochondrial function and health.
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Skeletal muscle represents a large part of body weight in adult humans and its physiological 

roles span from movement generation to energy metabolism homeostasis. It is largely known 

that skeletal muscle is the primary site of glucose uptake and storage, but also one the most 

energetically active tissues with many mitochondria. Adult striated muscle maintenance and 

repair are sustained by the presence of skeletal muscle satellite cells (MuSC), or precursors, that 

in presence of specific extrinsic factors (i.e. cytokines, cold and physical exercise) quit 

quiescence and start asymmetric division prompting myocyte differentiation and skeletal muscle 

development (Tierney and Sacco, 2016).  

As the main site of energy production, mitochondria play a crucial role in many cellular 

processes. Metabolic transition during cell differentiation is required for proper cell commitment 

and development. In the last years, a large amount of data indicated that mitochondria burst is a 

necessary step for cell phenotype transition. In this regard, stem cell reprogramming 

corresponds to a shift to a more glycolytic metabolism and rounded, cristae-poor mitochondria, 

while cell differentiation pushes hyper-fusion and cristae formation of mitochondria to afford the 

large energy demand (Wanet et al., 2015; Xu et al., 2013b; Zhang et al., 2016b). Research in the 

field has suggested the existence of a tight relationship between energy metabolism regulation, 

mitochondrial activity and cell differentiation (Almada and Wagers, 2016; Ryall et al., 2015; 

Shintaku et al., 2016). In addition, recent results demonstrated that diet supplementation of a 

NADH precursor improves MuSC asymmetric division and skeletal muscle physiology in aged 

mice, supporting the idea that control of metabolic landscape is a key player of skeletal muscle 

maintenance and development (Ryall, 2013; Ryall et al., 2015). Nevertheless, the regulatory 

circuitries of mitochondrial functional changes that underlie metabolic transition of myoblasts to 

myotubes still need to be fully understood. For this reason, the identification of new mitochondrial 

and skeletal muscle differentiation regulators represents a possible strategy to shed light on the 

molecular relationships between these organelles and skeletal muscle precursors. In light of this, 

the goal of this project is to characterize a new mitochondrial regulator and dissect the molecular 

mechanism by which this factor controls metabolic reprograming during the first phases of 

skeletal muscle commitment and differentiation.  
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3.1 Mice 

C57BL6/J were purchased from Charles River (USA) and sacrificed fed at libitum after 2 weeks 

of maintenance. All experiments were conducted following the regulations of the European 

Community (Directive 86/609/EEC, Official Journal L 358, 18/ 12/1986 p. 0001-0028) and local 

regulations (e.g., Italian Legislative Decree n. 116 - 27/01/1992) for the care and use of 

laboratory animals. The Italian Ministry of Health approved the animal protocols of this study 

(ministerial decree n. 295/2012-A). 

 

3.2 Cell cultures 

C2C12 myoblasts (ATCC® CRL-1772™) were grown in complete media (DMEM supplemented 

of 10% fetal bovine serum, 2% glutamine, 2% pen/strep) at low confluency and normal growth 

condition (5% CO2 and 90% of humidity). The differentiation induction to myotubes in 24, 12 or 

6-well plates was performed growing cells till complete confluence, then switching complete 

media to differentiation medium (2% horse serum, 2% glutamine, 2% pen/strep). 

 

3.3 Cell transduction for gene over- and downregulation 

Zc3h10 overexpression was obtained using an adenoviral vector (Human Adenovirus Type 5 

dE1/dE3) carrying mouse Zc3h10 cDNA fused together with a Flag-tag to the N-terminal of the 

construct (Flag-Zc3) and under the control of a CMV promoter (Vector Biolabs, ADV-276549). As 

control, we used the same construct expressing the GFP under a CMV promoter (Vector 

Biolabs, 1768). For the experiments, Flag-Zc3h10 and GFP were overexpressed at a multiplicity 

of infection (MOI) of 5. On the other hand, Zc3h10 targeted silencing was performed by 

transducing cells with the adenoviral construct carrying a specific short hairpin RNA sequence 

under a U6 promoter (shADV-276549). As control, we used the same construct bearing a 

scrambled sequence (Vector Biolabs, 1122). Both construct were transduced at a MOI of 100. 

Cell transduction was performed following two different protocols (Fig 3.1). Briefly, in the pre-

differentiation protocol (red), cells were transduced 2 days before the differentiation induction; on 

the other hand, in the post-differentiation protocol (blue) myocytes were infected 2 days after 

differentiation induction. Cells were then collected for the readouts at 24, 48, 72 hours and 4 

days, respectively. 
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Fig 3.1. Experimental plan. The pre-differentiation protocol (red) was carried out transducing myoblasts 2 days before 

the differentiation induction, while in the post-differentiation protocol (blue) myocytes were infected 2 days after 

differentiation induction. The readouts were obtained at 24, 48, 72 and 4 days from the differentiation induction, 

respectively. We used a MOI of 5 for Zc3h10 overexpression and a MOI of 100 for shZc3h10 in both protocols. The 

same MOI was used for respective control sequences. 

 

3.4 Gene expression analysis 

Gene expression analyses were carried out through qPCR. Total RNA was obtained from C2C12 

cells and different mouse tissues and organs using silica column approach (NucleoSpin® RNA 

extraction kit, Macherey-Nagel, 740955.250). Briefly, we removed media and washed cells with 

ice-cold PBS. We proceeded lysing cells with 350µl of RA1 buffer supplemented of 1% β-

mercaptoethanol then adding 350µl of 70% ethanol. Cell lysates were then transferred to silica 

columns and spun 11000g for 30 seconds. After a wash step with MDB buffer, the extracts were 

treated with DNase for 15 min at RT. DNase was inactivated by adding 200µl RAW2 buffer and 

columns were spun 11000g for 1 minute. After two washes with RA3 buffer, total RNA was 

eluted from columns by adding 50µl of water. Total RNA amount was then quantified by UV 

spectrophotometry (NanoDrop 1000 Spectrophotometer, Thermo Scientific). Samples were then 

diluted to 5µg/µl and used for mRNA quantification. 

Specific RNA sequences were amplified and quantitated by qPCR, using iScriptTM One Step for 

Probes and iTaq Universal SYBR Green One-Step Kit for qPCR (Bio-Rad, CA, USA), following 

the manufacturer’s instructions. Experiments were performed in quintuplicate and repeated at 

least twice with different cell preparations. We calculated target mRNA levels comparing the 

target gene values with the houskeeping gene values. The qPCR protocol is composed of 40 
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cycles of amplifications, each consisting of a denaturation step at 95° C for 15 seconds and an 

annealing/extension step at 60° C for 60 seconds. The oligonucleotides used for qPCR were 

obtained from Eurofin MWG Operon (Ebersberg, Germany). qPCR primers sequences are 

reported below: 

 

 
fwd AGATGCAGCAGATCCGCAT 

36B4 rev GTTCTTGCCCATCAGCACC 

  probe CGCTCCGAGGGAAGGCCG 

 
fwd CCTACGAATGTAACTTGGCTCC 

Zc3h10 rev CTGCTCCAGAAGTACCTCATTG 

  probe AGTCTGCACTCAACCCCACGG 

 
fwd CACCCAGATGCAAAACTTTCAG 

Tfam rev CTGCTCTTTATACTTGCTCACAG 

  probe CCACAGGGCTGCAATTTTCCTAACC 

 
fwd GGATAAGGTGTTGCTCAAGTAC 

Mef2c rev GGGTGAGTGCATAAGAGGA 

  probe AACTCAGACATTGTGGAGGCATTGAAC  

MyoD1 fwd CGCTCCAACTGCTCTGATG 

  rev ACACAGCCGCACTCTTC 

Myog fwd AATGCACTGGAGTTCGGTC 

  rev ATGGTTTCGTCTGGGAAGG 

Slc25a37 fwd CATCTCCTGGTCCGTTTATGAG 

  rev TGCGAGAACAAGAGGATGAAG 

   

 

3.5 RNA immunoprecipitation for identification of target RNAs 

Myoblasts were cultured and transduced with eGFP or Flag-Zc3h10 at 25 MOI 48 hours before 

performing the experiment in 180cm2 flasks. At complete confluency, cells were resuspended in 

1000ul of RIP lysis buffer (50mM trisHCl pH 7.4, 150mM NaCl, 1mM EDTA, 1% NP-40), kept in 

ice for 20min and vortex frequently. We centrifuged samples at 10000g for 10min at 4°C and 

removed DNA and membranes pellet. We save supernatant in 2ml tubes. We saved 1/10 from 

each sample for total RNA input. We brought RIP samples to 1ml final volume with RIP lysis 

buffer. Meanwhile, 40µl of agarose-Flag Ab beads (Sigma Aldrich, A2220) were washed in 380µl 

of TBS and spun down at 8000g for 1min at 4°C. We resuspended the beads to 40µl with RIP 

lysis buffer and transferred 20µl of the solution to each RIP sample. We proceeded incubating 

samples through constant rotation for 2 hours at 4°C. We later transferred samples to fresh 

1.5ml tubes and centrifuged tubes at 8000g for 5 min at 4°C. Then, we extensively washed 
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beads with 1000µl of TBS-Tween 0.1% (5 min 10X). Before last wash, we saved 1/50 for IP 

western blot validation. Finally, we resuspended beads with 300µl of trizol for subsequent bound 

RNA isolation. Total RNA was subsequently quantified on 2100 Bioanalyzer (Agilent) and equal 

RNA amounts were used for the generation of polyA libraries and following RNA sequencing 

(Illumina HiSeq 2000). 

 

3.6 RNA metabolism analyses 

3.6.1 Total RNA sequencing 

Total RNA levels were assessed as previously described(Rabani et al., 2011; Schwanhausser et 

al., 2011). Briefly, dishes were immediately transferred on ice and cells were rinsed with ice-cold 

PBS and harvested in 10 ml of ice-cold PBS. RNA samples were eluted in 50µl of ddH2O, 

quantified by UV spectrophotometry and saved at -80°C. We then removed rRNA from total RNA 

samples by Ribo-Zero Magnetic Kit (Illumina, Mrzh116) following manufacturer’s instructions. 

100ng of all samples were finally used for cDNA libraries construction and next generation 

sequencing (Illumina HiSeq 2000). Assessment of differences between the two conditions was 

performed using DESeq2 software for total mRNA concentrations (RPKM). 

 

3.6.2 Microarray assay 

Microarray analysis for whole transcriptome analysis was performed using a MoGene 2.0 chip. 

Briefly, cells were differentiated for 2 days, then rinsed in 1 ml of ice-cold PBS. Total RNA was 

isolated as described above and 3µg of RNA were used for following analyses. 

 

RNA quality control Test: 

Total RNA concentration and purity was assessed by spectrophotometer (Nanodrop): 260/280 

and 260/230 ratios were evaluated. Total RNA integrity was assessed by Agilent Bioanalyzer 

and the RNA Integrity Number (RIN) was calculated. The RIN ranges from 1 (totally degraded 

RNA) to 10 (completely intact RNA). The quality of each sample was assured by a RIN ≥ 6 and 

visual confirmation of clear, distinct 28S and 18S rRNA peaks.  

 

Sample preparation: 

An aliquot (100 ng) of RNA was used for the preparation of targets for Affymetrix® MoGene 2.0 

ST arras, according to the Ambion WT Expression kit manual. Affymetrix® MoGene 2.0 ST 

arrays (which contain 41073 genes), were purchased from Affymetrix (Affymetrix, USA). The 

staining, washing and scanning of the arrays were conducted using the Fluidics 450 station, 
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Command Console Software and GeneChip® Scanner 3000 7G, generating .CEL files for each 

array (Affymetrix, USA). 

 

Data collection and data analysis: 

The images were scanned by Affymetrix GeneChip Command Console (AGCC) and analyzed 

with the Affymetrix GeneChip Expression Console. The quality control of the scanned data was 

first estimated by confirming the order of the signal intensities of the Poly-A and Hybridization 

controls using Expression Console Software (Affymetrix, USA). Raw expression values were 

imported as Affymetrix .CEL files into Partek Genomics Suite 6.6 (Partek Inc., MO, USA). Raw 

expression values from the Affymetrix MoGene 2.0 ST arrays were analyzed and normalized 

using Partek Genomics Suite 6.6, which includes the Preprocessing, Differentially Expressed 

Genes (DEGs) Finding and Clustering modules. A total of 9 .CEL files (4 .CEL files generated 

from CTRL samples and 5 .CEL files generated from Knock Down samples) were uploaded and 

normalized in PM (perfect match)-only conditions as a PM intensity adjustment. A Robust 

Multichip Analysis (RMA) quantification method was used as a probe set summarization 

algorithm for log transformation with base 2 (log2) and the Quantile normalization method was 

chosen to evaluate the preliminary data quality in the Preprocessing module, which functions as 

a data quality control through the Affymetrix Expression Console Software. The mean signal 

intensities of all genes were obtained using 2 array strips from each group. 

  

Differentially expressed genes (DEGs) analysis: 

DEGs clustering analysis was performed by using the Gene Set Enrichment Analysis (GSEA) 

software (Broad Institute, USA). To get an unbiased readout of the most represented clusters of 

genes, we interrogated all three gene ontology (GO) categories (molecular function, cell 

compartment and biological process) in the same analysis. 

 

3.7 Western blot 

Protein relative quantification analyses were carried out separating cell lysates on SDS-Page. 

Cells were first rinsed in ice-cold PBS and harvested from dishes. Later, they were transferred to 

1.5 ml tube and spun at 5000g for 3 min at 4°C. The pellet was then resuspended in 200µl of 

RIPA buffer (15 mM NaCl, 0.1% NP-40, 0.05% Na-deoxycholate, 5 mM Tris-HCl pH 8.0, 0.1% 

SDS), moved to ice and sonicated twice at 10% of power for 10 seconds. Later, cell lysates were 

spun again at 10000g for 5 min at 4°C. Cell debris pellet was discarded, and protein 

concentration was measured using BCA method (Thermo Scientific/Pierce BCA protein assay 

kit, 23225). Proper protein amount was than loaded on 10% or 12.5% SDS-Page. After gel run, 
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proteins were transferred to a nitrocellulose membrane at 200mA for 2 hours at RT, then blocked 

in 5% bovine serum albumin (BSA) for 1.5 hours at RT. Membranes were then incubated O/N at 

4°C with primary antibodies, previously resuspended in 0,1% TBS-Tween20 and 3% BSA. After 

extensive washes, membranes were incubated with HRP-conjugated secondary antibodies for 1 

hour at RT. After washing, membranes were finally incubated with ECL substrate for bands 

detection. Primary and secondary antibodies were diluted as follows: Zc3h10 1:1000 (Aviva 

systems biology, ARP60671_P050), Tfam 1:1000 (Aviva systems biology, ARP31400_P050), 

Oxphos cocktail 1:1000 (Abcam, ab110413), Myosin Heavy Chain Fast (MyHCFast) 1:1000 

(Monosan, Monx10807), Slc25a37 1:1000 (Aviva systems biology, ARP43968_P050), Hsp90 

1:500 (Santa Cruz Biotech., sc-7947), β-actin 1:5000 (Sigma Aldrich, A5441), Histone H3 1:1000 

(Upstate, 05-499), α-tubulin 1:1000 (Sigma Aldrich, T9026), Flag 1:5000 (Sigma Aldrich, F3165), 

α-mouse 1:5000 (Sigma Aldrich, A4416) and α-rabbit 1:2000 (Cell Signaling, 7074). 

 

3.8 Immunofluorescence (IF) analyses 

3.8.1 Evaluation of Zc3h10 protein expression levels 

IF analysis were performed on C2C12 myoblasts. After removing the media, cells were washed 

with ice-cold PBS and fixed with 1% paraformaldehyde for 15 min at RT. After 3 washes with 

Triton X100 1% in PBS, we unmasked the antigen incubating cells with 1N HCl at 4°C for 10 

min, then with 2N HCl for 10 min and finally with 2N HCl at 37°C for 10 min. Later, cells were 

treated with 0,1M sodium borate for 10 min at RT to low autofluorescence events. Cells were 

then blocked with 2% goat serum, 1% BSA, 0,1% tween20, 0,05% triton X100 in PBS for 2 hours 

at RT and finally incubated O/N at 4°C with Zc3h10 (1:250) primary antibody in PBS. After 

extensive washes, cells were then exposed to the goat anti-rabbit alexa fluor 488nm (Thermo 

Scientific, A-11008) secondary antibody (1:1000) for 1 hr at RT titrated. After extensive ice-cold 

PBS washes for 30 min, cells were finally incubated with DAPI (1:2000) in PBS for 10 min, 

washed with PBS for 5 min and mounted on glass slides with Permafluor (Thermo Scientific, TA-

030-FM) for confocal imaging. 

 

3.8.2 Fusion index analysis 

IF analysis were performed on 72 hours differentiated myotubes as describe above. Myotubes 

were incubated O/N at 4°C with MyHCFast (1:250) primary antibody in PBS. After extensive 

washes, cells were then exposed to the goat anti-mouse alexa fluor 635nm (Thermo Scientific, 

A-31574) secondary antibody (1:1000) for 1 hr at RT titrated. After extensive ice-cold PBS 

washes for 30 min, cells were finally incubated with DAPI (1:2000) in PBS for 10 min, washed 
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with PBS for 5 min and mounted on glass slides with Permafluor (Thermo Scientific, TA-030-FM) 

for confocal imaging. Fusion index was calculated as the ratio between the number of nuclei in 

MyHC+ fibers with 3 or more nuclei on total nuclei number in the field. 

 

3.8.3 Evaluation of Zc3h10 protein expression levels in human quadriceps 

6µm sections were obtained from adult human and 12 weeks, 6 months and 12 months old mice 

quadriceps. Slices were then fixed in 4% paraformaldehyde for 15 min at RT and extensively 

washed with PBS for 45 min. After blocking with 1% BSA and 0.1% triton X100, human and 

mouse slices were washed again with PBS for 15 min and labelled with Zc3h10 primary antibody 

(1:100) for 1.5 hours at RT. Human tissues were also co-labelled with fetal MyHC 1:100(Myosin 

heavy chain developmental, NCL-MHCd - clone: RNHY2-9D2, Leyca) and neonatal 

MyHC1:100(Myosin heavy chain neonatal, NCL-MHCn clone: WB-MHCn, Leyca). Samples were 

then washed again for 45 min with PBS, incubated with goat anti-rabbit alexa fluor 546nm 

secondary antibody for Zc3h10 and goat anti-rabbit alexa fluor 488nm secondary antibody for 

MyHCs, then washed again for 45 min with PBS and finally mounted on glass slides with 

Permafluor (Thermo Scientific, TA-030-FM) for confocal imaging. 

 

3.9 Subcellular fractionation for Zc3h10 localization 

C2C12 were grown in complete medium and then collected at different stages of differentiation 

for nuclei and cytosolic protein extraction. All centrifugations were performed at 4°C and samples 

were kept on ice throughout all the procedure. We rinsed and transferred cells from 10cm plates 

into 500μL fractionation buffer (250mM sucrose, 20mM HEPES pH 7.4, 10mM KCl, 2mM MgCl2, 

1mM EGTA, 1mM EDTA, protease inhibitor and 200mM DTT) by scraping. We passed cell 

suspensions through a 25-gauge needle 15 times using a 1 mL syringe and left them on ice for 

20 min. We centrifuged sample at 720g for 5 min and saved pellet as crude nuclei fraction while 

supernatant was the cytosolic fraction. Nuclear pellets were later resuspended and washedwith 

500μl of fractionation buffer before being passed through a 25-gauge needle other 15 times. 

Nuclear samples were centrifuge again at 720g for 10 min and pellet was saved nuclear fraction. 

The pellet was then resuspended in TBS with 0.1% SDS and sonicated20 sec at 10% to shear 

genomic DNA and homogenize the lysate. Finally, cytoplasmic fractions were spun at 10000g for 

5 min and supernatant were saved as cytoplasmic fraction. Samples were subsequently diluted 

1:2 with 2x SDS-Sample buffer (4% SDS, 10% 2-mercaptoehtanol, 20% glycerol, 0.004% 

bromophenol blue, 0.125M Tris HCl pH 6.8) and equally loaded on SDS-Page. 
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We interrogated cNLS Mapper software with a cutoff of 6.0 (Chatterjee et al., 2016) (http://nls-

mapper.iab.keio.ac.jp/cgi-bin/NLS_Mapper_form.cgi) to verify the existence of a putative nuclear 

localization signal within the entire Zc3h10 sequence. 

 

3.10 Steady state metabolic analyses by mass spectrometry (MS) 

Cells were differentiated for 48 hours in 10cm dishes. After saving 1/10 of cells for DNA 

quantification, cells were scraped in 5 ml of ice-cold PBS and centrifuged at 1000g for 3 min at 

4°C.Pellets were then resuspended in 250µl of D-Glucose-13C6 1ng/µl (internal standard, Sigma 

Aldrich, 389374) andmethanol/acetonitrile 1:1 and spun at 10000g for 3 min at 4°C. 

Derivatization for aminoacids quantification was performed by adding 50µlof5% phenyl 

isothiocyanate (PITC) in 31.5% EtOH and 31.5% pyridine. Briefly, samples were incubated with 

PITC solution for 20 min at RT, dried under nitrogen flow and resuspended in 2.5mM ammonium 

acetate in MeOH/H2O 1:1. 

For the quantification of different metabolic families, the MS analysis was performed with a flow 

injection analysis-tandem mass spectrometry (FIA-MS/MS) method. The identity of all 

metabolites was confirmed using pure standards. Methanolic samples were analyzed by a 5 min 

run in both positive (aminoacids) and negative (Acyl-carnitines and metabolites) ion mode with a 

268 multiple reaction monitoring (MRM) transition in positive mode and 88 MRM transition in 

negative mode, respectively. An ESI source connected with an API 4000 triple quadrupole 

instrument (ABSciex, USA) was used. The mobile phase was 0.1% formic acid in MeOH for FIA 

positive analysis and 5 mM ammonium acetate pH 7.00 in MeOH for FIA negative. MultiQuant™ 

software version 3.0.2 was used for data analysis and peak review of chromatograms. 

Semiquantitative evaluation of all metabolites was performed based on external standards and 

normalized data were analyzed by using MetaboAnalyst software (Xia et al., 2015; Xia and 

Wishart, 2011). 

 

3.11 Total and mitochondrial DNA quantification 

Total genomic and mtDNA were isolated using genomic DNA from tissues kit (Macherey-Nagel, 

740952.250). Briefly, samples were scraped from dishes or collected from metabolomic analyses 

as described above and spun at 1000g for 3 min at 4°C. Cells were then lysed in 200µl of buffer 

B3 at 70°C for 10 min. We subsequently added 210µl of 100% EtOH and transferred samples on 

silica columns. After spinning at 11000g for 1 min, samples were washed twice with BW and B5 

buffers and spun at 11000 for 2 min. Finally, samples were eluted in 70µl of RNase free water 

http://nls-mapper.iab.keio.ac.jp/cgi-bin/NLS_Mapper_form.cgi
http://nls-mapper.iab.keio.ac.jp/cgi-bin/NLS_Mapper_form.cgi
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and quantified by UV spectrophotometry. Total DNA was used to normalize metabolomics data, 

while qPCR analyses were performed to assess mtDNA levels. 

 

3.12 Oxygen consumption assessment 

Oxygen consumption analyses were performed by using a Clark type oxygen electrode 

(Hansatech, DW1 electrode chamber). Confluent, 2 days or 4 days differentiated C2C12 were 

rinsed in pre-warmed PBS (37°C) and resuspended in coupled respiration buffer (2% FFA-BSA, 

1mM Na-pyruvate, 25 mM D-glucose, 40 µg/ml digitonin) or electron flow buffer (2% FFA-BSA, 

10 mM Na-pyruvate, 2mM malate, 4µM carbonyl cyanide m-chlorophenyl hydrazine (CCCP), 

digitonin 40µg/ml). Samples were then transferred to the electrode chamber for the oxygen 

consumption rate measurement. After measuring basal respiration, uncoupled and maximal 

respiration were evaluated by adding 2.5mM oligomycin and 1mM CCCP, respectively. Complex 

I, II and IV activity was evaluated through the electron flow protocol. Once transferred into the 

chamber, CI activity was evaluated. After 10µM rotenone and 5mM succinate addition, we 

assessed complex II activity. We then added 100µM antimycin A and 20 mM/0.8 mM 

Ascorbate/N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD) to measure complex IV activity. All 

samples values were normalized on total protein content. 

 

3.13 C2C12 myoblasts transfection and co-transfection 

We transfected C2C12 myoblasts with a retro-transfection approach. First, we incubated 1.25µg 

of cDNA (pcDNA3 empty vector, Pgc-1α and Zc3h10) with Fugene6 (Promega, E2691) at 1:5 

µg/µl ratio in 50µl of DMEM media without antibiotics and serum. After 30 min, we added 100000 

cells resuspended in 50µl of DMEM media to each mix and incubated the solution for 40 min at 

RT. We finally added 900µlof complete media and seeded 100µl of transfection solution per well 

in black 96-well plates. Co-transfection of pcDNA3 empty vector, Pgc-1α and Zc3h10 with pTK-

luc or pTK-Tfam promoter-luc plasmids was performed as described above. We transfected 2µg 

of total DNA (2 parts of cDNA and 1 part of reporter plasmid) with lipofectamine 2000 (Thermo 

Scientific, 11668027) at 1:2.5 ratio µg/µl. 

 

3.14 ATP content measurement 

The ATP production was analyzed 60 hours after transfection of C2C12 myoblasts using a 

specific kit (Perkin Elmer, 6016941). Before assessing ATP levels, we set up the following 

solutions: 

1. Oligomycin 5 µM in serum free DMEM media  
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2. DMSO 5 µM in serum free DMEM media  

3. Standard curve solutions: ATP 50, 5, 0.5, 0.05, 0.005, 0.0005 µM in PBS  

4. ATP buffer solution 

We treated samples with solutions 1 or 2 at 37° C for 24 hours (100µl/well).We the aliquoted 

50µl of solution 4 in each well together with standard curve solutions. After 2 min of incubation at 

RT on orbital shaker, we measured luminescence (EnVision, PerkinElmer) to calculate cytosolic 

and total ATP production. Mitochondrial ATP was inferred from previous measurements. Data 

were normalized on total protein content. 

 

3.15 Tfam-promoter activity assay 

The Tfam promoter activity or the pTK-LUC was analyzed 24 hours after co-transfection of 

C2C12 myoblasts in 96 multi-well plates. We removed media and washed cells once with PBS. 

We then added 50ul of fresh Britelite solution prepared according the manufacturer’s instructions 

and incubated2 min before measuring luminescence intensity (Perkin Elmer, EnVision). Data 

were normalized on total protein content. 

 

3.16 Cell proliferation assay 

Cells were seeded at a density of 2 x 105 per well and incubated in complete media. Twenty-four 

hours later, cells were scraped and resuspended in 10ml of PBS or transfected with scramble or 

ShZc3h10 sequence. 500 µl of resuspended cells were used for cell count by Z2 beck man 

coulter and considered as blank. 30 hours and 60 hours later scramble and ShZc3h10 

transduced cells proliferation was analyzed as well. 

 

3.17 Iron quantification 

Intracellular ferric (Fe3+) and total iron content were evaluated through cytochemistry and 

spectrophotometry analyses. 

 

3.17.1 Ferric iron content assay 

Cells were first washed once with PBS and then fixed in 10% formalin for 15 min at RT. After 

fixation, samples were incubated with 20% hydrochloric acid and 5% potassium ferrocyanide 

(Prussian blue staining) for 30 min. Cells were then extensively washed under ddH2O. After 

microscopic analysis, ferric iron was quantified by using imageJ software ver. 1.6.0. 

 



Materials & Methods 

42 
 

3.17.2 Total iron content measurement 

Ferric iron and total iron levels were also measured as previously demonstrated (Riemer et al., 

2004). Samples were washed with PBS and lysed in 250µl 50mM NaOH. We proceeded by 

sonication at 20% for 10 sec and spinning at 5000g for 5 min. 100µl of each samples were 

equally loaded in 2 96-well plate wells. 50µl of 10mM HCl together with 12.5µl ferrous iron buffer 

(6.5 mM ferrozine (Sigma Aldrich, 160601) and 2.5 M ammonium acetate) or 12.5µl of total iron 

buffer (6.5 mM ferrozine, 2.5 M ammonium acetate, and 1 M ascorbic acid). Samples were 

incubated for 30 min and absorbance measured at 570nm. Iron concentration was obtained 

comparing absorbance values to a standard curve built with FeCl3 as follows: 

 

Standard 

# 

Volume of 1mM 

iron standard 

(µl, FeCl3) 

H20 (µl) Final volume in 

well (µl) 

Final iron 

concentration 

(nmol/well) 

1 0 300 100 0 

2 6 294 100 2 

3 12 288 100 4 

4 18 282 100 6 

5 24 276 100 8 

6 30 270 100 10 

 

3.18 Statistical analysis 

Statistical analyses were performed with Student’s t test or one-way ANOVA followed by 

Dunnett’s Post Test when necessary using GraphPadPrism version 6.0. 
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The mitochondrial regulators described so far act by modulating the expression levels of Tfam, 

either in a direct or indirect fashion. For this reason, the activation of Tfam promoter by a high-

throughput screening represents a good tool to identify new mitochondrial regulatory factors 

and/or pathways. To dissect new features of the genome, the Genomics Institute of the Novartis 

Research Foundation (GNF) developed technology to evaluate the role of genes in a high-

throughput manner in cell-based assays. Specifically, GNF assembled genome-wide cDNA and 

siRNA collections, arrayed them in 384-well format, also developing robotics/automation and 

procedures to manipulate and evaluate gene activity in transfected cells in a high-throughput 

screening (HTS) manner. 

In collaboration with the GNF, we used this technology to identify genes that modulate 

mitochondrial number and function. To this end, two cDNA libraries accounting for 70% of known 

genes (MGCv2, mouse and human; Origene, mouse and human) were overexpressed by 

transient transfection in HEK 293 cells. Single cDNAs were co-transfected with the reporter 

system described in Fig. 4.1, in order to evaluate their ability to control Tfam promoter activity. 

 

Fig. 4.1 Schematic representation of Tfam promoter reporter system. Luciferase cDNA was cloned downstream of 

Tfam promoter and used as readout in the primary HTS. 

 

As positive controls, we selected PGC-1α and SIRT1 cDNAs and Mybbp1a cDNA as negative 

control. Libraries were screened in duplicate and data were evaluated to select hits. A hit is 

considered if it regulated Tfam expression more than empty vector. The genomic HTS yielded 

441 clones able to induce and 300 clones able to reduce Tfam promoter activity (Fig. 4.2A). We 

then focused our attention on positive hits. Hence, we confirmed all 441 positive hits by 

analyzing mitochondrial function and density after their transient overexpression and flow 

cytometry analysis in a secondary screening.120 positive candidates were confirmed to 

modulate mitochondrial density and activity in HEK293 cells (Fig. 4.2B). 
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A      B 

 

 

Fig. 4.2 Scatter plot of HTS in HEK293. A) HEK293 were co-transfected with cDNA libraries and Tfam-promoter 

reporter system. From primary HTS, 441 positive hits and 300 negative hits were obtained. B) In the secondary 

screening, positive hits were confirmed in HEK293 cells by flow cytometry analyses after staining with Mitotracker 

Green and Mitotracker CM-H2X-ROS, two indicators of mitochondrial density and function, respectively. 

 

To narrow down the number of possible candidates, we selected those hits significantly 

expressed in skeletal muscle and C2C12 myotubes (Fig. 4.3A). This analysis was conducted 

interrogating the BioGPS database (The Scripps Research Institute, Ver. 2FDC271) and data 

previously obtained in our lab, respectively. In addition, we chose only those hits still not 

associated with mitochondrial physiology and belonging to different protein classes (Fig. 4.3B). 

From this analysis, we selected 20 candidates for further investigations in C2C12 myoblasts. 
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Fig. 4.3 Scatter plot of 21 selected hits. Hits were selected based on their expression levels in C2C12 cells and 

skeletal muscle, on their protein class and lack of association to mitochondrial physiology. 

 

The 20 candidates were transiently overexpressed in proliferating myoblasts. After 48 hours from 

transfection, cells we assessed oxygen consumption rate, as marker of mitochondrial activity, 

and mtDNA levels, as marker of mitochondrial density, to identify the most promising hit. The 

scatter plot in fig. 4.4 indicates that all 21 candidates increase both mitochondrial function and 

mitochondrial density compared to control and that the best hit is Zinc finger CCCH-type 

containing 10. Notably, Zc3h10 upregulates mitochondrial density more than 2.5 fold and 

mitochondrial function almost of 2 fold. For these reasons, we decided to better characterize the 

biological role of Zc3h10 and its impact on mitochondrial biology. 

 

Fig. 4.4 Scatter plot of the transiently transfected 21 most valuable hits in C2C12 myoblasts. MtDNA and basal 

respiration were used as parameters of mitochondrial density and function, respectively. All experiments were 

performed on three biological replicates. 
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5.1 Zc3h10 gene and protein sequences are highly conserved among 

different species 

We first analyzed human ZC3H10 gene by UCSC Genome Browser webtool (Human genome 

hg38). As shown in fig. 5.1, ZC3H10 is localized in chromosome 12 and consists of 3 exons and 

2 introns. The coding sequence (CDS) is present uniquely in exon 3 and in only one of the four 

alternative splicing isoforms. Alignment of vertebrates’ genomes demonstrates that human 

(h)ZC3H10 CDS sequence is highly conserved between different species. 

 

 

 

Fig. 5.1 UCSD Genome browser hZC3H10representation. From top to bottom, we analyzed gene structure, CDS 

sequence (CCDS8903.1), alternative splicing isoforms (NC_000012_1075) and sequence conservation among 8 

vertebrate species. 

 

We later characterized the gene expression levels of Zc3h10 in different mouse tissues (Fig. 

5.2). Our data indicate that our candidate is widely expressed in mouse tissues with lower levels 

in visceral white adipose tissue (viWAT) and higher levels in the brain, specifically in the cortex, 

cerebellum and hypothalamus. Most importantly, Zc3h10 is expressed also in several skeletal 

muscles (i.e. vastus lateralis, gastrocnemius and soleus) of 12 weeks old mice (Fig. 5.2). 
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Fig. 5.2 Zc3h10 gene expression in mouse tissues. Zc3h10 expression levels were compared to a standard curve built 

with known content of Zc3h10 cDNA. Data are expressed as femtograms of Zc3h10 on total RNA content of qPCR 

samples. n=4. 

 

Since we used mouse (m)Zc3h10 cDNA in the HTS and that human and mouse are the most 

represented in vivo systems used in research, we also compared hZC3H10 and mZc3h10 

protein sequences by UniProt database (Fig. 5.3. As shown, data indicates that human and 

mouse Zc3h10 homologues share 97.011% of protein sequence, corroborating the high 

homology of exon 3 and suggesting that Zc3h10 mechanism of action might be highly conserved 

among different species. 
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Fig. 5.3 UniProt alignment of hZC3H10 (ID Q96K80) and mZc3h10 (ID Q8R205). Dots indicate similar aminoacids 

while asterisks indicate identical aminoacids. Protein localization of each aminoacid is indicated by numbers beside 

sequence. 

 

Further analyses carried out by ExPASy database indicate the presence of a glycine-rich domain 

and three zinc fingers in the N-terminal portion, a coiled-coil domain in the center and a poly-

glycine and a proline-rich domain at the C-terminal of both human and mouse Zc3h10 (Table 

5.1). This analysis corroborates previous results (Liang et al., 2008; Peng et al., 2012) and our 

hypothesis that both Zc3h10 gene and protein are conserved through different vertebrate 

species. 

 

hZc3h10 (434 AA) mZc3h10 (435 AA) 

Domain AA Domain AA 

Gly-rich 10-35 Gly-rich 10-35 

Zinc finger 1 36-63 Zinc finger 1 36-63 

Zinc finger 2 73-99 Zinc finger 2 73-99 

Zinc finger 3 134-161 Zinc finger 3 134-161 

Coiled coil 234-280 Coiled coil 235-281 

Poly-gly 169-176 Poly-gly 169-177 

Pro-rich 323-396 Pro-rich 324-397 

 

Table 5.1 hZc3h10 and mZc3h10 protein sequences are conserved. ExPASy analysis was performed by comparing 

hZc3h10 and mZc3h10 primary sequences. 

 

5.2 Myoblast Tfam expression and mitochondrial activity are positively 

regulated by Zc3h10 

We proceeded by validating HTS results analyzing Tfam promoter activity and Tfam expression 

after Zc3h10 transient overexpression in murine myoblasts. From fig. 5.4A, it appears that 

Zc3h10 upregulation increases Tfam promoter activity (Fig. 5.4B) and promotes Tfam expression 

(Fig. 5.4C & D) 48 hours after transfection, confirming HEK293 data. 
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  A        B                C                     D 

 

 

Fig. 5.4 HTS validation in C2C12 cells. Myoblasts co-transfected with Zc3h10 and Pgc-1α were used to assess Tfam 

promoter activity (B), Tfam gene expression (C) at 24 hours from transfection and protein expression (D) 48 hours 

from transfection. One way ANOVA followed by Dunnett’s multiple comparison test, *p<0.05, **p<0.01, ***p<0.001 vs 

control (cells transfected with the empty vector pcDNA3). n=8. 

 

We later dissected the effect of Zc3h10 overexpression on mitochondrial function. As we have 

already shown (Fig. 4.4), Zc3h10 overexpression increases mitochondrial activity in HEK293 

cells assessed by basal cellular respiration (Fig. 4.4A). Our results indicate that Zc3h10 

overexpression increases mitochondrial function, evaluated by basal, uncoupled and maximal 

uncoupled respiration (Fig. 5.5A). As expected, the upregulation of mitochondrial function leads 

to increased levels of total ATP content, whose main contribution is given by mitochondrial ATP 

(Fig. 5.5B). In addition, western blot analysis of some subunits of the electron transport chain 

indicates that the upregulation of mitochondrial function is due to higher levels of ETC complexes 

expression (Fig. 5.5C). 

 

A             B              C 

 

 

Fig. 5.5 Zc3h10 is a positive regulator of mitochondrial function in myoblasts. Basal, uncoupled and maximal 

uncoupled respiration (A) were evaluated 48 hours from transfection to assess mitochondrial function. Proteins were 

used for data normalization and western blot analysis (C) of Atp5a1, Uqcrc2, mt-CoII, Sdhb and Ndufb8 relative 

content. Cytosolic ATP and mitochondrial ATP concentration were evaluated 48 hours from transfection in 5 µM 

oligomycin treated cells and untreated cells, respectively. Panel A: One way ANOVA followed by Dunnett’s multiple 
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comparison test, **p<0.01, ***p<0.001 vs control. $$p<0.01, $$$p<0.001 vs control oligomycin; #p<0.05, ###p<0.001 vs 

control CCCP. n=6. Panel B: One way ANOVA followed by Dunnett’s multiple comparison test, ***p<0.001 vs control 

of each experimental group. n=6. 

 

5.3 Zc3h10 is upregulated at the beginning of C2C12 myoblasts 

differentiation 

We later assessed Zc3h10 expression levels and its localization during C2C12 differentiation to 

myotubes. As shown in fig. 5.6A and B, Zc3h10 is upregulated in the first phases of myotubes 

differentiation, raising the hypothesis that Zc3h10 be in some way associated with the beginning 

of myofiber development. 

 

Fig. 5.6 Zc3h10 is upregulated with differentiation induction. Both gene (A) and protein (B) expression were performed 

at different time points, specifically from 1 day before to 4 days after differentiation induction. One way ANOVA 

followed by Dunnett’s multiple comparison test, *p<0.05, **p<0.01 vs day -1. n=3. 

 

We then analyzed Zc3h10 protein levels in adult human quadriceps, 12 weeks, 6 months and 12 

months old mice by immunofluorescence. As shown in fig. 5.7A, our results suggest that Zc3h10 

is present only in neonatal MHC+ and fetal MHC+ myocytes. Additionally, IF analyses on mice 

quadriceps suggests that Zc3h10 expression decreases during aging (Fig. 5.7B).  

 

A B 
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Fig. 5.7 Zc3h10 expression levels in human and mice quadriceps. IF images performed on an adult male subject, 12 

weeks, 6 months and 1 year old mice. 

 

5.4 Zc3h10 is a nuclear protein 

We proceeded by verifying the subcellular localization of Zc3h10. cNLS mapper software (Fig. 

5.8A) suggests the presence of two monopartite signals (recognized by α-importin (Van Dusen 

et al., 2010)) within the middle region with a score of 15/15. We then isolated C2C12 nuclei from 

cytoplasm to validate cNLS prediction. Western blot analysis (Fig. 5.8B) clearly indicates that 

Zc3h10 is a nuclear protein through all myotube formation process, while IF analysis (Fig. 5.8C) 

suggests that a fraction of Zc3h10 is localized in the perinuclear zone. This data are coherent 

with a role of Zc3h10 in nuclear RNA metabolism and transport to cytoplasm. 

A 

B 
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Fig 5.8 Zc3h10 is a nuclear protein. cNLS database was set up with 6.0 of cutoff (A) and the middle region NLS was 

highlighted in red. Nuclear and cytoplasm extracts of myoblast and myotubes were loaded on SDS-Page to validate 

cNLS prediction (B), while IF images were obtained in proliferating myoblasts (C). 

 

5.5 Downregulation of Zc3h10 affects mitochondrial function in myoblasts 

To better understand the role of Zc3h10 on mitochondrial function, we downregulated it through 

short hairpin RNA interference in C2C12 myoblasts (pre-differentiation protocol, Fig. 3.1). qPCR, 

western blot and IF results indicate that we repressed Zc3h10 by 50% compared to control cells 

(cells infected with scrambled shZc3h10) (Fig. 5.9A - C). 

 

 

 

 

 

 

B A 

C 
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Fig 5.9 Validation of Zc3h10 downregulation. qPCR analysis of Zc3h10 (A), Zc3h10 western blot normalized on β-

actin (B) and IF against Zc3h10 (green) and chemical staining of nuclei (blue) (C). Panel A: Student’s t-test, *p<0.05, 

***p<0.001 vs control, n=6. Panel B: Student’s t-test, *p<0.05, ***p<0.001 vs control. n=3. 

 

We then focused our attention on mitochondrial activity in ShZc3h10 cells. Unexpectedly, the 

downregulation of our hit did not lead to lower levels of mtDNA, indicating no differences in 

mitochondrial density (Fig. 5.10A). On the other hand, Zc3h10 partial silencing significantly 

decreases mitochondrial function as indicated by lower levels of basal, uncoupled and maximal 

uncoupled respiration (Fig. 5.10B). The reduced expression of mitochondrial activity is likely due 

to the lower expression of OXPHOS subunits, specifically Ndufb8 (Complex I), Sdhb (Complex 

II), and Mt-CoII (Complex IV) (Fig. 5.10C). Mass spectrometry analysis of ATP, ADP, and AMP 

intracellular levels showed that our candidate is a positive regulator of ATP production, 

corroborating the results described in figure 5.4B. Indeed, Zc3h10 downregulation led to lower 

levels of ATP together with higher levels of both ADP and AMP, leading to a lower adenylate 

energy charge (Fig. 5.910 and E).Taken together, these data demonstrate that the 

downregulation of Zc3h10 is sufficient to decrease energy supply in these cells by suppressing 

ETC activity. 

 

A 

C 

Zc3h10 Zc3h10 
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Fig. 5.10 Zc3h10 reduced expression impairs mitochondrial function in myoblasts. MtDNA levels were analyzed to 

assess mitochondrial density (A). Mitochondrial function was evaluated by cell respiration (B), expression levels of 

OXPHOS subunits (C), intracellular levels of ATP, ADP, AMP (D) and the energy charge index (E). Student’s t-test, 

*p<0.05, *p<0.01, ***p<0.001 vs control. n=6. 

 

5.6 Zc3h10 controls energy metabolism transcriptomic profile in myoblasts 

According to literature (Castello et al., 2012; Ray et al., 2013) we know that Zc3h10 is an mRNA 

binding protein active in the first phases of cell differentiation. Hence, we decided to perform a 

comprehensive transcriptomic and metabolomic analysis in confluent myoblast to dissect the role 

which pathways are mainly regulated by Zc3h10. To this end, we integrated results from 

microarray analysis, new synthesis and total RNA-seq analyses, and mass spectrometry 

metabolomics. 

We first analyzed the total RNA profile in control and ShZc3h10 myoblasts. Our results suggest 

that Zc3h10 repression leads to the misregulation of total RNA levels of 1526 (12% of total 

expressed genes) genes. Of 1526, 1195 are downregulated and the 331 are upregulated (Fig. 

5.10). In addition, bioinformatic analyses based on KEGG database indicate that calcium 

signaling is the most enriched pathway among upregulated genes. On the other hand, TCA 

cycle, purine metabolism, one carbon pool by folate and nicotinate and nicotinamide metabolism 

are the most affected pathways in Zc3h10 reduced cells (Fig. 5.11). 

Taken together, these data suggest that partial loss of Zc3h10 leads to a significant change of 

transcriptomic profile in myoblasts, predominantly through the regulation of mRNA processing 

and splicing. 

 

A E D C B 

Ctrl 
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Fig. 5.11 Zc3h10 regulates RNA metabolism. Total RNA levels (Reads Per Kilobase per Million, RPKM) were 

interrogated by MetaboAnalyst software to analyse the most enriched pathways. Horizontal dot lines correspond, from 

top to bottom, to the Log2 of p-value of 0.001, 0.01 and 0.05, respectively. n=3. 

 

5.7 Zc3h10 silencing impacts myoblasts metabolic profile 

Since mitochondrial regulators modulate the metabolic profile (Li et al., 2012; Montanez et al., 

2013; Vernochet et al., 2012), we also evaluated the intracellular levels of products belonging to 

the main metabolic pathways (i.e. glycolysis, TCA cycle, pentose phosphate pathway (PPP) and 

β-oxidation). Principal component analysis (PCA) and hierarchical clustering revealed that 

ShZc3h10 cells possess different metabolic profiles (Fig.5.12A and B). 

 

 



Results 

58 
 

 

Fig 5.12 Zc3h10 silencing impacts metabolic landscape of myoblasts. MetaboAnalyst webtool was used to calculate 

principal component analysis (PCA) (A) and hierarchical clustering (B) of metabolomic analysis in control (Red) and 

ShZc3h10 (Green) samples. 

 

Specific evaluation of metabolomics data indicates that Zc3h10 downregulation mainly affects 

glycolysis and TCA cycle metabolites levels. In fact, ShZc3h10 cells show lower levels of 

glyceraldehyde-3P and pyruvate, but also α-ketoglutarate, fumarate, malate and oxaloacetate. 

On the contrary, AMP, ADP and succinate levels are significantly increased (Fig. 5.13). 

 

Fig 5.13 Zc3h10 silencing leads to an overall decrease of important metabolites belonging to the main energetic 

pathways. The graph correlates the p-Value (Log10 scale, Y Axis) and the fold change (Log2 scale, X axis). Red dots 

indicate significantly downregulated metabolites and blue dots indicate upregulated metabolites, respectively. 

Horizontal dot lines correspond, from top to bottom, to the Log10 of p-value of 0.001, 0.01 and 0.05, respectively. 

A B 
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To better understand which metabolic pathways are mainly affected by Zc3h10 silencing, we 

integrated metabolomic and transcriptomic data with total RNA and new synthesis RNA levels. 

Integration of different “-omics” data is now rising as a fundamental tool to better understand the 

role of specific factors in wide biological structures and dynamics. Data shown in figure 5.14 

demonstrate that Zc3h10 significantly impairs TCA cycle pathway. 

 

 

Fig. 5.14 Zc3h10 mainly controls TCA cycle. Scatter plot of enriched pathways results obtained crossing microarray 

data with targeted metabolomic results through MetaboAnalyst webtool. Log2p-value and topology were used to 

calculate the most affected metabolic pathways. Horizontal dot lines correspond, from top to bottom, to the Log2 of p-

value of 0.001, 0.01 and 0.05, respectively. 

 

5.9 Zc3h10 controls myotubes mitochondrial function and cell differentiation 

We later evaluated if Zc3h10 downregulation in myoblasts might lead to impaired mitochondrial 

function also in myotubes. By using the same infection protocol, we obtained similar 

downregulation levels also in developing myofibers (Fig. 5.15A). Western blot shows that we got 

about 50% of Zc3h10 silencing at different time-points of differentiation as 24, 48, and 72 hours, 

which correspond to lower levels of Tfam (Fig. 5.15B) and OXPHOS subunits. In fact, western 

blot analysis in figure 5.15C indicates that additionally to Ndufb8, Sdhb and Mt-CoII, also Atp5a1 

and Uqcrc2 expression is affected by partial loss of Zc3h10. Once again, lower mitochondrial 

component expression is associated with impaired mitochondrial function (Fig. 5.15D) but 

unaffected mitochondrial density (Fig. 5.15E). To confirm these data, we analyzed in detail the 

mitochondrial function at 48 hours from differentiation induction. At this time-point basal, 

Total RNA-seq 
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uncoupled and maximal uncoupled respiration are significantly lower in shZc3h10 cells (Fig. 

5.15F), as well as the activity of complex I, II and IV of the ETC (Fig. 5.15G). 

 

 

Fig. 5.15 Mitochondrial function in differentiating myotubes is regulated by Zc3h10. Western blot assays were 

performed at 24, 48 and 72 hours from differentiation induction (A, B and C) as well as basal respiration analysis and 

mtDNA levels evaluation (D and E). Coupled respiration and electron transport chain activity assays were performed 

at only 48 hours from differentiation start (F and G). Student’s t-test, *p<0.05, *p<0.01, ***p<0.001 vs control. n=6. 

 

As previously discussed, the upregulation of mitochondrial function drives metabolic shift during 

myoblasts differentiation. For this reason, we investigated if Zc3h10 could affect C2C12 

development at different time-points from differentiation start. The analysis of myotubes 

morphology at 72 hours from differentiation induction shows that Zc3h10 silencing impaired 

myotubes formation. Indeed, ShZc3h10 MyHC+ cells appear thinner and shorter compared to 

control myotubes (Fig. 5.16A) and show a 50% reduction of fusion index levels (Fig. 5.16B). 

Additionally, protein and gene expression analysis of myogenesis markers Fast myosin heavy 

chain (Fig. 5.16C) and the myogenesis regulators MyoD, Mef2c, and Myogenin (Fig. 5.16D) 

show a strong decrease of their expression levels at both 24 and 48 hours from differentiation 

start, supporting the regulatory activity of myogenesis by Zc3h10. 
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Fig. 5.16 Zc3h10 partial loss represses myotubes formation. IF was performed against MyHC Fast (red) and nuclei 

were revealed with DAPI (blue) (A). Quantification of fusion index was performed by calculating nuclei number in 

MyHC+ cells with 3 or more nuclei and normalized on total number of nuclei in the field. Cells were fixed at 72 hours 

from differentiation induction (B). Western blot was performed with the same antibody used in the IF analysis at three 

different time points from differentiation (C), while gene expression evaluation of MyoD, Mef2c and Myogenin were 

performed at only 24 and 48 hours from differentiation start (D). Student’s t-test, *p<0.05, *p<0.01, ***p<0.001 vs 

control. n=5. 

 

To sustain our previous observations, we performed a transcriptomic analysis in 48 hours 

differentiated myofibers and run a gene set enrichment analysis (GSEA) to evaluate in an 

unbiased fashion which processes are mainly regulated by Zc3h10. As expected, Zc3h10 is 

positively associated with the expression of genes belonging to muscle structural components, 

mitochondrial part, and adherent junctions (Fig 5.17). On the other hand, Zc3h10 seems to be 

negatively associated with cell cycle progress, specifically with genes belonging to the M phase 

of mitotic cell cycle, chromosome segregation and cell cycle check point. In addition, KEGG 

pathway analysis demonstrates that cell cycle and focal adhesion are the most enriched 

pathways among upregulated genes. On the other hand, TCA cycle, glycolysis, fatty acid 

metabolism, pentose phosphate pathway and cardiac muscle contraction component are the 

most represented pathways among downregulated genes in ShZc3h10 myotubes. Altogether, 

these data sustain the positive role of Zc3h10 on mitochondrial function and C2C12 

differentiation. 
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Fig. 5.17 Transcriptomic analysis in Zc3h10 silenced C2C12 myotubes. Normalized enrichment score (NES) of the 20 

highest positively (red) and negatively (blue) Zc3h10 associated gene ontology (GO) categories was used to express 

data. GSEA analysis was performed considering simultaneously all GO categories (Molecular function, cell 

compartment, and biological process). NES were also interrogated by KEGG pathway analysis through MetaboAnalyst 

software to assess the most enriched pathways among up- and downregulated genes. The experiment was performed 

on five biological replicates for each experimental condition. Horizontal dot lines correspond, from top to bottom, to the 

Log2 of p-value of 0.001, 0.01 and 0.05, respectively. 

 

To demonstrate that Zc3h10 specifically control differentiation program without affecting 

proliferation, we also evaluated cell growth after Zc3h10 silencing. As shown in figure 5.18, we 

did not observe any difference between the two conditions. 

 

5.18 Zc3h10 does not control cell proliferation. Seeded cells were counted at infection time and considered as blank. 

Control and ShZc3h10 cell number was analyzed 30 and 60 hours post-infection. n=5. 
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5.10 Myotubes metabolic profile is affected by Zc3h10 downregulation 

To demonstrate that Zc3h10 controls metabolic profile also in myotubes, we performed 

metabolomics analysis in 48 hours differentiated myotubes. We first verified the presence of 

outliers by principal component analysis (PCA) and hierarchical analyses. As shown in fig. 5.19A 

and B we have two distinct metabolic populations and no presence of outliers. In addition, these 

data suggest that Zc3h10 silencing at myoblast stage has detrimental consequences on the 

metabolic output upon differentiation to myotubes. 

 

Fig 5.19 Zc3h10 silencing impacts metabolic landscape of myotubes. MetaboAnalyst webtool was used to calculate 

principal component analysis (PCA) (A) and hierarchical clustering (B) of metabolomic analysis in control (Red) and 

ShZc3h10 (Green) samples. 

 

To better understand which pathways are mainly affected by Zc3h10 deficiency we verified 

differentially abundant metabolites (Fig. 5.20). Specifically, we observe lower glucose uptake and 

conversion to glucose-6-phosphate in ShZc3h10 cells. Additionally, we observed decreased 

levels of either xilulose-5-phosphate and erythrose-4-phosphate, and lower intracellular levels of 

nucleotide cofactors as NAD+, NADH, and NADPH and nucleotides ATP, ADP and AMP. These 

data are in line with lower expression of solute carrier family 2 member 4 (Slc2a4, facilitated 

glucose transporter Glut4) in ShZc3h10 myotubes (Fold change = 0.63, p-value = 0.0029), 

according to microarray analysis. On the other hand, glutamate levels are significantly 

upregulated in ShZc3h10 cells (Fold change = 2.034, p-value = 0.005. Our analyses also 

demonstrate that several TCA cycle by-products  levels are significantly downregulated in 

ShZc3h10 cells, like citrate (fold change = 0.6, p-value = 0.004), cis-aconitate (fold change = 0.5, 

p-value = 0,0004), α-ketoglutarate (fold change = 0.5, p-value = 0.01), malate (fold change = 

0.15, p-value = 0.001). 

B A 
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Fig 5.20 Zc3h10 deficiency leads to an overall decrease of important metabolites belonging to the main energetic 

pathways. The graph correlates the p-Value (Log10 scale, Y Axis) and the fold change (Log2 scale, X axis). Red dots 

indicate significantly downregulated metabolites and blue dots indicate upregulated metabolites. Horizontal dot lines 

correspond, from top to bottom, to the Log10 of p-value of 0.001, 0.01 and 0.05, respectively. 

 

Like C2C12 myoblasts, we crossed metabolomics and transcriptomics analyses to identify the 

most affected metabolic pathway. Statistical and topological analyses confirm fig. 5.17 

observation, indicating TCA cycle and pentose phosphate pathway (PPP) as the most affected 

metabolic processes by Zc3h10 silencing (Fig. 5.21). 
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Fig. 5.21 ShZc3h10 impacts nucleotide metabolism and TCA cycle in myotubes. Scatter plot of enriched pathways 

results obtained crossing microarray data with targeted metabolomic results through MetaboAnalyst webtool. Log2p-

value and topology were used to calculate the most affected metabolic pathways. Horizontal dot lines correspond to 

from top to bottom to the Log2 of the p-value of 0.001, 0.01 and 0.05, respectively. 

 

5.11 Post-differentiation downregulation of Zc3h10 does not affect 

mitochondrial activity 

To verify if Zc3h10 controls mitochondrial function in differentiated myotubes, we decided to 

downregulate our candidate 2 days after differentiation induction and assess mitochondrial 

density and function at day 4 (post-differentiation protocol, Fig. 3.1).Our data indicate that 

despite of Zc3h10 50% downregulation (Fig. 5.22A and B), neither Tfam gene expression (Fig. 

5.22C), mtDNA levels (Fig. 5.22D) and basal cellular respiration (Fig. 5.22E) were significantly 

different compared to control, suggesting that Zc3h10 presence is necessary in the first but not 

in the late stages of C2C12 differentiation. 
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Fig. 5.22 Zc3h10 loss does not affect mitochondrial activity if downregulation after differentiation induction. Gene 

expression and western blot analyses were used to validate Zc3h10 repression (A and B). Tfam gene expression (C), 

mitochondrial density and function (D and E) were used to evaluate mitchondrial effects of Zc3h10 downregulation. 

Student’s t-test, ***p<0.001 vs control. n=5. 

 

5.12 Zc3h10 controls Mitoferrin1 mRNA metabolism 

Once demonstrated that Zc3h10 is a specific mitochondrial and RNA metabolism regulator in 

both myoblasts and myotubes, we shifted our attention on the molecular mechanism underlying 

the phenotype. To assess which processes are directly affected by Zc3h10, we performed a 

RNA immunoprecipitation (RIP) assay coupled to NGS to identify and characterize the target 

messengers of our candidate. To get a high-efficient Zc3h10 immunoprecipitation, we decided to 

overexpress the flag-tag fused Zc3h10in proliferating myoblasts. First, we validated if flag-

Zc3h10 overexpression recapitulated our previous results (Chapter 5.2). After physiological 

overexpression of Zc3h10 (MOI of 5, Fig. 5.23A), we demonstrated that flag-Zc3h10 

overexpression (Fig. 5.23B) can upregulate both mitochondrial density at 48 and 72 hours from 

differentiation induction (Fig. 5.23C) and activity (Fig. 5.23D) at all time points by ≈50% 

compared to control. Further, flag-Zc3h10 increases ETC complexes activity (Fig. 5.23E) as well 

as uncoupled and maximal uncoupled respiration (Fig. 5.23F). Additionally, flag-Zc3h10 

overexpression upregulated myotubes formation by almost 2-fold (Fig. 5.23G) confirming the 

strong regulatory effect of Zc3h10 upon myotubes differentiation. 
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Fig. 5.23 Flag-Zc3h10 overexpression induces mitochondrial function and C2C12 differentiation. Zc3h10 

overexpression was evaluated by gene and protein expression (A and B). Mitochondrial density and function were 

assessed by mtDNA levels evaluation (C) cellular respiration (D and E) and ETC complexes activity (F). Finally, 

myotubes morphology and formation were assessed by IF analyses and fusion index quantification, respectively (G). 

Student’s t-test, *p<0.05, **p<0.01 and ***p<0.001 vs control of each experimental condition. n=5. 

 

We then validated the immunoprecipitation of Zc3h10. As shown in fig 5.24, we efficiently 

overexpressed and immunoprecipitated Flag-Zc3h10, prompting us to proceed with following 

sequencing of Zc3h10 bound transcripts. 
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Fig. 5.24 Zc3h10 immunoprecipitation. Western blot on SDS-Page was used to validate Flag-Zc3h10 

immunoprecipitation. 10% of whole cell lysate (input) was used as overexpression validation. 

 

Subsequent sequencing of immunoprecipitated RNA demonstrated that Zc3h10 significantly 

binds to 410 transcripts. Biological process GO analysis of Zc3h10 targets indicated that a large 

part of these genes is associated with the regulation of skeletal muscle development (Fig. 5.25). 

 

 

Fig. 5.25 Clustering of Zc3h10 bound RNAs by biological processes. GO analysis was performed by Panther webtool 

(Release 11.1). 

 

In addition, by analyzing total RNA-seq results of Zc3h10 silenced myoblasts with DEXSeq 

software (Huber et al., 2012), we found that 233 (56.82%) out of 410 targets undergo to at least 

one alternative splicing, indicating that Zc3h10 might be directly involved in their splicing 

regulation (FDR < 0.25). Gene ontology analysis demonstrated that these 233 transcripts are 

mainly involved in intracellular cation and metal anion binding (Fig. 5.26). 



Results 

69 
 

 

Fig. 5.26 Clustering of differentially spliced transcripts bound by Zc3h10 by molecular function (FDR < 0.25). GO 

analysis was performed by Panther webtool (Release 11.1). 

 

Interestingly, the most enriched mRNA is Slc25a37 (Mitoferrin1), enriched by 14.96-fold 

compared to control. As discussed in the introduction chapter, mitoferrin1 is a fundamental iron 

importer of mitochondria which favors the formation of ISC and heme prosthetic groups. In 

addition, Slc25a37-/- mice dye during embryonic life. Surprisingly, from DEXSeq analysis we 

found that Slc25a37 intron 1 (Log10 padj = -0.81) and 2 (Log10 padj = -0.68) are significantly 

retained in ShZc3h10 myoblasts (Fig. 5.27). 

 

Fig. 5.27 Zc3h10 regulates Slc25a37 alternative splicing. DEXSeq software was used to identify alternative splicing 

(AS) events. Slc25a37 expression levels were obtained from total RNA-seq analysis of ShZc3h10 (red line) and 

control myoblasts (blue line). FDR < 0.25. n=3. 
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Given that alternative splicing events are linked also to impaired mRNA nuclear export, we 

explored the possibility that the mRNA binding protein Zc3h10 be involved in the processing of 

Slc25a37 transcript. Evaluation of mRNA export, assessed by measuring the mRNA levels in the 

nuclear and cytoplasmic compartments, shows that Slc25a37 nuclear export is downregulated 

after Zc3h10 silencing only 48 hours from differentiation (Fig. 5.28A). Surprisingly, Slc25a37 

gene expression studies indicate that Zc3h10 is not involved in neither its export and 

transcriptional control (Fig. 5.28B). 

 

 

 

Fig. 5.28 Slc25a37 nuclear export and transcript levels are not directly regulated by Zc3h10. Nuclei and cytoplasm 

were separated and transcript analyses on both fractions were conducted by qPCR (A). Gene expression analyses 

were performed on total RNA extracts in confluent myoblasts (B) and 48 hours differentiated myotubes (C). Panel 

A:One way ANOVA followed by Dunnett’s multiple comparison test, *p<0.05 vs control. n=3. Panel B: Student’s t-test, 

**p<0.01vs control. n=5. 

 

Previous data show that intron 2 retention of Slc25a37 transcript may be associated with a 

truncated isoform of mitoferrin1 (Visconte et al., 2014). We verified if Slc25a37 protein was 

affected by Zc3h10 silencing using an antibody recognizing only the wild-type and not the 

A 

B C 



Results 

71 
 

truncated mitoferrin1 isoform. Indeed, Zc3h10 downregulation decreases mitoferrin1 protein 

levels in both myoblasts (Fig. 5.29A) and during myotubes differentiation (Fig.5.29B). 

 

      

Fig. 5.29 Zc3h10 downregulation affects mitoferrin1 protein levels. Slc25a37 protein expression was evaluated on 

whole cell extracts in myoblasts and in myotubes at 24, 48 and 72 hours from differentiation induction. 

 

5.13 Zc3h10 downregulation affects iron homeostasis in both myoblasts and 

myotubes 

To assess if Slc25a37 downregulation in ShZc3h10 myoblasts and myotubes may have some 

functional consequences, we performed cytochemistry and spectrophotometry assays to 

evaluate both ferric (Fe3+) and total iron content in C2C12 myoblasts. Both analyses indicate that 

downregulation of Zc3h10 leads to iron overload, increasing both ferric and total iron levels (Fig. 

5.30A and B).  

 

 

Fig. 5.30 Zc3h10 leads to iron overload in myoblasts. C2C12 cells were stained with Prussian blue to evaluate ferric 

iron content (A). Spectrophotometry analysis was performed by using ferrozine indicator to assess both total and ferric 

A 
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iron levels (B).Panel A: Student’s t-test, **p<0.01vs control, n=16.Panel B: Student’s t-test, *p<0.05, **p<0.01vs 

control. n=4. 

 

To support the functional role of Zc3h10 on intracellular iron levels, we decided to rescue Zc3h10 

expression in ShZc3h10 myoblasts. As shown in figure 5.31A we could recover Zc3h10 to 

control levels, leading to the complete rescue of intracellular iron levels in these cells (Fig. 

5.31B). 

 

 

 

 

 

 

 

 

Fig. 5.31 Zc3h10 overexpression rescues iron homeostasis. C2C12 cells were first silenced and then transduced with 

flag-Zc3h10. Silencing and re-overexpression were validated through western blot analysis (A). C2C12 were stained 

with Prussian blue to evaluate ferric iron content (B), while spectrophotometry analysis was performed by using 

ferrozine indicator to assess both total and ferric iron levels (A). Panel A: One-way ANOVA followed by Dunnett’s Post 

Test, *p<0.05, **p<0.01 vs control, n=7. Panel B: One-way ANOVA followed by Dunnett’s Post Test, *p<0.05, **p<0.01 

vs control. n=4. 
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To further demonstrate the role of Zc3h10 in iron homeostasis and mitochondrial iron import, we 

analyzed intracellular levels of lipoate, the protein-conjugated cofactor of pyruvate 

dehydrogenase and α-KG dehydrogenase. Lipoate synthesis in mitochondria has been 

demonstrated to be iron-dependent since lipoic acid synthase requires a 4-iron-4-sulfur cluster 

for its function. As shown in figure 5.12, 5.21 and 5.32, lipoic acid levels are dramatically 

decreased in ShZc3h10 myoblasts and myotubes supporting the positive association between 

Zc3h10 and iron import in mitochondria. 

 

Fig. 5.32 Lipoate levels are decreased by Zc3h10 silencing. Lipoate levels were measured in C2C12 myoblasts and 

48 hours differentiated myotubes total cell lysates. *p<0.05 vs control. n=5. 
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Mitochondria are widely known for their role in energy metabolism. Considered the cell 

powerhouses, they are the crossway of the main metabolic processes like glycolysis, Krebs’s 

cycle, β-oxidation, fatty acid synthesis and the oxidative phosphorylation. Beyond their role to 

ATP production, mitochondria also participate to many other processes, as apoptosis, calcium 

homeostasis, iron sulfur cluster and heme biosynthesis, and heat production. By these means, 

they directly affect fundamental steps of cell life, like stemness, cell division, commitment and 

differentiation. Mitochondria are the only organelles to possess their own genome, a double-

stranded circular DNA sequence. Compared to nuclear genome, mtDNA is extremely small, 

consisting of only ~16kb and encoding for just 13 proteins, 2 rRNAs and 22 tRNAs. mtDNA 

replication and transcription are mainly controlled by a nuclear encoded transcription factor 

called mitochondria transcription factor A, whose transcription is in turn regulated by many other 

transcription factors and cofactors (i.e. Pgc-1α, Pgc-1β, Pparγ, Pparα, Errα, YY1) (Scarpulla et 

al., 2012). The tight nucleus-mitochondria relationship is further demonstrated by that Tfam is 

only one of the ~1500 mitochondrial genes expressed in the nucleus, and that many 

mitochondrial metabolites are required for a large number of nuclear functions (i.e. DNA 

replication, RNA transcription, splicing and nuclear export). Nevertheless, many aspects of 

mitochondrial biology still need to be fully understood, as i) mtDNA transcription and replication 

mechanisms, ii) mitochondrial morphology regulation and iii) mitochondrial ATP production 

control in different cellular context. Given the great impact of mitochondria on whole body 

metabolism and physiology, mitochondrial dysfunctions are associated with an extended 

spectrum of diseases (Chinnery, 2014). Mitochondrial genetic dysfunctions are usually divided in 

three major categories: the first two groups include pathologies linked to ETC genes mutations, 

which can be either mtDNA (maternally) or nDNA inherited (mendelian). In the third group, we 

find mitochondrial diseases associated with no-ETC mitochondrial gene mutations (IDH1/2, 

Parkin and Frataxin). Further, mitochondrial dysfunctions are tightly associated to many 

diseases, as type 2 diabetes, obesity, neurodegenerative disorders, cancer, myopathies and 

aging. 

Currently, the rising of new research approaches and technologies (high-throughput screening, 

next generation sequencing, mass spectrometry proteomic and metabolomic analyses) offers the 

possibility to extensively dissect new roles of mitochondria in cell physiology and 

pathophysiology. For example, Wolf et al. set up the MitoString screen to identify new factors 

involved in mitochondria RNA metabolism, while Chen et al. recently developed a new 

experimental approach by which they specifically immunoprecipitated mitochondria from whole 

cell lysates and measured metabolic compartmentalization due to different external cues by 

mass spectrometry (Chen et al., 2016; Wolf and Mootha, 2014). Further, the necessity to better 
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characterize the phenotypical traits of mtDNA-mutation diseases and the impossibility to directly 

transfect mtDNA haplotypes in cell lines prompted the generation of reliable mouse models. To 

this end, a recent approach based on coupling breeding, histological and next generation 

sequencing analyses led to the isolation of the C5024T mutation of mitochondrial tRNAALA that, 

in turn, leads to decreased mitochondrial translation efficiency, cardiomyopathy and loss of body 

weight in male mice (Kauppila et al., 2016). 

Skeletal muscle holds essential roles in whole body physiology, from movement generation to 

energy metabolism homeostasis. Skeletal muscle is also a high energy-demanding tissue and 

very rich in mitochondria. Adult striated muscle maintenance and repair are sustained by the 

presence of skeletal muscle satellite cells (MuSC), or precursors, that under specific conditions 

(i.e. presence of cytokines, injury and physical exercise) switch from quiescence to asymmetric 

division prompting myocyte differentiation and skeletal muscle development. Recent results 

indicate the existence of a direct association between energy metabolism regulation, 

mitochondrial activity and committed cell differentiation (Almada and Wagers, 2016; Ryall et al., 

2015; Shintaku et al., 2016). Yet, the intrinsic regulatory circuitries of mitochondrial functional 

changes that underlies metabolic transition of myoblasts to fully differentiated myotubes still 

need to be fully understood. Nowadays, a great challenge is the identification and 

characterization of new players involved in the regulation of mitochondrial function, whose link 

with mitochondrial physiology is not reported yet. Specifically, the classification of new regulators 

of energy metabolism during cell commitment and differentiation is an important goal to better 

understand the molecular mechanism underlying the association between mitochondrial function 

and skeletal muscle development.  

Genome-wide high throughput screening (HTS), biochemical and bioinformatic experiments 

previously performed in our laboratory indicated zinc finger CCCH-type containing 10 (Zc3h10) 

as a new mitochondrial regulator in HEK293 cells. Zc3h10 is an mRNA binding protein whose 

biological function is still unknown (Castello et al., 2013; Ray et al., 2013). Our characterization 

of its biological role suggests that this protein is a positive mitochondrial regulator in C2C12 

myoblasts, confirming the reliability of our HTS. Zc3h10 overexpression in undifferentiated cells 

leads to the upregulation of several mitochondrial parameters as Tfam expression, cellular 

oxygen consumption rate and ATP production. In addition, targeted silencing experiments 

strongly corroborate that our candidate controls mitochondrial function in both myoblasts and 

myotubes, as specifically described by transcriptomics and targeted metabolomics analyses. We 

demonstrated that Zc3h10 regulates the TCA cycle activity, which might partially explain why 

only ~50% of Zc3h10 downregulation in myoblasts leads to a strong mitochondrial phenotype. 

Furthermore, our results indicate that Zc3h10 can control skeletal muscle development. C2C12 
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analyses show that Zc3h10 is localized in the nucleus and expressed just in the first phases of 

cell differentiation. In addition, transcriptomic and biochemical analyses of Zc3h10 silenced 

myotubes demonstrate that, besides mitochondrial function, Zc3h10 positively controls skeletal 

muscle cell differentiation. Immunofluorescence analysis performed in human skeletal muscle 

demonstrate that Zc3h10 is expressed in the first phases of human skeletal muscle 

differentiation as well, as indicated by its coexpression with fetal and neonatal myosin heavy 

chains. Immunofluorescence experiments in young and adult mice also show that our candidate 

is more expressed in 12 weeks old than in 6 and 12 months old mice quadriceps, where the 

number of developing fibers is significantly downregulated (Perrimon et al., 2013). Interestingly, 

cell growth analysis indicates that Zc3h10 is not directly involved in the regulation of cell cycle, 

even though cell cycle transcripts expression is upregulated in ShZc3h10 myotubes. Our 

hypothesis is that Zc3h10 silenced cells are unable to properly differentiate and try to cope this 

defect by regulating cell cycle-related gene expression. 

Full dissection of causative relationship between mitochondrial activity and skeletal muscle 

development is a very difficult and interesting topic. From literature, it is clear that these two 

aspects are tightly correlated. For example, the master regulator of myogenesis MyoD has been 

recently demonstrated to control skeletal muscle metabolism directly interacting with Pgc-1β, 

while a large number of metabolic regulators controls skeletal muscle morphology (Blattler et al., 

2012; Mootha et al., 2004; Shintaku et al., 2016). For this reason, we decided to understand if 

Zc3h10 primarily controls mitochondrial function or cell differentiation, by identifying its target 

mRNAs through RNA immunoprecipitation coupled to next generation sequencing (RIP-seq). 

Our data demonstrate that the most enriched transcript is the iron transporter 

Slc25a37/Mitoferrin1, enriched by ~15 fold compared to control condition, directly linking Zc3h10 

to mitochondrial physiology. Furthermore, Zc3h10 binds more than 400 transcripts mainly 

involved in the skeletal muscle tissue development, indicating once again that mitochondrial 

function and skeletal muscle differentiation are tightly associated. Out of 410, 235 target 

transcripts display incorrect splicing events in Zc3h10 silenced cells. Following bioinformatic 

analyses showed that Zc3h10 silencing in myoblasts leads to significant Slc25a37 intron 2 

retention in Slc25a37 mature transcript, which associates with significant ferric iron overload and 

Mitoferrin1 protein downregulation in ShZc3h10 myoblasts and myotubes. These results are in 

line with other data already reported in literature, where it has been demonstrated that patients 

carrying a mutation on the splicing factor (SF) 3B1 have increased gene expression of 

mitoferrin1 coupled to Slc25a37 intron 2 retention and higher levels of intracellular ferric iron 

(Fe3+) compared to healthy subjects (Visconte et al., 2014). The authors also show the presence 

of a premature terminating codon (PTC) in the retained intron 2, which might lead to the 
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formation of a truncated isoform of Mitoferrin1 and impaired mitochondrial iron flux. As proof of 

concept, mass spectrometry evaluation of intracellular lipoic acid levels, whose mitochondrial 

synthesis has been demonstrated to be iron (Hiltunen et al., 2009), suggest that Zc3h10 

downregulation affects mitochondrial iron import and utilization. Nevertheless, the understanding 

of which cell compartment mainly accumulates ferric iron in Zc3h10 downregulated cells will be 

matter of future experiments, as well as comprehending if Slc25a37 intron 2 retention is a 

physiological event in skeletal muscle development and how Zc3h10 controls this phenomenon.  

The role of RNA binding proteins in skeletal muscle development is now widely reported in 

literature (Apponi et al., 2011). On the other hand, the role of mRNA binding proteins in the post 

transcriptional regulation of energy metabolism related genes, and more specifically of 

mitochondria related genes, needs more characterization. Within this project, we identified and 

characterized for the first time a new mitochondrial regulator that links mRNA splicing to energy 

metabolism and cell differentiation. Furthermore, our data represent an important hint on the 

causative relationship between mitochondrial function upregulation and cell differentiation. High 

conservation of Zc3h10 protein sequence among different species and the ubiquitous expression 

of Zc3h10 transcript in different mouse tissues might suggest that the molecular mechanisms 

regulated by this protein are conserved among mammals and different tissues. It will be 

extremely useful to verify if Zc3h10 is involved in the mitochondrial activity of other differentiating 

cell lines. The generation of conditional knockout models will help us to better analyze the role of 

this protein in different phases of specific tissues development as well. Moreover, a mouse 

model of mitochondrial and/or cell differentiation defects (i.e. muscular atrophy) will be a useful 

resource to better understand the biological role of Zc3h10 in a more pathological context. 

In conclusion, our results partially annotated for the first time the cell localization, the biological 

role, and the molecular function of the previously unknown protein Zc3h10. Specifically, the 

integration of cutting-edge technologies and different experimental approaches helped us to 

propose Zc3h10 as a new mitochondrial and cell differentiation regulator in C2C12 myoblasts 

acting like a splicing factor of Slc25a37. 
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