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1. ABSTRACT 

 

Climate is changing due to both natural and anthropogenic causes. Among the several natural 

“sentinels” of climate change, trees potentially represent excellent indicators for reconstructing the 

changing climatic conditions in the recent and remote past and for monitoring the impacts of the 

current global warming and the related environmental conditions. Trees respond to changes in 

climate (air temperature, precipitation rate, water availability, etc.) and environment (soil nutrients, 

pathogen infections, mechanical wounding, etc.) both rapidly, modifying their tree-ring growth rate 

and physiological processes, and slowly, modifying their distribution. Chemical elements and 

pollutants deriving from human activity can mask the climatic signal but, at the same time, trees 

become precious collectors of data that can be used for multidisciplinary research. 

In this Ph.D. project, I aimed at testing the potential use of trees as indicators of climate, 

environmental and human impacts in different morphoclimatic conditions, and to investigate if 

natural and anthropogenic conditions can mask the climatic signal recorded in trees. For this 

purpose, I selected different key sites in northern Italy.  

I applied remote sensing techniques, dendrochronological and dendroisotopical approach and the 

investigation of Volatile Organic Compounds both in tree leaves and in tree rings at the Miage 

Glacier (AO), the widest debris-covered glacier in Italy. This site has been chosen because of its 

uniqueness: the Miage Glacier is the only glacier, in the southern side of the Alps, characterized by 

the presence of abundant supraglacial vegetation that confers an important ecological value to the 

site. The Miage Glacier has been recognised as a geomorphosite for its scientific, scenic, cultural, 

economic and educational values.  

The results show that high-resolution satellite images allow the rapid detection of supraglacial trees 

whenever their density is high and that tree establishment is driven by supraglacial slope, debris 

thickness, glacier thickness and surface velocity. Supraglacial trees are characterized by tree-ring 

width, stable carbon and oxygen isotopes and needle volatile organic compounds that are 

significantly different compared to trees located outside the glacier.  

The dendrochronological approach also resulted to be successful for defining areas affected by 

glacial melting water and, as a consequence, for assessing geomorphological hazards in glacial 

environments. Tree-ring width and terpenes in annual tree rings were found to be valuable 

indicators of fungal infection in mountain environments. 

I also performed magnetic and mineralogical analyses of tree bark samples both at the head of a 

sample Alpine valley, in Santa Caterina Valfurva (SO), near one of the widest Alpine glacier, the 

Forni Glacier, and in an urban polluted context, the city of Milan, in order to identify the 

accumulation rate of magnetic particles and compare different morphoclimatic environments. The 
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results show that outer tree bark can be useful for monitoring the distribution of pollutants with 

magnetic properties and suggest the role of trees as PM sinks in urban areas. 

Overall, the results presented in this thesis represent a contribution for a better understanding of the 

potential use of trees both in high mountain environments and in urban areas for monitoring the 

impacts of the current climatic and environmental changes.  

Some of the proposed approaches represent scientific novelties because were never applied in 

extreme environments or were never considered in the context of the current climate change. 
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RIASSUNTO 

 

Il cambiamento climatico in atto a livello globale è dovuto sia a cause di origine naturale sia 

all’azione antropica. Esistono numerose “sentinelle” del cambiamento climatico; tra queste, le 

piante arboree costituiscono potenzialmente degli ottimi indicatori sia per ricostruire le condizioni 

climatico-ambientali del passato recente e remoto, sia per monitorare gli impatti del riscaldamento 

climatico in atto. Le piante legnose infatti sono in grado di rispondere a variazioni del clima 

(temperatura dell’aria, tasso delle precipitazioni, disponibilità di acqua, etc.) e dell’ambiente 

(disponibilità di nutrienti, infezioni di organismi patogeni, ferita da impatto, etc.) sia rapidamente, 

modificando la velocità di crescita, le caratteristiche degli anelli di accrescimento annuali e la 

fisiologia, sia più lentamente attraverso variazioni della loro distribuzione spaziale. Elementi 

chimici e inquinanti possono mascherare il segnale climatico ma, allo stesso tempo, le piante 

diventano preziosi registratori di dati chimico-ambientali quali, ad esempio, il particolato 

atmosferico derivante da attività antropiche, utilizzabili per ricerche multidisciplinari.  

L’obiettivo di questo progetto di dottorato è stato quello di testare il potenziale utilizzo degli alberi 

quali indicatori degli impatti climatici, ambientali e antropici in diverse condizioni morfo-

climatiche e di identificare eventuali condizioni naturali o antropiche in grado di mascherare il 

segnale climatico stesso. A questi scopi, ho selezionato alcuni siti chiave nel nord Italia. 

Ho applicato tecniche di remote sensing, studi dendrocronologici e dendroisotopici e analisi dei 

composti organici volatili nelle foglie e negli anelli di accrescimento annuali al Ghiacciaio del 

Miage (AO), il più esteso ghiacciaio italiano coperto da detrito (debris-covered glacier). Il sito 

rappresenta un unicum in quanto presenta un’estesa copertura arborea epiglaciale ubicata sulla 

porzione terminale della lingua di ablazione. Il ghiacciaio è stato riconosciuto come geomorfosito, 

sulla base dell’importante valore ecologico che si aggiunge alle valenze scientifiche, culturali, 

sceniche, economiche e didattiche già note. 

I risultati di questo lavoro mostrano che le immagini satellitari ad alta risoluzione possono essere 

usate per localizzare rapidamente gli alberi epiglaciali, quando la densità arborea è elevata, e che la 

colonizzazione della superficie di un ghiacciaio nero da parte degli alberi è correlata ai parametri di 

pendenza, spessore del detrito epiglaciale, spessore del ghiacciaio e velocità superficiale del 

ghiacciaio. L’ampiezza anulare, gli isotopi stabili del carbonio e dell’ossigeno negli anelli di 

accrescimento e i composti organici volatili nelle foglie delle piante epiglaciali si differenziano 

significativamente da quelli che caratterizzano gli alberi situati sulle morene e nelle aree limitrofe al 

ghiacciaio.  

La dendrocronologia è risultata inoltre essere un metodo valido per definire le aree influenzate 

dall’acqua di fusione glaciale e pertanto per studiare le pericolosità geomorfologiche negli ambienti 
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glaciali. Le variazioni dell’ampiezza anulare e i terpeni presenti negli anelli di accrescimento sono 

inoltre risultati essere due efficaci indicatori di infezioni ad opera di funghi in ambienti montani. 

In contesto vallivo e antropizzato ho utilizzato anche analisi magnetiche e mineralogiche su 

campioni di corteccia arborea. I siti selezionati sono stati la città di Milano e un sito più remoto, il 

paese di Santa Caterina Valfurva (SO), ubicato alla testata della Valtellina, poco a valle del 

Ghiacciaio dei Forni, uno tra i più estesi ghiacciai vallivi composti italiani. I risultati di questa 

analisi mostrano che la distribuzione del particolato magnetico di origine antropica può essere 

monitorata utilizzando la corteccia esterna degli alberi, e che gli alberi rappresentano trappole di 

particolato atmosferico in aree urbane, contribuendo al generale miglioramento della qualità 

dell’aria. 

Nel complesso, i risultati presentati in questa tesi rappresentano un contributo per la miglior 

comprensione del ruolo degli alberi, sia in ambienti di alta montagna sia in aree urbane, per il 

monitoraggio degli impatti del cambiamento climatico e delle variazioni ambientali ad esso 

correlate. Alcuni degli approcci proposti rappresentano delle novità dal punto di vista scientifico, in 

quanto alcune metodologie, pur essendo già note, non sono mai state applicate in ambienti estremi o 

non sono mai state prese in considerazione nell’ambito delle risposte al cambiamento climatico in 

atto. 
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2. INTRODUCTION 

 

Climate change impacts and trees 

The impacts of climate change have been particularly pronounced in the Italian Alps in the last two 

centuries. In fact, the Alpine environment is more vulnerable to the impacts of global warming 

because of its rough topographic features, climatic borderline equilibrium and increasing tourism 

(Beniston, 2005). Temperatures in the Alpine area have risen at a much higher rate compared to the 

average values of the northern hemisphere (Auer et al., 2007) and a change in the precipitation rate, 

consisting in a general decrease in the number of rainy days and an increase in frequency of intense 

rainy events, was detected (Castellari et al., 2014). As a consequence, Alpine regions are 

undergoing evident evolutions related to the cryosphere, hydrosystems and geomorphological 

dynamics, determining changes in natural hazards and induced risks (Einhorn et al., 2015). 

Overall, there is large consensus in the scientific community concerning the threat that climate 

change may pose to environmental, social and economic systems (IPCC, 2014). 

Among the impacts of climate change in the Italian Alps, the most evident consequences are 

the retreat and fragmentation of glaciers (Smiraglia et al., 2015) and the increase in thickness and 

extension of supraglacial debris coverage (Diolaiuti et al., 2003). Recently deglaciated areas and the 

surface of debris-covered glaciers (DCGs) have thus become new habitats for biological forms 

including bacteria, animals and both herbaceous and arboreal plants (Cannone et al., 2008; Franzetti 

et al., 2013; Tampucci et al., 2016). The distribution and characteristics of trees (including their 

physiology and growth patterns), in particular, represent a source of information for reconstructing 

the Alpine environment and climate in the recent past (Pelfini et al., 2012).  

Tree distribution is strictly influenced by the position of the altitudinal treeline, which is known to 

be related to climatic and environmental conditions (e.g., Compostella and Caccianiga, 2016; 

Leonelli et al., 2016). However, even below the treeline, trees are not homogeneously distributed, 

due to biotic and abiotic factors that influence their establishment and germination. In particular, in 

recently deglaciated terrains, vegetation establishment follows a specific trend, related to a gradual 

shift in the dominant processes leading to vegetation establishment; from abiotic to biotic. 

Colonization begins with pioneer species, that are adapted to dominant abiotic processes (sediment 

properties, hydrology, slope, exposure, moisture) and grow where there is no, or low, competition 

for resources. Then, biotic parameters (competition with other species, tolerance, inhibition) 

gradually become more important in the establishment of vegetation. In these areas, 

dendrochronology represents an important tool for reconstructing past glacial activity (Garavaglia et 

al., 2010). 
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At temperate latitudes, distinct seasonal climate drives plants into periodic dormancy, resulting in 

the formation of annual tree rings (Fritts, 1976). Tree-ring growth is influenced by several factors, 

including climate, topography, nutrient availability and competition for resources with other trees. 

Thus, trees growing at the same site, in very similar climatic and environmental conditions, should 

develop similar year-to-year growth variability. After dating tree rings and measuring ring-width 

applying standard dendrochronological techniques, the comparison of ring-width patterns of 

different trees allows the reconstruction, at yearly resolution, of past climatic and environmental 

conditions that influenced tree-ring development at a specific site (Stokes and Smiley, 1968). For 

this reason, dendrochronology is widely applied in the reconstruction of past climate and 

environment. Climate reconstruction can be performed using trees growing near the extremities of 

their ecological amplitude, where they may be subject to climatic stresses: in these conditions, it is 

likely that tree-growth is limited by climate variables (Fritts, 1971). 

Geomorphological events can also impact tree growth and can be dated applying 

dendrochronological methods. Landslides, rockfall events, seismic events, volcanic eruptions, 

floods, avalanches, debris flows, glacier retreat and advance are among the most common events 

that can be dated successfully using dendrochronology (Torbenson, 2015; Pelfini and Santilli, 

2008). 

Stable isotope techniques can be very useful in environmental reconstructions as the stable 

carbon and oxygen isotopic composition (δ13C and δ18O) of tree rings can provide long-term records 

of plant physiological processes. δ13C is a good proxy of leaf-level intrinsic water use efficiency 

(WUEi), which is given by the ratio between leaf net photosynthetic rate and stomatal conductance 

(Dawson et al, 2002). Plant δ18O is influenced by source water δ18O, but it is also inversely related 

to the ratio of atmospheric to leaf intercellular water vapour pressure, and can thus provide a time-

integrated indication of leaf stomatal conductance during the growing season (Farquhar et al., 

2007).  

Trees respond to the external stresses also by modifying the production of volatile organic 

compounds (VOCs). These compounds play a central role in the plant-environment interactions by 

affecting key life processes such as defense and communication (Guerrieri and Digilio, 2008). They 

are produced in normal metabolic processes as well as in response to biotic and abiotic stresses 

(Mello and Silva-Filho, 2002). Plants growing at high altitude are characterized by several 

ecological, morphological, physiological and phytochemical adaptations due to limiting climatic 

conditions. In particular, VOC emission rates are related to temperature (Räisänen & alii, 2009), 

light (Staudt and Seufert, 1995) and humidity (Janson 1993).  

Despite the wide knowledge already existing about changes in tree distribution (e.g., 

Theurillat and Guisan, 2001; Harsch et al., 2009) and about tree growth and physiology (e.g., 
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Constable et al., 1999; Leonelli and Pelfini, 2008) as a response to the current climate warming, 

there is a lack of information about the evolution of tree distribution on the surface of debris-

covered glaciers and about the impact of climate change, including both biotic and abiotic stresses, 

on tree-ring growth and physiological processes in high-mountain environments.               

Trees are also useful indicators for monitoring in detail the distribution of air pollutants, 

whose concentration has been increasing globally following the intense urbanization characterizing 

the past decades (Jacob and Winner, 2009). Magnetic properties of plant organs are related to 

vehicular and industrial pollution (Flanders, 1994). Abrasion products from asphalt and from 

vehicle brake systems can also cause the emission of particulate matter (PM) with measurable 

magnetic properties (Sagnotti et al., 2006). Trams and trains also emit iron particles that are 

generated from the friction between wheel and brake interfaces (Kam et al., 2011), and the 

emissions generated from industrial metallurgical processes have been shown to contain magnetic 

components (Hunt et al., 1984). Trees act as passive collectors of atmospheric particulate matter 

(Matzka and Maher, 1999) and heavy metals (Orlandi et al., 2002). Iron, among other pollutants, 

has been proven to mask the climatic signal recorded in tree rings, thus preventing the 

reconstruction of accurate environmental and climatic information stored in them (Leonelli 

et al., 2012). Even though the relationship between air pollution and magnetic parameters is well 

understood for tree leaves (Rai, 2013), only a very limited number of studies have investigated the 

potential of measuring magnetic parameters of tree bark for monitoring air pollution (Kletetschka et 

al., 2003; Zhang et al., 2008; Kletetschka, 2011), thus the possibility of using tree bark for 

monitoring air quality in urban and extra urban sites has not been sufficiently investigated yet. The 

advantage in using tree bark instead of tree leaves for environmental analyses is that most of the 

tree species located in big cities at low altitudes are deciduous. Monitoring of the air quality using 

tree leaves is not possible during the winter months, which are typically more polluted, whereas 

bark can be sampled during every season. 

In this Ph.D. project, I aimed at filling several gaps existing in the knowledge of the interactions 

between a changing climate/human influence and trees in northern Italy, applying a multi-

disciplinary approach involving both methods that are usually performed in other contexts and new 

techniques. For each topic independent objectives were defined, but they all concur to a better 

understanding of the impacts of climate change and human pressure, especially in high-mountain 

environments that are particularly sensitive to biotic and abiotic stress.  

 

Tree distribution on the surface of debris-covered glaciers  

I analysed tree distribution and characteristics on debris-covered glaciers (DCGs), in order to 

investigate whether supraglacial arboreal vegetation in the Alpine environment can be considered a 
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valuable indicator of microclimatic and local environmental changes. Among the Italian DCGs, the 

Miage Glacier (Mont Blanc Massif, Western Italian Alps) represents the ideal one to analyse 

supraglacial trees. The Miage Glacier is the widest DCG in Italy, with a well-developed 

supraglacial debris cover reaching at most 2 m thickness. Thick debris (exceeding a few 

centimetres) allows the glacier to reach very low altitudes, in fact the glacier front is located at 

about 1730 m a.s.l., much below the climatic treeline in the area, which is at about 2100 m a.s.l. 

(Leonelli and Pelfini, 2013). As a result, nowadays the Miage Glacier is characterized by the 

presence of abundant supraglacial trees and it represents a unique situation in the European Alps. 

The distribution of trees is related to several ecological and environmental factors, and can 

indirectly give information about the characteristics of supraglacial debris cover and on the recent 

glacial dynamics (Pelfini et al., 2007). For this reason, not only I tested a novel approach to directly 

detect supraglacial trees from satellite images (chapter 3.1), but I also analysed a selection of 

glacier parameters in order to detect which ones mainly influence tree germination and growth on 

the supraglacial debris (chapter 3.2). 

 

Trees for geomorphological investigations and geomorphosite assessment  

The current climate warming causes remarkable changes of the Alpine landscapes and the related 

geodiversity and biodiversity. Vegetation, and trees in particular, represents a valuable indicator of 

both climatic and environmental changes. I summarized the advantages in using vegetation for 

geomorphological investigations in mountain environments, i.e., for characterizing the processes 

occurring at the surface of debris-covered glaciers and on recently deglaciated surfaces (chapter 

4.1).  

Then I reported a peculiar case study in which I applied the typical dendrochronological techniques 

in order to analyse the impact of melting water fluctuations on trees located on the shore of an ice-

contact lake named Lago Verde located at the Miage Glacier (chapter 4.2).   

Finally, I investigated the role of vegetation in the geomorphosite assessment of debris-covered 

glaciers, choosing the Miage Glacier as an ideal study area in the Italian Alps. In fact, nowadays 

debris-covered glaciers represent a distinctive category of glacial geomorphosites, as they represent 

one of the main responses of the glacial environment to the current climate change (chapter 4.3). 

 

Trees for investigating environmental stress in glacial and periglacial environments 

Environmental stress can be defined as any environmental change that acts to reduce the fitness of 

organisms (Koehn and Bayne, 1989). Environmental stress can be due both to changes in abiotic 

factors such as temperature, water supplies, chemical components and to biotic stresses e.g. 

parasitism and competition (Bijlsma and Loeschcke, 2005). Tree responses to climate change and 
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related environmental stress in high-mountain environments include the modification of tree-ring 

patterns and growth rate, the modification of carbon and oxygen stable isotope ratio in the annual 

tree rings, the formation of tree-ring anomalies and the emission of different rates of Volatile 

Organic Compounds (VOCs).   

I applied dendrochronological techniques, the analysis of carbon and oxygen isotopes in tree rings 

and the investigation of VOCs in tree leaves in order to test if these approaches are useful for the 

identification of environmental stresses in trees located on the surface of the Miage debris-covered 

Glacier (chapter 5.1). 

Then I tested a novel approach with the aim of performing an early diagnosis of tree disease in 

high-mountain environments by analysing the terpene content within annual tree rings of trees 

putatively infected by a common pathogen fungus in Italy, comparing the results with putatively not 

infected trees. The current climate change determines an increase in average air temperature also 

during the winter months, thus causing the modification of the habitat of fungal pathogens, that are 

also colonizing areas located at higher elevation, where they were previously absent (La Porta et al., 

2008) (chapter 5.2). 

 

Trees for describing the distribution of air pollutants 

Trees act as bioindicators allowing the detailed monitoring of the distribution of atmospheric PM. 

In particular, magnetic properties of several tree tissues are related to vehicular and industrial 

pollution. In order to investigate PM distribution, the comparison between polluted areas and 

“control”, less polluted, sites, is necessary.  

I applied magnetic analyses on tree bark of trees located in one of the most polluted areas of Italy, 

the city of Milano and I compared the results with data gained in a site located at a higher altitude 

where air pollution is less pronounced, i.e. in the Upper Valtellina (chapter 6.1).       

 

Summarizing, the objectives of this Ph.D. project were to: 

i) Identify a rapid and accurate method for detecting trees growing on the surface of 

debris-covered glaciers using data obtained from satellite images and field surveys; 

ii) Define and deepen the knowledge about the utility of vegetation, and in particular of 

trees, in geomorphological investigations and geomorphosite assessment in the Alpine 

environment; 

iii) Evaluate if tree-ring patterns, stable isotopes and Volatile Organic Compounds produced 

and emitted by trees in different tissues can be useful for detecting environmental stress 

and pathogen infection at high altitudes and their relationship with the ongoing climatic 

trend; 
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iv) Describe the spatial distribution of air pollutants through the analysis of magnetic 

particles deposited on tree bark in a highly polluted area in the Po plain and in a less 

disturbed site at higher elevations. 
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A first attempt to detect supraglacial trees on debris-covered glaciers by means of high-

resolution satellite images 
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Abstract 

Tree cover is spreading on the surface of debris-covered glaciers following the ongoing increasing 

in debris-covered area and thickness. Since the presence of supraglacial trees is related to several 

parameters, detailed analysis of its occurrence, distribution and features may contribute to describe 

the behavior and evolution of debris-covered glaciers and their changes over time.  

In this paper, we present the results from a pilot study aimed at identifying the distribution and 

density of supraglacial trees on the widest Italian debris-covered glacier, the Miage Glacier (Mont 

Blanc Massif), applying remote sensing techniques.  

The Normalized Difference Vegetation Index (NDVI) was calculated on high-resolution satellite 

images. The results of this analysis were integrated with altitude and slope data in order to better 

define the areas characterized by the presence of trees. The results underline that the NDVI 

calculated on high-resolution satellite images allows the detection of supraglacial trees with some 

sensor-specific differences due to the resolution and wavelengths of the satellite images used.  

 

Keywords: supraglacial trees, debris-covered glaciers, remote sensing, Pleiades, SPOT 7, Miage 

Glacier. 
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Introduction 

Supraglacial vegetation is becoming a common feature on debris-covered glaciers (DCGs). These 

glaciers are widespread in the mountain chains of Asia and New Zealand, but their number is 

increasing in the European Alps as well (Diolaiuti, D’Agata, & Smiraglia, 2003). On the Southern 

side of the Alps supraglacial vegetation is present on some debris-covered glaciers, e.g., the Miage 

Glacier (Mount Blanc Massif), characterized by abundant shrubs and trees, the Brenva Glacier 

(Mount Blanc Massif), with a scattered but widespread vegetation cover on the detached debris-

covered tongue, the Belvedere Glacier (Monte Rosa Group), where small supraglacial shrubs and 

trees are present, and the Calderone Glacier (which is now divided in two partially debris-covered 

glacierets and represents the only ice body in the Apennines) (Pelfini, & Leonelli, 2014).  

Recent literature (see Oerlemans, Giesen, & Van den Broeke, 2009) reports darkening phenomena 

affecting several mountain glaciers, thus suggesting that an increase in the number and extent of 

debris-covered ice will occur in the next future. This leads to a noticeable modification in the 

Alpine landscape. The debris cover also represents a new habitat for living organisms, such as 

microorganisms (Franzetti et al., 2013), animals (Gobbi, Isaia, & De Bernardi, 2011), yeasts 

(Turchetti et al., 2013), and vegetation (Gentili et al., 2015). Even if supraglacial debris covers in a 

continuous and uninterrupted way the largest part of the ablation zone of actual DCGs (Benn & 

Evans, 2010), other glaciers show wide buried ice areas on their melting tongues as well. Although 

these latter glaciers cannot be considered actual debris-covered ice bodies, herbaceous vegetation is 

beginning to colonize their rock mantle. Examples are the tongue of Forni Glacier (Ortles-Cevedale 

Group) where herbaceous plants are found on the medial moraine, the Ciamousseretto Glacier 

(Gran Paradiso Group), the Capra Glacier (Levante Group) and the Amola Glacier (Adamello-

Presanella Group) (Pelfini & Leonelli, 2014).  

The Miage Glacier can be considered the only debris-covered glacier of the Italian Alps 

characterized by the presence of an actual supraglacial forest: grass, shrubs and trees colonize the 

lower sector of the ablation tongue and they move downvalley according to the glacier surface 

velocity (Leonelli & Pelfini, 2013). The velocity, slope, thickness, debris grain size, porosity and 

moisture of the supraglacial debris layer are the main elements controlling both germination and 

growth of vegetation, especially of trees (Caccianiga et al., 2011). In particular, trees can be found 

on the lower portion of the glacier tongue, where the debris is thick enough, the glacier velocity is 

low and the slope gentle (Leonelli, Pelfini, & Morra di Cella, 2009; Pelfini, Santilli, Leonelli, & 

Bozzoni, 2007; Pelfini et al., 2012; Vezzola, Diolaiuti, D’Agata, Smiraglia, & Pelfini, 2016). Trees 

are a precious source of climatic and environmental information (e.g., Fritts, 1976) and, in the case 

of debris-covered glaciers, tree-ring chronologies from supraglacial trees and growth anomalies in 

tree rings can considerably increase the current knowledge related to the glacier dynamics (Pelfini 
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et al., 2007). The analysis of the distribution of supraglacial trees represents the first step in the 

selection of appropriate areas for the collection of samples from trees and the analysis of tree-ring 

characteristics (Leonelli et al., 2014). However, detection and analysis of supraglacial trees is still a 

challenge, because field investigations are expensive and, moreover, not always possible in remote 

areas. 

Satellite images represent a new source of data in the analysis of vegetation in glacial environments 

(Danby & Hik, 2007; Vescovo & Gianelle, 2006) but they have not so far been applied in the 

investigation of the occurrence and distribution of trees, and more in general of vegetation, on the 

surface of debris-covered glaciers. High resolution multispectral satellite images can be used to 

detect areas characterized by vegetation, also in the case of low-density vegetation. For instance, 

vegetation indexes were applied to identify mosses and lichens in polar regions (e.g. Shin, Kim H., 

Kim S., & Hong, 2014), in the classification of grasslands (Schuster, Schmidt, Conrad, Kleinschmit, 

& Forster, 2015) and in the study of vegetation in mountain environments (Zhang Z.M., Zhang 

Z.K., Guo, Tao, & Ou, 2013).    

This research aimed at testing a remote sensing approach to identify the occurrence, distribution and 

density of trees on the surface of the widest Italian debris-covered glacier, the Miage Glacier (Mont 

Blanc Massif, Italy). In this paper, we present the first results obtained by calculating the most 

commonly used vegetation index, the Normalized Difference Vegetation Index (NDVI, Rouse, 

Haas, Schell, & Deering, 1974) based on high-resolution satellite images.  

 

Study area 

The Miage Glacier (45°47’ N, 6°52’ E) is the widest debris-covered glacier in the Italian Alps, with 

an area of 10.47 km2 (Smiraglia et al., 2015; Fig.1). 

 

Figure 1. Location map (Miage Glacier, Aosta Valley, Italy). The area investigated in this 

study is represented with a black box. 
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The glacier drains the southwest slope of Mont Blanc in the Aosta Valley (Western Italian Alps) 

and shows a continuous debris cover on the ablation tongue. Its shape and morphology resemble the 

huge Asian debris-covered glaciers. The glacier snout terminates in two main lobes (the southern 

and northern lobes) and a smaller intermediary one. Until the last decade the most-known and best 

developed debris-covered glaciers of the Alps were all located on the Italian side of the Alpine 

chain (the Miage and the Brenva glaciers in the Mont Blanc Massif and the Belvedere glacier in the 

Monte Rosa Group). The Miage Glacier now represents the best example of an active debris-

covered glacier in Italy and it has been the subject of many investigations. It was first explored in 

the 18th century by De Saussure and since then many studies of its geomorphologic and 

glaciological features have been carried out (Baretti, 1880; Capello, 1959; Cunietti, 1961; Deline, 

1999; Deline & Orombelli, 2005; Lesca, 1974; Sacco, 1917; Smiraglia, Diolaiuti, Casati, & 

Kirkbride, 2000; Thomson, Kirkbride, & Brock, 2000). Some studies also addressed the 

development of supraglacial debris (Deline, 2005), others focused on the calving phenomena 

occurring at its ice-contact lake and on the lake abrupt drainage events (Deline et al., 2004; 

Diolaiuti et al., 2006; Masetti, Diolaiuti, D’Agata, & Smiraglia, 2010), on the thermal properties of 

the debris (Mihalcea et al., 2008) and on the presence of vegetation supported by the occurrence of 

a debris cover (Caccianiga et al., 2011; Garavaglia, Pelfini, & Motta, 2010; Pelfini et al., 2012; 

Richter, Fichter, & Grüninger, 2004). Abundant vegetation located on the debris surface confers a 

high value to the Miage Glacier when it is considered as a geomorphosite (Bollati, Smiraglia, & 

Pelfini, 2013; Bollati, Leonelli, Vezzola, & Pelfini, 2015; Garavaglia, Pelfini, & Bollati, 2010; 

Pelfini & Bollati, 2014; Pelfini, Bollati, Pellegrini, & Zucali, 2016). In fact, the debris cover is 

colonized by vegetation, particularly on the lowermost part, where tree species (Larix decidua Mill. 

and Picea abies Karst) occur (Fig. 2). In recent investigations, microfauna and bacteria were also 

sampled and analyzed on the glacier surface (Franzetti et al., 2013). 

On the Miage Glacier, high rates of debris are supplied by rock falls and avalanches from the 

surrounding rock walls and have enabled the development of the present debris-covered glacier 

tongue, effectively slowing down the glacier retreat (Diolaiuti, D’Agata, Meazza, Zanutta, & 

Smiraglia, 2009). The debris shows thicknesses ranging from a few centimeters (in the upper glacier 

sector) up to 1.5 meters (close to the glacier terminus), mainly depending on the surface slope and 

the glacier flow magnitude. The grain sizes range from rock boulders to fine pebbles and sand and 

mainly consist of crystalline rocks: gneiss, micaschist and granite (Deline, 2005).  
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Figure 2. The ablation tongue of the Miage Glacier in the Aosta Valley, characterized by two main 

lobes and a smaller one in between (A) (photo: courtesy of D. Zannetti, August 2011). Supraglacial 

vegetation has colonized the terminal part of the glacier tongue (B) (photo: L.C. Vezzola, August 

2012). 

 

Materials and methods 

Two high-resolution satellite images were obtained from Airbus Defence and Space 

(www.geostore.com). The first one was acquired by the Pleiades 1B satellite, launched on 

December 2, 2012, and the second one by the SPOT 7 satellite, launched on June 30, 2014; both 

satellites were launched by CNES (Centre National d’Études Spatiales), the space agency of France. 

These systems deliver an optical high-resolution panchromatic image and a four bands multispectral 

image (see Table 1), orthorectified via a Digital Terrain Model. For the Pleiades image, pixel size is 

0.5 m x 0.5 m for the orthorectified panchromatic channel and 2 m x 2 m for the multispectral bands 

(Gleyzes, Perret, & Kubik, 2012). The Pleiades image used in this study was acquired on 21st 

August 2013 under clear sky conditions and with 0% cloud cover. The SPOT image was acquired 

on September 25, 2015 under clear sky conditions and cloud cover was absent. Pixel size is 1.5 m x 

1.5 m for the orthorectified panchromatic channel and 6 m x 6 m for the multispectral bands (Prost, 

2014).  

 

Table 1. Characteristic wavelengths of the four bands for the Pleiades and SPOT 7 satellite images. 

Satellite image Spectral Band Wavelengths 

Pleiades 1B Blue 430-550 nm 

Green 490-610 nm 

Red 600-720 nm 

Near Infrared 750-950 nm 

SPOT 7 Blue 455-525 nm 

Green 530-590 nm 

Red 625-695 nm 

Near Infrared 760-890 nm 

 

http://www.geostore.com/
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Beside the high spatial resolution, the main advantage of the sensors on board Pleiades and SPOT 7 

is the availability of a NIR channel that allows a clear distinction of vegetation (see Fig. 3) and 

calculation of vegetation indexes. To further improve the resolution of the multispectral bands, both 

images were individually pan-sharpened using the panchromatic channel and co-registered to avoid 

pixel misalignment. The NDVI was calculated on each scene according to the formula: 

𝑁𝐷𝑉𝐼 =  
𝐵𝑁𝐼𝑅 − 𝐵𝑅

𝐵𝑁𝐼𝑅 + 𝐵𝑅
 

where the NDVI is unitless and ranges between 0 and 1. Detection of supraglacial trees was further 

based on thresholding the NDVI, using a threshold of 0.2 which is a value commonly used in 

literature (Bayramov, Buchroithner, & Bayramov, 2016; Maxwell & Sylvester, 2012).  

To further restrain pixels and avoid misclassification due to areas in shadow with a high NDVI, two 

additional criteria were adopted (see Fig. 4): 1) pixels should be below the altitude of the glacier 

vegetation and tree limit, which in the study area was detected between 2000 m and 2100 m in 2006 

a.s.l.; Caccianiga et al., 2011), where trees can actually grow, and 2) terrain slope should be less 

than 10°. In fact, slope is one of the main parameters influencing tree establishment on the Miage 

Glacier (Vezzola et al., 2016). Altitude and slope were calculated by Diolaiuti et al. (2009) from a 

DEM (Digital Elevation Model) with a 10 m x 10 m spatial resolution that these authors derived 

from high-resolution aerial photographs (a stereo pair). Both altitude and slope from the DEM were 

oversampled via bilinear interpolation to 0.5 m spatial resolution, as well as the SPOT-derived 

NDVI, to set a common spatial resolution for all the datasets. Finally, the classification results were 

clipped using the glacier outlines obtained from Smiraglia et al. (2015) and the classification images 

from the Pleiades and SPOT images were inter-compared to assess common areas of supraglacial 

trees. 
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Figure 3. False colour composite using bands 4-3-2 (NIR, RED, GREEN) of the Pleiades image. 

Trees appear red. Note the forest between the two main lobes and abundant supraglacial vegetation 

on the northern lobe, within the blue box. 

 

 

 

Figure 2. Flow chart of the method applied for the identification of supraglacial trees through the 

remote sensing approach. 
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Results 

The classification based on the NDVI and the slope and altitude criteria allowed the detection of a 

total tree cover of 5905 m2 on the Pleiades image (Fig. 5A) and of 11,578 m2 on the SPOT 7 image 

(Fig. 5B). Pixels with values supporting the potential presence of trees were detected between 1700 

m and 2100 m a.s.l. and, in particular, over 50% of them (51.84% on the Pleiades image and 

50.30% on SPOT) are located between 1800 m and 1850 m a.s.l., near the internal margin of both 

the north and south lobes. The applied method suggests that most abundant tree cover is located 

between 1750 and 1900 m a.s.l. on both images, with a larger area always detected on the SPOT 

image compared to the Pleiades image (8348 m2 and 4074 m2, respectively). Only in the altitude 

belts 1900 – 1950 m a.s.l. and 2000 – 2050 m a.s.l., more trees were detected on the Pleaides image 

compared to SPOT (Fig. 6).  

If only the two main lobes of the glacier tongue are considered, from 1700 up to about 2050 m a.s.l., 

2573 m2 of tree cover were detected on the north lobe on the Pleiades image and 1966 m2 on the 

south lobe, whereas for SPOT, 4121 m2 of trees were detected on the north lobe and 4541 m2 on the 

south lobe. In spite of the difference in the area of supraglacial tree cover detected on the SPOT vs 

Pleiades image, the trend that can be observed looking at the two lobes is similar, i.e. when a larger 

area is detected on the Pleiades image on the north lobe of the Miage Glacier compared to the south 

lobe, more trees can be seen on the SPOT image on the north lobe compared to the south one (Fig. 

7).  

The area characterized by supraglacial trees that was detected on both the Pleiades and SPOT 

images was 4050 m2, and if only the two main lobes are considered, 1981 m2 were detected on both 

images on the north lobe and 1382 m2 on the south lobe (Fig. 8).   
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Figure 5. Classification based on NDVI, altitude and slope criteria performed on A) the Pleiades 

image and B) the SPOT image. Only the areas detected as characterized by supraglacial trees are 

reported. 
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Figure 6. Hypsographic curve of supraglacial trees on the Miage Glacier, detected on the SPOT 

(black bars) and on the Pleiades (white bars) images. 

 

 

Figure 7. Hypsographic curve of the north and south lobes of the Miage Glacier detected on the 

SPOT (black bars) and Pleiades (white bars) images. 
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Figure 8. Hypsographic curve of supraglacial trees common to both the Pleiades and SPOT 

images, considering the whole glacier (black bars), only the north lobe (white bars) and only the 

south lobe (grey bars). 

 

Discussion and conclusion 

This study represents a first attempt to map supraglacial tree occurrence on the surface of debris-

covered glaciers through a remote sensing approach based on high-resolution satellite images. The 

proposed method was applied to the Miage Glacier (Mont Blanc Massif, Italian Alps), which is 

characterized by abundant supraglacial vegetation, including both herbaceous and arboreal plants, 

on the glacier tongue.  

We calculated the NDVI on high-resolution Pleiades and SPOT 7 images. The NDVI is a powerful 

index also capable of detecting vegetation cover in the case of sparse vegetation, i.e. in arid (Weiss, 

Gutzler, Allred Coonrod, & Dahm, 2004) and Arctic (Laidler, Treitz, & Atkinson, 2007) 

environments. The applied approach allowed the detection of pixels featuring values that are 

compatible with the occurrence of supraglacial trees on both the Pleiades and SPOT 7 images, 

although some differences were detected between them.  

In particular, even though the two satellite images could find similar patterns of distribution of 

supraglacial trees, a greater vegetation cover was detected on the SPOT image, about twice the 

value detected on the Pleiades image. This difference can be only partially explained considering 

that the acquisition year of the two images was different. Although the density of supraglacial trees 

is increasing on the Miage Glacier (Leonelli, Pelfini, Morra di Cella, & Garavaglia, 2011), an 

increase as pronounced as the one detected analyzing the satellite images is very unlikely. In fact, 
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the number of supraglacial trees does not increase at the observed rate, due to the instability of 

glacier surface and the formation of ice cliffs (the latter ones caused by differential ablation 

processes), that determine tree uprooting and death over time (Pelfini et al., 2012). Ablation is more 

intense on ice cliffs, and both processes of down-wasting and back-wasting (sensu Benn & Evans, 

2010) occur and influence supraglacial trees located in their proximity (Bollati et al., 2015).   

Thus, the differences might instead be due to specific characteristics of the two sensors that could 

influence the NDVI calculation. In fact, NDVI variations are strictly related to the near infrared and 

red spectral bands, and several factors such as atmospheric conditions, solar illumination, lack of 

bandwidth correspondence and spatial and radiometric resolution of sensors can come into play. As 

concerns spatial resolution, previous studies showed that sensors with a finer spatial resolution 

produce lower NDVI values compared with sensors characterized by coarser spatial resolution (e.g., 

Abuzar, Sheffield, Whitfield, O’Connell, & McAllister, 2014; Soudani, François, le Maire, le 

Dantec, & Dufrêne, 2006).  

A further problem is represented by the properties of tree cover on the Miage Glacier. In fact, the 

distribution of supraglacial plants is usually extremely fragmented and sparse, but also the 

characteristics of the most abundant tree species do not allow the formation of uniform areas on the 

glacier surface that can be easily detected through the analysis of satellite images. In particular, the 

main arboreal species detected on the Miage Glacier are Larix decidua Mill. and Picea abies Karst, 

whose leaves are very small. Moreover, even though mature trees have been identified through field 

surveys on the glacier, most of them are quite young (i.e., they are less than 30 years old) and suffer 

stress conditions due to the glacier flow and movements inducing surface instability (Leonelli & 

Pelfini, 2013), thus they do not form a well-developed canopy and tend to be smaller than 30 cm.  

In summary, our results suggest that NDVI calculation on high-resolution satellite images (i.e., 

Pleiades and SPOT 7), together with slope and altitude thresholds, allows the detection of 

supraglacial trees, although what sensor yields the best accuracy is still uncertain. However, we 

cannot safely assume that some herbaceous plants are not included in the results obtained from the 

applied method. For this reason, accurate field surveys should be performed in order to define 

whether the areas detected with this approach are actually characterized by trees or if herbaceous 

vegetation is also identified.          

Future investigations will aim at performing detailed field surveys on the Miage Glacier surface 

(possibly coupled with a satellite scheduled acquisition), in order to better assess the accuracy of the 

remote sensing approach and improve the understanding of sensor-related differences. Field surveys 

using Unmanned Aerial Vehicles (UAVs or drones) equipped with both an optic and NIR camera 

could also be performed to further improve the spatial resolution of the data and the DEM. The 

same method could be applied i) to study other alpine debris-covered glaciers, in order to select 
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areas where dendrochronological sampling can be performed; ii) to acquire multi-temporal 

qualitative information where field surveys are particularly difficult or not possible and iii) to 

contribute to the study of glacial geo(morpho)sites by assessing their ecological value also based on 

the occurrence and abundance of supraglacial trees.  
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Assessing glacier features supporting supraglacial trees: a case study of the Miage debris-

covered Glacier (Italian Alps) 

L.C. Vezzola 1, G.A. Diolaiuti 1, C. D’Agata 1, C. Smiraglia 1 and M. Pelfini 1  

1 "A. Desio" Department of Earth Sciences, Università degli Studi di Milano, Italy 

 

Abstract 

The number of debris-covered glaciers featuring supraglacial trees is increasing worldwide, as a 

response of high mountain environments to climate warming. Generally, their distribution on the 

glacier surface is not homogeneous, thus suggesting that some glacier parameters influence 

germination and growth of trees. In this study, we focused our attention on the widest Italian debris-

covered glacier, the Miage Glacier (Mont Blanc massif). We analyzed the ablation area in the range 

from 1730 m to 2400 m a.s.l. where continuous debris coverage is present and trees are found. 

Using data obtained by remote sensing investigations and field surveys we defined a record of 

glacier parameters to be analyzed with respect to the presence and abundance of trees.  

We found that supraglacial trees are present at the Miage Glacier: i) whenever exceeding a debris 

thickness threshold (≥19 cm); ii) with a gentle slope (≤ 10°); iii) with a low glacier surface velocity 

(≤ 7.0 m/y); and iv) where the vertical changes due to glacier dynamics are positive (i.e. prevalent 

increase due to both slow debris accumulation and preservation of ice flow inputs that we found 

ranging between +7 m and +28 m over 28 years). The statistical analysis supports our findings. 

The analysis of the same parameters might be conducted on other debris-covered glaciers featuring 

supraglacial trees, in order to evaluate if such conditions are local ones or if they are general factors 

driving germination and growth of trees. 

By identifying the features supporting the presence and growth of trees in these environments, and 

their thresholds, a contribution is given for a better understanding of the importance of debris-

covered glaciers and, in general, of debris-covered ice, as a refuge for trees during glacial and warm 

intervals of the Holocene.     

  

KEYWORDS: debris-covered glacier, Italian Alps, Miage Glacier, remote sensing, supraglacial 

debris, supraglacial trees  
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Introduction 

Debris-covered glaciers (DCGs) are common features worldwide, as they have been observed in 

Europe, New Zealand, Asia and South America (e.g. Diolaiuti et al., 2003; Brook et al., 2013; 

Ghosh et al., 2014; Emmer et al., 2015). The recent literature (see Oerlemans et al., 2009) reports 

darkening phenomena affecting several mountain glaciers thus contributing to change their surface 

conditions and supporting their transformation into actual debris-covered glaciers. This leads to a 

noticeable modification in the alpine landscape, also giving new sites of scientific and cultural 

interest (Bollati et al., 2014). Moreover, the debris coverage represents a new habitat for living 

organisms, such as microorganisms (Franzetti et al., 2013), animals (Gobbi et al., 2011), yeasts 

(Turchetti et al., 2013) and plants (Gentili et al., 2015). Arboreal vegetation may also be present, 

whenever the glacier tongue is located below the treeline. The distribution of supraglacial trees is 

generally not homogeneous, thus suggesting that some glacier parameters influence germination 

and growth of plants. In the recent literature some authors reported as possible driving factors, for 

both herbaceous and arboreal vegetation: thick debris mantle, fine grain size (i.e.: from sand to 

pebbles), and slow surface glacier velocity; these factors also affect debris stability and then the 

suitability for supraglacial areas to support vegetation growth (Caccianiga et al., 2011; Leonelli and 

Pelfini, 2013). Arboreal vegetation is also a precious source of information to describe the behavior 

of DCGs. The strong sensitivity of arboreal vegetation to changes in site stability and in surface 

velocity was analyzed by Pelfini et al. (2007), who used tree rings cored from supraglacial trees to 

reconstruct glacier dynamics and evolution. In fact, accelerated ice flow determines disturbances in 

the normal growth of supraglacial trees and these perturbations are recorded by the plants as scars, 

compression wood and tree-ring eccentricity.  

Thus, years characterized by intense glacier flow can be detected studying tree rings of supraglacial 

arboreal vegetation.  

In spite of these previous studies, which underlined that supraglacial tree vegetation reflects 

peculiar environmental conditions (Pelfini et al., 2007) and gave a list of possible factors driving the 

colonization of the buried ice (Caccianiga et al., 2011), no research was found dealing with the 

exact role played by each one of the glacier features in allowing and supporting or preventing tree 

germination and growth. Thus, dedicated studies on selected locations embracing both the analysis 

of glacier features and arboreal vegetation characteristics (i.e. abundance of trees) are needed.  

Among the existing methods allowing the extraction of geomorphological and glaciological data, 

for describing the supraglacial environment and detecting the most suitable sites to permit and 

support tree germination and growth, remote sensing is the most valuable one. In fact, this 

technique not only allows a wide area to be covered, and in this way to collect distributed data, but 
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it also permits the survey to be repeated over several images and sources, thus giving a multi-

temporal analysis. 

 Aerial and satellite images have been applied in the recent past in order to analyze DCGs, with the 

aims to detect their boundaries and to estimate volume and area changes (e.g. Ranzi et al., 2004; 

Smiraglia et al., 2005; D'Agata et al., 2005; Diolaiuti et al., 2009; Gjermundsen et al., 2011), to 

describe supraglacial debris distribution and its changes over time (e.g. Stokes et al., 2007; 

Mihalcea et al., 2008a; Minora et al., 2015), to identify changes in the velocity of the glacier (e.g. 

Luckman et al., 2007) and to detect and model their ablation rate (e.g. Nicholson and Benn, 2006; 

Mihalcea et al., 2008b; Reid and Brock, 2010; Fyffe et al., 2014). Orthophotos, satellite and aerial 

images were also used in order to monitor changes in the distribution of alpine and subalpine 

vegetation (e.g. Müllerová, 2004; Vescovo and Gianelle, 2008), to analyze the recent ecesis in the 

glacier forefield (Garavaglia et al., 2010) and to detect variations in the treeline (e.g. Danby and 

Hik, 2007; Leonelli et al., 2009). Vezzola (unpublished data) have recently tested a method based 

on the analysis of color orthophotos to rapidly detect and map supraglacial trees on DCGs, finding 

how the discontinuous distribution, low density and small canopy featured by trees represent the 

main limits in detecting them from remotely sensed data. Moreover, color orthophotos are not 

always available, in particular at high altitudes, and high resolution satellite images are often still 

cost prohibitive.   

Since the germination and growth of supraglacial vegetation is controlled not only by climate 

conditions but also by glacio-related features (Pelfini et al., 2012), in this work we aimed at i) 

describing and quantifying the overall glacier features (i.e. debris occurrence and thickness, debris-

surface temperature, debris moisture, surface slope, aspect, surface velocity and ablation rates) 

dominating a representative alpine DCG where an actual supraglacial forest is found and ii) 

assessing the role and weight played by each glacier feature in driving tree vegetation presence, 

growth and distribution.   

For these purposes we focused our analyses on the most representative Italian DCG, the Miage 

Glacier (Mont Blanc massif), the unique glacier on the southern side of the Alps featuring an actual 

supraglacial forest in the lower portion of its ablation tongue. In addition, this glacier underwent a 

long sequence of both direct and remote sensed investigations over the last decades (see details 

reported in the "Study area" section) thus offering a robust and wide database to look for relations, 

if any, among tree occurrence and glacier features. Last but not least, the authors of this 

contribution are also analyzing vegetation of Alpine glacier forelands (increasing their extent due to 

the ongoing cryosphere degradation) thus supporting comparisons among tree occurrence, growth 

and distribution in these newly exposed zones and on DCGs. 
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Since supraglacial debris was also present during past glacial periods, this study does not only 

describe the phenomenon of current colonization of the supraglacial environment performed by 

trees, but it also promotes the analysis of the role played by the supraglacial debris in supporting the 

establishment and growth of arboreal species in the past. By identifying the features supporting the 

presence of trees in these environments, and their thresholds, a contribution is given for a better 

understanding of the importance of debris-covered glaciers and, in general, of debris-covered ice, as 

a refuge for trees during both glacial intervals and warm periods occurred in the Holocene, as 

already suggested for plants (Ravazzi et al., 1999; Fickert et al., 2007; Caccianiga et al., 2011).       

 

Study area 

The Miage Glacier in the Aosta Valley Autonomous Region (45° 47' N, 6° 52' E) is the widest 

debris-covered glacier in the Italian Alps (Fig.1). It is located in the Val Veny, on the southwest 

slope of the Mont Blanc massif, it features an area of about 10 km2 (Diolaiuti et al., 2012) and its 

ablation tongue is characterized by two main lobes and a smaller one in between. The ablation 

tongue of the glacier shows quite continuous debris coverage from 1730 m a.s.l. up to 2400 m a.s.l., 

which thickness varies from a few centimeters up to 2 m: increasing debris thickness is generally 

detected with decreasing elevation (Mihalcea et al., 2008a). The Miage-debris cover is mainly 

composed by igneous and metamorphic rocks (Brock et al., 2010). The debris grain size largely 

varies from rock boulders to fine pebbles, sand and clay. Debris thickness and lithology influence 

albedo and consequently the ablation rate. In particular, the main lithology is given by gneiss and 

micaschists followed by granites. These latter are composed by milky white quartz, white 

plagioclase feldspars and pink potassium feldspars; moreover, also green biotitic and epidotic rocks 

are present. Gneiss is made from the same minerals as granites. In addition, chloroschists, 

amphiboles and epidotic rocks and schists like ardesia featuring a black color and with intrusions of 

graphite are present. A red patina is present at the rock surface, it is constituted by minerals from 

clays, manganese and iron oxides and it derived by deep hydrothermal circulation affecting rock 

cracks (Franzetti et al., 2013). Ice cliffs and supraglacial lakes are present on the largest part of the 

glacier ablation tongue, where ablation rate is higher, as a consequence of the exposure of bare ice.  

Scientific research has been conducted on this glacier since the 18th century. It mostly concerned its 

geomorphologic and glaciological features and their changes over time (e.g. Baretti, 1880; Capello, 

1959; Cunietti, 1961; Deline, 1999; Smiraglia et al., 2000; Diolaiuti et al., 2009; Fyffe et al., 2014), 

but also the calving phenomena and drainage events occurring at its ice-contact lake, the Miage 

Lake (Deline et al., 2004; Diolaiuti et al., 2005; Masetti et al., 2010), and its educational and 

touristic values and the role of the glacier in the frame of geo-heritage (Bollati et al., 2013 and 

Bollati et al., 2014).  
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The characteristics of the Miage Glacier as a new habitat for plants have also been studied. For what 

concerns trees, the most abundant species in the supraglacial debris are Larix decidua Mill. and 

Picea abies Karst, but other vascular plants are present. Trees taller than 1 m are mainly located at 

the southern lobe and the oldest living trees are about 60 years old as they move down-valley 

together with the supraglacial debris according to the local surface velocity of the glacier and, once 

they reach the glacier terminus, they fall (Pelfini et al., 2012). Tree density is higher on the northern 

lobe, but the oldest and tallest trees are found on the southern lobe. At the Miage Glacier, trees 

represent a valid source of glaciological and climatic data as they archive much information in tree-

ring morphology, but also tree-ring stable isotopes and volatile organic compounds emitted from 

leaves allow the key factors influencing tree development on supraglacial debris to be investigated 

(Leonelli et al., 2014).  

 

Figure 1. (A) The Miage debris-covered Glacier (45° 47' N, 6° 52' E) in the Val Veny, Mont Blanc 

Massif, is characterized in its snout part by the presence of (B, C) vegetation on the supraglacial 

debris, including trees. The 15 selected plots characterized by the presence of trees selected for this 

study are reported in fig. 1A.   

 

Materials and methods 

Extraction and analysis of the main features characterizing the whole ablation tongue of the Miage 

Glacier 

Firstly, a database including all the main features of the Miage debris-covered ablation tongue 

(from 1730 m to 2400 m a.s.l. ca.) was developed. Then the data was analyzed in order to describe 

the average conditions of a wide and representative alpine debris-covered glacier. In particular, the 

database included the following glacier parameters:  

- Debris surface temperature (°C); 
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- Debris thickness (m); 

- Normalized Difference Moisture Index (NDMI, absolute value);  

- Slope (°); 

- Ablation rate (cm w.e./day); 

- Variation in glacier thickness over 28 years (1975-2003) (m); 

- Aspect (N, S, E, W); 

- Surface velocity measured in the past (by Lesca et al., 1974) and in recent time (by Diolaiuti et al., 

2005) on some selected points at the glacier surface (m/year). 

The point surface debris temperature was measured by Mihalcea et al. (2008a) every 5 minutes by 

thermistors and data loggers, close to the ablation stakes (see below). The sensor tips were attached 

to flat rock surface (2 cm thick, 10 cm x 10 cm), 2 cm below the debris surface. The data recorded 

at this depth are normally considered the indicative of point surface temperature and used within 

several international protocols to study permafrost and frozen ground (see Osterkamp, 2003; 

Guglielmin et al., 2008). For describing the mean debris thermal conditions, we analyzed the 

temperature data recorded on a day with clear sky conditions.   

Moreover, we also used surface temperature estimated from satellite images acquired at the same 

time of the point debris temperatures. We analyzed ASTER kinetic surface temperatures derived 

from an ASTER image acquired on 01–08–2005 at 10:40 am UTC +1:00. These data feature a 

resolution of 90 m x 90 m and were fully described by Mihalcea et al. (2008a). 

Debris thickness was obtained by Mihalcea et al. (2008a) from the ASTER image acquired on 

August 2005 on a day with clear sky conditions. Debris thickness variability over the whole debris 

covered tongue was estimated through an empirical relation developed by these authors coupling 

measured debris depth at some selected glacier sites with the surface temperature data of the same 

sites extracted from the thermal level of the ASTER image. This approach, previously tested by 

Taschner and Ranzi (2002), was found to be a good method to describe the supraglacial debris of 

debris-covered glaciers and was also applied more recently by other authors (Minora et al., 2015) 

on wide and representative DCG areas.  

NDMI on the Miage Glacier was derived from a Landsat image acquired on July 2002 on a day 

with clear sky conditions (image code: LE71950282002230EDC00). No liquid precipitation 

occurred in the study area in the six days preceding the Landsat image acquisition (according to the 

meteorological data from the network managed by the Regione Autonoma Valle d'Aosta, RAVA). 

NDMI was calculated according to Equation (1), with NIR being Landsat TM Band 4 and MIR 

being Landsat T band 5 (Wilson and Sader, 2002). 
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NDMI =
NIR−MIR

NIR+MIR
                                     (1) 

 

Slope and Aspect were calculated by Diolaiuti et al. (2009) from a DEM (Digital Elevation Model) 

featuring a 10 m x 10 m spatial resolution. The DEM was obtained from 2003 aerial photos (RAVA 

flight). 

The ablation rate values were obtained from a network of ablation stakes installed in summer 2005 

(at the same sites where also point surface temperature was measured) and maintained up to the end 

of summer 2006. More than 20 ablation stakes were drilled into the ice to evaluate ice melt with 

varying debris thickness and altitude (i.e. from 1800 m to 2400 m a.s.l.). 

The stakes were distributed according to one longitudinal and two cross profiles on the debris-

covered area. They were monitored from June to October 2005 and 2006. 

Variation in glacier thickness over the period 1975-2003 was calculated by Diolaiuti et al. (2009), 

who compared digital elevation models (DEMs), derived from historical records, in particular maps 

(1975; scale 1: 10,000) and stereo pairs of aerial photos (1991 and 2003; scale 1: 15,000). 

Annual surface velocity of the Miage Glacier was measured by the Differential Global Positioning 

System method (Diolaiuti et al., 2005; Caccianiga et al., 2011; Franzetti et al., 2013) in the period 

2002-2009. Moreover, historic data were already published, thus permitting an analysis of the 

variability of glacier flow over time.  

 

Analysis of the glacier features on areas characterized by tree presence 

With the aim of identifying the role and weight of environmental parameters driving and supporting 

tree occurrence and growth at the glacier surface we analyzed the field data partially published by 

Pelfini et al. (2012) and collected in the summer seasons 2006 and 2007 in the snout part of the 

Miage Glacier. More precisely, we selected the field plots where these authors found well 

established tree vegetation (i.e.: all the plots we selected were characterized by tree abundance 

exceeding 25 trees/plot) and on these sites we looked for the dominant glaciological features. 

The information gained in the field included, in particular, the number of trees (both species Larix 

decidua Mill. and Picea abies Karst) in each plots.  

In this study, 15 plots (plot size: 15 m x 15 m) were considered (they are reported in fig.1) and a 

categorical value (25, 50, 75 and 100) was assigned to each plot, depending on the abundance of 

trees:  

- 25 = number of trees ranging between 1 and 25; 

- 50 = number of trees ranging between 25 and 50; 

- 75 = number of trees ranging between 50 and 75; 
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- 100 = number of trees above 75. 

For the selected plots, the following parameters were extracted from our glaciological database:  

- Altitude (m a.s.l.);  

- Debris surface temperature (°C); 

- Debris thickness (m); 

- Normalized Difference Moisture Index (NDMI, absolute value);  

- Slope (°); 

- Ablation rate (m water equivalent /year); 

- Variation in glacier thickness over 28 years (1975-2003) (m). 

- Aspect (N, S, E, W); 

- Surface velocity at the glacier surface (m/year); 

- Distance from the closest vegetation source area (m). 

 

Distance from the closest vegetation source area was calculated using the 2005 color orthophotos 

(RAVA), measuring the distance between each selected plot and the closest forested area located 

outside the glacier tongue.   

Then we analysed the environmental conditions dominating the 15 plots we selected to find 

threshold of the parameters suitable to divide areas with abundant tree vegetation from areas with 

scarce presence of supraglacial trees. For this purpose, diagrams coupling tree abundance at each 

plot with the environmental parameter values at the same plot were developed. 

Moreover, a one-way ANOVA was performed in order to compare 15 supraglacial plots located 

above the treeline, where trees are surely absent (tree abundance = 0), against the 15 plots 

previously selected characterized by the presence of trees (tree abundance = 50, 75, 100) located at 

altitudes below the local treeline. This statistical analysis was performed to evaluate the parameters 

(slope, debris thickness, debris-surface temperature, ablation rate, variation in ice thickness over 28 

years (1975-2003), aspect and NDMI) more meaningfully related to tree presence and abundance.  

 

Results 

The Miage debris-covered Glacier: main features and characteristics 

The parameters indicating the characteristics of the Miage Glacier are reported in Fig.2.  

Point debris-surface temperature shows a general decreasing trend with increasing altitude, in 

particular the average surface temperature at the glacier terminus is close to 30°C and at 2400 m 

a.s.l. it is reduced to 17°C. Peculiar values are observed between 2050 and 2150 m a.s.l., where both 

the minimum, maximum and average values increase (Fig.2.1). Considering a daily cycle 24 hours 

long it resulted that ground-measured temperatures of debris cover during a sunny summer day 
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exceed 30°C, and are about 1-4°C during night. Daily temperature excursion is therefore 28-33°C. 

Close to the terminus, debris temperature is positive throughout the vertical profile during almost 

the entire ablation season, and a continuous ice melt occurs at the bottom. 

ASTER kinetic surface temperatures resulted to be similar to ground measured temperatures: mean 

surface temperature over areas 90 m × 90 m wide varies between 25°C at 2059 m and 32°C close to 

the terminus. The Pearson’s correlation coefficient between ASTER and the field surface 

temperature data is 0.94 over the analyzed area.  

Calculated debris thickness and ASTER temperatures are not collinear (r = 0.146) and can therefore 

be entered simultaneously in statistical analyses. The calculated debris thickness varies between 18 

cm up to 55 cm (average value over 90 m × 90 m areas). Overall, debris thickness increases 

downwards, but is thinner in crevassed areas. The lowest thickness was measured at 1956 m a.s.l. in 

a crevassed area where the glacier divides into three lobes. Thickest debris corresponds to areas 

close to the terminus (Fig.2.2).  

NDMI on the Miage Glacier shows a minimum value of 16 (corresponding to maximal moisture) 

between 1951 and 2050 m a.s.l. and a maximum value of 50 (corresponding to drier environments) 

above 2350 m a.s.l. (Fig.2.3). No big difference in the NDMI values is detected between the glacier 

terminus and 2050 m a.s.l., while maximum NDMI decreases starting from 1950 m to 2250 m a.s.l., 

where its value passes from 49 to 42, and above 2250 m it raises up to 50.     

The minimum value of slope detected is 0°, while the maximum value is 45°. The average varies 

between 8° and 13° and it does not seem to follow a specific trend related to altitude (Fig.2.4). 

The ablation rate is influenced by debris distribution with rates varying from -0.3 m/y, where debris 

exceeds 55 cm thickness, to -5.5 m/y, where the debris is very thin or absent (Fig.2.5). The ablation 

rate generally decreases from the higher to the lower altitudes, with higher values in June-July and 

lower values in August-September.  

The changes in ice thickness over the period 1975-2003 show a general glacier volume loss (–

16.640 x 106 m3) from 1975 to 2003. Nevertheless, focusing on the two time sub-windows (i.e.: 

1975-1991 and 1991-2003), opposite trends are evident: in the period 1975-1991 the volume 

variation of the Miage Glacier was about +19.25 x 106 m3, while in the period 1991-2003 a volume 

decrease of about –36.2 x 106 m3 occurred. The thickness changes resulted positive (i.e.: depth 

increase) in the lower glacier sector where debris mantle exceeds the critical value (this latter is the 

debris thickness driving a buried ice ablation rate equal to the one of bare ice at the same elevation, 

see also Mattson et al., 1993, once this value is exceeded ablation rates are found diminishing) with 

values up to + 18 m at 1730 m a.s.l.; the thickness variation was found to be negative (i.e.: depth 

decrease) in the upper glacier zones (from 2250 m a.s.l.) where the debris layer is thinner, here the 

changes locally exceed -30 m (Fig.2.6). 
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As regards the aspect, 74% of the Miage Glacier surface ranges between 0° and 180° 

(predominantly East) from 1730 to 2400 m a.s.l. (Fig.2.7). 

Annual surface velocity of the Miage Glacier measured by the Differential Global Positioning 

System method ranged between 0.3 m/y and 90 m/y, and it shows a clear vertical gradient (Fig.3); 

the surface velocity values diminishing with glacier elevation and with the decreasing slope was 

also found by Pelfini et al. (2012) who described the thicker debris mantle where compressing flow 

is occurring, instead thinner and sparse debris where extending flow is dominant thus driving 

crevasses development and evolution. 

 

 

Figure 2. Characteristics of the Miage Glacier between 1730 and 2400 m a.s.l.. Altitude ranges are 

reported on the X axis. Maximum values are indicated with a continuous line, minimum values with 

a discontinuous line with small segments, average value with a discontinuous line with larger 

segments. 
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Figure 3. Ice flow at the surface of the Miage Glacier at different altitudes. The arrows 

represent the velocity vectors measured in 2006 (average velocity calculated from July to 

November), from 1950 m to 2250 m a.s.l. 

 

Glacier features on the areas showing tree vegetation presence 

The characteristics of the Miage Glacier in the 15 selected plots are reported in Fig.4.  

All the plots we selected were characterized by tree abundance exceeding 25 trees/plot. 

In the selected plots debris surface temperature is found ranging between 19°C and 33°C where 

trees are present and, in particular, tree vegetation with lower density is only present where 

temperature has a value between 29°C and 33°C (Fig.4.1). 

Trees are present where debris thickness ranges between 19 cm and 55 cm. In particular, more than 

90% of the plots are characterized by thickness ranging between 32 cm and 55 cm (Fig.4.2). 

Values of NDMI where arboreal vegetation is present range between 19 and 44 (Fig.4.3). 

Slope ranges between 2° and 10° where trees are present (Fig.4.4). 

Ablation rate where tree vegetation is present ranges between -0.6 and -1.8 m/y (Fig.4.5). 

The average variation in glacier thickness over 28 years (1975-2003) never shows negative values 

where trees are present, and it ranges between +7 m and +28 m (Fig.4.6). 

More than 85% of the Miage Glacier is characterized by an aspect ranging between 0° and 180° 

where tree vegetation is present and, in particular, 60% shows a NE aspect (between 0° and 90°) 

(Fig.4.7). 
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Annual surface speed in the selected plots ranges between 0.8 m/y and 7.0 m/y (Fig. 4.8). 

Distance from the closest source area (the nearest trees outside the glacier margins) for the selected 

plots ranges between 33.8 m and 177.4 m. A clear trend is detectable: where the density of tree 

vegetation is lower, the distance from the source area is higher (between 177.38 m and 79.25 m), 

and it gradually decreases when the density of trees increases (the plots with the highest density are 

located at a distance ranging between 94.0 m and 33.8 m from the closest source area) (Fig. 5). 

The results of the statistical analysis highlight that there is a statistically significant correlation at 

the p<0.05 level between all the considered parameters and the presence/absence of trees, except for 

the aspect and NDMI factors that were deemed as not statistically significant. The results of the 

analysis are reported in Table 1. 

 

Table 1. Results of the statistical analysis highlighting a statistically significant correlation at the 

p<0.05 level between all the considered parameters (but aspect and NDMI) and the 

presence/absence of trees 

Parameter ANOVA test 

Ablation rate F(3,26) = 28.78; p<0.000 

Debris-surface temperature F(3,26) = 8.95; p<0.000 

Variation in ice-thickness over 28 years F(3,26) = 65.42; p<0.000 

Slope F(3,26) = 50.33; p<0.000 

Debris thickness F(3,26) = 43.47; p<0.000 

Aspect  F(3,26) = 1.29; p<0.29 

NDMI F(3,26) = 1.91; p<0.15 

 

 



49 
 

 

Figure 4. Characteristics of the Miage Glacier in the 15 selected plots characterized by the 

presence of supraglacial trees. Tree vegetation abundance is reported in the X axis, respectively at 

low, medium and high-density (50, 75, 100). 

 

Discussion 

The Miage Glacier is known to be one of the few glaciers worldwide (and the only one in Italy) 

characterized by the presence of abundant supraglacial vegetation, including well developed trees, 

that can also be detected using color orthophotos with a pixel size of 0.5 m x 0.5 m. However, 

supraglacial vegetation can be detected in this way only when its density is very high (Vezzola et 

al., unpublished data) thus leading to the identification of vegetation on the Miage Glacier only 

where altitude ranges between 1730 m and 1850 m a.s.l.. This altitudinal range only represents 5% 
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of the whole glacier area occupied by continuous supraglacial debris (Fig. 6). Nevertheless, the 

treeline in the Val Veny for some species reaches an altitude of 2250 m a.s.l. (Leonelli and Pelfini, 

2013). Even though the distance between the 15 plots selected in this study and the closest 

proglacial forested area is an important factor in the establishment of supraglacial trees (Fig. 5), 

their reduced density at an altitude above 1850 m a.s.l. suggests that one or more glacier parameters 

influence germination and development of supraglacial trees.  

Thus, the selection of glacier parameters here presented has been done in order to describe the main 

morphological and environmental conditions at the surface of an alpine debris-covered glacier. The 

selection was oriented to the features derivable from remote sensing sources to be able i) to cover 

the whole debris-covered surface and ii) to ensure repeatability of the methods to other DCGs on 

the Alps and elsewhere. We analyzed the variability of the same parameters on selected glacier 

areas where supraglacial arboreal vegetation has been observed. The tree presence and features 

were detected and described through field surveys, thus giving high resolution data and assuring 

that we had selected areas with an actual presence of trees. Even if our sample was restricted 

(overall, the 15 supraglacial selected plots characterized by the presence of trees featured an area of 

3375 m2), this study allowed for the first time the identification of the glacial features, and their 

thresholds, permitting supraglacial tree germination and growth. In fact, trees are only present in 

areas featuring higher stability (i.e.: slow surface velocity, < 7 m/year), thick debris cover (deeper 

than 19 cm), gentle slope (≤ 10°) and positive changes in ice thickness (ranging between +7 m and 

+28 m over 28 years). These conditions seem depicting a supraglacial stable environment favorable 

to tree germination and growth. 

More precisely, even though in the lower portion of the ablation tongue debris thickness ranges 

between 10 cm and 55 cm, trees are only present where debris is at least 19 cm thick (observed in 

only 1 of the 15 considered plots), and more than 90% of the selected plots are located where debris 

thickness exceeds 30 cm. On a debris-covered glacier, debris thickness plays a key role in root frost 

occurrence during summer; in fact at ice-debris interface the temperature is always at the melting 

point (Brock et al., 2010), thus, a thinner debris causes cooler (and in some cases also frozen) root 

conditions, while thicker layer allows warmer and more favorable root conditions. In fact, cold 

drives stress conditions having a negative impact on forest ecosystems, as underlined by Groffman 

et al. (2001) who found that more frequent soil freezing events could cause changes in root and 

microbial mortality and losses of nitrogen. The length of the yearly cold period is also an important 

factor in determining the stress conditions influencing trees: overwinter climate can cause loss of 

nutrients and, as a consequence, it also represents a disturbance to the development of supraglacial 

trees (Tierney et al., 2001). The duration of the favorable period for growth in the European Alps, 

characterized by daily mean root-zone temperature of about 7°C, has to be at least of three months 
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(Körner and Paulsen, 2004). For this reason, dedicated experiments are needed, in order to define 

what are the actual root conditions for both supraglacial trees and trees of the same species and age 

outside the glacier area at the same altitude, on stable lateral moraines (not ice-cored and not 

showing permafrost occurrence); in this way it will be possible to describe the microclimatic 

conditions influencing the roots of supraglacial conifers and in particular during summer, when the 

conditions in the supraglacial area and outside the glacier are deeply different, thus probably 

requiring a higher root frost tolerance for the supraglacial trees.    

Moreover, stable isotopes in tree rings studied by Leonelli et al. (2014) showed that supraglacial 

trees are mainly fed by water from liquid precipitation, thus suggesting that tree roots are not so 

close to buried ice to absorb the derived melting water. 

Jones et al. (2005) detected supraglacial vegetation on the Matanuska Glacier (Alaska) only where 

debris exceeds 25 cm thickness. Our findings and the recent literature seem suggesting a thickness 

threshold allowing germination and growth of supraglacial trees, that is probably linked to root frost 

tolerance of tree species. 

 Debris thickness is linked to glacier surface velocity (Gilcrist et al., 2003), another parameter 

influencing tree establishment. Thick debris cover presents approximately 3-4 layers: a fine layer at 

the bottom with melting water along the first centimetres followed by a mixed layer of fine and 

coarse debris, a layer of coarse debris with clasts of 1-10 cm, and a final layer at the surface with 

clasts larger than 10 cm. The rock debris layer is found generally thicker than the “critical value” 

(sensu Mattson et al., 1993). This latter is a depth threshold value which has to be locally evaluated 

and on the Alps is in the range between 4 and 6 cm (Franzetti et al., 2013, see the supporting 

information). On the Miage it was found equal to 3 cm (Mihalcea et al., 2008a). The debris mantle 

on the lower sectors is thicker than this threshold and it actually reduces magnitude and rates of 

buried ice melt (Brock et al., 2010) thus allowing the glacier to maintain its ablation tongue at low 

altitudes as well. 

The 15 selected plots featuring tree vegetation are located where slope does not exceed 10° and 

glacier surface velocity is lower than 7.0 m/y, thus highlighting the importance of debris stability in 

the establishment of supraglacial trees. Glacier surface velocity and slope are key factors also in the 

establishment of herbaceous vegetation on the Miage Glacier (see Caccianiga et al., 2011).  

Another environmental variable influencing tree germination on the glacier surface is vertical 

disturbance due to ice thickness loss. This disturbance can be evaluated through multiannual ice 

thickness variations as the ones we evaluated by comparing 2003 and 1975 DEMs. On the Miage 

Glacier tongue, supraglacial debris coverage modulates the magnitude and rates of buried ice 

ablation (see Diolaiuti et al., 2009): variation in ice thickness from 1730 m to 2400 m a.s.l. over 28 

years has been observed as ranging from -30 m to +44 m, the latter where supraglacial debris 
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exceeds 30 cm thickness, but no tree vegetation was detected on the glacier surface where variation 

in ice thickness shows negative values over 28 years, thus suggesting that the areas characterized by 

intense reduction in ice thickness are less favourable to tree germination and growth. 

Even if ablation rate does not seem to directly play a role in the establishment of supraglacial trees, 

several studies, carried out both in the European Alps and in the Himalayan glaciers, show that 

ablation rate is usually reduced where debris coverage exceeds a few centimetres thickness 

(D'Agata and Zanutta, 2007; Juen et al., 2014; Pratap et al., 2015). In the snout part of the Miage 

Glacier, where supraglacial debris coverage is thicker, ablation rate is particularly reduced, thus 

increasing glacier surface stability and, as a consequence, tree establishment. 

Debris-surface temperature, aspect and NDMI do not seem to directly influence tree colonization on 

the glacier surface. The values of these parameters in the selected plots reflect the characteristics of 

the Miage Glacier between 1730 m and 1850 m a.s.l. also where tree vegetation is not present. 

Debris-surface temperature on the Miage Glacier was already identified as not being directly linked 

with plant colonization (Caccianiga et al., 2011). The values observed in the snout part of the 

glacier do not seem to neither limit nor support tree growth, even though a very wide day/night 

temperature range could represent a stress factor for the supraglacial arboreal species. The results 

concerning the aspect in the 15 selected plots reflect the aspect of the whole glacier terminus, thus 

suggesting that this environmental variable does not directly influence the establishment of trees. 

NDMI does not show high variability across altitude range on the glacier, especially in its terminal 

part. Since this index contrasts the near-infrared band (which is sensitive to albedo of leaf 

chlorophyll) to the mid-infrared band (which is sensitive to absorbance of leaf moisture), it should 

be directly linked to the presence of vegetation, both herbaceous and arboreal. We suggest that the 

resolution of the Landsat images used to calculate NDMI does not allow the detection of differences 

in moisture related to the discontinuous distribution of trees on the supraglacial debris. This index 

was already used to study changes in moisture in different environments (e.g. Lin et al., 2009; Brom 

et al., 2012), but we could not find scientific literature about its use on debris-covered glaciers. 

Further analysis of moisture characterizing the supraglacial debris will provide a better 

understanding of the role of this variable in tree establishment. 

The statistical analysis, even if restricted to a limited number of plots both below and above the 

treeline, supports our observations: all the parameters that seem to play a role in tree establishment 

and growth on the surface of a debris-covered glacier, actually show a statistically significant 

correlation with tree presence. Ablation rate and debris-surface temperature also appear to be 

significant in tree establishment, even though we could not identify specific thresholds related to the 

presence of trees.  
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The statistical ANOVA analysis was not performed for glacier velocity since it was locally 

evaluated (through DGPS point measurements) and at some plots above the treeline we have no 

measurements.    

Debris-covered glaciers are suitable sites where to observe the growth of conifers in alpine soils 

with cooler root conditions than trees located outside glaciers, and these conditions may become 

more frequent in a changing climate. In fact, in a warmer climate, colder soils are expected to occur, 

due to a thinner and less persistent snow winter coverage also outside glacier areas (Groffman et al., 

2001), thus negatively affecting plants, especially because fine roots are more easily damaged in a 

situation of colder soils, and as a consequence nutrient uptake is compromised (Tierney et al., 

2001). On the other hand, in a warming climate, earlier snow disappearance causes warmer soil 

temperature in spring (Luetschg and Haeberli, 2005). For this reason, tree species that are able to 

tolerate colder soils during winter and higher temperature amplitude cycles in summer, as the ones 

in glacial environments, will probably be the ones with a major occurrence in a context of warmer 

climate, while trees showing a low root frost tolerance will have more difficulties in surviving these 

changes.  

The study of tree ecesis and germination year in the glacier foreland of a currently retreating debris-

free glacier of the Italian Alps, the Forni Glacier (Stelvio National Park, Italy), determined by 

means of dendrochronological approach and whorls branch counting, shows an acceleration of the 

ecesis in the last few years, with an average value of 7 years (Leonelli et al., submitted). The glacier 

foreland that underwent deglaciation about 50-70 years ago is characterized by a much higher tree 

density compared to what we observe even in the plots characterized by the highest number of trees 

on the surface of the Miage Glacier, and since tree colonization on this DCG started about 100 years 

ago (Deline and Orombelli, 2005), we suppose that, even where the supraglacial conditions are 

favorable to tree colonization, the presence of ice under the debris and the glacier velocity (also if 

reduced) limit their establishment. 

Of course many other conditions outside the glacier where trees are present need to be better 

investigated and compared to the ones in the supraglacial environment, in particular substrate 

temperature and moisture, in order to better understand the differences between the surface of 

DCGs and the areas surrounding the glacier as habitats for trees.    
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Figure 5. The relationship between vegetation abundance (selected plots) and the distance between 

the plots and the closest spot featuring vegetation outside the glacier. Tree abundance increases 

(100) at decreasing distances between the plot and the vegetation source area. 

 

 

Figure 6. (A) Area of the Miage Glacier tongue per altitude belts (from glacier terminus at about 

1730 m to 2400 m a.s.l.); (B) supraglacial tree distribution over the ablation tongue is only 

detectable between 1730 m and 1850 m a.s.l. using color orthophotos with a pixel size of 0.5 m x 

0.5 m, an altitude range representing 5% of the area characterized by the presence of 

supraglacial debris. 
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Conclusion 

The originality of this research lies in the comparison between environmental parameters 

characterizing supraglacial debris and tree location, thus allowing the identification of well-defined 

intervals for several variables that characterize the spots where arboreal vegetation is present and 

well established. By knowing what are the values of a set of glacier parameters allowing tree 

establishment on a DCG, the actual or potential presence of trees on the surface of other DCGs may 

be predicted.  

The methodology here presented represents a possible approach for the investigation of remote 

glacial areas and for the assessment of supraglacial tree presence at the regional scale. Further 

studies may then be conducted in the field in order to analyze dendroclimatic and 

dendroglaciological signals (Pelfini, 1999; Leonelli et al., 2011; Coppola et al., 2013), if 

morphological and environmental conditions suggest arboreal vegetation presence in the study area.  

With this study, the already known link between glacier dynamics and supraglacial trees is even 

more emphasized and, in particular, our results suggest that glacier surface stability is the main 

factor influencing tree vegetation establishment on the supraglacial debris, with debris thickness, 

slope, variation in ice thickness and glacier velocity being the environmental variables mainly 

driving tree colonization. Our results suggest that, whenever the described parameters would show 

values supporting tree establishment and growth, debris-covered glaciers may have acted as refugia 

for tree species during the colder and warmer periods of the Holocene. 

Future investigations will aim at i) analyzing the same glacier parameters on other debris-covered 

glaciers featuring supraglacial trees, in order to evaluate if such conditions are local to the current 

study area or if they are general factors driving establishment of trees, ii) investigating debris 

lithology where trees are present, in order to assess the role played by the lithological properties of 

supraglacial debris in driving tree presence, iii) investigating the actual conditions along the debris 

layer where tree roots develop and iv) describing tree root physiology on the supraglacial debris and 

outside (comparative analysis). 
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Abstract 

Herbaceous and arboreal vegetation are useful tools in the study of the landscape transformations 

affecting glacial areas. In glacier forelands, the study of vegetation succession enables the 

identification of the age of the deglaciated terrain and it contributes to investigation of the 

distribution of the main geomorphological processes occurring in the area, such as gravitative and 

glaciofluvial processes. On the surface of debris-covered glaciers, the analysis of the distribution 

and characteristics of vegetation provides information on the glacier dynamics, such as its velocity 

and the stability of the supraglacial debris. In this chapter, two methodologies for the study of the 

distribution and characteristics of vegetation in glacial environments are proposed. The first one 

enables a rapid and preliminary investigation of the study area (both in the glacier foreland and at 

the surface of a debris-covered glacier) through remote sensing analysis, by performing a 

supervised classification on colour orthophotos. The second method involves detailed field surveys 

to describe species composition and, when applied to recently deglaciated areas, enables the 

estimation of terrain age. On the other hand, on debris-covered glaciers the analysis of vegetation, 

in particular arboreal species, allows the investigation of the past and current glacier dynamics.   

 

KEYWORDS: glacier retreat, vegetation succession, supraglacial vegetation, debris-covered 

glacier, glacier foreland
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Introduction 

Glacier retreat and the increase in number of debris-covered glaciers are amongst the main 

consequences of the ongoing climate change in high mountain environments. Geomorphic 

processes affecting recently deglaciated areas, including stream activity, frost action, debris fall and 

mass movement, cause rapid variation of the glacier foreland (Ballantyne, 2002a). On the other 

hand, the supraglacial debris coverage is characterized by frequent changes, due to ice flow, 

differential ablation rate and surface velocity, causing continuous downvalley debris displacement 

(Pelfini et al., 2012). 

Even though these landscape transformations create unstable surfaces, glacier forelands and the 

surface of debris-covered glaciers represent new habitats for biological forms, such as bacteria, 

animals and plants (e.g. Cannone et al., 2008; Nakatsubo et al., 2010; Zumsteg et al., 2012; 

Franzetti et al., 2013; Arroniz-Crespo et al., 2014). The characteristics of vegetation in particular, 

including both herbaceous (herbs, characterized by no woody stem above ground) and arboreal 

(trees) species, can provide detailed data about the terrain age of glacier forelands. Moreover, 

vegetation is not homogeneously distributed in these areas, since its growth is negatively influenced 

by the occurrence of gravitative and glaciofluvial processes affecting the area after deglaciation. For 

this reason, the analysis of the distribution and age of vegetation represents a contribution to the 

identification and mapping of past and current processes occurring in the area. The arboreal 

vegetation colonizing the supraglacial environment of a debris-covered glacier can provide 

information about the glacier dynamics, in particular its velocity, debris stability and debris 

thickness (Caccianiga et al., 2011; Leonelli and Pelfini, 2013). In fact, vegetation establishment and 

growth in such areas are related to several climatic and environmental parameters, as well as to 

glacier dynamics and the frequency and intensity of geomorphological processes. Thus making 

vegetation a valuable tool for the study of changing glacial environments (Gentili et al., 2015).  

In recently deglaciated terrains vegetation establishment follows a specific trend, related to a 

gradual shift in the dominant processes leading to vegetation establishment, from abiotic to biotic. 

Colonization begins with pioneer species, that are adapted to dominant abiotic processes (sediment 

properties, hydrology, slope, exposure, moisture) and grow where there is no, or low, competition 

for resources. Then, biotic parameters (competition with other species, tolerance, inhibition) 

gradually become more important in the establishment of vegetation. This variation in process 

dominance, from abiotic to biotic, results in a gradient in species composition and vegetation cover 

with increasing terrain age (for more details see Matthews, 1992; Rossi et al., 2014; Suvanto et al., 

2014). Vegetation succession is influenced not only by climatic conditions, but also by geomorphic 

processes. In particular, paraglacial processes are dominant in the preliminary phases of 
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colonization. When the ecosystem is at a more developed stage (when late successional vegetation 

such as arboreal species occur), then vegetation has a stabilizing effect on the deglaciated terrain 

(Eichel et al., 2013; Figure 1). 

 

 

Figure 1. Decline of the importance of paraglacial processes with increasing distance and time 

from the retreating glacier. The darker area represents the phase characterized by dominance of 

paraglacial processes (from Matthews, 1992).    

 

Several factors influence the colonization of vegetation and, in particular, arboreal vegetation on the 

surface of debris-covered glaciers. The distance between the closest proglacial forested area and the 

glacier itself is certainly important, but other glacier parameters play a role in the establishment of 

arboreal vegetation, such as glacier surface velocity, slope, debris thickness and grain size of the 

substrate (Leonelli and Pelfini, 2013). Therefore, investigating the distribution and characteristics of 

supraglacial arboreal species contributes to the study of debris-covered glaciers and can be 

investigated using dendrochronological techniques.  

Dendrochronology is a dating method based on the analysis of tree rings (Fritts, 1976). Tree-ring 

width and characteristics are influenced by several factors including climate and environmental 

disturbances. For this reason, a dendrochronological study performed on supraglacial vegetation 

enables the reconstruction of the evolution of debris-covered glaciers in the recent past. In fact, 

growth disturbances and compression wood are produced as a response to a dynamic glacier surface 

(Pelfini et al., 2007; Garavaglia et al., 2010), thus making dendrochronology a valid approach to 

determine the years characterized by high surface instability and to reconstruct past glacier 

dynamics. 

An approach for analyzing the dynamics of glacial environments through the investigation of 

vegetation is outlined in the remainder of this chapter.  
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Vegetation distribution using remote sensing  

Remote sensing techniques enable the identification of herbaceous and arboreal vegetation in 

glacier forelands and on debris-covered glaciers. There are only a limited number of studies using 

remote sensing techniques in these environments, for example Klaar et al. (2014) successfully 

applied it in the study of vegetation succession in glacier forelands in Alaska (USA), with the aim 

of analyzing the interactions between physical and biological processes in recently deglaciated 

terrains. Until now, only Vezzola et al. (submitted) mapped the distribution of vegetation on the 

surface of a debris-covered glacier, using colour images to investigate the largest debris-covered 

glacier in the Italian Alps, the Miage Glacier (Aosta Valley, Western Italian Alps). Both these 

studies found that remote sensing is certainly a useful approach in an initial mapping of vegetation 

in these areas, however full understanding can only be gained by complementing it with field 

surveys to obtain detailed information about vegetation distribution. By using remote sensing, it is 

possible to cover wide areas and collect distributed data, as well as enabling repeat analysis over 

different years. However, the small canopy, reduced height and discontinuous distribution of the 

vegetation growing in these areas cannot be easily identified by remote sensing techniques, since it 

will not be visible in the image as a consistent green patch. For this reason, using solely remote 

sensing for this research would result in an underestimation of vegetation coverage.  

High resolution is an essential requirement to detect vegetation in glacial environments. Images 

featuring a pixel size of at least 0.5 m x 0.5 m are appropriate for the investigation of herbaceous 

and arboreal species; resolutions any lower make it impractical to distinguish the vegetation (see the 

example in Figure 2).  

 

 

Figure 2. The same 25 m2 area on the surface of the debris-covered Miage Glacier in the Italian 

Alps, in a colour orthophoto acquired in A) 1999 with pixel size 1m x 1m and B) 2010 with pixel 

size of 0.5m x 0.5m. Green pixels represent vegetated areas. As can be seen, a pixel size of 0.5m x 

0.5m allows a more accurate analysis, compared to the image featuring pixel size of 1m x 1m.   
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Colour orthophotos are aerial photographs that have been geometrically corrected, so that the scale 

in the image is uniform and they are authentic representations of the surface of the planet. Colour 

orthophotos acquired in the last 10 years generally have sufficient resolution to be suitable for the 

analysis of vegetation in glacial environments. For research purposes, colour orthophotos are often 

available for free or at discounted prices from the local and regional administrative offices or 

mapping agencies. For instance, in Italy colour orthophotos may be found on the website of the 

Geoportale Nazionale (www.pcn.minambiente.it), while in the United Kingdom the Ordnance 

Survey (www.ordnancesurvey.co.uk) can be contacted. 

Both in the case of recently deglaciated areas and debris-covered glaciers, a semi-automatic 

approach can be employed, by performing a supervised classification using Maximum Likelihood 

algorithm. The study area must be extracted from the orthophotos and, using a GIS software such as 

ENVI ("ENvironment for Visualizing Images", a software commonly used for image analysis; for              

more information and purchasing see the website 

www.exelisvis.com/ProductsServices/ENVIProducts/ENVI.aspx), the classifier must be trained to 

discriminate between classes through selection of appropriate Regions Of Interest (ROIs). These 

can be either polygons or individual pixels, and must include at least one ROI corresponding to 

vegetation. To do this in ENVI, after uploading the image, the "Roi Tool" must be selected (Basic 

Tools > Region of Interest > Roi Tool), and the pixels in the "Zoom window" manually selected 

where vegetation is present (Figure 3). The ROIs must then be saved on the computer. 

 

 

Figure 3. The selection of appropriate pixels for the ROI in ENVI called "vegetation" in a colour 

orthophotos representing a debris-covered glacier. 

 



68 
 

To accurately classify the images, it is best to select a similar number of pixels for each ROI. The 

number of selected pixels is related to the size and resolution of the image and it can vary greatly. 

As a general rule, for images featuring pixel size of 0.5m x 0.5m, at least 2000 pixels should be 

selected for each ROI. The number of ROIs can also vary, in some studies the selection of only one 

ROI, corresponding to vegetation, can be enough; all the other features will be automatically 

classified as belonging to another ROI. The final result, in this case, will be a two-colour image, 

defining the distribution of vegetation and of all the other features that are classified as "different 

from vegetation". However, more ROIs can also be selected, to describe other features in the image. 

In this latter case, the probability of classifying some pixels incorrectly is reduced.   

After defining the ROIs, an automatic classification of the image must be performed, using the 

Maximum Likelihood algorithm. In ENVI, the option "Maximum Likelihood" must be selected 

(Classification > Supervised > Maximum Likelihood). A new window will appear, in which the 

saved ROIs must be selected and the Probability Threshold must be chosen (for this study I suggest 

a value of 0.9, that usually enables a correct classification of the image pixels). This will lead to an 

automatic classification of every pixel of the image (Figure 4).  

After this step, visual comparison of the resulting masks against the colour orthophotos is highly 

recommended to validate the results: in fact, manual correction of the image is often necessary, 

since the automatic approach in some cases detects vegetation in areas where there is no vegetation 

(due, for instance, to shadows or debris that sometimes feature a colour that is similar to some 

species of vegetation). After performing this procedure, the area occupied by vegetation (both 

herbaceous and arboreal species) can be easily calculated, by multiplying the number of pixels 

featuring vegetation by the area of each pixel. 

Overall, this method provides an initial approach to quickly identify the more stable areas on debris-

covered glaciers, characterized by the presence of abundant vegetation. It also enables the 

identification of the areas characterized by geomorphic activity affecting the distribution of 

vegetation in recently deglaciated areas; no or low vegetation is present where glaciofluvial and 

gravitative processes influence the area. 
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Figure 4. (A) The snout part of the Miage debris-covered glacier (Mont Blanc Massif, Western 

Italian Alps) (photo: D. Zannetti, August 2011), (B) classified using a semi-automatic approach by 

choosing two ROIs. The green colour indicates the vegetation; the black colour corresponds to 

"other features". Vegetation is also detected on the supraglacial debris.  

 

Analysis of vegetation: field surveys 

As already established, remote sensing provides preliminary analysis of vegetation presence and 

distribution. Subsequently, detailed investigation of the characteristics of vegetation should be 

performed in the field to describe the species established in the area and their relationship with 

environmental and glacier parameters. This enables the accurate reconstruction of the recent glacial 

history, through the calculation of the minimum age of the moraines deposited in the glacier 

foreland, and of the terrain between the moraines. On debris-covered glaciers, the investigation of 

arboreal vegetation is of particular interest for geomorphological purposes, because tree rings may 

be dated and consequently used to identify the years characterized by high and low dynamicity of 

the glacier surface. Moreover, the characteristics of tree rings provide information about the areas 

affected by glacial melting water on the glacier surface or in its proximity (whenever affecting the 

growth of arboreal vegetation). For this reason, the analysis of arboreal vegetation represents a 
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contribution to the assessment of the geomorphological hazards related to the dynamics and 

hydrology of debris-covered glaciers.  

 

Recently deglaciated areas: chronosequences  

Field surveys of vegetation in glacier forelands are performed by conducting chronosequences. 

These are sets of sites formed from the same substrate that differ in the time since they were formed 

(Walker et al., 2010). When planning the vegetation sampling in recently deglaciated areas, it is 

important to select the distribution, number and size of plots to provide a representative analysis for 

the whole study area.  

When the study of vegetation is very detailed (that is considering both herbaceous and arboreal 

vegetation) the size of the plots could range between 0.5m x 0.5m and 5m x 5m. The number of 

plots is related to the size of the study area, however, a minimum of 10 plots homogeneously 

distributed should always be sampled. The plots should be delimited using quadrats or tape 

measures (Figure 5). The advantage of using quadrats, when available, is that they are usually 

characterized by the presence of a grid delimiting smaller squares that allow an easier 

approximation of vegetation cover.  

 

 

Figure 5. A plot delimited by (A) a quadrat and (B) tape measures. 

The characteristics of every plot can then be collected and subsequently organized in one or more 

tables including the following data: 

- List of species; 

- Vegetation coverage; 

- Age since deglaciation (years); 

- Environmental information (site-specific); 

- Soil analysis.   
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In every plot, species and coverage of vegetation must be analyzed. After identifying the species in 

every plot with the aid of a guide to local flora (e.g. for alpine species: Dalla Fior, 1926) both 

vegetation cover and the cover of every species detected can be visually estimated using percentage 

coverage. Usually, relative abundance (the ACFOR scale) rather than absolute is preferred (Table 

1). 

 

Table 1. The ACFOR scale for measuring relative abundance of species in every plot. 

 

 

 

 

 

 

 

 

Vegetation coverage can also be defined using the Braun-Blanquet scale (Braun-Blanquet, 1932; 

see example of its application in a glacier foreland in Caccianiga and Andreis, 2004). This 

associates a symbol, letter or number to each percentage defined in the plot (Table 2). 

 

Table 2. The Braun-Blanquet scale for determining vegetation coverage. 

 

 

 

 

 

 

 

 

 

 

Species abundance Letter 

Abundant (30% +) 

Common (20 to 29%) 

Frequent (10 to 19%) 

Occasional (5 to 9%) 

Rare (1 to 4%) 

A 

C 

F 

O 

R 

Percentage cover Braun-Blanquet 

Single Individual 

Sporadic 

0-5% 

5-25% 

25-50% 

50-75% 

75-100% 

r   

+ 

1 

2 

3 

4 

5 
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Percentage of cover and vegetation strata are related to the terrain age. For this reason, the variation 

in species richness in plots located at increasing distances from the actual glacier terminus enables 

the calculation of the minimum age since deglaciation (see example in Figure 6).   

 

 

Figure 6. Variation of cover percentage and vegetation strata related to terrain age at the Grand 

Glacier d'Aletsch, in the Swiss Alps (from Lüdi, 1945). Values in parenthesis indicate the height of 

the strata.  

 

Environmental parameters must also be evaluated. Slope can be measured using an inclinometer or 

similar, and aspect determined using a compass. Elevation may be measured using a GPS (Global 

Positioning System) when available, otherwise it can be calculated using contour lines on a map of 

the study area. The distance from the current position of the glacier terminus may also be measured 

using a GPS or a map. If the position of the plot is recorded, distance from the glacier tongue can be 

easily measured using GIS (using the "measure" and "distance" tools). Other relevant information 

for the specific study area should be noted during the field surveys, in particular those related to the 

occurrence of geomorphological processes affecting the location. The most common in glacier 

forelands are gravitative slope movements, stream flow and drainage. 

The representation of the position of each plot and their characteristics in a cartographic map can 

help in the understanding of the relationship between the position of the glacier terminus and the 
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gradual development of the glacier foreland. In order to do that, the position of the plots can be 

recorded with a GPS and then reported in GIS for the subsequent creation of a detailed map of the 

study area. 

 

The analysis of the physical and chemical properties of the soil (horizon identification and 

designations, grain size analysis, humified organic carbon) represents an additional analysis. It is 

performed on some homogeneously distributed plots from the study area and it may provide 

information about the degree of evolution of the terrain. Soil analysis is performed by first 

identifying the horizons present in a selected profile by digging a plot, as shown in Figure 7 (useful 

information for distinguishing between different horizons may be found in Chapter 3 of the free 

online resource "Soil Survey Manual",). Grain size and humified organic carbon can be analyzed 

using laboratory techniques, so it is important to get samples of soil from each horizon identified in 

the profiles. Further information on analysing soil properties can be found in numerous articles in 

Section 1 of Geomorphological Techniques. 

 

 

Figure 7.  The soil properties of profiles detected in a plot are investigated. In the image, the 

identification of the horizons and their depth are being performed (photos: F. Sobacchi; summer 

2014). 

 

The study of the colonization of recently deglaciated terrains can also be focused on arboreal 

species only. In this case, bigger plots can be considered, still homogeneously distributed in the 

study area (e.g. plot size 15 m x 15 m). Terrain age is the main factor controlling the colonization of 

arboreal vegetation, but also herb coverage and altitude (Garbarino et al., 2010). The advantage in 

studying trees lies in the possibility to date the minimum age of the glacier-free surface, through 
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dendrochronological investigations. Ecesis, in particular is the lag time between surface exposure 

and germination of arboreal species (McCarthy and Luckman, 1993). When tree rings are dated, 

reconstructions of glacier retreat and dynamics can be conducted.  

 

 

Figure 8. A young Norway spruce (species Picea abies Karst) in the Forni Glacier foreland (Italian 

Alps) during summer 2014. In order to determine its age, whorls branch counting was performed: 

in this case, three whorls can be easily identified (indicated with red lines), so the tree is three 

years old. 

 

Tree size does not always allow the sampling of cores and, for this reason, two different approaches 

should be applied. For trees taller than about 1 m, standard dendrochronological techniques may be 

applied (see Torbenson, 2015), to correctly date each tree ring and compare this data to the distance 

from the glacier front. When trees are smaller than 1 m, and only when the investigated species is a 

conifer, the age can be determined by whorls branch counting (Figure 8). This technique consists in 

counting the "layers" of branches, called whorls by botanists, since for tree species producing 

annual branch whorls, each branch whorl represents a year of life, thus allowing a precise 

estimation of the age of young trees (e.g. Haire and McGarigal, 2010). In both cases, after defining 

the tree age, comparison with the distance from the glacier front can be performed. In this way, it is 

possible to determine the minimum age of the deglaciated terrain, both in very recent times and in 

further back in time. 
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Debris-covered glaciers 

To analyze detailed glacier dynamics in the recent past, arboreal vegetation can be studied on the 

supraglacial debris. Tree analysis can be performed using a dendrogeomorphological approach. 

After selecting one or more species to investigate, the individuals to sample must be selected. 

Usually, conifers are the most common tree species on the glacier surface (i.e. Larix decidua Mill., 

Picea abies Karst). Trees located in different sites on the glacier surface should be chosen, in order 

to analyze glacier dynamics in different areas. The distribution of trees is usually not homogeneous, 

due to differences in debris thickness and glacier velocity on the glacier surface, that influence tree 

establishment and germination (Pelfini et al., 2012). For this reason, it is not always possible to get 

samples from trees homogeneously distributed on the glacier surface. However, if it is possible to 

select at least ten trees on the glacier surface, the analysis of recent glacier dynamics in the sites 

surrounding the sampled trees can be successfully conducted.  

To analyze tree-ring characteristics, only adult trees should be selected (trees at least 1-2 m high 

dependent on species), and two cores should be taken from each selected tree, using a Pressler's 

increment borer (Figure 9). By comparing the sampled cores of each tree, tree rings can be correctly 

dated. The years characterized by high surface instability are usually characterized by the presence 

of growth anomalies such as compression wood, abrupt growth changes and eccentricity in the tree 

rings, that can be observed under a microscope (Figure 10; for details about these specific terms see 

Torbenson, 2015). By collecting and analyzing samples from trees located at different sites on the 

glacier surface, distributed data about the glacier past dynamics may be obtained.    

In this way, the reconstruction of past events at an annual resolution involving changes in glacier 

surface stability is possible.  

 

 

Figure 9. Tree sampling using a Pressler's increment borer. 
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Figure 10. Three cores sampled from supraglacial trees at the Miage Glacier, presenting typical 

responses to the substrate movement (indicated by the arrows). The upper core shows stem 

eccentricity, the central core shows compression wood, the lower core shows an abrupt growth 

change (from Leonelli and Pelfini, 2013). 

 

Conclusion 

The investigation of vegetation in glacier foreland and on the surface of debris-covered glaciers 

represents a valid contribution in the reconstruction of the recent glacier history and dynamics, 

especially in the context of climate warming. By applying the methodologies described in this 

chapter, it is possible to undertake both analyses of vegetation distribution (using remote sensing 

techniques) and detailed studies of its characteristics using field surveys. In glacier forelands, the 

study of the distribution and characteristics of vegetation enables the estimation of the age of the 

deglaciated terrain and it contributes to the investigation of the geomorphological processes 

occurring after deglaciation, such as gravitative and glaciofluvial processes. On the surface of 

debris-covered glaciers, the analysis of arboreal vegetation provides information on the glacier past 

and current dynamics, including glacier velocity and the stability of the supraglacial debris. 
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Abstract 

Glacial lakes, especially supraglacial, ice contact and proglacial lakes, are becoming common 

features in the Alpine environment. They are characterized by a high dynamicity with implications 

in terms of hazard and risk and for the ecological system. With the aim to detect the impact of 

glacial lake-water on tree-ring growth, a dendrochronological analysis on Larix decidua Mill. trees 

was conducted at three sites located at increasing distances from the shores of the small 'Lago 

Verde', an ice-contact lake at the Miage Glacier (Western Italian Alps), characterized by frequent 

changes in its level.  

High-water levels of the glacial lake negatively affect tree growth: tree-ring width is generally 

narrower in trees frequently reached by the lake waters than in trees growing farther from the lake. 

As the distance from the lake shore increases, the disturbance signals detectable in the tree rings 

decrease, as evidenced by the average correlation and by the Glk Index calculated between the 

mean chronologies at the three sites and the respective individual chronologies. Furthermore, the 

dendroclimatic analysis performed by comparing temperature and precipitation data and the 

residual chronologies at the Lago Verde supports our assumption: high levels of glacial melting 

water affect trees, when present, by disturbing growth rates or inducing suffering conditions, thus 

also altering the correlation with the climatic variables, in particular with the precipitation.  

Overall, by evidencing the effects of glacial lake-water on tree-ring growth, this research exposes an 

approach that might be useful for detecting the areas impacted by glacial melting waters in the past 

and, as a consequence, for contributing to environmental reconstructions from mid to long time 

scales and to the assessment of geomorphological hazards related to the dynamics and hydrology of 

debris-covered glaciers.  

 

KEYWORDS: glacial lake, tree rings, debris-covered glacier, melting water, Miage Glacier. 
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Introduction 

Glaciers are among the most sensitive indicators of climate change (Zemp et al., 2008). The 

ongoing shrinkage of the criosphere is leading to remarkable glacier tongue retreat (Frezzotti & 

Orombelli, 2014) and progressive increasing of the supraglacial debris (Deline, 2005), allowing the 

expansion of glacier forelands and the colonization of the paraglacial and supraglacial environments 

by vegetation (Cannone et al., 2008; Pelfini and Leonelli, 2014). Thermal changes influence the rate 

of production and discharge of melting water, controlling the glacial drainage (e.g. Huss et al., 

2008) as well as the formation of glacial lakes (e.g. Deline et al., 2004) and the related hazards 

(Clague and O’Connor, 2014). While debris-free glaciers are characterized by rapid changes of their 

terminus position and, as a consequence, of their proglacial areas that are progressively modified by 

geomorphological processes and colonized by plants (e.g., Garavaglia et al., 2010a; Eichel et al., 

2013; Leonelli et al., submitted), debris-covered glaciers (DCGs) are characterized by more stable 

glacier snouts. This is mainly due to the presence of the supraglacial debris that, when exceeding a 

critical thickness, reduces the ablation rate (Brock et al., 2010). However, glacial drainage systems 

of DCGs are characterized by rapid and frequent changes of their rate and pattern, inducing changes 

in glacier streams (Garavaglia et al., 2010b) and lakes, characterized by emptying and refilling 

phases and water-level fluctuations (Stokes et al., 2007; Benn et al., 2012). A better understanding 

of such processes is necessary, since debris-covered glaciers are increasing in their number and size, 

as already observed in Europe (e.g., Diolaiuti et al., 2003), Asia (e.g., Ghosh et al., 2014), New 

Zealand (e.g., Brook et al., 2013) and South America (e.g., Emmer et al., 2015).  

The surface and surroundings of DCGs can be colonized by trees, if the glacier terminus is located 

below the treeline elevation (Pelfini et al., 2012; Leonelli and Pelfini, 2013). In these areas, trees 

can be used as indicators of changes in glacier processes as their tree growth is not only affected by 

climatic conditions, but also by geomorphic processes such as glacier movements (Leonelli et al., 

2014) and by soil hydrological processes, influenced by meltwater. In particular, trees living in the 

proglacial area are strongly influenced by the remobilization of the abundant debris caused by the 

glacial stream flow and by the glacial melting water itself. In these areas trees are often injured, 

showing wounds and scars (Pelfini et al., 2007), and present growth anomalies such as compression 

wood and abrupt growth reductions (Stoffel and Corona, 2014; Garavaglia et al., 2010a).  

Dendrochronological analyses can contribute not only to the reconstruction of past glacier 

fluctuations (e.g. Luckman, 1993; Pelfini, 1999) but also to the reconstruction and dating of past 

hydrologic fluctuations in floodplains (Tardif and Bergeron, 1997), around lakes (Bergeron et al., 

2002) and around rivers (Boucher et al., 2011). The impact of flood events and hydrologic 

fluctuations on tree-ring growth has been widely documented in several regions of the world (e.g. 
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Tardif and Bergeron, 1993; Clague et al., 2006; Boucher et al., 2009; Nicault et al., 2014). 

However, there is a lack of information concerning the impact of rapid, inter- and intra-annual 

fluctuations of the water-level in glacial lakes on trees in the proglacial and ice-marginal areas. 

Most dendroglaciological studies have mainly focused on reconstructing past glacier fluctuations 

and treeline limits (e.g. Pelfini et al., 2014; Leonelli et al., 2016). The impact of melting water on 

tree vegetation is still unknown.  

The main aims of this study are to: i) investigate if trees affected by frequent fluctuations of glacial 

waters, and growing close to the shores of an Alpine glacial lake, show peculiar tree-ring growth 

patterns, related to the lake-water fluctuations, ii) compare tree-ring growth at increasing distances 

from the lake shores, in order to understand how glacial water may affect tree-ring growth and iii) 

compare the climatic signal recorded in tree-ring chronologies obtained from trees located at 

increasing distances from the lake, in order to evaluate if glacial lake water may affect the climatic 

signal in tree-ring records. 

 

Materials and methods   

Study area 

The study area is located in the Veny Valley, on the southern side of the Mont Blanc Massif, in the 

Western Alps (Valle d'Aosta, Italy). In particular, the site is located inside a special site for the 

conservation of animals and plants (ZSC “Mont Blanc Glacial Environments”). Among the many 

glaciers on the steep slopes of the massif, we studied the Miage Glacier, which is the largest DCG 

in Italy. On the surface of the glacier, a supraglacial forest including both grass, shrubs and trees 

can be easily observed (Caccianiga et al., 2011; Vezzola et al., 2016). The glacier surface changes 

are well documented by numerous studies conducted in the area since the 18th century (for a review 

see Bollati et al., 2014). The glacier hydrology has been investigated, in particular the emptying-

filling cycles of the Lago del Miage (Diolaiuti et al, 2006; Masetti et al., 2010) and the implications 

of hydrological processes in risk mitigation, mainly important because of the high tourist affluence 

and the dynamics of geomorphological processes affecting the glacier tongue, slopes and three ice-

marginal lakes (Lago del Miage, Lago di Breuillard and Lago Verde). 

Sampling was conducted at the Lago Verde (coordinates: latitude 45°47'7.83"N, longitude 

6°53'24.76"E), a very small glacial lake of about 1500 m2 located at 1823 m a.s.l. between the two 

main lobes of the Miage Glacier tongue and, more in detail, close to the internal margin of the 

southern lobe (Fig. 1) The lake is fed by glacier melting waters. Several rapid water-level 

fluctuations were observed in the recent past, with a strong intra-annual variability of the water 

level (Fig 2). For example, the difference in level between July and September 2011 are reported in 
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in figure 2C and 2D.  The lake water-level fluctuations are presumably related to variations in the 

subglacial drainage, as already observed at the Lago del Miage (Diolaiuti et al., 2005). As Lesca 

(1956) reported, there is no certain information about the calendar year corresponding to the Lago 

Verde formation. The first cartographic evidence of its presence is reported in the topographic 

I.G.M. (Italian Military Geographic Institute, www.igmi.org) map “Monte Bianco”, dated 1929. 

The level of lake water frequently changed also in the past century, e.g. low water-level was 

recorded in 1952 and 1954 (Lesca, 1956) (Fig. 2A and 2B). 

Sparse vegetation is present near the lake shores. The main tree species observed in this area are 

larch (Larix decidua Mill.) and Norway spruce (Picea abies (L.) H. Karst). Some trees are flooded 

by water during several months of the year. Most of the trees around the lake are still alive, even 

though some dead trees can be found.  

The study area is of particular interest because of the peculiar characteristics of the Miage Glacier 

and Lago Verde. The glacier terminus is located at 1750 m a.s.l., a very low altitude for an alpine 

glacier, since the average of the glacier fronts in Italy is 2789 m a.s.l. (Smiraglia and Diolaiuti, 

2015), it is the only glacier in Italy characterized by a well-developed supraglacial forest and 

several studies have been conducted for monitoring the subglacial drainage, including 

dendrochronological investigations (Garavaglia et al., 2010). Moreover, the Lago Verde is the only 

ice-contact lake in Italy, to our knowledge, characterized by the presence of trees near and inside 

the lake.     

 

 

 

http://www.igmi.org/
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Figure 1. The study area is reported in the black circle (A). The square refers to the location of the 

Lago Verde with respect to the two main lobes of the Miage Glacier (B; photograph by D. Brioschi, 

2007). In figure C, the lake shore observed in September 2011 is represented by the discontinuous 

line. The location of the study sites LVW1, LVW2 and LVM is also reported, respectively from the 

innermost to the outermost, and it is represented by the solid concentric lines around the lake 

shore. Trees at the LVM site are located on a moraine. The position of the sampled trees is reported 

with small circles. The dotted areas represent the debris-covered lobes of the glacier. 

 

 

Figure 2. The Lago Verde in August 1952 (A), in August 1954 (B) (both photographs by Lesca, 

1956), in July 2011 (C) and in September 2011 (D). 
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Site selection 

In the study area three sample sites were selected (Fig. 1C). The first site, named LVW1 (“Lago 

Verde Water 1”) was the innermost accessible at the time of sampling, and it is characterized by 

trees frequently partially flooded by the lake water and with the stem bases that are often flooded up 

to approximately 2 m height. The second site, named LVW2, is characterized by trees that may 

directly take up the lake waters but only when the lake level is high. The third site, named LVM 

(“Lago Verde Moraine”), is characterized by trees not affected by water-level fluctuations, because 

of their distance and higher elevation from the lake.  

 

Sampling 

Due to the site location inside a ZSC area, we sampled a limited number of trees using a Pressler’s 

increment borer (5 mm diameter): 13 larch trees at LVW1 (including 6 dead trees), 17 trees at 

LVW2 (including 9 dead trees) and 11 living trees at LVM (Fig. 1C). Samples were taken during 

three surveys conducted on August 2010 and July and September 2011. In these three times the 

water level at the Lago Verde was different, the lowest level was observed in September 2011 and it 

allowed the sampling of trees that were not accessible during the previous surveys. Because of the 

difficult access to the trees at the LVW1 site, only one core was extracted from the sampled trees at 

all sites, at about 50 cm above ground, in order to obtain a cambial age as indicative as possible of 

the real age (Schweingruber, 1988). All trees at LVW1 accessible at the time of the field survey 

were sampled. 

 

Laboratory analyses 

All the samples were glued on wood supports and sanded with progressively finer grade abrasive 

paper until the wood was polished adequately to enable the annual rings to be detected under the 

stereoscope. The cores were prepared using standard methods (Stokes and Smiley, 1968) and tree-

ring widths were measured to the nearest 0.01 mm, using image analysis i.e., the WinDENDRO 

software and the LINTAB system with the TSAPWin software (Frank Rinn, Heidelberg, Germany). 

The tree-ring width series were visually and statistically cross-dated (COFECHA software, Holmes, 

1983; Grissino-Mayer, 2001) within and between trees of the same site in order to detect and 

correct any dating error in the dataset.  

The Gleichlaeufigkeit index (Glk), which measures the year-to-year agreement between the interval 

trends of two chronologies based on the sign of agreement (Eckstein and Bauch, 1969) and the CDI, 

the Cross Date Index, which combines the information of the Glk and the t-value (Rinn, 2005) were 
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calculated for checking the correct dating of -the raw tree-ring chronologies before constructing the 

master chronologies at the LVW1, LVW2 and LVM sites. 

For the three sites LVW1, LVW2 and LVM and over the common period 1968-1998, the following 

indices were calculated and their variability among the sites analyzed: average correlation, i.e. the 

averaged correlation coefficients calculated between the three mean chronologies and the respective 

individual chronologies, mean sensitivity, which measures the relative change in ring width from 

one year to the next (Fritts, 1976), and average Glk Index. For this analysis, only the individual 

series covering the whole common period were considered, and therefore 6 samples at LVW1 and 2 

samples at LVW2 were not considered.  

A residual chronology for LVW1, LVW2 and LVM was obtained by applying a flexible spline with 

a 50% frequency cut-off at 30 years to the growth series and then applying a biweight robust mean 

to the detrended indices. In order to evaluate the climatic signal, a correlation analysis was 

conducted over the period 1922-2005 between the three residual chronologies and the monthly 

(January to September) temperature and precipitation. Meteorological data were taken from the 

HISTALP dataset (Auer et al., 2007). 

For both the master chronologies and the residual chronologies at the three sites, the analysis of 

variance was performed over the common period 1968-1998.  

 

Results 

The mean ring-width chronologies LVW1, LVW2 and LVM cover the period 1922-2009, 1849-

2009 and 1872-2009, respectively (Fig. 3A). They generally show similar growth trends. Tree-ring 

width at LVW2 is higher compared to LVM between 1958 and 1972, with two relative peaks of 

maximum growth in 1958-1960 and 1967-1970. Starting from 1980, LVW1 shows lower tree-ring 

width compared with the other chronologies. 

There is a statistically significant difference between groups in the considered common period 

1968-1998, as determined by one-way ANOVA (F(2,90) = 4.856, p < 0.05). A Tukey post-hoc test 

reveals that tree-ring width at LVW1 is statistically significantly lower (107.9 ± 23.25, p = 0.015) 

compared to LVW2, and that LVW2 is statistically significantly higher (127.94 ± 32.61, p = 0.034) 

compared to LVW3. There is no statistically significant difference between LVW1 and LVW3. 

The residual chronologies LVW1, LVW2 and LVM show rather similar tree-ring growth trend, 

with wide tree-ring width variations along the whole chronologies, particularly between 1930 and 

1979 (Fig. 3B). The one-way ANOVA shows that there is no statistically significant difference 

between groups in the common period 1968-1998 (F(2,90) = 0.917, p = 0.403). 
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Average age of trees at LVW1 is 42 years, lower than trees at the other sites, in fact trees at LVW2 

show an average of about 68 years and trees at LVM show an average of 108 years. 

Individual LVW1 chronologies show generally lower ring widths than at both LVW2 and LVM. 

There are four exceptions, i.e. the samples LVW04, LVW05, LVW09 and LVW13, which show 

larger ring-widths than both the LVW2 and LVM mean chronologies during most of the period they 

cover.   

All the LVW1 individual growth curves show a progressive reduction of the tree-ring width in their 

most recent portions, although some of them grew fast in the last years prior to death: trees LVW02, 

LVW04, LVW07 and LVW12 were dead at the time of sampling and show some large rings in the 

outermost rings formed before dying (Fig. 4). 

The average correlation coefficient calculated between trees of the same site over the common 

period 1968-1998 (31 years) shows the highest values at the LVM site (r = 0.53), while a lower 

value is found at the LVW2 (r = 0.37) and a very low value, meaning no correlation, at the LVW1 

(r = 0.09) site. A statistically significant trend between the distance from the lake center and the 

correlation coefficient value is detected (r = 0.99, p<0.05) (Fig. 5A). 

The mean sensitivity is similar at the three sites, from LVW1 (ms = 0.17) to LVW2 (ms = 0.16) and 

LVM (ms = 0.16). There is no significant correlation between the distance from the lake center and 

the mean sensitivity (r = -0.97; p = 0.07) (Fig. 5B). 

The average Glk Index shows higher values in the LVM chronology (Glk = 81) in comparison with 

the LVW2 (Glk = 74) and LVW1 (Glk = 69) chronologies. There is not a statistically significant 

trend between the distance from the lake center and the GLK (r = 0.96, p = 0.09) (Fig. 5C).  

The climatic analysis conducted between air temperature and the indexed chronologies shows 

statistically significant correlation coefficients in the month of June at all the sites: LVW1 (r = 0.20; 

p<0.05), LVW2 (r = 0.26; p<0.05) and LVM (r = 0.25; p<0.05) sites (Fig. 6A). Significant 

correlation coefficients between the precipitation variables and the indexed chronologies were 

detected in the month of June at the LVW2 (r = -0.25; p<0.05) and LVM (r = -0.18; p<0.05) sites 

and not at LVW1 (Fig. 6B). 
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Figure 3. The ring-width mean chronologies (A) and the residual chronologies (B) obtained at the 

LVW1, LVW2 and LVM sites. Broken lines show four trees or fewer. 
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Figure 4. The ring-width chronologies obtained at the LVW1 site (black lines) compared to the 

LVW2 and LVM mean chronologies. LVW2 mean chronology is represented with a grey thick line, 

while LVM mean chronology with a grey thin line (continuing in the next page). 
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Figure 4. (continue) The ring-width chronologies obtained at the LVW1 site (black lines) 

compared to the LVW2 and LVM mean chronologies. LVW2 mean chronology is represented with a 

grey thick line, while LVM mean chronology with a grey thin line. 
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Figure 5. Correlation coefficient (A), mean sensitivity (B) and Glk Index (C) for the LVW1, LVW2 

and LVM sites at increasing distances (in m) from the Lago Verde center. 
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Figure 6. Climatic analysis performed for the residual chronologies LVW1, LVW2 and LVM over 

the period 1920-2005 using monthly variables of temperature (A) and precipitation (B). Statistically 

significant correlation coefficients are marked with two asterisks (p < 0.05). 

 

Discussion  

Our results show that high levels of glacial lake-water represent a major environmental disturbance 

for tree growth at the Lago Verde. Two main effects related to the high levels of glacial lake-water 

were detected: the narrower ring widths characterizing most of the trees at LVW1 when compared 

with trees at LVW2 and LVM and the high variability of the individual LVW1 chronologies.  

Even if the number of sampled trees is limited due to the site location (inside a special area for 

conservation of plants and animals), our results show that stagnant glacial water represents an 

important stress factor for trees, and often causes lower growth rates and production of narrower 

tree rings, especially during the last years of a tree’s life. The production of narrower tree rings in 

the last years of life was observed in another study conducted on trees declining because of other 

stress factors (Cherubini et al., 2002).  

Previous research demonstrated that flood frequency plays a key role for tree survival: areas 

affected by frequent floods are usually characterized by the presence of young trees (i.e. not older 

than 40 years) and that the survival rate is reduced, due to anoxic conditions for the roots (e.g. 
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Gunnarson, 2001; Berthelot et al., 2014). According to these previous findings, we found that 

glacial water at the Lago Verde determines the same effects on tree growth. All trees at the LVW1 

are younger than trees at the other sites, and many of them are dead. 

Different tree species have different tolerance to flooding. The Norway spruce, analyzed in this 

study, is classified as a “low tolerant” species and it does not survive in case of stagnant conditions 

(Glenz et al., 2006). This could explain the death of numerous trees found at the LVW1 and LVW2 

sites, particularly at the LVW1.  

Previous studies reported that trees are usually negatively influenced by hydrogeomorphic 

processes, and show a decrease in tree-ring growth (Stoffel and Bollschweiler, 2009; Stoffel and 

Wilford, 2012). Our results demonstrate that also intra-annual fluctuations in glacial lake water 

cause the same growth decrease in trees. However, in four LVW1 trees we found larger tree rings 

compared to trees at LVW2 and LVM. This can be due to the possibility that trees were less 

affected by the lake water stagnation through the years, because located in an area that would be 

flooded only when water level would be very high. 

The analysis of tree-growth patterns shows that tree rings have a high potential for environmental 

studies and reconstruction of landscape changes in glacial environments. In particular, by coupling 

data derived from the analysis of tree-ring width and data obtained from the analysis of tree-ring 

stable isotope δ18O, more detailed information related to the effects of glacial water on tree-ring 

growth, and also about the glacier past hydrology, may be achieved. At the same study site, Leonelli 

et al. (2014) analyzed tree-ring δ18O values in the tree-ring cellulose finding that the analysis of 

oxygen stable isotopes in tree rings allows to distinguish between trees that take up water from the 

glacial lake and trees that take up water from meteoric precipitation only. With this study we show 

that also tree-ring width can be used as a preliminary indicator for defining areas impacted by 

glacial water.  

Among the analyzed indexes, we found that the correlation coefficient calculated over the period 

1968-1998 is significantly lower in trees at LVW1 compared to trees at LVW2 and LVM sites. This 

result indicates that tree-ring growth is heavily disturbed in the trees growing closer to the lake 

shores, as shown by the higher variability in tree growth.  

The climatic analysis was conducted to investigate if glacial water influences the climatic signal 

recorded in the residual chronologies. Even though the accuracy of the dendroclimatic analysis is 

limited due to the analysis of only one core from each tree, both the sites LVW2 and LVM show 

similar correlations with the climatic variables and, in particular, statistically significant correlation 

coefficient values were found in the month of June. On the contrary, the LVW1 site shows 

statistically significant correlation coefficient with temperature but not with precipitation, thus 
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suggesting that water is not the limiting factor at the site, and that perhaps it might be even 

negatively influencing, at least in part, the climatic signal in the tree-ring residual chronologies.  

 

Conclusion 

The selected study area, even if small, represents a unique situation in the Southern side of the Alps, 

and thus it represents a key site for analyzing the relationship between glacio-related processes and 

the response of arboreal vegetation. 

Since trees are able to “record” the variations of climatic and environmental parameters in their tree 

rings, dendrochronology is a very useful discipline for monitoring changes in the characteristics of 

the environment. The lake small dimensions, the difficult access to the flooded trees and the limited 

number of individuals located in a special site for the conservation of animals and plants, only 

allowed a relatively limited sampling. However, the obtained results are interesting and allow for a 

better understanding of the impact of glacial water on tree-ring growth.    

Our results show that glacial lake water has a negative effect on the growth of trees periodically 

flooded. Trees can be used as indicators for defining the areas impacted by glacial water in the past.  

The individual chronologies of trees growing at the site LVW1, the closest to the lake, show 

narrower and more variable tree rings compared to trees growing farther from the lake (LVW2 and 

LVM sites). The average values of the correlation coefficients calculated for the individual 

chronologies at each site increase gradually, with LVW1 featuring the lowest value, followed by 

LVW2 and finally LVM, presenting the highest correlation. 

The differences detected in the ring-width chronologies at the three sites at the Lago Verde 

underline the negative influence of glacial water on tree-ring growth. Since water-level fluctuations 

at the Lago Verde are frequent and rapid, trees at the LVW1 site show very variable individual 

growth patterns related to different submersion conditions and tree health conditions.  

The results obtained in this study, even if restricted to an individual sample area, demonstrate the 

capability of tree rings to record environmental information also linked to non-catastrophic events, 

potentially allowing the detection of topographic surface areas impacted by glacial waters in the 

past, even when no geomorphological evidence is detected. 

Moreover, as changes and expansion of proglacial lakes, and more in general glacial lakes, are 

leading to hazardous situations for tourists in high mountain environments (e.g. Tinti et al., 1999; 

Purdie, 2013), an accurate monitoring through tree-ring analysis coupled with remote sensing 

analysis (e.g. Raj et al., 2014; Emmer et al., 2015) represents the first step for risk mitigation. 

Information from tree growth anomalies will help to reconstruct past events and lake fluctuations 

contributing to a better understanding of glacial-related geomorphological hazards.  
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The role of the ecological value in geomorphosite assessment for the debris-covered Miage 

Glacier (Western Italian Alps) based on a review of a 2.5 centuries of scientific study 
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Abstract 

Ecological attributes of geomorphosites play a significant role as one of the characteristic 

components of their scientific value, hence influencing their global value. Ecological attributes can, 

however, act independently and inform other attributes which characterise scientific and additional 

values and the sites potential for use. Within the framework of active geomorphosites, 

environmental changes and recent dynamics can be reconstructed through tree-ring analysis. Glacial 

geomorphosites are one of the most significant examples of this biotic-abiotic relationship. Among 

glacial geomorphosites, debris-covered glaciers represent key sites at which to evaluate an 

ecological attribute. The Miage Glacier, the most representative Italian debris-covered glacier, is an 

important site for multidisciplinary scientific research, enhancing its global value as a complex 

geomorphosite. The Miage Glacier has been selected as a study site, firstly to characterise the 

evolution of scientific research across the last 250 years and then to quantify the ecological support 

role (ESR) and its influence on the other attributes. The ESR’s importance in assessing global 

geomorphosite values was estimated by studying its variation and the variation of the related 

attributes as a consequence of an increase in scientific knowledge over time. The ESR variation 

displays a positive effect on scientific value, in particular, and generates more differentiation 

between defined sites and visitor trails, thus influencing site selection. 

 

KEYWORDS: glacial geomorphosites, ecologic support role, debris covered glaciers, Miage 

glacier 
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Introduction  

High mountain geomorphosites (sensu Panizza 2001) represent a very interesting subject for both 

geoheritage assessment and educational purposes (Reynard et al. 2007; Bollati et al. 2011). Their 

rapid evolution requires attention because, on the one hand, there is the possibility of geomorphosite 

degradation resulting from changes in the geomorphological processes acting on them (Diolaiuti 

and Smiraglia 2010; Pelfini et al. 2009), and on the other hand, active geomorphosites (sensu 

Reynard 2004) represent a useful tool for educational purposes (Reynard et al. 2007). In fact, they 

allow people to experience characteristic geomorphic features just from observing defined areas in 

the landscape (Reynard et al. 2007; Bollati et al. 2011). The importance of evolving geomorphosites 

is also associated with the hazards that may derive from geomorphic process changes and their 

intensification in response to climate change. This is significant, especially in tourist areas where 

the vulnerability component is present (Brandolini et al. 2006; Pelfini et al. 2009). Hence, the 

educational exemplarity (sensu Bollati et al. 2012) of these sites may be considered related to the 

aforementioned topics. Dissemination of concepts, that are fundamental to both risk scenarios and 

to the proper way to move through the natural environment, contributes to the educational 

importance of these types of sites of geomorphological interest (e.g., Bollati et al. 2013). 

Moreover, active geomorphosites located in temperature- and precipitation-limited environments 

may be strongly influenced by climatic variations, because their characteristics are modified by 

variations in the frequency and intensity of climate-related geomorphological processes. This is in 

accord with the “narrow definition” of geosite proposed by Grandgirard (1997): “it can be any part 

of the Earth’s surface that is important for the knowledge of Earth, climate and life history.” 

Glacial geomorphosites are among the most significant examples of active geomorphosites (i.e., 

changing in a “changing climate” (Diolaiuti and Smiraglia 2010)), whose quantitative evaluation 

should be periodically reassessed as a response to changes in their features (Pelfini 2009; Pelfini et 

al. 2009; Diolaiuti and Smiraglia 2010). After identifying their attributes during geomorphosite 

selection (Pelfini and Smiraglia 2003), many glacial geomorphosites were proposed as important 

because of their high scientific and cultural value (e.g., Pelfini and Gobbi 2005; Pelfini et al. 2005). 

Particular focus was placed on their ecological and educational attributes (Pelfini et al. 2010a; 

Garavaglia et al. 2010a). 

A distinctive category of glacier geomorphosites is represented by the debris-covered glaciers 

(DCGs) which arise from a growth in supraglacial debris resulting from climate change-related 

processes (e.g., rock avalanches from the valley sides due to permafrost degradation and 

outcropping of endoglacial debris due to increasing ablation rates; Deline 2009). Debris coverage 

above a certain thickness threshold diminishes the glacial ablation rates (e.g., Mattson et al. 1993; 
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Mihalcea et al. 2008; Brock et al. 2010), making the DCGs’ response to climate changes different to 

that of debris-free glaciers (DFGs). Hence, DCGs may be considered one of the features in the 

alpine landscape in which a distinctive response of the natural environment to climate change is 

evident. 

Within the framework of geomorphological heritage assessment, there is agreement among 

scientists concerning the need for a census of geomorphosites based on objective evidence. 

However, more often discussed is the quantification of single (simple) values and global 

(composite) values (e.g., Reynard et al. 2007). Difficulties may arise in applying rigid evaluation 

schemes, considering the vast geomorphological differences in different morphoclimatic 

environments. Another problem is the subjectivity in assessing values (e.g., Bonachea et al. 2005; 

Bruschi et al. 2011). Considering all these conditions, some proposals were suggested using data 

base applications (e.g., Giardino et al. 2010; Ghiraldi et al. 2010). For instance, Bollati et al. (2012) 

proposed a method for assessing and selecting sites of geomorphological interest by employing 

either the function of the users (e.g., tourists, students of different levels, etc.) or the aim of the 

project (e.g., valorisation, education, or management). The same application was tested for selecting 

educational and cultural trails by obtaining global values for single itineraries which also considered 

natural hazards. Consideration of natural hazards was intended both negatively, to exclude 

unsuitable itineraries, and positively, as occasions for education about risk and safety conditions, as 

previously discussed (Bollati et al. 2013). 

Many features are considered in geomorphosite selection (e.g., Bollati and Pelfini 2010), and in 

recent times, new attention has been directed towards their ecological attribute (i.e., the ecological 

support role, ESR; sensu Bollati et al. 2012), especially for glacial geomorphosites (e.g., Garavaglia 

et al. 2010a; Pelfini et al. 2010a). As presented in Table 1, the ecological value changes position 

and relative importance among groups of attributes depending on the author and the meaning that 

the author confers to it. Within this framework, the strategic role of vegetation may indeed be 

considered as influencing transversally the other attributes that are also taken into account when 

calculating scientific value, additional values and potential for use (Fig. 1). Vegetation’s role is 

especially important in understanding DCGs: when the debris layer is thick enough (i.e., at least 40 

cm at the sample site of Miage Glacier; Pelfini et al. 2007), the surface glacier velocity is low, and 

if the glacier tongue reaches altitudes below the tree line, not only herbaceous and shrub vegetation 

but also trees can germinate and grow (Pelfini 2009) providing a rareness value to these 

geomorphosites. Moreover, DCGs evolution and dynamics can be studied through the analysis of 

annual tree rings in supraglacial living trees (e.g., Pelfini et al. 2007; Leonelli and Pelfini 2013a). 
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The aim of this paper is to quantitatively assess the ecological attribute’s contribution to glacier 

geomorphosites in relation to variation in the composite values (e.g., global, scientific, and 

additional values and potential for use (sensu Bollati et al. 2012)) during geomorphosite evaluation. 

First, the scientific literature concerning the study area was analysed and characterised 

chronologically. Next, the publications concerning the interaction between vegetation and glacial 

processes were selected as support for the quantitative re-evaluation of sites. The Miage Glacier, in 

the Mont Blanc Massif (Western Italian Alps), was selected as the study area because it is a highly 

representative debris-covered glacier in the Italian Alps for which the scientific literature is broad 

and varied in terms of the topics investigated. 

 

 

Figure 1. The transverse influence of the ESR on the other attributes used for geomorphosites 

evaluation (see criteria in Bollati et al. 2012). 
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Table 1. The different approaches to and considerations of the ecological value (modified from 

Bollati and Pelfini 2010). 

 
SCIENTIFIC VALUE ADDITIONAL VALUE 

Ecological value as support for living nature: 

(Panizza 2001; Bollati et al. 2012), especially 

in sensitive contexts (Quaranta 1992; Carton et 

al. 1994; Rivas et al. 1997; Panizza 2001; 

Panizza and Piacente 2003; Gray 2004; 

Pralong 2005; Pralong and Reynard 2005; 

Pelfini et al. 2010a; Garavaglia et al. 2010). 

For some Authors the whole landscape may be 

considered as living organism (Romani 1994). 

Other terms: 

Functional value (Gray 2004) 

Naturalistic value: (Brancucci et al. 1999) 

Barca and Di Gregorio (1991); Hooke (1994); 

Coratza and Giusti (2005); 

 

Specific category: 

Ecological Impact Criterion - EcI (Reynard et al. 

2007; Pereira et al. 2008). 

 

Study Area 

The Miage Glacier, located in the Veny Valley (Valle d’Aosta, Italy; Fig. 2a), drains the southwest 

slope of Mont Blanc. The glacier is approximately 13 km long and shows an ablation tongue, 

towards the terminus, characterised by two main lobes with a smaller one in between. The valley is 

included in the “Espace Mont Blanc” area, which is under consideration for inclusion on the 

UNESCO World Heritage List. 

Certainly, the Miage Glacier represents a significant site from an educational viewpoint and due to 

its accessibility and notoriety (Pelfini et al. 2005; Bollati et al. 2013). Moreover, the entire area is 

considered a prime example of an open-air laboratory (Pelfini et al. 2009), suitable for research and 

education on the subject of differential ablation, as demonstrated for other sites by Pelfini et al. 

(2010b). According to Bollati et al. (2013), the Miage Glacier belongs to the category of “complex 

active geomorphosite” (Pelfini et al. 2009; sensu Reynard 2004 and Reynard and Panizza 2005) and 

its simple attributes and composite values (especially the scientific value) have been recently 

discussed (e.g., Pelfini et al. 2005) in terms of risk scenarios (Mortara and Sorzana 1987; Pelfini et 

al. 2009). Furthermore, the values of geomorphosites, distributed along three sample trails, were 

quantified for the first time by Bollati et al. (2013), demonstrating quantitatively the important value 

of the area in terms of geomorphological heritage. 

More precisely, the geological, geomorphological and glaciological features enhance the scientific 

value of the area, as evidenced by extensive scientific research that began during the 18th century 

when the first papers describing this area were published (De Saussure 1774; Baretti 1880). The 

Miage Glacier represents the most significant place in the Italian Alps to study the dynamics of a 

DCG (e.g., Mihalcea et al. 2008; Brock et al. 2010) (i.e., for geomorphosite assessment: model of 



106 
 

geomorphological evolution; geohistorical importance; sensu Bollati et al. 2012). There are many 

respects in which the ESR of this glacier and the associated processes are important to both 

vegetation (Fig. 3) (e.g., Pelfini et al. 2010a; Garavaglia et al. 2010a; Caccianiga et al. 2011) and 

arthropod communities (Gobbi et al. 2011). 

The spatial and temporal distributions of the supraglacial tree coverage, that represents a rareness 

feature for the Miage Glacier as a geomorphosite, were characterised by Pelfini et al. (2007) and 

Leonelli and Pelfini (2013a). The supraglacial trees are primarily of the species Larix decidua Mill. 

and Picea abies Karst. (Pelfini et al. 2007). The investigations regarding the supraglacial trees, in 

conjunction with glaciological information, allowed the reconstruction of the recent dynamics of the 

lower portion of the glacier tongue (Fig. 3b) (Pelfini et al. 2007; Pelfini et al. 2012; Leonelli and 

Pelfini 2013a). In fact, tree rings may record both mechanical stress and climatic signals. For this 

reason, the trees growing on debris coverage, while being transported by the glacier flow in a 

manner comparable to a “tapis-roulant” (i.e., “treadmill”; Richter et al. 2004; Pelfini et al. 2005), 

are precious sources of geomorphological information. For example, the integration of glaciological 

data for surface velocity over time allowed the tracing of the tree’s paths and, subsequently, the 

determination of the position on the glacier where growth anomalies in the tree rings were recorded 

(Leonelli and Pelfini 2013a). Moreover, glaciological research indicates that, during the period 

1975 - 1988 (Giardino et al. 2001), there was a passage of a kinematic wave which crossed the 

glacial tongue, modifying the glacier’s surface elevation (Thomson et al. 2000). The analysis of 

tree-ring anomalies, in the supraglacial trees growing on both lobes, allowed the reconstruction of 

past surface instability and the determination that there was a delay of a number of years in the 

wave traversing first the southern and then the northern lobe (Pelfini et al. 2007; Leonelli and 

Pelfini 2013a). An intensification of glacial activity, likely related to the kinematic wave, is also 

witnessed by trees colonising the proglacial area where the dendrochronological analysis allowed 

for the collection of information on glacial stream course changes over time (Fig. 3c) (Garavaglia et 

al. 2010b). 

In regards to the portions of the glacier tongue presenting debris-free ice, as in the case of ice cliffs 

(Fig. 3a) where the ablation is more intense, the processes of down-wasting and back-wasting 

(sensu Benn and Evans 1998) are both present and may differently impact the supraglacial trees. 

For example, on the northern lobe, the debris cover displacement caused by the glacier flow moves 

the trees towards the glacier terminus, where they usually die from falling off the front edge of the 

glacier (Richter et al. 2004; Pelfini et al. 2005; Leonelli and Pelfini 2013a). However, when the 

trees move down valley along the edge of the ice cliff, they can be involved in the ice wall retreat 

(back-wasting), ending their life before they reach the glacier front. In contrast, when the ice cliff is 
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buried because of an increase in the debris cover and subsequent lowering of the cliff inclination (as 

observed on the southern lobe), the trees may continue their movement and colonise the ice cliff 

slope, too (Pelfini et al. 2012). 

Among the significant geomorphosites identified by Bollati et al. (2013) in the Miage Glacier 

apparatus, there is a well-developed morainic amphitheatre, recognised by different authors as one 

of the most significant in the European Alps (e.g., “The moraine of the Glacier de Miage is perhaps 

the most extraordinary in the whole Alps, and has given rise to the Lac de Combal”, Murray 1844; 

Forbes 1843; Baretti 1880) and is referred to in the literature as the Miage Morainic Amphitheatre 

(Deline and Orombelli 2005; Deline 2009) (Fig. 3f). This amphitheatre was generated by a 

diversion lobe of the Miage Glacier and colonised by arboreal vegetation. Dendrochronological 

analysis of the amphitheatre’s trees provided data for dating the maximum Holocene expansion in 

the Western Alps (Deline and Orombelli 2005) (i.e., for geomorphosite assessment: model of 

paleogeomorphological evolution; geohistorical importance; Bollati et al. 2012), including the 

estimated time of formation of Combal Lake (Deline and Orombelli 2005). 

The geodiversity (i.e., intrinsic geodiversity; Panizza 2009) of the Miage Glacier area also benefits 

from the presence of different lake typologies (Jardin du Miage Lake, Miage Lake, Combal Lake, 

and Breuillard Lake). Among these lakes, the Jardin du Miage Lake (also known as Lac Vert) is 

surrounded by arboreal vegetation that is occasionally drowned along the lake edge and impacted 

by water level changes (Fig. 3d, e). As recently highlighted by Leonelli et al. (2013b), these trees 

may record these water lake changes by virtue of their growth rates and typical tree-ring isotope 

signatures related to the low δ18O of glacier melt waters. 

Within the Miage complex geomorphosite, there are several situations where the ESR, influenced 

by outcropping lithology and low drainage conditions deriving from the presence of particular 

landforms (Prinetti 2010), creates significant features: Breuillard Lake, Combal Lake and the area 

of Jardin du Miage near the homonymous lake. In particular, the progressive infilling with sediment 

of Breuillard Lake and Combal Lake allows gradual colonisation by endemic flora, thus increasing 

the biodiversity of the area (Fig. 3g, h, i) (e.g., Baretti 1880; Prinetti 2010). Concerning these 

features, some observations are already present on signage along naturalistic trails. 

In addition to the glaciological and supporting botanical features, the geological features, that are 

relevant along the Veny Valley, contribute to geodiversity. In fact, the development of the valley 

along the Pennidic Front, one of the main structural lines of the Alps, lead to the outcrop of 

different lithologies on the two sides of the valley (Prinetti 2010). The Helvetic crystalline basement 

of the Mount Blanc Massif on the northern side and the sedimentary coverage of the UltraHelvetic 

and External Pennidic Domains on the southern side respond differently to gravity (prevailing rock 
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falls on the northern side and debris flow and landslides on the southern side; e.g., Bollati et al. 

2013) which generates different geological landscapes (sensu Gisotti 1993). 

Moreover, the rareness attribute is represented not only by the tree coverage but also by a feature of 

Miage Lake, calving, which is a rarity at level of the Italian Alps (Diolaiuti et al. 2006; Pelfini et al. 

2009). In addition, the complete drainage of the lake, which happened in 2004, permitted data 

collection that allowed for a detailed characterisation of the lake bottom and the hydrological paths 

(e.g., Deline et al. 2004; Diolaiuti et al. 2005; Masetti et al. 2010). 

In general, all the described features contribute to the high educational exemplarity, additional 

values and potential for use attributes of the area. The quantitative evaluation of the trails and single 

sites (see details in Bollati et al. 2013) allowed the creation of a ranking system resulting in the trail 

01 to Miage Lake being the most valued. 

The Miage complex geomorphosite represents an ideal site to investigate how the vegetative 

component may transversally influence the composite attributes of scientific value, additional 

values and potential for use in geomorphosite value assessment. 

 

 

 

Figure 2. The Miage Glacier area and the thirteen evaluated sites. a) Geographic location of the 

Miage Glacier in Veny Valley (Valle d’Aosta); b) panoramic view of the Miage Glacier from La 

Visaille with the locations of the evaluated geomorphosites and trails; the location and partial 

extension of the Southern lobe ice cliff is also indicated. The Southern lobe ice cliff is italicised 

because it was not considered a valuable geomorphosite, because it cannot be reached from any 

tourist trail and is not completely visible from any tourist trail (Photo by D. Zannetti, 2012). 
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Figure 3. Various significant features for the ESR in the Miage Glacier area. a) Supraglacial 

vegetation involved mainly in the back-wasting processes at the Northern lobe ice cliff (photo by D. 

Zannetti, 2012); b) Supraglacial vegetation on the Southern lobe, responding to the debris coverage 

dynamics (photo by D. Zannetti, 2012); c) Vegetation in the proglacial area of the Southern lobe 

involved mainly in the glacial stream activity (photo by D. Zannetti, 2011); d-e) Interannual water-

level changes at Jardin du Miage Lake involving the drowned trees; the large boulder (white 

ellipse) allows a comparison between the two photos taken in July 2011 (d; photo by I. Bollati) and 

September 2011 (e; photo by L. Vezzola). The vegetation present inside the lake basin may be 

affected in terms of growth rates; f) The Miage Morainic Amphitheatre investigated through 

dendrochronological, pedological and carbon-14 analysis to determine the age of the different 

morainic ridges (photo by D. Zannetti, 2012); g-h-i) examples of flora present in the area of Jardin 

du Miage and Breuillard Lake and typical of the humid environment: Dactylorhiza maculata (L.), a 

protected species (g; photo by I. Bollati, 2011), Eriophorum scheuchzeri (h; photo by I. Bollati, 

2011), Caltha palustris L. (i; photos by I. Bollati, 2011). 
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Methods 

The first step of the analysis was the collection and characterisation of the scientific research 

regarding the Miage Glacier and the Veny Valley area. The collection was focused on the 

classification of descriptive and scientific papers and on their topic, which has evolved over time. 

The bibliographic research was performed utilising international databases available online: Google 

Scholar and Web of Knowledge (both were consulted in early 2013 and took into account 

publications through the end of 2012). Information reported by local magazines was not considered. 

In order not to overemphasise any paper, the maximum value assigned to any single paper was 1. If 

the paper covered more than one topic, for each topic the value was calculated as follows: 𝑉 =
1

𝑛
 

where n represents the number of topics. Then, for each year, the total number of papers for each 

topic was calculated. 

Hence, starting from the results on the evolution of the scientific knowledge regarding the study 

area, the scientific research concerning the interaction between arboreal vegetation and glacial 

processes was used to reconsider the dataset of values (i.e., scientific, additional, global, potential 

for use, educational index and scientific index), calculated by Bollati et al. (2013), of the Miage 

geomorphosites and trails. New data had been acquired during 2012 and two sites have been added 

to the trail 03 to Breuillard Lake (i.e., Debris fan and Rock fall). 

All the sites were re-evaluated to highlight the numerical contribution of the arboreal vegetation 

factor to the other attributes. Six sites were not involved in this re-evaluation (Miage Lake, Miage 

Stream alluvial fan, Freney Stream alluvial fan, Landslides and debris flows, Debris fan and Rock 

fall), because either the ESR was not meaningful or no scientific data to confirm the ESR were 

available. The assessment was made through the already applied methodology, tested initially along 

a fluvial valley (Bollati et al. 2012) and then tested in the Miage Glacier area for selecting geo-

itineraries in a glacial environment (Bollati et al. 2013). The list of attributes (single values), the 

specific class of the ESR and the formula used for calculating the composite values are reported in 

Table 2. In the presented research, the application is used to recalculate the global value of Miage 

sites by considering the different typology of information available, focusing on the meaningful 

presence of arboreal vegetation and its transverse influence on the other attributes. 

 

 

 

 



111 
 

Table 2. Criteria for the evaluation of geomorphosites and the equations for calculating the 

parameters of sites and trails according to Bollati et al. (2012) (modified from Bollati et al. 2012; 

2013). 

 
A. ATTRIBUTES (SINGLE VALUES) 

Scientific value (SV) Potential for use (PU) 

Model of geomorphological evolution 
(representativeness)-GM 

Temporal accessibility TA 

Services-Se 

Model of palaeogeomorphological evolution-PgM Visibility-Vi 
Educational exemplarity-EE Number of tourists-NT 
Spatial extension-SE Sport activities-OA 
Geodiversity-Gd Legal constraints-LC 
Geo-historical importance-GI Use of geomorphological/geological interest UGI 
Ecologic support role-ESR Use of the additional interest UAI 
Other geological interests-OI  
Integrity-In 

Presence of geomorphosites in the surroundings SGs 

Rareness-Ra Spatial accessibility-SA 
 

Calculated Accessibility-CA 
only for on-foot trails 
Typology-Ti 
Trend 
Steepness-St 
Sloping-Sl 
Width-Wi 
Ground material-GM 
Vegetation on the slope 
Water/Snow along the path-WSP 
Slope Material-SM 
Slope Inclination-SI 
Degree Of Conservation Of The Path-DC 
Human Interventions-HI 
Tourist Information-TI 

 

 

Additional values (AV) 

Cultural-Cu 

Aesthetic-Ae 

Socio-economic-Ec 

 

B. QUANTITATIVE CRITERIA FOR EVALUATION OF ECOLOGIC SUPPORT ROLE 

0 

0,33 

0,67 

1 

Without any connection with the biologic element  

Presence of interesting flora and fauna  

The geomorphological features condition/favour the ecosystems  

The geomorphological features determine the ecosystems  

C. FORMULA FOR CALCULATING COMPOSITE VALUES 

CALCULATED 

VALUES 
EQUATION Conditions Ranges 

SV SV = (GM + PgM + EE + SE + Gd + GI + ESR+ OI + In + Ra) 
 

0,5-10 

AV AV = (C + Ae + SE) 
 

0-3 

GV GV = (SV + AV) 
 

0,5-13 

Index of use 

PU s.s. 

PPU 

CA 

A_Factor_c 

A_Factor_s 

PU 

(on-foot trails) 

PU 

IU = EE + SE + Ae 

PUss = (TA + Vi + Se + NT + SA + LC + UGI + UAI + SGs) 

PPU = (PUss + IU) 

CA = (Ti + St + Sl + Wi + GM + WSP + SI + SM + DC+ HI + TI) 

AFc = ((CA/11)+(SAc/0.4))/2 

AFs = (1+(SAc/1))/2 

PUc = PPU + AFc 

PUs = PPU + AFs 

SAc ≤ 0,4 

SAc ≥ 0,6 

0-3 

0,25-9 

0,25-12 

0-11 

0,25-1 

0,8-1 

0,5-13 

1,05-13 

Scientific Index 

Educational Index 

SIn= (GM + PgM + GI + OI)/4 

EIn= [EE + Ae + (A_Factor_c/s)]/3  

0-1 

0,083-1 

ITINERARY 
 

(Σ SCIENTIFICs / n° sites)*MAX 

(Σ ADDITIONALs / n° sites)*MAX 

(Σ GLOBALs / n° sites)*MAX 

(Σ POTENTIAL FOR USEs / n° sites)*MAX 

(Σ SCIENTIFIC INDEX / n° sites)*MAX 

(Σ EDUCATIONAL INDEX / n° sites)*MAX 

0-1 

0-1 

0-1 

0-1 

0-1 

0-1 
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Results 

The first phase of the scientific publications analysis enhanced the considerable attention paid to the 

Miage Glacier and its surrounding area since the beginning of the frequentation of this glacial area 

in the 18th century. The analysis of the two databases brought to the collection a total of 100 

scientific works, covering the period 1774-2012 and including the papers belonging to the 18th and 

19th centuries, which contain more descriptive glaciological and naturalistic observations (i.e., 

naturalistic observations and trips, Fig. 4). The investigated subjects are various and the relative 

percentages are reported in Figure 4. 

Figure 5 presents the distribution of the scientific works through time, separated according to the 

main subject. As evidenced by the data in Figure 5, glaciological and dendrochronological studies 

have been strongly increasing in recent years, as tools, to quantify the variations in the glacial 

environment in both space and time, have been developed. This increase may be considered a 

reflection of the rising interest in climate change. 

Moreover, it is possible to see the advance of scientific research, especially in concurrence with the 

complete drainage event that happened at Miage Lake in 2004, which has allowed the collection of 

additional data on the hydrological paths and on the shape of the ice cliffs along which the lake 

develops, which are associated with the entire glacier dynamic (e.g., Diolaiuti et al. 2006). 

The second part of the results involves the re-evaluation of thirteen sites, including two new sites 

not previously evaluated by Bollati et al. (2013). The removal of the ESR related to landforms and 

processes was based on data derived from scientific research developed during the last several years 

(Fig. 5). At this scope, among the collected papers, special attention was paid to those papers 

concerning the arboreal vegetation’s response to glacier dynamics and those papers combining these 

results with attributes of the Miage Glacier as a geomorphosite. In Table 3, the scientific papers on 

which the re-evaluation of the ESR and transversal features were based are summarised and divided 

according to the circumstances in which the ESR is evident as described in the previous paragraphs. 

In Figure 6, the re-evaluation results are illustrated for both sites and trails and the variation 

produced by the ESR is evident. The increase in the scientific value over time is determined not only 

by the ESR but, according to Figure 1, by all the attributes transversally linked with it. The two sets 

of values correspond to: i) new composite values (dark grey) obtained not considering the benefit 

given by the increasing scientific knowledge on the ESR; ii) effective composite values (light grey) 

considering all the data available in the scientific literature regarding these topics. The value 

increase is evident for most of the parameters. This increase does not involve all the sites, as 

mentioned above, but all those sites in which the study of vegetation confirms and provides a 

greater comprehension of the glacial processes and dynamics of this DCG (i.e., Miage Glacier, 
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Miage Morainic Amphitheatre, Jardin du Miage Lake, Southern lobe proglacial area, Northern lobe 

ice cliff) or where the landforms, processes and outcropping lithology determine the colonisation by 

the endemic flora, increasing the biodiversity of the area (i.e., Breuillard Lake, Combal Lake; 

Prinetti 2010). 

The trails enjoy the benefits of the value increases as well (Fig. 6). Trail 01 is invariably the most 

valued one. 

According to Bollati et al. (2013), if trail 02 reached the lowest position, the addition of two sites 

along trail 03 (i.e., Debris fan and Rock fall), not linked with the ecological component, generates 

an inversion in the ranking (light grey columns in Fig. 6). Alternatively, not considering the ESR 

(dark grey columns in Fig. 6), trail 02, along which all the sites are affected by the ESR variation, 

undergoes a greater value loss with respect to trail 03 (Table 4). 

Percentage variations in the composite attributes for each site and trail are reported in Figure 7, 

including only the 7 sites in which variations of the ESR are confirmed by scientific data. 

Concerning these sites, scientific values variation also reaches values greater than 20% at the 

Northern lobe ice cliff (i.e., back-wasting processes involving vegetation), the Miage Glacier (i.e., 

the vegetation response to the dynamics of the debris coverage), the Southern lobe proglacial area 

and the Miage Morainic Amphitheatre. The variations of scientific value at the level of the site are 

never lower than 12% (Fig. 7). 

The additional values are responsive to the variation only at Breuillard Lake (16.67%). This is 

because the scenic value, that may be responsive to variation in the ESR, is enhanced by the 

presence of endemic flora that confers a more pleasing aesthetic to the site. The other sites are 

valuable scenically regardless of the vegetation. Generally, Breuillard Lake is the site which results 

in more homogeneous response to the variation and which obtained a high average of change (12%) 

(Fig. 7). 

At Breuillard Lake, concerning potential for use, the possibility of using the already existing tourist 

trails, based mainly on the floristic component of the landscape, is promoted by the scientific 

recognition of the ESR. At this site, potential for use obtained the maximum percentage of variation 

(12.32%), whereas this parameter, in general, varies less than the others (2-12%). 

The indexes for scientific and educational selection of sites ranged between 7.50 – 24.75% and 

11.43-17.68%, respectively (Fig. 7). The Miage Morainic Amphitheatre and Northern lobe ice cliff 

are particularly favoured by the use of vegetation as an investigative tool for dating glacial advances 

and retreats in the first case (i.e., scientific index variation: 24.75%) and evolution of back-wasting 

processes in the second case (i.e., scientific index variation: 16.50%). The biggest variation in the 
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educational index was obtained, once again, at Breuillard Lake (17.68%) where scientific index did 

not vary. 

Trails present more homogeneous trends, and their value variations are reduced (Fig. 7). The 

scientific value continues as the most favoured one, as seen by the increase in the knowledge of the 

ESR, and its variations result to be significant along trail in which for all the sites the role of glaciers 

regarding vegetation is fundamental (i.e., 15,85% maximum at trail 02). Trail 03 presents more 

homogeneous percentage variations. 

The percentage variations in the average composite values, not including the sites in which the ESR 

plays no role (see earlier discussion), and the changes in standard deviation are reported in Figure 8. 

In general, the most variable composite attribute is the scientific value (16.43%) (Fig. 8a), as 

previously discussed. The index used for selection of sites for scientific purposes also increases 

evidently (Fig. 8a). The standard deviation, which indicates the dispersion of values, especially for 

the scientific attribute, increases and the sites are more distinct from each other according to this 

parameter (fig. 8b). 

Finally, considering the ranking among all the sites, all the ESR affected sites rose in the ranking. 

However, the only site that maintained its high position is Miage Lake, demonstrating that superb 

sites such as Miage Lake, in which it is possible to observe active processes such as calving, are 

highly valued and independent of variation in any other value. Table 4 presents the comparison 

among the site and trail rankings. 
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Figure 4. Percentage of scientific papers according to topic. 

 

 
Figure 5. Scientific research on Miage Glacier. The distribution of scientific papers over time 

according to the scientific topic studied. The complete drainage of Miage Lake most likely gave a 

significant boost to scientific research in the area because of the possibility of collecting scientific 

data. 

 

 

 



116 
 

Table 3. Summary of the scientific research concerning ecological interactions involving glacial 

landforms and vegetation in the Miage Glacier area. 

 

 

SCIENTIFIC PRODUCTION DERIVING FROM INTEGRATION OF BIOLOGICAL AND ABIOLOGICAL DATA 

FRAMEWORK REFERENCES HIGHLIGHTS 

Supraglacial vegetation 

and glaciological data 

Pelfini et al., 

2007 

Identification and dating of different growth anomalies (e.g. pointer years, 

compression wood, abrupt growth changes) allowed the individuation of 

simultaneous presence of different disturbance indicators but not contemporarily on 

the two glacier lobes. The results fit with glaciological data documenting volume and 

surface-level variations in the same period. 

Leonelli & 

Pelfini, 2012 

The temporal analysis of abrupt growth changes (AGCs) confirmed a period of 

higher glacier surface instability, reaching a maximum in the years 1988 (on lobe S) 

and 1989 (on lobe N), probably related to the passage of a kinematic wave within the 

glacier tongue. AGCs >+70% and >+40% are suggested as a proxy for substrate 

instability in spatio-temporal reconstructions in the Alpine environment. 

Caccianiga et al., 

2011 

Biodiversity on the debris coverage were quantified through observing species 

assemblages that are comparable with those of subalpine glacier forelands, but with 

the addition of high-altitude species. 

Trees at the ice cliffs and 

glaciological data 

Pelfini et al., 

2012 

Analysis of tree age and tree distribution patterns on the glacier tongue, especially 

near at the ice cliffs of northern and southern lobes, suggested that a large number of 

trees die under conditions of dominating back-wasting on the northern lobe, instead, 

in the case of prevalence of down-wasting, as on the southern lobe, trees more easily 

survive and flow downvalley transported by the glacier flux. 

Proglacial vegetation and 

glaciological data 

Garavaglia et al., 

2010b 

Dating scars, compression wood and rings width variations allowed the individuation 

of areas directly affected by glacial discharge or by boulders falling from the glacier 

front. The concentration in specific years indicated an intensification of glacial 

activity influencing the forest vegetation. 

Miage Morainic 

amphitheatre dating and 

geomorphological data 

Deline, 1999 Morainic geometry analysis with dating methods (dendrochronology, lichenometry, 

radio dating, soil analysis) allowed the individuation of a succession of glacier 

overflowing phases over the right lateral moraine and of heightening phases of the 

moraines (by superposition) during the Late Holocene, except for the older base of 

the morainic amphitheatre. The Litte Ice Age contribution was précised. 

Deline & 

Orombelli, 2005 

Integration of data presented by Deline (1999), with digging and coring in 

intermorainic depressions of the MMA and through a deep core drilling in a dammed-

lake infill (Combal), allowed the proposal of The ‘Neoglacial model’. It considers the 

MMA as formed during the whole Neoglacial by a succession of glacier advances 

and during the LIA, separated by raising phases of the right-lateral moraine by active 

dumping because of the Miage debris coverage. 

Drowned vegetation at 

Lac du Jardin du Miage 

and glaciological data 

Astrade et al. 

2012 

Abrupt growth decrease was individuated into the tree rings of the drowned trees at 

Lac du Jardin du Miage as a response to water level changes. 

SCIENTIFIC PRODUCTION LINKING VEGETATION DATA WITH GEOMORPHOSITES CONCEPTS 

FRAMEWORK REFERENCES HIGHLIGHTS 

Supraglacial vegetation 

and geomorphosite 

evaluation 

Pelfini et al., 

2005 

Dendrochronology analysis on supraglacial vegetation allowed the determination of 

link with debris coverage that increment the ecological value of Miage as 

geomorphosite. 

Supraglacial and 

proglacial vegetation 

influencing 

geomorphosite evaluation 

Garavaglia et al., 

2010a 

Investigating trees which colonize the glacial forefield of debris free glaciers and the 

debris coverage of DCG allowed to quantify the effects of climate change on tree 

colonization and to assess the creation of new geomorphosites increasing 

geodiversity in proglacial areas.  

Supraglacial vegetation 

and dating of morainic 

ridges influencing 

geomorphosite evaluation 

Pelfini et al., 

2010 

The dendroglaciological analysis allowed the assessment of the importance of trees in 

analyzing the present glacier dynamics and, as a consequence, to contribute to the 

scientific evaluation of a geomorphosite in term of rarity, ecological and educational 

attributes. 
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Figure 6. Variations in the scientific value, scientific index and educational index for sites and 

trails in the Miage Glacier area. Not all the sites have undergone changes (i.e., Miage Lake, Miage 

Stream alluvial fan, Freney Stream alluvial fan and Landslides and debris flows, Debris fan and 

Rock fall). The dark grey columns are the values calculated not considering the data regarding the 

ecological value of the sites. The light grey columns are the effective values calculated considering 

all the data coming from the scientific literature regarding the ESR. The horizontal lines in the sites 

graphs are the respective average values that show the same increment. In the dashed ellipse, the 

inversion of the final scientific value between trail 02 and trail 03 is highlighted. 
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Figure 7. Percentage variations in the composite attributes in sites and trails including only the 

sites in which the ESR has a meaning. 
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Figure 8. Variations in the composite attributes: a) Percentage of variation in the composite 

attributes calculated considering the average in the composite attributes of sites but not considering 

those in which the ESR has no influence. b) Variation of the standard deviation in the composite 

attributes of all the sites derived from re-evaluation. The dark grey columns are the values 

calculated not considering the data on the ecological value of the sites. The light grey columns are 

the effective values calculated considering all the data coming from the scientific literature 

regarding the ESR. 
 

Table 4. Variation of the ranking of sites according to variation of the ESR data. 

Sites rank – Global value  Not considering data on ESR Considering data on ESR 

01 Miage Glacier Miage Glacier 

02 Miage Lake Miage Morainic Amphitheatre 

03 Miage Morainic Amphitheatre  Miage Lake 

04 Combal Lake Combal Lake 

05 Northern lobe ice cliff Northern lobe ice cliff 

06 Southern lobe proglacial area Southern lobe proglacial area 

07 Rock fall  Jardin du Miage Lake 

08  Freney Stream alluvial fan Breuillard Lake 

09  Miage Stream alluvial fan  Rock fall  

10 Debris fan Freney Stream alluvial fan 

11 Landslides and debris flows  Miage Stream alluvial fan 

12  Jardin du Miage Lake Debris fan 

13 Breuillard Lake Landslides and debris flows  

Trails rank – Global value Not considering data on ESR Considering data on ESR 

01 01-Miage Lake 01-Miage Lake 

02  03- Breuillard Lake 02- Jardin du Miage Lake 

03  02- Jardin du Miage Lake 03- Breuillard Lake 

 



120 
 

Discussion and Conclusions 

The recognition of glaciers as sites of geomorphological interest is not recent (e.g., Baretti 1880). 

However, the determination and quantitative description of geomorphosite values for glaciers is a 

rather new research topic (Pelfini and Smiraglia 2003; Bollati et al. 2013). In particular, great 

attention has been recently paid to the role of ESR in certain settings, such as those of DCGs 

(Pelfini et al. 2005; Pelfini et al. 2010a; Garavaglia et al. 2010; Gobbi et al. 2011) such as the Miage 

Glacier, the most important DCG in the Italian Alps, proposed as geomorphosite by Pelfini et al. 

(2005). The collection of approximately 100 scientific papers, produced over a period of 250 years 

of scientific research, concerning the Miage Glacier apparatus, initially permitted the understanding 

of the evolution of scientific interest in this complex geomorphosite. The increasing number of 

scientific studies on the Miage Glacier, especially during the 21st century, is most likely related to 

the interest in DCGs as witnesses of climate change (Deline 2009). Additionally, the analysis of the 

Miage Glacier as a geomorphosite, beyond the first recognition in books of the 18th-19th centuries, 

received a significant boost that coincided with the growth of scientific interest in geoheritage. 

Among the papers collected, those concerning the use of vegetation as tool for detailing current and 

past glacial dynamics in different situations (i.e., supraglacial debris coverage, proglacial area, ice 

cliffs on the lobes, morainic amphitheatre, and glacial lakes with drowned vegetation) have been 

considered to quantify the contribution of the ESR to the composite values (i.e., scientific, 

additional values and potential for use) of sites and trails (sensu Bollati et al. 2012). With the 

additional data derived from scientific research on vegetation growing within the glacial 

environment of Miage Glacier, the increase in the ESR is evident. Furthermore, the ESR influences 

the other attributes that are closely connected with it in a cascade effect (as shown in Fig. 1): 

scientific value (i.e., model of geomorphological evolution, model of paleogeomorphological 

evolution, educational exemplarity, geohistorical importance, and rareness), additional values (i.e., 

scenic value) and potential for use (i.e., use of other interests). The composite attributes are 

responsive in different measure to this increase and surely the most involved attribute is the 

scientific value.  

In some cases, such as that of Breuillard Lake, the ESR exclusively influences the attributes linked 

with educational purposes, while the attributes strictly used for the calculation of the scientific index 

remain unvaried. In other situations, the opposite occurs (e.g., the Miage Morainic Amphitheatre 

and Northern lobe ice cliff), and the benefit is obtained when geomorphosites are selected for trails 

with scientific purposes. 

In addition, what emerges is the increase in standard deviation among the single values of sites, 

once again due to scientific factors. As a consequence, if we do not consider the ecological attribute 
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as a criterion to evaluate sites, there will be less differentiation among the sites and trails which may 

impede the process of selection among sites for valorisation purposes. 

Moreover, the relative importance among trails may change if we exclude the ESR attribute. For 

example, trail 02 is more connected with the biological component and largely benefits from the 

growth in available scientific data supporting the ESR of its sites, allowing it to overtake trail 03 in 

significance. Hence, the importance of the ESR attribute is evident in the selection of sites and trails 

during the geomorphosite evaluation procedure, especially for the selection of trails for scientific 

purposes. 

In conclusion, the ecological component of the landscape, in relationship with landforms and 

geomorphic processes, may represent a discriminating factor in geomorphosite value assessment. 

The results of this study demonstrate that this observation is true, especially in the case of active 

geomorphosites but also in the case of passive geomorphosites that are currently affected by active 

processes.  

The continuing growth in scientific interest towards this area is expected to result in new data in the 

future, which will support the necessary periodic revision of geomorphosite assessments. 

Moreover, vegetation dynamics, that are related to glaciers activity, represent a consequence of 

climate change to be enhanced within cultural and educational itineraries, as well as the glacier 

behaviour itself, since they are poorly known by common people (Garavaglia et al 2012). 
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Tree-ring stable isotopes, growth disturbances and needles volatile organic compounds as 

environmental stress indicators at the debris covered Miage glacier 

G. Leonelli 1, M. Pelfini 1, S. Panseri 2, G. Battipaglia 3, L.C. Vezzola 1, A. Giorgi 2 

1 “A. Desio” Department of Earth Sciences, Università degli Studi di Milano, Italy. 

2 Interdepartmental Centre for Applied Studies in the Sustainable Management and Protection of the 

Mountain Environment, Università degli Studi di Milano, Italy. 

3 Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second 

University of Naples, Italy. 

 

Abstract 

First results of an innovative multi-proxy approach applied to glacier-related trees for assessing 

climatic and substrate influence on tree rings and needle VOCs are reported. Tree-ring stable 

isotopes, tree-ring growth patterns and needle volatile organic compounds where analysed at two 

Larix decidua Mill. sites in five trees of similar size growing in close areas mainly differentiated by 

the contrasting geomorphological features: the debris-covered Miage Glacier (‘Glacier’) and a 

lateral moraine (‘Control’). Over the period 2003-2012, tree rings at the Glacier site showed more 

enriched 13C mean values (p<0.05) in the cellulose with respect to the Control site likely due to a 

lower stomatal conductance induced by low soil water retention, high temperature excursions and 

high exposure to direct solar radiation. Also 18O mean values where higher (p<0.01) at the Glacier 

site, likely due to the assimilation of shallow waters from a superficial root system of supraglacial 

trees, in contrast to a more developed and stabilized soil at the Control site. The analysis of tree-ring 

growth patterns of the sampled specimens provided a temporal insight of climatic and 

geomorphological stress at the Glacier site: here we found higher rates of positive abrupt growth 

changes (AGCs), but no differences in percent of latewood. Needles volatile organic compounds 

(VOCs) showed significant differences in some compounds of mono- di- and sesquiterpenes. Those 

with higher concentrations (b-myrcene and estragole) showed also the largest differences, with 

higher concentrations at the Glacier site. Tree rings stable isotopes and AGCs, as well as needles 

VOCs in supraglacial trees may be used as environmental stress indicators in the mid- to short-term, 

respectively, providing valuable proxies for the assessment of geomorphological and climatic 

change impacts in the glacial environments of the Alps. 

 

KEYWORDS: Tree-ring stable isotopes, Needle VOCs, Debris covered Miage Glacier. 
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Introduction 

The study of the responses of the Alpine environment to climate change is a critical issue especially 

in the newly formed habitats of the debris-covered glaciers where a new research frontier is 

represented by the analysis of supraglacial life forms. The increasing rock weathering on valley 

slopes and the growing ablation rates favour the debris concentration on the lower portions of 

glacier tongues (Mihalcea & alii, 2008) inducing the progressively transformation from debris-free 

to debris-covered glaciers. When the debris layer become thicker than the critical value (Mattson 

and Gardner, 1989), ablation rate is reduced and the glacier shrinkage too. The debris coverage of 

glaciers may offer new habitats also for yeasts and fungi (Branda & alii, 2010; Turchetti & alii, 

2008), vegetation (Caccianiga & alii, 2011) and animals (Gobbi & alii, 2011) locally increasing 

biodiversity (Cannone & alii, 2008). When the glacier front is located below the treeline, if the 

debris mantle is thick enough and if the surface glacier velocity is low, then the supraglacial debris 

can be colonized by grass and shrubs and also by trees. 

The European Alps are a climate sensitive region and are a crucial place for studying the responses 

of both physical and biological components especially in the fast changing glacial environments. 

Future scenarios of climate change in the European Alps describe an increase of temperature means 

and extremes (Beniston & alii, 2007) and a general decrease of total precipitations but an increase 

of summer precipitation events (Brunetti & alii, 2004; Christensen and Christensen, 2004) for the 

next decades. Under these projections, the research of climate change impacts at different spatial 

scale in the Alpine environment is an important issue for managing the resources of these territories 

and for understanding how climate-related glaciological and geomorphological processes will 

change in frequency and intensity and how they will interact with life forms in the next future.  

The spatial definition of the climate change impacts in physical and biological components of the 

Alpine environment is useful for better characterizing the heterogeneous and sometimes contrasting 

responses that may be induced by the same climatic input (e.g. Jolly & alii, 2005). For example, in 

the year 2003 the summer heat wave that established over Europe and the Alps for about two 

months induced a marked reduction in glacier mass balances that lasted also in the next years 

(Braithwaite & alii, 2013), and forest productivity decreased at low altitude but not at high altitudes 

where tree growth was, instead, enhanced (Leonelli and Pelfini, 2008).  

The understanding of climatic trends and future impacts of climate change is well supported by the 

availability of a wealth of meteorological data that on the European Alps last for more than three 

centuries (e.g. Auer & alii, 2007). However, the definition of past natural variability of climate at 

the century to the millennial scale from remote sites also on the European Alps is usually supported 

by information derived from climatic proxies like, e.g., tree rings, pollen and lake varves. Tree rings 



131 
 

in particular may provide the highest temporal resolution information of past climate at the annual 

and seasonal scales at least over the period covering the last thousands of years (Fritts, 1976). 

Several studies have been conducted for reconstructing past climate variability and trends on the 

Alps, especially for what concerns summer temperatures (e.g. Büntgen & alii, 2006; 2011; Coppola 

& alii, 2013). The analysis of tree rings in geomorphological studies has allowed the reconstruction 

of the frequencies and distribution of climate related past events, like, e.g., debris flows, flood and 

avalanches (e.g. Strunk, 1997; Pelfini and Santilli, 2008). Moreover, the analysis of growth 

disturbances in the tree rings could contribute to the definition of the spatial distribution of active 

processes over time (e.g. Stoffel and Bollschweiler, 2009). Extreme environments for tree growth, 

like the debris-covered glaciers, and the substrate instability caused by ice flow, differential ablation 

and glacio-karst phenomena, are responsible of several growth disturbances in supraglacial trees 

(Richter & alii, 2004; Pelfini & alii, 2007). After their germination, trees move downvalley 

according to the surface glacier velocity, yearly recording in the tree rings characteristics 

(compression wood, stem eccentricity, growth anomalies) the responses to substrate movements 

(Leonelli and Pelfini, 2013).  

Stable isotope techniques can be very useful in environmental reconstructions as the stable 

carbon and oxygen isotopic composition (δ13C and δ18O) of tree rings can provide long-term records 

of plant physiological processes. In C3 plants, δ13C is a good proxy of leaf-level intrinsic water use 

efficiency (WUEi), which is given by the ratio between leaf net photosynthetic rate (A) and 

stomatal conductance (Dawson & alii 2002, Farquhar & alii, 1989). Plant δ18O is influenced by 

source water δ18O, but it is also inversely related to the ratio of atmospheric to leaf intercellular 

water vapour pressure (ea/ei), and can thus provide a time-integrated indication of leaf stomatal 

conductance (gs) during the growing season (Barbour 2007, Farquhar & alii, 2007). Measuring 

plant δ18O can thus help to separate the independent effects of A and gs on δ13C (Scheidegger & alii 

2000, Moreno-Gutiérrez & alii 2012, Roden & Farquhar 2012, Battipaglia et al 2013; 2014). In the 

glacial environment of the debris-covered Miage Glacier, Leonelli & alii (2014) have indeed found 

that by means of a stable isotope approach it is possible to disentangle precipitation and glacier 

meltwater-fed trees, thus allowing the possibility to reconstruct past major glacier runoff events. In 

harsh environment, like the one analysed, trees are expected to respond to the external stresses also 

by modifying the production of volatile organic compounds (VOCs). Volatile organic compounds 

emitted by plants, in fact, play a central role in the plant-environment interactions by affecting key 

life processes such as reproduction, defense and communication (Paré and Tumlinson, 1999; 

Guerrieri and Digilio, 2008). They are produced in normal metabolic processes as well as in 

response to biotic and abiotic stresses (Mello and Silva-Filho, 2002; Giorgi & alii, 2012a). Plants 
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growing at high altitude as well as in harsh environmental conditions exhibit several ecological, 

morphological, physiological and phytochemical adaptations. Therefore, in recent years, there has 

been an increasing interest in the study of VOCs and their implication in many ecophysiological 

plant processes. Volatile organic compounds (VOCs) emission rates in trees are related to 

temperature (Räisänen & alii, 2009), light (Staudt and Seufert, 1995) and humidity (Janson 1993). 

Chemically, VOCs emitted by plants belong to several groups of compounds such as terpenoid 

(isoprene, monoterpenes, diterpenes and sesquiterpenes), acids, alkanes, alkenes, alcohols, esters, 

ethers, carbonyls, aldehydes and ketones (Maffei, 2010). Isoprene and monoterpenes are the 

dominant groups in the atmosphere (Kesselmeier and Staudt, 1999): their concentration in the air 

affects the tropospheric chemistry, the production of air pollutants, aerosols and greenhouse gases 

(Kesselmeier and Staudt, 1999). Researchers support the idea that climate change may affect the 

secondary chemicals composition of some plants (Gairola & alii, 2010), but the effects of the 

predominant global change factors (elevated CO2 concentration, O3, UV radiation, temperature) on 

plants secondary chemistry seems to be plant species-specific (Bidart-Bouzat and Imeh-Nathaniel, 

2008). However, the ecosystem’s properties, the geographical location and climate have an impact 

at least on some of the secondary chemicals emissions (Wallis & alii, 2011).  

 

The objective of the present research was to identify innovative proxies for the characterization of 

climate-change impacts on the supraglacial trees of the Miage Glacier. Our hypothesis is that 

supraglacial trees, growing in the particularly extreme supraglacial environment should hold stress 

signals with respect to trees growing on stabilized surfaces. In particular, in this paper we 

investigated in detail tree-ring stable isotopes signals and tree-ring growth patterns, as well as 

VOCs profile in the needles of supraglacial trees and of trees growing in a control site, in order to 

analyze and compare their values and assess their role as indicators of the stresses induced by the 

complex of extreme climate and of supraglacial debris movements.  

 

Study area 

The Miage Glacier is the third largest Italian glacier. It drains the SW slope of the Mont Blanc 

Massif in Val Veny, Valle d’Aosta and it is considered the most representative debris-covered 

glacier in the Italian Alps. The Miage glacier has a surface area of about 11 km2, a length of about 6 

km, and shows an ablation tongue characterized by two main lobes plus a small intermediary one 

(Pelfini & alii, 2012). The tongue is covered by supraglacial debris from the altitude of about 2400 

m a.s.l. where a medial moraine is present, up to the tongue lower portion and to the glacier front 

(about 1760 m) where the debris coverage is continuous. The supraglacial morphology is strictly 
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related to differential ablation processes acting in the lower portion of the glacier and to glacier 

movements, and shows the presence of niches, depression zones and channels. The debris is 

characterized by different crystalline rock sizes, from boulders to fine pebbles and sand (Deline, 

2005), and its thicknesses ranges from few centimetres in the upper tongue sector up to 1.5 m at the 

glacier terminus (Mihalcea & alii, 2008).  

Both the glacier tongue lobes are colonized by herbaceous vegetation, shrubs (Salix spp.) and trees 

(mainly European larch, Larix decidua Mill., and Norway spruce, Picea abies Karst.). Tree density 

and distribution is different on the two lobes: the north lobe locally shows higher densities of 

larches along its inner margin with respect to the south lobe, where tree density is lower but where 

the oldest and tallest trees can be found. The substrate grain size is likely a key factor for plant 

germination as demonstrated by a higher density of trees smaller than 30 cm height on fine debris 

areas. Locally (southern side of the north lobe) the high number of very young trees has been 

interpreted as an increase of colonization rate in recent times (Pelfini & alii, 2012). 

Tree life, and consequently trees potentiality in recording glacial and climatic information, can be 

limited by the glacier flow, by the supraglacial morphology evolution and by the ice cliffs retreats 

due to backwasting processes (ice cliff retreat, due to increased ablation, affects trees causing their 

death when the cliff edge reaches trees; Pelfini & alii, 2012).  

Pelfini & alii (2007) reconstructed the passage of a kinematic wave by analyzing tree-ring growth 

disturbances: the glacier growing phase culminated in 1988 (Leonelli and Pelfini, 2013) as also 

documented by aerial photos (Giardino and others, 2001) and glaciological investigation (Smiraglia 

& alii, 2000). Moreover, Leonelli and Pelfini (2013) by analysing tree-ring Abrupt Growth Changes 

(AGCs) in supraglacial trees over the 20-year period 1987-2006, found that that the central-lower 

portion of the south lobe towards the margins was the most unstable demonstrating the possibility 

of deriving information on the glacier tongue dynamics from the tree rings and the usefulness of 

growth anomalies as a proxy for glacier surface instability in spatio-temporal reconstructions. 

 

Methods 

Five supraglacial European larch (L. decidua) trees of similar height (about 2 m) on a Glacier site 

(45o 47’04.08’’ N; 6o 53’ 35.94’’ E) and five larches of the same height in a Control site (45o 47’ 

10.13’’ N; 6o 53’ 28.24’’ E) at the same altitude (about 1810 m a.s.l.) on a moraine at about 250 m 

NW from the first site were selected (fig. 1A). The two sites were both NE-facing and were 

primarily differentiated by the contrasting geomorphological features and by the forest cover 

characteristics: the debris-covered Miage Glacier’s south lobe where sparse supraglacial trees 

growth in rocky substrates (fig. 1B) and the forested moraine between the south and north glacier 
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lobe where old Norway spruce and European larch trees dominate the canopy (fig. 1C). The Glacier 

site is settled in a glacier area characterized by high surface instability, whereas the Control site is 

on a developed soil forest. In September 2012 CE, each tree was cored at about 30 cm from the 

ground by means of a Pressler’s increment borer, extracting a passing core from the stems. 

Moreover, from top branches, about 70 needles per tree were taken and put in close vials and 

preserved in a frozen environment. 

 

 

Figure 1. Sketch map of the study area (A). The points correspond to sampled trees at the Control 

site on the moraine (photo in B), the squares correspond to the sampled trees at the Glacier site 

(C). 

 

Tree-ring methods 

Tree rings were analysed for stable isotopes and for characterizing growth patterns of the sampled 

trees. The passing cores were firstly prepared for ring-width measurements by cutting with a razor 

blade a transversal surface. Tree rings were then measured with a LINTAB system (Rinntech) at the 

nearest 0.01 mm, obtaining the total ring width and (where possible) the early/latewood 

measurements. For the presence of compression wood in Glacier site samples, some of them were 

measured only for the total ring width. The tree-ring growth series were then visually (TSAPwin 

software, version 0.53; Rinn, 2005) and statistically (COFECHA; Holmes, 1983; Grissino-Mayer, 

2001) cross-dated within trees and between trees (of the same site) for avoiding dating errors in the 

dataset. For highlighting high-frequency tree-ring growth responses in the rather short time series, a 

residual chronology for each site was then prepared by applying a flexible spline with a 50% 
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frequency cut-off at 30 yr to the growth series and then applying a biweight robust mean to the 

detrended indices, derived from autoregressive modelling (Cook and Briffa 1990).  

For the stable isotope analysis, dated tree-rings of the period 2003-2012 were splitted by means of a 

razor blade and pooled together in small cups, separating them by year and by site. The collected 

wood samples were then milled in an ultracentrifugal mill (MF 10 basic IKAWERKE) and the 

resulting powder was put in porous Teflon pockets and the cellulose was extracted following the 

method of Loader & alii (1997). The pockets where processed in different solutions for removing 

resins, tannins, fats and hemicelluloses (2 hours at 60oC in a solution of 5% NaOH), for removing 

the lignin (3 baths of 8 hours at 60oC in acetic acid solution containing 7% NaClO2; Battipaglia & 

alii, 2008). The stable carbon and oxygen isotope ratios were measured at the CIRCE laboratory 

(Center for Isotopic Research on the Cultural and Environmental heritage, Caserta, Italy) by 

continuous-flow isotope ratio mass spectrometry (Finnigan Mat, Delta S, Bremen, Germany) using 

0.03-0.05 mg of dry matter for 13C measurements and 0.1-0.2 mg for 18O determinations. We report 

isotope values in the delta notation for carbon and oxygen, where δ13C or δ18O = (Rsample / 

Rstandard –1) (‰), relative to the international standard, which is VPDB (Vienna Pee Dee 

Belemnite) for carbon and VSMOW (Vienna Standard Mean Ocean Water) for oxygen. Rsample 

and Rstandard are the molar fractions of 13C/12C and 18O/16O for the sample and the standard, 

respectively. The standard deviation for the repeated analysis of an internal standard (commercial 

cellulose) was better than 0.1‰ for carbon and 0.2‰ for oxygen. The calibration vs VPDB was 

done by measurement of International Atomic Energy Agency (IAEA) USGS-24 (graphite) and 

IAEA-CH7 (polyethylene) and vs. VSMOW by measurement of IAEA-CH3 (cellulose) and IAEA-

CH6 (sucrose). For the tree-ring δ13C series, a correction for the decrease in δ13C of the atmospheric 

CO2 was applied (Francey & alii 1999). The stable isotopes series of the same species where 

analysed for the differences in mean values at the two sites by means of the Student’s t- test. 

For each growth series at both sites abrupt growth changes (AGCs) were assessed by calculating the 

percentage of growth variation in the intervals ±40% with respect to the mean width of the four 

previous years (Schweingruber & alii 1991), as this tree-ring parameter is known to be a good 

proxy for substrate instability in the Alpine environment (Leonelli and Pelfini, 2013). This analysis 

was performed only on the subperiod 1991-2012 where at least 4 ring-width series per site were 

present. Moreover, for the available samples, the percentage of latewood with respect to the total 

ring was obtained at both sites. 
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VOCs methods for Larix decidua Mill. needles 

All samples were prepared by weighing exactly 3.00 g of L. decidua needles (obtained from a 

representative pool of fresh needles for each tree) in a 20 ml glass vial, fitted with a cap equipped 

with silicon/PTFE septa (Supelco, Bellefonte, PA, USA), and by adding 1 ml of the internal 

standard solution (IS) in water (1,4-cineol, 1 µg/ml, CAS 470-67-7) to check the quality of the 

fibres. At the end of the sample equilibration period (1 h), a conditioned (1.5 h at 280 °C) 50/30 µm 

Divinylbenzene/Carboxentm/polydimethylsiloxane (CAR/PDMS/DVB) StableFlextm fiber (Supelco; 

Bellefonte, PA) was exposed to the headspace of the sample for the extraction (3 h) by CombiPAL 

system injector autosampler (CTC analytics, Switzerland). 30 ºC was selected as extraction 

temperature in order to prevent possible matrix alterations (oxidation of some compounds, 

particularly aldehydes). To keep a constant temperature during analysis the vials were maintained 

on a heater plate (CTC Analytics, Switzerland). 

Headspace solid-phase microextraction (HS-SPME) analysis was performed using a Trace GC Ultra 

Gas Chromatograph (Thermo-Fisher Scientific; Waltham, MA, USA) coupled to a quadrupole Mass 

Spectrometer Trace DSQ (Thermo-Fisher Scientific; Waltham, MA, USA) and equipped with an 

Rtx-Wax column (30 m; 0.25 mm i.d.; 0.25 μm film thickness, Restek, USA). The oven 

temperature program was: from 35 °C, hold 8 min, to 60 °C at 4 °C/min, then from 60 °C to 160 °C 

at 6 °C/min and finally from 160 °C to 200 °C at 20 °C /min. Carry over and peaks originating from 

the fibre were regularly assessed by running blank samples. After each analysis fibres were 

immediately thermally desorbed in the GC injector for 5 min at 250 °C to prevent contamination. 

The injections were performed in splitless mode (5 min). The carrier gas was helium at the constant 

flow of 1 ml -1. An n-Alkanes mixture (C8-C22, Sigma R 8769, Saint Louis, MO, USA) was run 

under the same chromatographic conditions as the samples to calculate the Kovats Retention 

Indices (KI) of the detected compounds. The transfer line to the mass spectrometer was maintained 

at 230 °C, and the ion source temperature was set at 250 °C. The mass spectra were obtained by 

using a mass selective detector with the electronic impact at 70 eV, a multiplier voltage of 1456 V, 

and by collecting the data at rate of 1 scan s-1 over the m/z range of 30-350. Compounds were 

identified by comparing the retention times of the chromatographic peaks with those of authentic 

compounds analyzed under the same conditions when available, or by comparing the Kovats 

retention indices with the literature data. The identification of MS fragmentation patterns was 

performed either by comparison with those of pure compounds or using the National Institute of 

Standards and Technology (NIST) MS spectral database.  
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Volatile compounds measurements from each headspace of the plant extracts were carried out by 

peak area normalization (expressed in percentage). All analyses were done in duplicate. Data are 

expressed as mean value and standard deviation.  

Analysis of variance (ANOVA) was performed to evaluate differences between VOCs fingerprint, 

of L. decidua samples from the two sampling site. p < 0.05 was considered to be significant (SPSS 

Statistics, 17.0 Inc. Chicago, IL).  

 

Results 

The tree-ring width mean chronologies obtained at the two sites cover the period 1953-2012 CE 

(Control site) and 1986-2012 CE (Glacier site); half of the samples are present only since 1989 at 

the glacier site (which present therefore a median age of 24 years) and since 1986 at the moraine 

site (median age of 27 years): the median age difference between sites is therefore of 3 years (fig. 

2A). At the Glacier site trees showed always higher growth rates than the Control site and some 

differences in growth patterns between sites are evident (fig. 2A). In particular, trees at the Glacier 

site, beside containing compression wood in some years (not shown), showed two relative peaks of 

maximum growth in 1989 and 2007-2009. Moreover, they presented a marked positive growth 

trend started after 1989. Trees at the Control site showed more homogeneous growth patterns and 

they presented a less steep positive growth trend. 
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Figure 2. A) Ring-width mean chronologies from the Control and Glacier sites; sample size is also 

reported. B) The two residual chronologies derived from tree-ring measurements. 

 

Tree-ring stable isotopes 

The tree-ring stable isotopes showed a lower synchronicity between series in δ13C than in δ18O (fig. 

3A and 3B). Over the period 2003-2012 at the Glacier site the δ13C showed nearly always higher 

values (average: -20.81‰ ±0.66) than the Control site (with the exception only of the year 2010). 

The difference in mean values (0.91‰) between sites is statistically significant (p<0.05). For what 

concerns the δ18O, the tree-ring cellulose at Glacier site showed always higher values (average: 

29.23‰ ±1.77) than at the Control site. The mean difference between sites (1.95‰) is highly 

significant (p<0.01). 
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Figure 3. The stable isotope ratio series constructed at the Control and Glacier sites: tree-ring 

δ13C (A) and δ18O (B) values are reported for the period 2003-2012. 

 

Tree-ring growth patterns of the sampled specimens 

AGCs at the Glacier site were markedly higher than at the Control site (fig. 4): trees at the former 

site presented rather high percentages of samples with AGCs >+40% in the years 1993 (60%), 2003 

(75%), 2007 (60%) and 2009 (50%); additionally, in 1998 they presented high percentages of 

samples (63%) with AGCs <-40% (fig. 4B). At the Control site the maximum percentage of 

samples with AGCs >+40% for at least 50% of the samples occurred only in 2005; no years 

presenting more than 40% of samples with abrupt growth reduction were found at this site (fig. 4A).  

Considering the indexed chronologies, they show rather similar patterns especially after the year 

2003, whereas in the previous portion of the chronologies some minor differences in interval trends 

are visible (fig. 2B). As regards the percentage of latewood with respect to the total ring width, over 

the common period covered by data (1997-2012) both sites showed the same mean value (47%), 
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however they showed several years with contrasting values of latewood percentages, like the year 

2012 that showed higher percentages of latewood at the Glacier site (fig. 5).  

 

 

Figure 4. Percent of samples presenting abrupt growth changes (AGCs) >+40% and <-40% over 

the common period 1991-2012 where at least 4 samples per site are present in the Control site (A) 

and on the Glacier site (B); sample size is also reported. 
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Figure 5. Percent of latewood calculated with respect to the total ring width both for Control and 

Glacier sites; error bars indicate ±1 standard deviation. Sample size for the measured cores (see 

methods) is also reported. 

 

VOCs in needles 

The information derived from the VOC analysis is referred only to the end of the growing season 

2012 CE: several and significant differences were observed between the two sampling sites. VOCs 

in the larches needles showed significant (p<0.05) differences in mean concentrations for some of 

the mono- di- and sesquiterpenes analyzed (fig. 6). In particular, within the terpenes showing 

significant differences between sites, the largest differences in concentrations at the two sites were 

observed for those terpenes showing the highest concentrations: namely, the b-myrcene and the 

estragole, with significantly highest concentrations in the Glacier site. Differently, significantly 

lower concentrations were always observed in the Glacier site for the other sesquiterpenes (fig. 6B), 

whereas the other mono- and diterpenes showed higher or lower concentrations at the Glacier site 

(fig. 6A). 
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Figure 6. Concentration of the mono- and diterpenes (A) and olof the sesquiterpenes (B) in the 

larch needles showing significant differences in mean values between Control and Glacier sites. 

Error bars indicate +1 standard deviation. The mean values of concentrations are also reported as 

relative abundance (%) (peak area of volatile compound/total peak area of all volatile compounds). 

 

Discussion and conclusion 

This study evidences the possible use of tree-ring proxies for the assessment of mid- to short-term 

climate change impacts in the glacial environment. In particular, by differentiating the sites 

primarily by the contrasting geomorphological features (debris-covered glacier and moraine), it was 

possible to detect how glacier surface movements and climate influence may affect tree growth, 

therefore potentially opening new approaches for the assessment of climate change impacts over 

larger areas of vegetated debris-covered glacier surfaces and over longer time periods.  
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Tree-ring stable isotopes at the Glacier site showed more enriched 13C mean values in the cellulose 

with respect to the Control site. Since the 13C value can provide an integrated record of the balance 

between assimilation rate and stomatal conductance (WUEi), and thus is an indicator of the internal 

regulation of carbon uptake and water losses (Saurer & alii, 2004), our findings suggested that 

WUEi is improved, at the Glacier site, probably because it is associated with lower stomatal 

conductance. Indeed, several species have been found to increase WUEi under water limitation 

(Moreno-Gutiérrez & alii 2012, Battipaglia & alii, 2009; 2010), and stomatal closure has often been 

invoked as the main cause (Ogaya and Peñuelas, 2003; Ferrio & alii 2007; Ripullone & alii 2009). 

However, photosynthetic activity (A) and stomatal conductance (gs) are strongly coupled and 

adjustments in both parameters could influence WUEi (Farquhar & alii, 1982). Hence, the 

simultaneous analysis of tree-ring carbon and oxygen isotopes may help discriminate whether 

changes observed in the carbon isotope values originated from a modification of A or gs because 

the oxygen isotope composition of the tree rings does not reflect changes in photosynthetic capacity 

(Dawson & alii 2002; Barbour 2007). A positive correlation between 13C-derived WUEi and δ18O 

for trees growing at Glacier site suggests that gs plays a significant role (Scheidegger & alii, 2000). 

Further, those stressed conditions are likely induced by the low soil water retention of the debris 

cover and by the high temperature excursions that occur daily at the Glacier site (Mihalcea & alii, 

2008) and to the high exposure to solar radiation of supraglacial trees, in contrast to the forest 

canopy shading which characterize the environment of the young trees at the Control site.  

Tree-ring cellulose was significantly more enriched in 18O mean values at the Glacier site than at 

the Control site. The higher δ18O values indicate that supraglacial trees are not fed by glacier ice-

meltwaters (that would have induced a more depleted cellulose; Leonelli & alii, 2013) but only by 

meteoric precipitations. The similar interval trends found in the δ18O series at the Control site 

(where trees are fed only by meteoric precipitation), support the interpretation that trees at both sites 

are mainly fed by the same, meteoric, waters. The higher values at the Glacier site are likely due to 

the assimilation of shallow waters from a superficial root system of the supraglacial trees, in 

contrast to a more developed and stabilized forest soil at the Control site where tree roots may take 

up water also from deeper soil layers and from the ground where waters are typically more depleted 

in δ18O than in the upper layers (Mc Carrol & Loader, 2004). 

Even if the trees, sampled at both sites, are young and could be affected to some extent by the so-

called “juvenile effect”, their physiological responses to external inputs are comparable and the 

differences between them are due to different environmental settings and not to differences in tree 

age. 
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Indeed, the existence of a ‘‘juvenile effect’’ for the first 20–100 years in tree-ring width, density and 

stable isotope series is well known and the changes over time are the result of morphological and 

physiological trends characterizing the transition from a juvenile to a mature growth phase (e.g., 

Lerman and Long, 1979; Schleser, 1992; Buchmann and Ehleringer, 1998). Photosynthesis rates 

and related physiological attributes differ between juvenile (pre-reproductive plants) and full 

reproductive specimens (mature plants) (Yoder & alii, 1994; Bond, 2000). As a consequence, 

young trees may present depleted and rising δ13C with respect to the old ones (Gagen & alii, 2007; 

Loader & alii, 2007). As regards the δ18O, contrasting results have been presented: Treydte & alii 

(2006) and Esper & alii (2010) has suggested that the juvenile effect (age-related decline trend in 

juvenile trees) of the tree-ring cellulose δ18O could exist in young juniper trees in northern Pakistan 

and in young pine trees in the Spanish Pyrenees, respectively. Nakatsuka & alii (2008) also reported 

that the juvenile effect may influence the decreasing and increasing trends in the tree-ring cellulose 

δ18O and δD, respectively, during the young periods of larch trees in Kamchatka Peninsula, Russia. 

Conversely, the juvenile effect was not observed in oak cellulose δ18O from western France, (e.g. 

Raffalli - Delerce & alii, 2004). Leavitt & alii (2010) suggested that the juvenile effect was more 

obvious in stable carbon and hydrogen isotopes, comparing with stable oxygen isotope in tree rings. 

The physiological mechanism of the juvenile effect of the tree-ring cellulose δ18O is still unclear by 

now, and this effect may depend on tree species, stand environments, and other factors (Dorado 

Linan & alii, 2012). Thus more studies concerning the oxygen isotopic juvenile effect are necessary 

and should include more tree species and more detailed measurements of individual tree 

ecophysiological conditions before deciding to detrend short chronologies (Li & alii, 2011). The 

juvenile trend problem especially arises when long tree-ring stable isotope series are considered, 

which especially occurs in dendroclimatic studies (Loader & alii, 2013). However, this is not the 

case of our study, that presents series from sites having trees of very similar age and therefore no 

detrending was applied to the dendro-isotopic series. 

 

The analysis of tree-ring characteristics was performed for assessing mid-term stress signals in the 

same supraglacial trees that were selected for the stable isotopes and the VOCs analysis. Tree-ring 

growth trends and extremes in the sampled specimens at the Glacier site were largely caused by 

AGCs >+40% that were meanly higher than at the Control site and interested up to 75% of the 

samples over the study period. AGCs are a good proxy for substrate instability and represent a 

typical reaction of supraglacial trees, especially for what concerns growth releases (Pelfini & alii, 

2007; Leonelli and Pelfini, 2013). Considering the indexed chronologies, they show rather similar 

patterns especially after 2003, thus pointing to a similar influence of climate on tree-ring growth. 



145 
 

However, some minor differences in interval trends are evidence of possible different relationships 

with climatic factors. This interpretation is also supported by the different interval trends in 

percentages of latewood noticed at the study sites, even though the mean values are equal (47%) at 

both sites. Latewood in the tree rings is usually formed when signals of declining growing season, 

like low day temperatures, are detected by trees, thus determining the transition from the production 

of early wood to latewood cells (Larson, 1960; Brown, 1970; Antonova and Stasova, 1993; 

Lebourgeois, 2000). However, a different percentage of latewood at the Glacier site may be also 

induced by a differential response to climate due to the rocky substrate where supraglacial trees 

grow. The supraglacial debris cover, beside being related to glacier surface movements, may in fact 

alter trees’ relationships with climate factors since it may alter the water holding capacity and 

influence the resulting tree-ring growth. 

 

The single measurement of VOCs performed does not allow to make generalizations on tree 

emissions and physiological responses during the growing season, however an influence of 

environmental factors, i.e. abiotic stress conditions, on tree secondary metabolites has been found. 

VOCs at the two sites resulted significantly different in concentration especially for b-myrcene and 

estragole, the terpenes that showed the highest concentrations and the largest differences between 

Glacier and Control sites. In particular, at the Glacier site we observed a relative increase of 

mono/diterpenes compared with sesquiterpenes. Similar findings were observed in other conifer 

species (Hengxiao & alii, 1999; Turtola & alii, 2006). More VOCs are expected to be emitted when 

high temperatures or UV-radiation occur. Monoterpenes and isoprene are thermoprotective 

molecules, able to stabilize chloroplast membranes when the cells are exposed to high temperatures 

(Loreto and Schnitzler 2010). A more recent study showed increased of monoterpenes emission 

rates of subarctic peatlands when irradiated with increasing levels of UV-B radiation, and explained 

the rising emission as a consequence of oxidative damage to membranes and to the induction of the 

monoterpene defensive antioxidant pathway (Tiiva & alii, 2007). Sesquiterpenes emissions are also 

correlated with temperature, light and other abiotic (soil moisture, air humidity, plant water stress, 

fertilization levels) and biotic factors (Duhl & alii, 2008; 2012). Duhl & alii (2008) found that 

sesquiterpenes emissions typically increase with temperature but there is considerable variability in 

emission rates between and within plant species. 

Besides being frequently solicited by glacier surface movements as evidenced by the tree-ring 

analysis, supraglacial trees are also exposed both to the immature substrate of the debris coverage, 

which is mainly characterized by regolith and finer glacial till, and to the high daily temperature 

excursions due to rock heating caused by the incident solar radiation. As reported in Mihalcea & 
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alii (2008) debris may experience up to 10oC of mean daily temperature variations during the 

growing season (June to August) and in the glacier lower portion the surface temperature is higher 

of about 10oC (reaching a mean value of 30oC) than the temperature of the forested area between 

the two main lobes (where the Control site is located). Both the scarce presence of nutrients and the 

high-temperature ranges may be indicated as additionally source of stress for the already solicited 

supraglacial trees. The differences in the tree-ring stable isotopes and in the AGCs, as well as in the 

VOCs concentrations in the needles underline the possibility to use these parameters as indicators of 

the stress generated by the different geomorphological features of the debris covered glacier 

environment. 

Even if based on a restricted area of the Miage Glacier environment, the results of this study 

underline that a multiproxy approach based on tree-ring stable isotopes and tree-ring growth 

anomalies, as well as needle VOCs may be used for defining areas of glacio-geomorphological and 

climatic stress. As demonstrated also by previous studies based on larger datasets (Pelfini & alii, 

2007; Leonelli and Pelfini, 2013), growth anomalies may allow well defined spatio-temporal 

reconstructions in the mid-term, whereas VOCs should be monitored year by year or seasonally 

(e.g. Duhl & alii, 2013) to produce track records of climate change impacts. The presented results 

by identifying stress signals in supraglacial trees allow the opening of new perspectives for 

reconstructing glaciological and climatic variations in the mid-term by means of the analysis of tree 

physiological responses. The multiproxy approach proposed in the present study has let the 

identification of stress indicators (tree-ring δ13C, δ18O and AGCs, as well as needle VOCs) and can 

be potentially used for defining the influence of different glaciological conditions (e.g. debris-cover 

instability, differential ablation and glacio-karst processes) on tree growth and for detecting local 

climate change impacts over wider glacier areas. This methodological approach may be applied also 

on different landforms for assessing climate change impacts at the local scale in the heterogeneous 

Alpine environment. 
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Abstract 

In this manuscript we present the results of the first investigation of volatile monoterpenes content 

in tree-ring resin, in response to natural infection by Heterobasidion spp. in asymptomatic adult 

Norway spruce [Picea abies (L.) Karst.] trees. Twenty-three randomly selected mature trees in 

Courmayeur (northwestern Italy) were sampled 20 cm aboveground by extracting cores using a 

Pressler’s increment borer. Based on fungal isolations from cores and molecular typing using 

Taxon-Specific Competitive-Priming (TSCP)-PCR, 12 of these trees were identified to be infected 

by Heterobasidion parviporum Niemelä & Korhonen. Tree-ring growth patterns and volatile 

monoterpene content in tree rings of trees infected (“pathogen”) and not infected (“no pathogen”) 

were determined. Volatile monoterpene analyses and identification were performed by means of 

Gas Chromatography Mass Spectrometry on a subset of 5 infected and 5 not infected trees. The 

dendrochronological analysis showed slightly lower tree-ring width in the most recent years of the 

“pathogen” compared to “no pathogen” mean chronology. Monoterpene analysis highlighted 

statistically significant differences between “pathogen” and “no pathogen” trees in total absolute 

amounts of monoterpenes and in relative proportions of terpenes α-pinene, β-pinene, β-phellandrene 

and γ-terpinene.  

This is the first study showing that volatile monoterpenes in tree-ring resin and dendrochronology 

can be used as an aid to first evaluation of fungal infections, even when these are mostly 

asymptomatic as usually in the case of H. parviporum in Norway spruce. Furthermore, this study 
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also suggests that the presence of pathogenic fungi can represent a disturbing factor for performing 

dendroclimatic and dendroenvironmental reconstructions.  

   

KEYWORDS: Volatile Organic Compounds, tree rings, Heterobasidion spp., dendroclimatology. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



157 
 

Introduction 

Inducible Volatile Terpenes (VTs) are abundantly produced and released by different plant organs 

following abiotic stresses (e.g. Loreto and Schnitzler, 2010; Leonelli et al., 2014) and biotic attacks, 

including those performed by insects and pathogens (e.g. Holopainen, 2004; Jansen et al., 2011).  

In conifers, VTs are produced and stored in several plant structures, including resin ducts. Resin is 

toxic for most pathogens due to its composition and physical properties (Phillips and Croteau, 

1999). In fact, resin contains monoterpenes, diterpenes and sesquiterpenes and some of them, 

especially when produced and released abundantly, are known to be insecticidal, antimicrobial and 

fungicidal (Schuck, 1982; Michelozzi, 1999; Trapp and Croteau, 2001). Conifer resin is produced in 

bark, phloem and xylem by constitutive and inducible secretory structures, emitting primary and 

secondary resin, respectively.  

In Norway spruce [Picea abies (L.) Karst], resin accumulates constitutively in axial resin 

canals in the bark and in stem xylem Traumatic Resin Ducts (TRDs), which appear within the 

developing xylem after mechanical wounding. The formation of TRDs associated with enhanced 

level of VTs produced is part of a complex mechanism of defence that is activated in order for the 

tree to react successfully to the attack of pathogens and to mechanical damage (Franceschi et al., 

2000; Nagy et al., 2000; Fäldt et al., 2003; Krokene et al., 2008; Gärtner and Heinrich, 2009; 

Danielsson et al., 2011; Brauning et al., 2016). TRDs considerably enhance the oleoresin content of 

Norway spruce, considering that they are larger, and thus their volume is much higher, than 

constitutive resin ducts. TRDs usually develop in high number in the proximity of the injury caused 

by mechanical wounding or pathogens, and then their number decreases as the distance from the 

wound increases (Schmidt et al., 2011). TRDs are commonly used for dating stressing phases in 

geomorphology, in particular related to mass movements (e.g., Stoffel, 2008; Butler et al., 2010), 

but their frequency and distribution within tree rings are poorly investigated. In some tree species, 

most of the vertical resin ducts seem to develop in the latewood (Reid and Watson, 1966) but their 

distribution is highly variable within the same tree, due to environmental and climatic conditions 

(Wimmer et al., 1999). 

Norway spruce is susceptible of heart rots caused by some fungi included in the 

Heterobasidion annosum (Fr.) Bref. sensu lato (s.l.) species complex, namely H. annosum (Fr.) 

Bref. and H. parviporum Niemelä & Korhonen (Garbelotto and Gonthier, 2013). While the former 

species is more generalist being able to attack several coniferous tree species, the latter displays a 

relevant preference for Norway spruce. Regardless of which one of the two species is involved, the 

disease is virtually asymptomatic in mature trees. In fact, the progressive development of the decay 

in the heartwood rarely results in the appearance of external symptoms (Garbelotto and Gonthier, 
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2013). Heart rots caused by Heterobasidion spp. are among the major, most destructive and 

widespread diseases of Norway spruce in Europe, including the Alpine area (Asiegbu et al., 2005; 

Gonthier et al., 2012; Giordano et al., 2015). Infection occurs through airborne spores (primary 

infections) colonizing freshly exposed wood surfaces (stumps or wounds in the stem or roots). 

Subsequently, the fungus can infect uninjured trees by vegetative growth of mycelium through root 

contacts or grafts (secondary infections) (Garbelotto and Gonthier, 2013). 

Due to the current climate change, that causes an increase average air temperature also 

during the winter months, fungal pathogens are modifying their habitat, also colonizing areas 

located at higher elevation. The production of spores of Heterobasidion spp. is more abundant when 

air temperature is above 5°C (Gonthier et al., 2005). For this reason, climate warming determines a 

prolonged time interval favourable for sporulation and infection during the year, and the altitude at 

which pathogens can be found is shifted at higher elevations (La Porta et al., 2008).  

Defensive strategies and VTs production are usually studied in experimental plants obtained from 

controlled crosses, that are artificially infected by the pathogen (e.g. Cellini et al., 2014; Piesik et 

al., 2015) or in which the pathogen attack is mimicked by treatment with methyl jasmonate (e.g. 

Martin et al., 2002; Zeneli et al., 2006). In particular, experiments conducted on Norway spruce 

reveal that the oleoresin of trees affected by Heterobasidion spp. contains significant differences 

between infected and healthy trees in amounts of (+)-α-pinene, (+)-sabinene, (-)-sabinene, δ-3-

carene, (-)-limonene and γ-terpinene (Zamponi et al., 2007). However, we are not aware of any 

studies conducted on the oleoresin content of mature trees infected by Heterobasidion spp. in forest 

stands. Moreover, little is known about VTs production in asymptomatic trees. A better 

comprehension of this topic is crucial for developing proper strategies allowing the identification of 

useful markers enabling early diagnosis of tree diseases.  

The main aim of this research was to detect possible differences in volatile monoterpene content 

in tree-ring resin in response to natural infection by Heterobasidion spp. in asymptomatic mature 

Norway spruce trees. Tree-ring growth was also analysed in trees infected and not infected, in order 

to investigate if any difference in growth patterns may be ascribed to the presence of the pathogen. 

 

Materials and methods 

Study area and sampling design 

The study site is located at about 1450 m a.s.l. close to the area called Ermitage (45°47’46.11’’N; 

6°58’56.39’’E), in the proximity of Courmayeur, in the Autonomous Region of Aosta Valley 

(northweastern Italy), where Heterobasidion spp. was previously detected in a mature mixed 
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Norway spruce˗European larch (Larix decidua Mill.) forest and estimated to have infected about 

55% of trees (Gonthier et al., 2012). 

In the attempt to compare a similar number of infected and putatively not infected trees, 23 

randomly selected trees were sampled at the end of June 2015 by extracting four cores at about 90° 

from one other from the base of each of them (20 cm aboveground) using a Pressler’s increment 

borer. The minimum and mean distance among sampled trees was 25 m and 80 m, respectively. The 

Diameter at Breast Height (DBH) of sampled trees was comprised between 68 cm and 145 cm 

(average 99 cm). Cores were transported to the laboratory in plastic straws and stored at 5°C before 

subsequent analyses. 

Due to the high number of cores that was necessary to take from each tree for conducting the 

analysis of volatile monoterpenes and the pathogen detection, in order to minimize the tree damage 

only one core was extracted from each tree for the dendrochronological investigation.  Thus, two 

cores were used for pathogen detection and isolation, one for the dendrochronological analyses and 

one for volatile monoterpene analyses in tree rings (Fig. 1). 

 

 

Figure 1. Experimental design of the analyses. 

 

Pathogen detection and species identification  

Cores were sprayed with a benomyl solution (0.010 g benomyl, 500 l methanol, 1 l distilled water) 

and incubated for about 10 days at room temperature (25°C ± 2°C) in a moist chamber as described 
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by Gonthier et al. (2003). After incubation cores were inspected under a dissecting microscope (x20 

magnification) in order to observe emerging colonies of the conidial stage of Heterobasidion spp.  

Isolations were made by transferring infected wood or fungal hyphae onto 6-cm Petri dishes filled 

with PCNB-based selective medium (Kuhlman and Hendrix, 1962). All isolates were subsequently 

subcultured and stored at 5°C on MEA (Malt Extract Agar: 20 g glucose, 20 g malt extract, 2 g 

peptone, 20 g agar, 1 l distilled water). 

DNA from purified fungal isolates was extracted by a hyphal tipping method (Schweigkofler et al., 

2004), modified as follows. Fungal mycelium was collected with the tip of a micropipette and 

suspended in 100 μl of distilled water, frozen on dry ice for 3 min, thawed at 75°C, vortexed for 1 

min, and finally centrifuged for 5 min at 19,000 g. Freezing and thawing were repeated three times, 

with the last thaw extended to 15 min. Samples were then centrifuged for 5 min at 19,000 g and the 

supernatant was used as template for Polymerase Chain Reactions (PCRs). The species 

identification of Heterobasidion isolates was carried out by DNA-based molecular diagnosis of 

isolates, resulting in differently sized amplicons depending on the species analyzed. A Taxon-

Specific Competitive-Priming (TSCP)-PCR (Garbelotto et al., 1996) combined with a PCR-

mediated detection of species-specific DNA insertions in the ML5-ML6 DNA region of the 

Mitochondrial Large Ribosomal RNA (mt LrRNA) gene was used as described by Gonthier et al. 

(2001). 

 

Dendrochronological analysis 

The cores were prepared for tree-ring dating and ring-width measurements following standard 

methods (Stokes and Smiley, 1968), usually applied in dendrochronological studies conducted in 

mountain environments and in the nearest geographical areas (e.g., Garavaglia et al., 2010). Tree-

ring widths were measured to the nearest 0.01 mm using the LINTAB system with the TSAPWin 

software (Frank Rinn, Heidelberg, Germany), and the obtained series were visually and statistically 

cross-dated using the COFECHA software (Grissino-Mayer, 2001) in order to find and correct any 

dating error in the dataset. Two main ring-width mean chronologies were built: one, named 

“pathogen”, using the trees infected by Heterobasidion spp., and one, named “no pathogen”, using 

trees putatively not infected by the pathogen. 

To analyse tree-ring growth trends in the two groups, the raw ring-width series were standardized 

using the software Arstan (Holmes, 1992) and a residual chronology for each category was prepared 

applying a negative exponential curve. 
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Volatile monoterpene analyses in tree rings 

Five trees infected and five putatively not infected by Heterobasidion spp. were selected for the 

analysis of volatile monoterpenes. Selection was mainly based on the entirety conditions of the 

cores: priority was given to the cores with no broken tree rings, at least in the terminal part of the 

core, and characterized by easily identifiable tree rings. 

The last five tree rings of each core (corresponding to the years from 2010 to 2014) were split from 

each other using a scalpel, for a total of 50 samples (Fig. 1).  

The analyses of volatile monoterpene content were performed by means of Gas Chromatography 

Mass Spectrometry. About 25 mg of cortical and xylem tissues were placed into a sterilised vial. An 

amount of 200 µl of pentane with tridecane as internal standard was added to each vial and then the 

vials were put in the ultrasound machine at the temperature of 30°C for 60 minutes.  

After this procedure, the vials were left in the shaker for 24 hours. The extracts were then filtered 

with 0.45 µm PTFE syringe filters and injected (3 µl) in the GC-MS system. An Agilent 7820 GC-

chromatograph equipped with a 5977A MSD mass spectrometer with EI ionisation operating at 70 

eV was used for analysis. A Chromatographic column J&W Innovax 50 m, 0.20 mm, ID 0.4 μm DF 

was used. The GC injection temperature was 250°C, splitless mode, and the oven was programmed 

at 40°C for 1 min, followed by a ramp of 5°C/min to 200°C, and of 10°C/min to 260°C. This high 

temperature was held for 5 min. Mass spectra were acquired within the 29-350 M/Z interval with an 

Agilent 5977 MSD spectrometer at three scans s-1. Volatile monoterpene identification was done on 

the basis of both peak matching with library spectral database (NIST 08) and kovats indeces as 

retrived in literature for the identified compounds.  

Total absolute amounts of monoterpenes were expressed as milligrams of monoterpenes in grams of 

fresh wood (F.W.) and, since data were not normally distributed (Kolmogorov-Smirnov test) they 

were analysed by non-parametric Mann-Whitney U Test, to test the statistical significance of 

difference between the two groups “pathogen” and “no pathogen”.  

The amount of each monoterpene was expressed as a percentage of total monoterpenes. The 

average and Standard Error (SE) of the percentage were calculated for each compound and 

compared between “pathogen” and “no pathogen” trees. 

The statistical significance of volatile monoterpene differences for average percentages of 

monoterpenes was detected by Student’s t-test and, in case of not normally distributed data 

(Kolmogorov-Smirnov test), by Mann-Whitney U Test. A 0.05 threshold was used as cut-off value 

in all the statistical tests. Statistical analyses were carried out on SPSS (SPSS software, v.22.0, 

SPSS Inc., Chicago, USA). 
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Results 

Pathogen detection and species identification  

Out of the 23 sampled trees, 12 were infected by Heterobasidion spp. (52%) while the remaining 11 

were putatively not infected by the pathogen. None of the cores analysed displayed visible 

symptoms of wood decay. Based on the molecular diagnostic assay, all infected trees were 

colonized by H. parviporum. 

  

Dendrochronological analysis 

The tree-ring width mean chronologies showed synchronous ring-width peaks except than over the 

past 20 years. The chronologies covered the period for 1902-2015 for “pathogen” trees and 1901-

2015 for “no pathogen” trees. Median age was very similar for the two series, i.e., 65 years for 

“pathogen” trees and 64 years for “no pathogen” trees. The two mean chronologies show similar 

growth trend, especially after 1970, when more than five trees for both the series contribute to the 

chronology building (Fig. 2, continuous line).  

“Pathogen” trees were characterized by slightly lower tree-ring width in the last 15 years (57 

mm/100 on average) compared to “no pathogen” trees. 

The two residual chronologies show very similar growth patterns along the whole considered time 

interval, with the more recent relative peaks of positive growth in 1998 (“pathogen” trees) and 2000 

(“no pathogen” trees) (Fig. 3). 

 

 

Figure 2. Ring-width mean chronologies for “pathogen” and “no pathogen” trees. Discontinuous 

lines characterize the curve built with less than five trees.   



163 
 

 

Figure 3. The two residual chronologies “pathogen” and “no pathogen”. Discontinuous lines 

characterize the curve built with less than five trees.   

 

Volatile monoterpene analyses in tree rings 

Changes in the absolute amounts of terpenes 

Mean concentration of total monoterpenes are significantly different (Mann-Whitney U = 168; P < 

0.05) between “pathogen” (M = 0.35 mg/g; SE = 0.10) and “no pathogen” (M = 1.86 mg/g; SE = 

0.65) trees (Fig. 4). 

 

Figure 4. Mean (+ SE) values of total absolute amounts of monoterpenes (expressed in mg/g of 

fresh wood) detected in tree rings of “pathogen” and “no pathogen” trees. Values of columns with 

different letters differ significantly (P < 0.05). 
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Changes in the relative contents of terpenes 

Tree rings of “pathogen” and “no pathogen” trees differed significantly for 4 of the 11 considered 

monoterpenes. The relative content (percentage) of α-pinene and β-pinene were significantly higher 

in “pathogen” trees compared to “no pathogen” trees (Student’s t test = -2.02; P < 0.05 and Mann-

Whitney U = 455; P < 0.05, respectively), while β-phellandrene (Mann-Whitney U = 164; P < 0.05) 

and γ-terpinene (Mann-Whitney U = 112; P < 0.05) were significantly higher in “no pathogen” trees 

compared to “pathogen” trees. The other monoterpenes also showed higher values in “no pathogen” 

compared to “pathogen” trees but did not show statistically significant results. These were 

camphene (Mann-Whitney U = 299; P = 0.79), sabinene (Mann-Whitney U = 291; P = 0.68), 3-

carene (Mann-Whitney U = 234; P = 0.13), myrcene (Mann-Whitney U = 302; P = 0.84), limonene 

(Mann-Whitney U = 218; P = 0.07), cineole (Mann-Whitney U = 222; P = 0.08) and ρ-cimene 

(Mann-Whitney U = 266; P = 0.37) (Fig. 5).    

 

 

Figure 5. Average percentage of monoterpenes in “pathogen” and “no pathogen” tree rings. 

Statistical difference was determined by t-test and Mann-Whitney U test. Error bars indicate SE. 

Values of columns with different letters differ significantly (P < 0.05).  
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Discussion  

This study represents the first attempt to detect possible differences in monoterpene content in 

annual tree rings of adult asymptomatic Norway spruce trees in response to natural infection by a 

fungal pathogen, i.e., Heterobasidion spp. 

All Heterobasidion infected trees were colonized by H. parviporum and none by H. annosum, thus 

confirming that the overwhelming majority of Norway spruce decays in the area are caused by the 

former species, as previously documented (Gonthier et al., 2003). It should be noted, however, that 

none of the cores analysed displayed visible symptoms of decay, possibly indicating a recent 

upward colonization of the fungus from the point of infection in the roots.     

The mean ring-width chronology of trees infected by H. parviporum showed lower values starting 

from the late 90’s compared to not infected trees, and this would also suggest infection occurred 

relatively recently. In fact, growth reduction in conifers is common during infection performed by 

some fungi (Schweingruber, 1996). This pattern was also observed by Cherubini et al. (2002) on 

Pinus mugo Turra trees killed by H. annosum and Armillaria sp. Although authors found a more 

remarkable difference in ring-width between infected and not infected trees that we did, it should be 

noted that pine trees compared to Norway spruce trees are more susceptible to root rot and mortality 

rather than heart rot (Garbelotto and Gonthier, 2013), and this may explain the higher levels of 

growth reduction in pines than in Norway spruce trees (Mallett and Volney, 1999). In addition, after 

pathogen infection, ring width begins to slowly reduce until tree death that can occur after many 

decades (Vasiliauskas, 1999). All selected trees in this study were still living and asymptomatic, 

and this can explain the lower difference in ring width between the chronologies. Nevertheless, the 

progressive reduction in tree-ring width can affect the climatic signal recorded in tree rings, 

negatively influencing dendroclimatic reconstructions (Trotter III et al., 2002). Our results, even if 

limited to few trees, support previous investigations conducted on conifers, revealing that Norway 

spruce infected by Heterobasidion spp. shows lower tree-ring width compared to not infected trees 

(Cherubini et al., 2002).  

Total content of monoterpenes is significantly higher in trees infected by H. parviporum compared 

to putatively not infected ones. This result is in agreement with previous studies conducted on 

Norway spruce treated with methyl jasmonate to simulate terpene synthesis in tree tissues following 

pathogen infection: total content of terpenes always resulted to be higher in treated compared to 

control samples, and in particular monoterpene content usually appears to increase much more 

compared to sesquiterpenes (Martin et al., 2002; Zeneli et al., 2006).  

Variations in the terpene profiles and particularly in the proportions of α-pinene, β-pinene, β-

phellandrene and γ-terpinene can be a consequence of the defence mechanism activated by the tree 
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following infection by the fungus: the plant reduces the production of the biologically less active 

compounds and increases the synthesis of the more toxic terpenes. For example, α-pinene and β-

pinene were reported as being among the most inhibitory compounds to fungi (e.g., Klepzig et al., 

1996). Another interpretation of these results could be that trees characterized by constitutively 

higher values of some terpenes are less susceptible to death due to fungal infection compared to 

trees with constitutively lower values of terpenes or that are not able to increase their quantity as a 

response to infection. For instance, Schiebe et al. (2012) observed significantly lower levels of 

several monoterpenes in bark of Norway spruce trees that died after treatment with the hormone 

methyl jasmonate (MeJ), compared with surviving trees, including, among others, some terpenes 

that we also analysed: camphene, sabinene, myrcene, 3-carene, limonene, cineole.  

Concerning the specific compounds analysed, our results are only partially in agreement with the 

research performed by Zamponi et al. (2007) on branches of Norway spruce trees experimentally 

inoculated with H. parviporum. In that study, α-pinene and γ-terpinene, among others, resulted to be 

significantly different between infected and not infected trees, as we also found. However, they did 

not find significant differences between infected and not infected trees for β-pinene and β-

phellandrene. Differences between our results and results obtained by Zamponi et al. (2007) could 

be ascribed to the tissues colonized by the pathogens in the two studies, i.e. heartwood vs sapwood, 

respectively. In fact, while branches, hence sapwood, was inoculated with Heterobasidion spp. by 

Zamponi et al. (2007), it is likely that our adult Norway spruces were colonized by H. parviporum 

in the heartwood as it occurs as a general rule (Garbelotto and Gonthier, 2013).  

 

Conclusions 

In summary, this study reveals that dendrochronological and monoterpene analyses in tree rings can 

be used as an aid to first evaluation of Norway spruce health on apparently healthy spruce trees. In 

particular, the tree-ring mean chronology shows lower values in infected compared to not infected 

trees in the more recent years and monoterpenes show significant differences between infected and 

not infected trees.  

This is the first study showing that VTs composition in tree rings could be used to reconstruct 

fungal infection. Both the analysis of total absolute amounts and relative contents of monoterpenes 

are useful for detecting the presence of the pathogen, and this is particularly important in the case of 

Norway spruce, where external symptoms of H. parviporum are usually poor. 

The results here presented allow further considerations about environmental changes under climate 

changing conditions. Growth rate lowering, evidenced by the development of narrower tree rings, 

seems to be reduced at the beginning of the pathogen infection and it becomes more evident with 
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the progression of the infection. However, ring-width reduction is also induced by adverse climatic 

conditions in thermo-limited environments such high mountain areas (Nicolussi et al., 2009; Pelfini 

et al., 2014) and by several geomorphological surface processes such as landslides and debris flows. 

Generally, geomorphic events locally destroy or produce serious injuries in trees, consequently 

affecting their growth rate, but also not disruptive processes like sheet flows can induce the 

production of narrower rings (Pelfini et al., 2006).  

Furthermore, the production of resin ducts, and the related production of volatile terpenes, can be 

related to mechanical impacts associated with geomorphological processes (Gaertner and Heinrich, 

2009). 

In this perspective, our results describing the influence of H. parviporum infection on tree growth 

and monoterpenes in tree rings, reveal that dendroclimatic and dendroenvironmental reconstructions 

can be negatively influenced by fungal diseases. 
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Abstract 

High levels of air particulate matter (PM) have been positively correlated with respiratory diseases. 

In this study we performed a biomonitoring investigation using samples of bark obtained from trees 

in a selected study area in the city of Milan (northern Italy). Here, we analyze the magnetic and 

mineralogical properties of the outer and inner bark of 147 trees, finding that magnetite is the 

prevalent magnetic mineral. The relative concentration of magnetite is estimated in the samples 

using saturation isothermal remanent magnetization (SIRM) and hysteresis parameters. We also 

make a first-order estimate of absolute magnetite concentration from the SIRM. The spatial 

distribution of the measured magnetic parameters is evaluated as a function of the distance to the 

main sources of magnetic PM in the study area, e.g., roads and tram stops. These results are 

compared with data from a substantially pollution-free control site in the Central Italian Alps. 

Magnetic susceptibility, SIRM and magnetite concentration are found to be the highest in the outer 

tree barks for samples that are closest to roads and especially tram stops. In contrast, the inner bark 

samples are weakly magnetic and are not correlated to the distance from magnetite PM sources. The 

results illustrate that trees play an important role acting as a sink for airborne PM in urban areas. 

 

KEYWORDS: biomagnetic monitoring, tree bark, Milano, traffic emission, air pollution. 
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Introduction 

The metropolitan area of Milan in the Po Valley of northern Italy is plagued by high levels of 

atmospheric particulate matter (PM) due in part to the 'bowl effect' on atmospheric circulation 

triggered by the surrounding Alps and Apennines mountain chains (e.g., Masetti et al. 2015). 

Recorded levels of PM with grain size ≤ 10 µm (PM10) are often above 100 μg/m3 especially during 

winter months, with a daily yearly average of 50 μg/m3 (Marcazzan et al. 2001; Ozgen et al. 2016). 

It is well known that airborne PM is linked with respiratory illness (Donaldson 2003; Faustini et al. 

2011; Gualtieri et al. 2011; Bigi & Ghermandi, 2014; Chiesa et al. 2014; Kim et al. 2015). 

Transition metal components such as iron are particularly harmful as they have the potential to 

produce reactive oxygen species causing inflammation throughout the body (Zhou et al. 2003; 

Birben et al. 2012). A recent study by Maher et al. (2016) demonstrates that airborne magnetite can 

enter the brain directly via the olfactory bulb, which can foster Alzheimer disease. 

With respect to Milan, Vecchi et al. (2008) found high iron PM concentrations, especially 

during the winter season (average of 0.0086 µg/m3) compared to the summer season (average of 

0.0042 µg/m3). They also found that iron concentration in Milan is higher than in other Italian cities 

(Florence, Genoa). Iron can come from the abrasion of vehicle brake systems (Hoffmann et al. 

1999, Sagnotti et al. 2006) and tram and train rails (Kam et al. 2011), as well as from metallurgical 

processes (Hunt et al. 1984). These iron particles bond up with oxygen upon entering the 

atmosphere to become iron oxides, such as magnetite (Fe3O4). 

The aim of this study is to monitor airborne iron oxides distribution in a test site in Milan. 

We selected a municipal park surrounded by tram lines/stops and roads characterized by intense 

daily traffic, which represent obvious sources of iron PM, among other types of pollutants. We 

opted to sample tree barks as natural repositories (sinks) of these iron PM sources, and to study 

them with standard rock magnetic techniques to define type and concentration of ferro(i)magnetic 

iron oxide minerals contained therein. Tree barks are preferred to the more frequently used tree 

leaves (e.g. Matzka & Maher 1999; Hanesch et al. 2003; Moreno et al. 2003; Lehndorff et al. 2006; 

McIntosh et al. 2007; Szönyi et al. 2008; Maher et al. 2008), because they accumulate airborne PM 

the entire year. This is important because PM pollution levels are highest in the winter, when leaves 

of deciduous species, which are dominant in Milan, are absent. Tree bark is already considered as a 

valuable indicator for monitoring air quality, for instance by applying INAA and RXRFA 

(Instrumental Neutron Activation Analysis and Radionuclide X-Ray Fluorescence Analysis) 

techniques (e.g., Bohm et al. 1998; Pacheco et al. 2001), and measurements of trace element 

concentration (e.g., Sawidis et al. 2011; Guéguen et al. 2012). However, until now only a very 

limited number of studies have investigated the potential of measuring magnetic parameters of tree 
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bark for monitoring air pollution (Flanders 1994; Kletetschka et al. 2003; Zhang et al. 2008; 

Kletetschka 2011). We are not aware of any previous biomonitoring studies conducted in this city, 

so we present the first results obtained through this approach for the selected study area. The 

ultimate goal of this study is to quantify on a map the areal dispersion of iron oxides from their 

sources (e.g., tram stops) to their sinks (tree barks). This could help designing pollution shielding 

solutions using non-deep tree belts or synthetic bark panels placed at optimal distance and 

orientation relative to pollution sources. 

 

Materials and methods 

Study Area 

This study was conducted in the 25,000 m2 municipal park of Leonardo da Vinci Square (Fig. 1A), 

located in the eastern part of Milan, at an altitude of about 120 m a.s.l. (centre latitude: 

45.478096°N; longitude: 9.22569°E). The area is characterized by intense daily traffic; on a typical 

working day, the number of cars passing through the study area ranges between 6000 and 7000 

(Municipality of Milan, Agenzia Mobilità Ambiente Territorio), and trams circulate with a 

frequency of one every 3-8 minutes. For the purpose of this study, the area was divided in two 

portions: an external belt named Area 1, about 20 m wide and located close to the surrounding roads 

and tram lines/stops, and a more internal Area 2 extending more than 20 m away from the roads 

(Fig. 1A).  

The results obtained in Milan are compared with data from a low-pollution control site. Sampling at 

the control site was conducted in the village of Santa Caterina Valfurva (hereafter Santa Caterina), 

belonging to the municipality of Valfurva, characterized by 2600 inhabitants, with very reduced car 

traffic and absence of trains and trams. The village is located 200 km north of Milan, in Valtellina 

(central Alps) at an elevation of about 1700 m a.s.l. (Fig. 1B), in a typical Alpine environment 

shaped by glaciers and mass wasting processes (e.g. Del Ventisette et al. 2012; Pelfini et al. 2014).  
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Figure 1. (A) Leonardo da Vinci square in Milan with the closest tram stops. The red discontinuous 

lines represent the closest roads. The sampling area was divided in two sections, here named Area 

1 and Area 2, respectively closer (distance ≤ 20 m) and further (distance > 20 m) from the 

surrounding roads. (B) Location map of the study area including Milan and Santa Caterina 

Valfurva. 

 

Sampling    

Sampling in Milan was conducted on the 22, 24 and 25 November, 2014 on trees belonging to 18 

different species including, among others, Prunus padus, Sophora japonica and Cedrus atlantica 

(see Tab. 1 for a complete list). Sampling at the test site in Santa Caterina was conducted on 27 July 

2015 on trees of Picea abies species. At both localities, the selected tree species show similar bark 

textures: fissured, rugose, and coarse-grained (Fig. 2). The absorption properties of these fractal 

surfaces on airborne micrometric particles are considered analogous, irrespective of taxonomic 

attribution. 

A total of 147 trees were sampled in the Milan test site and 20 trees in the Santa Caterina control 

site. The position of each tree was recorded using GPS. Each sample consisted of a cylindrical 

fragment of trunk bark, extracted at approximately 1.5 m above the ground from the tree-side 

exposed in the direction of the closest street, using a steel extractor tool with a diameter of 2.5 cm. 

The bark samples were placed in 10-cm3 plastic boxes and closed with plastic tops. For the Milan 

test site, a total of 99 out of 147 bark samples were cut in the laboratory, using a ceramic knife that 

we cleaned with ethanol after cutting each sample, into an outer disk sample (i.e., at the contact 

with the atmosphere) and an inner disk sample, which were labelled “A” and “B”, respectively. In 

48 particularly thick samples, up to a maximum of four disk samples were obtained (“A”, “B”, “C”, 

“D” arranged from the outside to the inside; Fig. 3). The remaining 35 samples yielded only an 

outer “A” sample, i.e., sub-sampling was not possible. In total, 278 samples of trunk bark were 
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obtained from the Milan test site. With regards the control site of Santa Caterina, we extracted one 

sample of outer bark from each tree for a total of 20 “A” bark samples. All samples were weighed 

in order to normalize the measurements by sample mass and then refrigerated at 5°C until the day 

before the analyses.   

 

Table 1. List of species and the number of trees sampled for each species at the Milan test site. 

Tree species Number of sampled 

trees 

Tree species Number of sampled 

trees 

Abies alba   2 Ilex aquifolium  11 

Acer negundo   5 Pinus nigra  4 

Acer saccharinum  4 Populus alba  2 

Catalpa bignonioides  9 Populus nigra  11 

Cedrus atlantica   16 Prunus laurocerasus  4 

Cercis siliquastrum   3 Prunus padus  32 

Cupressus arizonica  4 Sophora japonica  21 

Cupressus glabra  2 Taxus baccata  2 

Fagus sylvatica  2 Tilia cordata  13 

 

 

Figure 2. Tree bark texture of (A) Prunus padus, (B) Sophora japonica, (C) Cedrus atlantica and 

(D) Picea abies. 
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Figure 3. Explanatory image showing the position of tree bark samples from outer to inner bark, 

labelled "A", "B", "C", "D". 

 

Mineralogical analyses 

The mineralogy of three “A” bark and two “B” bark samples from Milan was investigated by X-ray 

diffraction and electron microprobe analysis. X-ray micro-diffraction was performed in 

transmission geometry on aggregates of mineral particles with 30 to 150 μm size, extracted directly 

from the tree bark. Measurements were made on an Oxford X’Calibur instrument with Mo X-ray 

source (λ= 0.710 Å), polycapillary focusing optics (beam size on the sample apx. 150 μm) and CCD 

detector. The 2D diffraction data were integrated with the CrysalisRed software and the 

identification of mineral phases was first achieved by comparison with PDF-2 database, followed 

by Rietveld refinement. Chemical analysis was performed with an electron microprobe (JEOL JXA 

8200), equipped with WDS spectrometers. 

 

2.4 Magnetic analyses      

The initial magnetic susceptibility of all samples was measured using an AGICO KLY-2 

Kappabridge. A subset of 181 samples were then magnetized at room temperature in incremental 

fields up to 1 T or occasionally 2.5 T using an ASC Pulse Magnetizer. The resulting isothermal 

remanent magnetization (IRM) was measured after each step on a 2G Enterprises DC SQUID 

cryogenic magnetometer located in a magnetically shielded room. Mass-specific susceptibility and 

SIRM values were calculated. The S-ratio was calculated as IRM300 mT/SIRM (Evans & Heller 

2003), where IRM300 mT is the IRM induced in a field of 0.3 T and the SIRM is the IRM at 2.5 T. 

Hysteresis loops were measured on a subset of 16 representative “A” bark samples from the Milan 

test site, using a Micromag 2900 Alternating Gradient Magnetometer, on samples whose saturation 

IRM was > 5 x 10-6 Am2/Kg. The obtained hysteresis loops were corrected for high field 

susceptibility to obtain the saturation magnetization (Ms) and saturation remanent magnetization 
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(Mrs). Measurements were made at the Alpine Laboratory of Paleomagnetism (ALP) of Peveragno 

(Italy) and at the Laboratory of Natural Magnetism of ETH-Zürich (Switzerland). 

 

2.5 Data mapping 

Magnetic susceptibility and SIRM values from the Milan test site were plotted in GIS environment 

in order to map their areal distribution and distance relative to the surrounding roads and tram 

lines/stops. Since the sampled trees are relatively evenly distributed in the Milan test site, inverse 

distance weighted (IDW) interpolation was applied (Johnston et al. 2001).  

 

Results 

Mineralogical analyses 

The X-ray diffraction analysis indicates that the most common mineral phase in the analyzed “A” 

bark samples is quartz. However, “A” bark samples with high susceptibility also contain magnetite 

(Fe3O4) and/or iron, and only XRD can detect them in weaker magnetic samples. In one sample, a 

fragment with metallic lustre was identified as hercynite (FeAl2O4), as shown by the powder 

patterns fitted with Rietveld method (Fig. 4). 

 The analysis on the electron microprobe on “A” bark samples confirms the presence of an 

iron oxide phase interpreted as magnetite with grain size of about 20 µm (Fig. 5 A). Secondary ion 

images reveal that some of the magnetite particles are well inserted in the “A” bark samples, and 

not just deposited on their external surface (Fig. 5 B, D). Moreover, some of the magnetite grains 

appear have undergone reductive dissolution (Fig. 5 C, D). 
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Figure 4. Experimental laboratory X-ray powder micro-diffraction pattern (dotted), fitted (line) 

and difference curve computed by Rietveld fit of selected fragments. The samples are labelled in the 

figure. The main diffraction peaks are indicated: quartz, SiO2 (q), metallic iron (Fe), hercynite, 

FeAl2O4 (Her) and magnetite, Fe3O4 (Mag). 
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Figure 5. (A, C) Angular iron oxide particles found in "A" bark sample (outer bark) analyzed at the 

microprobe and (B, D) secondary ion image showing the integration of the particle in the “A” bark 

sample. The X-ray and rock-magnetic analyses showed that it consists of magnetite. 

 

Magnetic analyses 

Samples from the Milan test site show a clear trend in the magnitude of magnetic susceptibility, 

which was found to strongly decrease from the outer “A” bark samples to the inner (“B”, “C”, “D”) 

samples in the same tree (see Fig. 6 and Tab. 2). The majority of the inner “B”, “C” and “D” 

samples are diamagnetic, which indicates that the organic matter signal dominates the susceptibility. 

No trend is instead detected within the various inner bark samples, i.e., the susceptibility of the "B" 

samples is not higher than the "C" or the "D" samples. The outer “A” bark samples from the control 

site at Santa Caterina show very low values of magnetic susceptibility, comparable to values found 

in inner “B” bark samples at the Milan test site (Tab. 2). 

 IRM acquisition curves of representative “A” bark samples from Milan and Santa Caterina 

show the presence of a low coercitivity magnetic phase that saturates in fields of ~200 mT, which is 

compatible with magnetite that was identified by X-ray diffraction (Fig. 7). A decrease in the 

magnitude of the saturation IRM (SIRM) from the outer “A” bark samples to the inner (“B”, “C”, 
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“D”) bark samples is observed (Fig. 7 A – D; Tab. 2). The S-ratios show values approaching 1 with 

no differences detectable between “A” and “B” samples, confirming the presence of the low 

coercivity mineral, magnetite. The outer “A” samples from the control site at Santa Caterina have 

SIRM magnitudes that are much lower than the “A” samples from the Milan test site (Fig. 7 E, F; 

Tab. 2). 

The magnetic susceptibility and saturation IRM values of “A” samples from the various tree 

species sampled at the Milan site show a high degree of variability and high standard deviations 

(Fig. 8 A, B). No statistical tests could be performed due to the very different number of samples 

available for each species, however, no clear intraspecific trends were observed as well. We stress 

that the dynamics of passive accumulation of micrometric airborne particles on an absorbing 

surface (bark) is controlled primarily by physical factors such as air turbulence, moisture, etc., 

provided the absorbing surfaces are characterized by similar macroscale rugosity and textures 

irrespective of their taxonomic attributions.  

 With regards to the hysteresis analyses, most of the 16 "A" samples from Milan showed an 

open loop with a varying contribution from the high-field paramagnetic components (Fig. 9 A, B, 

C). These features reflect the presence of a low coercivity ferrimagnetic mineral coexisting with a 

paramagnetic (positive slope) contribution. Some samples, however, show only a diamagnetic 

magnetization, due to organic material, i.e., bark (e.g. Fig. 9 D). The Mrs/Ms ratios range between 

0.07 and 0.14 (mean of 0.09, standard deviation of 0.02), which is compatible with pseudo-single 

domain (PSD) to multi-domain (MD) magnetite (Dunlop 2002). This agrees with microprobe 

observation. 

 

 

Figure 6. Mass-specific magnetic susceptibility values on representative samples of tree bark. In 

the reported examples, outer bark (named "A") always shows higher and positive susceptibility 

values than the inner bark (named "B", "C" and "D").   
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Figure 7. Mass-specific isothermal remanent magnetization (IRM) backfield acquisition curves on 

representative bark samples from the Milan test site (panels from A to D), showing the presence of 

variable amounts of a low coercivity magnetic component interpreted as magnetite. Outer ''A'' bark 

samples have always higher IRM values (higher magnetite concentration) than inner ''B'' or ''C'' or 

''D'' bark samples. Panels E and F represents IRM acquisitions from two ''A'' samples from the 

control site at Santa Caterina.   
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Figure 8. Magnetic Susceptibility (A) and Saturation IRM (B) for the sampled “A” tree species at 

the Milan site. High variability and SD can be observed for both parameters. In the case of 

Saturation IRM, some tree species do not show the SD value due to the analysis of only one 

sample for that species. 
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Figure 9. Hysteresis loops on four representative samples. (A, B, C) Most of the analyzed samples 

show hysteresis, (D) example of sample that only displays paramagnetic mineralogy. 

 

 

Table 2. Average values of magnetic susceptibility and SIRM measured on the analyzed samples. 

For bark layers A and B, we distinguished between Area 1 (closer to the roads, i.e. < 20 m) and 

Area 2 (farer from the roads, i.e. > 20 m).   

Measured parameter Bark layer Area Average ± SD  Number of samples 

Magnetic Susceptibility 

(× 10-8 m3/Kg) 

Milan 

A 

 

B 

 

C 

D 

1 

2 

1 

2 

1.25 ± 4.2 

0.52 ± 3.5 

-1.31 ± 1.9  

-2.26 ± 2.8 

-1.32 ± 1.7 

-1.76 ± 0.7 

60 

87 

38 

65 

16 

3 

Magnetic Susceptibility 

(× 10-8 m3/Kg) 

Santa Caterina 

A  -9.87 ± 0.59 20 

SIRM (x 10-6 Am2/Kg) 

Milan 

A 

 

B 

 

C 

D 

1 

2 

1 

2 

15.53 ± 18.5 

9.88 ± 10.2 

2.23 ± 2.5 

2.06 ± 3.4 

1.56 ± 2.1 

0.45 ± 0.2 

42 

40 

42 

25 

10 

2 

SIRM (x 10-6 Am2/Kg) 

Santa Caterina 

A  0.21 ± 0.16 20 
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Mapping of magnetic grains distribution  

Distribution maps of magnetic susceptibility and SIRM values for the Milan test site are shown in 

Figures 10 and 11. The sample locality is subdivided into Area 1, which is within 20 m of the roads 

and Area 2 with is > 20 m from the roads. The map of magnetic susceptibility for ''A'' bark samples 

(Fig. 10 A) shows higher mean values in Area 1 compared to Area 2, with the highest values near 

tram stops. The low susceptibilities in Area B are comparable to those observed at the control site in 

Santa Caterina (SC on scale bar in Fig. 10 A). The spatial distribution of susceptibility of the inner 

"B" samples shows little variability: there is no notable difference between Area 1 and 2, although 

the “B” samples with highest susceptibility are found at the same location where the “A” sample 

has high susceptibility (Fig. 10 B).  

A similar pattern is also found in the spatial distribution of the SIRM, which shows higher mean 

values for "A" samples in Area 1, especially near tram stops, while "A" samples from Area 2 

display lower values, which are comparable to the control site in Santa Caterina (Fig. 11 A). Inner 

"B" samples from both Areas 1 and 2 display low SIRM values and no relationship with distance 

from tram lines/stops (Fig. 11 B).  

 A positive linear relationship between magnetic susceptibility and SIRM was obtained for 

"A" samples in Area 1 (R2= 0.89; p = 2.4 x 10-4; Fig. 12 A). A similar positive linear relationship 

exists also for "A" samples from Area 2, but at a lower statistical level (R2= 0.18; p = 3.8 x 10-5; 

Fig. 12 A). No statistical correlation is found for the ''B'' samples in both Area 1 and 2 (Fig. 12 B). 

A positive relationship between susceptibility and SIRM can indicate variation in the volume 

fraction of the ferro(i)magnetic phase(s), and this variation could be caused by a higher number of 

particles with same size or by an increase in grain size.  
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Figure 10. Spatial distribution (defined using IDW interpolation in GIS environment) of the 

magnetic susceptibility values of outer "A" bark samples (panel A to the left) and inner "B" bark 

samples (panel B to the right) recorded at the test site in Milan. The highest values are recorded in 

"A" bark samples obtained from trees in Area 1, closer to the roads (distance ≤ 20 m) and, in 

particular, closer to the tram stops. Samples from the control site at Santa Caterina (SC on color 

scale in panel A) are characterized by low values, belonging to the lowest category detected in the 

study area in Milan.   

 

 
Figure 11. Spatial distribution (defined using IDW interpolation in GIS environment) of the 

Saturation IRM (SIRM) values in outer "A" bark samples (panel A to the left) and inner "B" bark 

samples (panel B to the right) recorded at the test site in Milan. The highest values are recorded in 

"A" bark samples in Area 1, closer to the roads and tram stops (distance ≤ 20 m). Samples from the 

control site at Santa Caterina (SC on color scale in panel A) are characterized by values belonging 

to the lowest category detected in the study area in Milan. 
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Figure 12. Plot of saturation IRM versus magnetic susceptibility values, calculated for (A) outer 

"A" bark and (B) inner “B” samples of trees sampled in Area 1 (discontinuous line) and in Area 2 

(continuous line).  

 

Discussion and conclusions 

X-ray diffraction, microprobe, IRM acquisition, S-ratios and hysteresis measurements all indicate 

that magnetite is the main magnetic mineral that is deposited at the atmosphere/bark interface and 

incorporated in outer “A” bark samples. Due to the high number of different tree species and their 

distribution at the Milan site, a statistical analysis between the SIRM and magnetic susceptibility 

values found in the different species was not performed. The differences detected between different 

tree species and within the same species (see Fig. 8) are probably due to the tree location that is 

very sparse in the selected area. Thus, considering that all the tree species sampled in this study 

show similar tree bark patterns, the evaluation of the results obtained for the analysed parameters 
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was based on their spatial distribution. The spatial distribution of susceptibility, SIRM and 

magnetite density shows a strong dependence on distance from roads with traffic and more 

importantly tram stops. This suggests that the main sources of magnetite in the Milan test site are 

abrasion of tram braking systems and vehicle combustion processes. Outer ''A'' bark samples from 

Area 1 closest to roads and tram stops have the highest susceptibility and SIRM, and therefore 

highest magnetite concentration. Outer ''A'' bark samples from Area 2 have values that are 

comparable to the substantially pollution-free Santa Caterina control site.  

Our results are in agreement with previous biomonitoring investigations conducted on tree leaves, 

which also identified magnetite as the main carrier of the magnetic signal (e.g., Moreno et al. 2003; 

Urbat et al. 2004; Mitchell & Maher 2009). They also are compatible with other studies, which 

identified trams and vehicles as the main sources of the magnetic particulate (e.g., Kardel et al. 

2012). What it is important to note from our results is that the susceptibility and SIRM values in 

inner "B" samples are invariably very low (susceptibility being frequently diamagnetic) and close to 

the susceptibility and SIRM values measured at the Santa Caterina control site. This finding has 

important implications on how trees serve as sinks for PM. Airborne magnetite particles will be 

collected through deposition on the exposed outer “A” bark of trees immediate to the PM source. 

This magnetite is then partially encapsulated into the inner bark ("B", "C" and "D" samples), 

probably as far in as the suber tissue, where it then undergoes reductive dissolution (Catinon et al. 

2008; Zhang et al. 2008; Catinon et al. 2009). Electron microprobe analyses support this 

hypothesis, showing that at least some of the magnetic particles are not just deposited on the bark 

external surface but are well integrated in it. Some images show also a partial fragmentation of the 

magnetite minerals, suggesting that plant physiological processes may dissolve or disintegrate 

magnetite particles incorporated in the bark, as observed for other types of atmospheric particles 

(e.g., Freer-Smith et al. 2004; Novak et al. 2006). 

 The implication that trees are capable of decomposing magnetite in their bark, emphasizes 

their role as pollution mitigating organisms. In this respect, this study is of interest for urban 

planning of green areas and infrastructures (e.g., Tong et al. 2016). Our results suggest that placing 

tree belts near roads with traffic and tram stops would help absorb airborne micrometric magnetite 

particles thus improving general air quality. Taking this idea further, it may be possible to design 

panels of synthetic, rugose bark that can be implemented either in lieu of - or together with - tree 

belts to improve trapping efficiency. Therefore, in conclusion, urban parks, tram stops, and urban 

railways should always be enclosed in a dense network of tree belts and/or synthetic bark panels. In 

this way, even highly populated areas could still preserve oases with PM levels not particularly 

higher than a mountain village, at least relative to the types and sources of PM described here. 
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7. GENERAL DISCUSSION AND CONCLUSION 

 

Even if the described approaches were only applied to a limited number of sites, the results of the 

studies here reported show that trees are valuable indicators of climatic and environmental change, 

as well as detectors of anthropogenic magnetic particles released in the atmosphere. 

In particular, mapping tree distribution through remote sensing techniques, analysing tree-ring 

width, tree-ring stable isotopes, needle and tree-ring volatile terpenes may contribute to the 

detection of areas characterized by climatic and geomorphological stress at high altitudes. Magnetic 

and mineralogical investigations of tree barks can be used to define the distribution of airborne 

particulate matter in urban areas.  

These studies also allowed the detection of disturbing factors that are important to consider in 

dendroclimatic reconstructions: changes in the water-level of a glacial lake, the surface instability of 

a debris-covered glacier and fungal infections all determine a variation in tree-ring width that can 

lead to a wrong interpretation of dendroclimatic reconstructions. 

In figure 1 I reported a scheme describing the main results obtained in this Ph.D. project and their 

implications. 

 

Future research will aim at better address a methodology for detecting supraglacial trees, testing the 

method that I assessed on other debris-covered glaciers, in Italy and in other countries.  

Furthermore, the promising results obtained in the analysis of volatile terpenes in tree rings offer the 

possibility to investigate other factors damaging tree tissues, e.g. mechanical wounding. The 

analysis of resin terpenes, together with the dendrochronological approach that is already proven to 

be effective, could be useful for dating the impact due, for instance, to gravitative events, and for 

better understanding how trees react to mechanical wounding.    

Finally, further research is needed for assessing the use of tree bark for monitoring the distribution 

of magnetic particles in the air. Choosing a wider urban area, and comparing different arboreal 

species, could help understanding if there are differences in the collected particles due to the bark 

texture, and in this way the most efficient tree species could be detected to be used for urban 

planning purposes. 
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Figure 1. General scheme reporting the main subjects, methods, results and implications of my 

Ph.D.  

 



198 
 

8. CONFERENCE PAPERS 

 

“Giornate della Sostenibilità, Focus Ambiente” – Milano, 21/03/2014 
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SGI-SIMP Conference “The Italian geosciences of the future, the future of the Italian geosciences” 

– Milano, 10/09/2014 – 12/09/2014 

 

Abstract (Poster Presentation) 

Dendrochronological and dendroisotopic patterns from trees affected by glacier meltwater: the case 

study of Lago Verde ice-contact lake (Miage Glacier, Italy) 

 

Vezzola L.C. 1, Leonelli G. 1, Pelfini M. 1 

1 Department of Earth Sciences, University of Milan (Italy)  

 

An increase of the glacier runoff in glacierized mountain catchments has been largely recognized as 

a consequence of the increasing temperature trends since the last century which induce an 

intensification of the melting processes. Even if less impacted and with different responses to the 

climatic inputs, also debris-covered glaciers like e.g. the Miage Glacier (Mt. Blanc Massif, Western 

Italian Alps), undergo these dynamics. In particular, the debris coverage of the glacier surface is 

responsible of changes in ablation rates and in meltwater discharge, which typically influence 

glacier streams, ice-contact and proglacial lakes. When the tongue of debris-covered glaciers 

reaches altitudes below the treeline, trees may colonize the surroundings of the glacier terminus as 

well as the glacier surface, thus opening the possibility of assessing, for instance, the influence of 

lake water-level changes and of past glacier runoff events.  

Recently, some researches have been carried out in the proglacial area of the Miage Glacier, on 

Larix decidua Mill. specimens located close to a small ice-contact lake called Lago Verde, 

characterized by a great water variability inducing frequent conditions of partial tree submersion. 

The results show that i) lake water-level changes negatively influence tree-ring growth: trees 

frequently reached by the lake water show narrower tree rings compared to trees located farther 

from the lake shores. Moreover, a positive relationship between the residual chronology at the 

treeline and June temperature was detected, whereas a weaker relationship was found at the Lago 

Verde, and this pattern may be related to the lower altitude of the Lago Verde, compared to the 

treeline. ii) Tree-ring cellulose of trees fed by glacial meltwater is significantly more depleted in 

δ18O than the one of trees fed only by precipitation (Leonelli et al., 2013). 

Overall, the signals of environmental changes detected in the tree rings around the lake opens the 

possibility to characterize the areas mostly affected by lake water-level changes on a temporal scale 

and of reconstructing past major glacier runoff events on the medium- to long-term. 
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Italian Glaciological Committee Conference “The future of the glaciers: from the past to the next 

100 years” – Torino, 19/09/2014 

 

Abstract (Poster Presentation) 

 

A first approach to detect supraglacial vegetation coverage on debris-covered glaciers using aerial 

photographs and satellite images: the case study of Miage Glacier 

 

Vezzola L.C.*1, D’Agata C.1, Leonelli G.1, Vagliasindi M.2, Azzoni R.S.1, Smiraglia C. 1, Diolaiuti 

G.1 and Pelfini M. 1 

 

1 Department of Earth Sciences, University of Milan (Italy)  
2  Fondazione Montagna sicura (www.fondazionemontagnasicura.org) (Italy) 

 

Debris-covered glaciers are becoming a new habitat for vegetation including trees, which 

germination and growth are controlled by debris layer thickness and grain size, by surface velocity 

and stability and by the altitude of the glacier tongue. The progressive colonization of debris-

covered glacier surface performed by trees is a response to climatic and environmental changes that 

may be further investigated in trees located in crucial study sites, where the effects of these changes 

are evident. For this reason, the need for a method that allows the rapid detection of supraglacial 

trees is increasing.  

In this study we present the first results of the identification of supraglacial tree coverage located on 

the Miage Glacier (Mont Blanc Massif), using aerial photos and satellite images.  

Two methods were tested.  

1) A semi-automatic method was attempted on aerial images from 2005. Two training classes 

of pixels were selected on the glacier terminus area, one corresponding to the debris and the other 

one corresponding to the vegetation, in order to perform a supervised classification using maximum 

likelihood algorithm.  

2) The comparison between the areas characterized by the presence of vegetation, identified 

through the analysis of aerial images and the direct observation conducted in the study area, and the 

data of supraglacial temperature, altitude, moisture and thickness of debris, obtained from satellite 

images, was performed, in order to find a correlation between vegetation presence and these 

variables.  

The main problems concerning the discontinuous distribution and the relatively reduced size of the 

vegetation (regarding both its height and its canopy) in the identification of supraglacial trees have 

been discussed in order to identify a rapid but accurate method of investigation. 
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Alpine Glaciology Meeting – Milano, 07/05/2015 – 08/05/2015 

 

 

Abstract 1 (Poster Presentation) 

 

Novel indicators of environmental change from trees in the debris-covered glacier foreland: the 

case study of the Miage Glacier (Mont Blanc Massif, Italian Alps) 

 

L.C. Vezzola 1, G. Leonelli 1,2 and M. Pelfini 1 
1 Department of Earth Sciences, University of Milan (Italy)  
2 Department of Earth and Environmental Sciences, University of Milan Bicocca (Italy) 

 

Supraglacial trees are a useful source of data for reconstructing past glacier surface movements 

and debris-coverage instability. Proglacial trees also represent a useful tool for the identification 

and dating of changes in the glacial stream discharge and wide-spreading of melting water. 

Dendroglaciology is currently applied not only for reconstructing glacier fluctuations but also for 

investigating glacier surface dynamics at decadal scale. Trees and dated tree-ring characteristics 

such as scars, growth rate and reaction wood may provide information about glacier movements, 

discharge and hydrology.  

The Miage Glacier in the Mont Blanc Massif (Italy), represents a unique situation in the southern 

side of the Alps, due to the presence of abundant supraglacial vegetation. The density and 

distribution of trees is strictly linked to glacier surface velocity, thickness of debris-coverage, 

ablation rate, grain size distribution, slope and ice thickness, as documented by the results 

obtained during field surveys, data analysis and remote sensing techniques.  

The most recent studies show that supraglacial trees can also be considered environmental and 

climatic stress indicators. Leaf VOC (Volatile Organic Compounds) emissions and tree-ring 

carbon and oxygen stable isotopes show significant differences in trees located on the 

supraglacial debris with respect to trees on the lateral moraine, and these results suggest the 

possibility to apply these techniques in the identification of areas affected by glacio-

geomorphological and climatic stress.  

Tree-ring characteristics may also be analyzed in order to reconstruct the past hydrology of 

debris-covered glaciers with annual resolution. In particular, trees fed by glacial meltwater of the 

Lago Verde (Miage Glacier) show that tree-ring cellulose is more depleted in δ18O compared to 

trees fed by other water sources and, moreover, tree-ring width is narrower in trees affected by 

lake-level fluctuations.  
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Abstract 2 (Oral Presentation) 

 

Glacier features influencing the presence and abundance of supraglacial trees: the case study of 

the Miage debris-covered Glacier (Mont Blanc Massif, Italian Alps) 

 

L.C. Vezzola 1, G. Diolaiuti 1, C. D'Agata 1, C. Smiraglia 1 and M. Pelfini 1 
1 Department of Earth Sciences, University of Milan (Italy)  

 
 

The number of debris-covered glaciers featuring supraglacial tree vegetation is increasing 

worldwide, as a response of high mountain environments to the current climate warming. At the 

debris-covered surface of these glaciers, trees can be found thus giving peculiar landscape and 

ecosystems. Their distribution is not homogeneous, thus suggesting that some glacier parameters 

influence germination and growth of trees.  

This study was performed on the widest Italian debris-covered glacier, the Miage Glacier in the 

Mont Blanc massif, where herbaceous and tree vegetation is present at the surface of the glacier 

tongue. We analyzed the ablation area in the range from 1730 m to 2400 m a.s.l. where a quite 

continuous debris coverage is present and trees (mainly Larix decidua Mill. and Picea abies Karst) 

are present, also reaching an age of 60 years close to the terminus. By remote sensing investigations 

and through field surveys we obtained a record of glacier parameters (debris thickness, debris-

surface temperature, slope, aspect, elevation, ablation rate, surface velocity, debris-NDMI, variation 

in ice thickness over several years) to be analyzed with respect to the presence and abundance of 

trees in 15 plots (plot size: 15 m x 15 m).  

Our results show that supraglacial trees are present at the Miage Glacier: 1) whenever exceeding a 

debris thickness threshold (≥19 cm); 2) with a quite gentle slope (≤ 22°), 3) with a low glacier 

surface velocity (≤ 7.0 m/year), 4) where the ice thinning due to surface ablation is moderate 

(ranging between -1.8 m/year and -0.7 m/year) and 5) where the vertical changes due to glacier 

dynamics are positive (i.e. prevalent increase due to both slow debris accumulation and then 

preservation of ice flow inputs that we found ranging from +7 m and +28 m over a period 28 years 

long). 

The analysis of the same parameters, conducted on other debris-covered glaciers featuring 

supraglacial trees, may provide new data in order to evaluate if such conditions are local ones or if 

they are actual and general factors driving germination and growth of trees. 
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Abstract 3 (Poster Presentation) 

 

Widening rate of glacier forelands: the case study of the Forni Valley (Stelvio National Park, 

Italian Alps) 

 

F. Sobacchi (1), L. Vezzola (1) and M. Pelfini (1) 
1 Department of Earth Sciences, University of Milan (Italy)  

 
 

Alpine glacier shrinkage is accompanied by a progressive expansion of deglaciated areas, both on 

the valley slope and in the bottom valley. Glacier retreat provides new habitats for plants and 

animals, that can colonize the glacier foreland. Chrono-sequences and ecesis have been already 

studied in order to assess the biological response to climate change in glacial environments, but the 

expansion of proglacial areas and their evolution over time are also topics of great interest in the 

context of global change.  

The aim of this study is to evaluate the expansion of the proglacial area of the Forni Glacier due to 

the glacial fluctuations occurred since the Little Ice Age (LIA). This research was conducted in the 

Forni Valley (Stelvio National Park, Italy), where the Forni Glacier past fluctuations are well 

documented by at least four moraine ridges, from the LIA until the last advance occurred in the 

end of the 1970s. Using aerial images, orthophotos and field data, the moraine ridges have been 

georeferenced, and the expansion rate has been estimated in GIS environment for each time 

interval defined by the dated moraines. 

Assuming an expansion of 100% of glacier foreland between the end of the LIA and the current 

position of the glacier, our results show that 24,1% of the glacier foreland expanded between 1859 

and 1914; 6,7% between 1914 and 1926; 47,3% between 1926 and 1981; 21,9% between 1981 and 

nowadays. The velocity of expansion was 11.000 m2/year between 1859 and 1914; 14.300 m2/year 

between 1914 and 1926; 21.700 m2/year between 1926 and 1981; 19.200 m2/year between 1981 

and nowadays. 

The results obtained in this study show that i) the mean velocity of area expansion of the glacier 

foreland during the last 88 years was nearly double than the mean velocity during the 1859-1926 

time interval, thus featuring an ongoing phase of acceleration starting from the beginning of the 

last century; ii) the linear glacial retreat (measured by the operators of the Italian Glaciological 

Committee), instead, calculated for the same four time intervals shows a remarkable acceleration 

only starting from 1981.  

The increasing rate of expansion of the glacier foreland needs to be taken into account not only for 

a better understanding of the dynamics of biological forms in newly formed proglacial areas, but 

also for the evaluation of the physical processes involved in the landscape changes, related for 

instance to the action of melting water on unconsolidated debris. 

Future perspective of the research aims at analyzing and comparing different trends of expansion 

of glacier foreland at the regional scale. 
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Abstract (Poster Presentation) 

 

Forni Glacier fluctuations: influence on the biological system in the glacier foreland 

L. C. Vezzola 1, F. Sobacchi 1, A. Merlini 1, A. Bonetti 1  
1 Department of Earth Sciences, University of Milan (Italy)  

 

 

Glacier retreat is among the most evident impacts of the current climate change. The phases of 

glacier shrinkage can be reconstructed through geomorphological investigations conducted in the 

glacier foreland, a suitable site where to evaluate the relationship existing between glacier retreat, 

geomorphological processes and colonization of newly formed terrains performed by biological 

forms. The most recent studies conducted in one of the most representative recently deglaciated 

areas of the Italian Alps are here presented. 

The expansion of the proglacial area of the Forni Valley (Stelvio National Park, Italy) was analyzed 

for the period comprised between the Little Ice Age (LIA) and nowadays, through the use of 

historical images, orthophotos and field data. In particular, the area and rate of expansion were 

estimated for the four time intervals defined by the dated moraines, and the results show that the 

expansion rate was nearly double in the last 88 years compared to the previous years, thus 

highlighting an acceleration in the expansion rate starting from the beginning of the 20th century.  

As the glacier foreland expands, different organisms colonize progressively older terrain, including 

trees, if the area is located below the treeline. Tree ecesis time and germination year were estimated 

by means of dendrochronological approach and whorls branch counting, performed on living 

conifers growing in the most recent deglaciated area, close to the current position of the glacier 

front. The results of this study show an acceleration of the average ecesis in the last few years, with 

values ranging between 5 and 11 years, and with an average value of 7 years.  

On the other hand, glacier advances destroy forests. The study of buried logs and peat (performed 

through radiocarbon dating and dendrochronological techniques) contribute to a better 

understanding of past glacier fluctuations and related climate change. In particular, a buried log 

found in the Forni Valley revealed information about the Subboreal climatic transition and the 

related glacier fluctuations. 

Overall, these findings evidence some of the complex interactions between abiotic and biotic 

systems in glacial environments, and the precious contribution of arboreal vegetation in dating 

glacier changes and monitoring velocity of processes in the glacier foreland over time.   
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Alpine Glaciology Meeting – Munich, Germany, 25/02/2016 – 26/02/2016 

 

Abstract (Poster Presentation) 

 

Assessing glacier features supporting supraglacial trees: the case study of the Miage debris-covered 

Glacier (Italian Alps) 

 

L.C. Vezzola 1, G.A. Diolaiuti 1, C. D’Agata1, C. Smiraglia1, M. Pelfini1  
1 Department of Earth Sciences, University of Milan (Italy)  

 

The number of debris-covered glaciers featuring supraglacial trees is increasing worldwide, as a 

response of high mountain environments to climate warming. Generally, their distribution on the 

glacier surface is not homogeneous, thus suggesting that some glacier parameters influence 

germination and growth of trees.  

In this study, we focused our attention on the widest Italian debris-covered glacier, the Miage 

Glacier (Mont Blanc massif). We analyzed the ablation area in the range from 1730 m to 2400 m 

a.s.l. where continuous debris coverage is present and trees are found. Using data obtained by 

remote sensing investigations and field surveys we defined a record of glacier parameters to be 

analyzed with respect to the presence and abundance of trees.  

We found that supraglacial trees are present at the Miage Glacier: i) whenever exceeding a debris 

thickness threshold (≥19 cm); ii) with a gentle slope (≤ 10°); iii) with a low glacier surface velocity 

(≤ 7.0 m/y); and iv) where the vertical changes due to glacier dynamics are positive (i.e. prevalent 

increase due to both slow debris accumulation and preservation of ice flow inputs that we found 

ranging between +7 m and +28 m over 28 years). The statistical analysis supports our findings. 

The analysis of the same parameters might be conducted on other debris-covered glaciers featuring 

supraglacial trees, in order to evaluate if such conditions are local ones or if they are general factors 

driving germination and growth of trees. 

By identifying the features supporting the presence and growth of trees in these environments, and 

their thresholds, a contribution is given for a better understanding of the importance of debris-

covered glaciers and, in general, of debris-covered ice, as a refuge for trees during warm intervals 

of the Holocene.       
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27/06/2016 – 30/06/2016 

 

Abstract 1 (Oral Presentation) 

 

Recent changes of the ablation tongue and glacier foreland at the Lys Glacier (Italian Alps) 

 

G.A. Diolaiuti 1, L.C. Vezzola 1, A. Senese 1, C. D'Agata 1, D. Fugazza 1, G. Leonelli 2, M. Pelfini 1 
1 Department of Earth Sciences, University of Milan (Italy) 
2 Department of Earth and Environmental Sciences, University of Milan Bicocca (Italy) 

 

The Lys Glacier (Monte Rosa Group) is the most monitored glacier of the Italian Alps since 1940, 

with very frequent field measurements of terminus variations and the longest annual reporting of 

supraglacial debris presence. The recent changes of the ablation tongue and glacier forefield of the 

Lys Glacier have been evaluated through remote sensing investigations and field surveys. Terminus 

fluctuations, volume and debris-coverage variations, ablation rates and debris-surface temperatures 

have been analyzed starting for the last decades. The glacier terminus resulted to be generally 

retreating (cumulate retreat from 1975 to 2003 of -99 m, with an average of -3.4 m/year), with a 

unique period of advance occurred between 1976 and 1985. The volume decreased of 15.4 x 10-6 m3 

in the considered time interval (1975-2003) and the supraglacial debris coverage resulted to be 

strongly increased due to several rock-fall events affecting the rock walls dominating the glacier 

tongue. The measured surface temperature correlates with debris thicknesses (r = 0.8). Supported by 

this agreement, a map representing the spatial distribution and thickness of debris cover was 

obtained from the ASTER-derived surface temperature data (TIR band) using the relationship 

between debris-surface temperature and thickness. 

Changes in the proglacial area have been analyzed through geomorphological investigations and 

dendrochronological dating. As regards the glacier forefield developed from the end of the Little Ice 

Age to the end of the 20th century, the correlation between dendrochronological and climatic and 

glaciological data (terminus variations) allowed to investigate the glacier response and ecesis time. 

The ongoing research on the most recent deglaciated forefield will contribute to a better 

understanding of tree colonization following the Lys Glacier ongoing retreat that will be compared 

with data already available for other alpine glaciers. 
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Abstract 2 (Poster Presentation) 

 
Supraglacial trees as environmental stress indicators at the Miage debris-covered Glacier (Italian 

Alps)  

 

L.C. Vezzola 1, G. D 1, G. Leonelli 2, M. Pelfini 1 
1 Department of Earth Sciences, University of Milan (Italy)  
2 Department of Earth and Environmental Sciences, University of Milan Bicocca (Italy) 

 

Supraglacial trees are becoming a common feature on debris-covered glaciers (DCGs). The Miage 

Glacier (Mont Blanc Massif) is the only DCG on the Southern side of the European Alps 

characterized by the presence of a supraglacial forest. Trees are negatively affected by glacier 

surface movements, and growth disturbances are recorded in tree rings. We have analyzed the 

glacier parameters influencing the establishment and growth of supraglacial trees at the Miage 

Glacier and we have compared the tree-ring growth patterns and stable isotopes, as well as the 

needle volatile organic compounds (VOCs), of supraglacial trees ("glacier" site) with respect to 

trees located on a lateral moraine ("control" site). 

We found that supraglacial trees are present where debris is thicker than 19 cm, slope does not 

exceed 10°, surface velocity is lower than 7.0 m/year and vertical changes due to glacier dynamics 

are positive.  

The analysis of tree-ring growth patterns reveals that trees on the supraglacial debris are affected by 

a major geomorphological stress compared to trees on the moraine. Tree-ring δ13C and δ18O stable 

isotopes are different in trees at the glacier and control sites, probably due to differences in soil 

water retention, temperature excursion, time exposure to direct solar radiation and water source. 

Needle VOCs show significant differences in some terpenes at the two sites, probably due to the 

extreme temperature conditions on the supraglacial debris. 

These results show that supraglacial trees at the Miage Glacier may be used as indicators of 

environmental stress, and that monitoring their distribution and characteristics can contribute to 

better assessing the factors controlling the environmental evolution on a typical DCG. 

Future research will aim at analyzing the geomorphological features characterizing the Miage 

Glacier, and at evaluating what are the main hazards on a DCG in the context of a changing climate.  
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