
Analysis of Energy-Efficient Buildings through

Simulation and Formal Methods

Maryam Ehsanpour1, Luciano Baresi 2, Matteo Rossi 2

Ernesto Damiani3

1
Dipartimento di Informatica, Universita degli Studi di Milano, Via Comelico 39/41,

20135 Milano,Italy

maryam.ehsanpour@unimi.it

 2 Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano

 Piazza Leonardo da Vinci 32, 20133 Milano, Italy

{luciano.baresi,matteo.rossi}@polimi.it

3 Department of Electrical and Computer Engineering, Khalifa University

Al Zafranah, Abu Dhabi, United Arab Emirates

ernesto.damiani@kustar.ac.ae

Abstract.

Abstract. In the last few years, the increasing interest in energy saving

has led to invest resources in many research fields, in order to develop

new technologies to reduce energy consumption. One such field is energy

management systems for buildings. The interactions between the system

controlling the building and its environment are complicated by the fact

that they involve important timing properties, which can be expressed

through a variety of formalisms. This paper introduces a formal model,

expressed in a temporal logic language, through which designers can

evaluate the temporal behavior of buildings’ energy management sys-

tems. To this end, the formal model is analyzed through simulation, that

is, through the generation of traces satisfying the temporal logic model.

Keywords: Data analysis, Energy efficient, Formal methods.

1 Introduction

Managing the technology that is used to control the various functions of modern build-

ings is a complex task. The U.S. Department of Energy estimates that buildings in in-

dustrialized countries account for around 40% of total energy consumption. Research-

ers have shown that savings in the order of 20-30% can be gained through careful en-

ergy management and control in buildings, even without changing the structure of the

hardware configuration of their energy supply systems[1]. The problem of modeling

and designing software control systems has been approached through different tech-

niques, such as temporal logic languages[2], which are supported by a wide range of

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIR Universita degli studi di Milano

https://core.ac.uk/display/187962557?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

techniques for model analysis and verification. This work aims to introduce a solution

for describing the management and control of energy consumption in buildings through

rules expressed in temporal logic. The architecture of the approach is described through

a simple example, namely the control of Rooms provided with various appliances.

The rest of the paper is organized as follows. Section 2 introduces the simulation tools

on which the approach is founded; Section 3 introduces the temporal logic language

used for describing control rules; and Section 4 illustrates the case study which exem-

plifies the main characteristics of the proposed analysis method based on temporal logic

rules. Section 5 concludes. The Appendix shows an example of execution trace pro-

duced through the Zot tool, which is used in this work to simulate temporal logic mod-

els.

2 Tool support

2.1 OpenModelica

A number of well-established techniques have been developed over the years to model

physical phenomena, which constitute the environment of software systems. Typically,

these phenomena are described through a continuous notion of time, using approaches

that can be classified as either causal or acausal. In causal approaches, the model is

decomposed into blocks which interact through input and output variables. The object-

oriented language Modelica [3], instead, follows a acausalapproach where each (phys-

ical) component is specified through a system of differential algebraic equations; con-

nections between modules, which correspond to physical principles, are set by equating

effort variables and by balancing flow variables. OpenModelica1 is an open-source

simulation engine based on the Modelica language; it can be interfaced with the Zot

tool described below to create closed-loop simulations of software systems and their

environments [4].

2.2 Zot

Zot2can perform formal verification of models described through temporal logic for-

mulae. More precisely, let us call S the model of the designed system, which corre-

sponds to a set of temporal logic formulae. If S is input to the Zot tool, the latter looks

for an execution trace of the modelled system; that is, for each time instant and for each

predicate appearing in the formulae of S, it looks for an assignment of values which

make the formulae of S true. If no such trace is found (i.e., if the model is unsatisfiable),

then the model is contradictory, meaning that it contains some flaw that makes it unre-

alizable in practice.

1http://openmodelica.org
2github.org/fm-polimi/zot

http://github.org/fm-polimi/zot

3 The TRIO temporal logic language

In this section we provide a brief overview of the temporal logic, called TRIO [1],

which has been used in this work to capture the rules governing the energy management

system. TRIO allows users to express timing properties of systems, including real-time

ones. TRIO adopts a linear notion of time, and can be used to express properties over

both discrete and continuous temporal domains. Table 1 presents some typical TRIO

temporal operators, which are defined in terms of the basic Dist operator, where Dist(φ,

d) means that formula φ holds at the instant exactly d time units from the current one.

Table 1. TRIO temporal operators, including thoseused in the formulae of this paper

Operator Definition Meaning

Futr(φ, d) d> 0 Ʌ Dist(φ, d) Φ occurs d instants in the future

Past(φ, d) d> 0 Ʌ Dist(φ, -d) Φ occurs d instants in the past

Alw(φ) t (Dist(φ, d)) Φ always holds

Lasts(φ, d) (0 <t<d → Futr((φ, t)) Φ holds for the next d time units

Lasted(φ, d) (0 <t<d → Past((φ, t)) Φ helds for the lastd time units

Until(φ,ψ) t (Futr(ψ,t) Ʌ Lasts((φ, t)) Ψ will occur and φ will hold until then

Since(φ,ψ) t (Past(ψ,t) Ʌ Lasted((φ, t)) Ψ occured and φ held since then

4 Case Study: Rooms with Appliances

In this section we briefly describe how the energy management system is captured

through the TRIO temporal logic language. In particular, we focus on an example of

building whose rooms are provided with appliances whose energy consumption needs

to be controlled. The model of the building is fed to the Zot tool to generate traces,

which can then be analyzed to unearth anomalous behaviors. Fig. 1. shows the corre-

sponding Modelica diagram describing the structure and the components of the ana-

lyzed system. The appliances considered are: 1. the Electric Boiler, whose desired tem-

perature is 70°C; 2. the Washer whose desired temperature is 60°C and whose washing

cycle lasts an hour;3. The Bath, which can be used both as shower or as a bath; 4. The

Oven, whose nominal power consumption is 1000W; 5. The DishWasher, whose wash-

ing cycle is an hour and a half; 6. The Refrigerator, whose nominal power consumption

is 90W;7. The HoodCookTop and the Stove, which are used when a user cooks with the

stove and keeps the hood turned on.

These appliances are connected through three different networks: the hydraulic, the

thermal, and the electric network.

In the rest of this section, we present the formulae capturing the behavior of the appli-

ances.

Fig. 1. Diagram describing rooms with appliances

 Electric boiler

For the Electric Boiler, if the water temperature is less than 70°C for 2 minutes, then

the boiler is turned on (represented by predicate boilerOn being true):

 Alw(Lasted(boiler_water_temp< boiler_desired_temp, 2)⇒boilerOn).

If the water temperature is higher than 70°C for 2 minutes, then the controller is turned

off (i.e., “not boilerOn” holds):

 Alw(Lasted(boiler_water_temp> boiler_desired_temp, 2)⇒ ¬boilerOn).

The following formula constrains the difference between the current temperature and

the one at the next minute when the boilers turned on; in particular, the temperature

must increase (i.e., the difference is greater than 0), but by no more than 2 degrees (i.e.,

the difference is less than 3).
Alw(boilerOn ⇒next(boiler_water_temp) - boiler_water_temp> 0 ∧
 next(boiler_water_temp) - boiler_water_temp< 3)

Also after the boiler is turned off, the temperature decreases by with a rate of at most 2

degrees per minute: Alw(¬boilerOn ⇒ next(boiler_water_temp) - boiler_wa-

ter_temp<1∧ next(boiler_water_temp) - boiler_water_temp>-3)

The following formula constrains the range of the temperature to be between -20°C and

100°C: Alw(boiler_water_temp< 101 ∧ boiler_water_temp> -20)

 Washer:

The time washing cycle lasts60 min:

Alw(washer_start⇔Futr(washer_end, 60))

The washer is on between a “start” and an “end” command.

Alw(washer_on⇔Sinceei(¬washer_end, washer_start)

The washer cannot start again until the current cycle has finished.

Alw(washer_start⇒Untilei(¬washer_start, washer_end)

 Dryer :

The model of the dryer is very similar to the one of the washer.

The time spin/dryer cycle is 30 min. Alw(dryer_start⇔ Futr(dryer_end,30))

The dryer is on between a “start” and an “end” command.

Alw(dryer_on ⇔ Sinceei(¬dryer_end, dryer_start)

The dryer cannot not start again until the current cycle has finished.

Alw(dryer_start ⇒ Untilei(¬dryer_start, dryer_end)

 Oven :

If the door of the oven is opened for 2 minutes, the controller is on (i.e., it flashes):

Alw(Lasted(oven_door_open, 2) ⇒oven_door_flash)

 Dishwasher :

The model of the dishwasher is also very similar to the one of the washer and of the dryer.

 Refrigerator :

The model of the refrigerator is similar to the one for the oven; that is, if the refrigera-

tor door is opened for 2 minutes, the controller is on (i.e., it flashes).

5 Conclusion

This paper introduces imulation-based mechanisms based on rules formalized in tem-

poral logic, which can help improve the user’s understanding of modeled systems. The

proposed approach can be used to model (complex) systems and describe their proper-

ties formally; it allows the user to simulate the behavior of the system and verify the

satisfiability of the properties of interest. We exemplified our approach on a case study

concerning the modeling of an energy management system for a building.

References

1. Guian.X , Xu.Z , Jia.Q : Energy efficient building facilitated by micro grid . IEEE Power

and Energy Society General Meetings, 2010.

2. Furia, C., Mandrioli, D., Morzenti, A., Rossi , M : Modelling Time in computing.Springer-

Verlag, 2012.

3. Fritzson.P.: Principles of object-oriented modeling and simulation with Modelica 2.1. John

Wiley and Sons, 2004.

4. Baresi, L., Ferretti, G., Leva, A., Rossi, M : Flexible logic-basedco-simulation of Modelica

models. In: IEEE InternationalConference on Industrial Informatics (INDIN),pp. 635-640

(2012)

Appendix: Example of execution trace of the model

------ time 0 ------

BOILER_WATER_TEMP = 68.0

REF_DOOR_FLASH BOILERON

REF_DOOR_OPEN

------ time 1 ------

BOILER_WATER_TEMP = 70.0

BOILERON

------ time 2 ------

BOILER_WATER_TEMP = 71.0

------ time 3 ------

BOILER_WATER_TEMP = 69.0

REF_DOOR_FLASH

BOILERON

------ time 4 ------

LOOP

BOILER_WATER_TEMP = 70.0

------ time 5 ------

BOILER_WATER_TEMP = 68.0

REF_DOOR_OPEN

------ time 6 ------

BOILER_WATER_TEMP = 66.0

------ time 7 ------

BOILER_WATER_TEMP = 64.0

BOILERON

------ time 8 ------

BOILER_WATER_TEMP = 65.0

BOILERON

------ time 9 ------

BOILER_WATER_TEMP = 66.0

BOILERON

------ time 10 ------

BOILER_WATER_TEMP = 67.0

BOILERON

------ time 11 ------

BOILER_WATER_TEMP = 68.0

BOILERON

------ time 12 ------

BOILER_WATER_TEMP = 69.0

OVEN_DOOR_OPEN

 BOILERON

------ time 13 ------

BOILER_WATER_TEMP = 70.0

BOILERON

------ time 14 ------

BOILER_WATER_TEMP = 71.0

 BOILERON

------ time 15 ------

BOILER_WATER_TEMP = 72.0

OVEN_DOOR_OPEN

BOILERON

------ time 16 ------

BOILER_WATER_TEMP = 73.0

OVEN_DOOR_OPEN

------ time 17 ------

OVEN_DOOR_FLASH

BOILER_WATER_TEMP = 73.0

REF_DOOR_FLASH

------ time 18 ------

BOILER_WATER_TEMP = 71.0

------ time 19 ------

BOILER_WATER_TEMP = 70.0

OVEN_DOOR_OPEN

 REF_DOOR_OPEN

------ time 20 ------

BOILER_WATER_TEMP = 69.0

 REF_DOOR_FLASH

BOILERON

------ end ------

