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ABSTRACT  

The childhood obesity epidemic, that is rapidly increased in most high-income, low- and middle-
income countries, is considered as one of the most serious global public health challenges for the 
21st century. It may be associated with adverse health effects during childhood and an increased 
risk of premature morbidity and mortality later in life. Investigating possible therapeutic strategies 
able to counteract negative effects on child health and the risk of more severe comorbidities during 
adulthood is considered as a major priority. Intensive lifestyle modifications, involving diet, 
physical activity and behaviors are fundamental to achieve this goal. However, the characteristics 
of all intervention components as well as the length, the intensity, and the effectiveness of lifestyle 
interventions may vary largely among studies.  
Additionally, recently a great deal of attention has been focused on the gut microbiota as 
ȃenvironmental factorȄ playing an important role in the development of obesity and its 
complications and several mechanisms able to explain this association have been proposed. This 
evidence needs to be further elucidated because it may have a relevant role in prevention and 
treatment of childhood obesity.  
Lastly, diets high in fruits and vegetables are widely recommended for their health-promoting 
properties, as they are important sources of dietary fiber, vitamins, especially vitamins C and A, 
minerals and phytochemicals, especially antioxidants and polyphenols. It has been suggested that, 
among phytochemicals, salicylic acid may have an important role, being involved in the regulation 
of inflammation, oxidative stress and glucose metabolism. 
The present PhD thesis tried to further elucidate these topics through three different tasks. The 
primary aim of the present PhD thesis was to evaluate whether a 1-year lifestyle intervention, 
based on normocaloric diet, promotion of physical activity and behavior changes, may improve 
obesity, metabolic profile and obesity-related comorbidities, as glucose metabolism alterations, 
hyperlipidemia, prehypertension/hypertension, increased liver echogenicity and metabolic 
syndrome, in a cohort of obese children. Secondary aims were to evaluate qualitatively and 
quantitatively gut microbiota biodiversity in obese and normal-weight children and to compare 
gut microbiota profiles with SCFAs and BMI z-scores to gain insights into the structure and 
activity of the microbiota in pediatric obesity. The tertiary aim was to determine the concentrations 
of serum salicylic acid in a group of obese children, compared to normal-weight children, and to 
evaluate if an association may exist between serum salicylic acid and fruit and vegetable 
consumption. 
Our results confirmed that obesity is associated with detrimental effects on health already during 
pediatric age, thus children may show prehypertension/hypertension, insulin resistance, pre-
diabetes, hyperlipidemia, liver steatosis and metabolic syndrome.  
Moreover, childhood obesity may be associated with changes of some core microbial species, 
preexisting or diet-induced, and these changes may be involved in the etiology of obesity. Among 
these, an alteration of the gut microbiota composition of obese children, characterized by an 
increased abundance of Firmicutes and a decreased abundance of Bacteroidetes, was observed. 
Although beneficial effects of fruit and vegetable consumption are well-known, results from our 
study showed that fruit and vegetable consumption in children was very low, about 50% lower of 
the minimum recommended value by WHO (400 g daily). Furthermore, obese children had lower 
levels of serum salicylic acid than normal-weight children. These results suggest that nutrition 
education towards an adequate fruit and vegetable consumption should be stressed in children. 
Moreover, although the relationship of serum salicylic acid with fruit and vegetables consumption 
did not reach statistical significance both in obese and normal-weight children, promotion of fruit 



and vegetables with higher content of salicylic acid might be considered as part of the nutrition 
counseling for obese children.  
Finally, findings from our longitudinal study clearly highlighted the importance of a 1-year 
lifestyle intervention, based on a normocaloric Mediterranean balanced diet for pediatric age, 
promotion of physical activity and behavior changes, in the improvement of cardio-metabolic risk 
factors and in the reduction of the prevalence of some obesity-related comorbidities, as insulin 
resistance, pre-diabetes, prehypertension/hypertension, hypertriglyceridemia, higher liver 
echogenicity and metabolic syndrome.  
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RIASSUNTO 

La cosiddetta epidemia di obesità in età pediatrica, che è rapidamente aumentata nei Paesi ad alto, 
medio e basso reddito, è considerata uno dei più gravi problemi di salute pubblica del 21° secolo a 
livello mondiale. Questa può difatti associarsi ad effetti negativi sulla salute del bambino e ad un 
aumentato rischio di morbidità e mortalità prematura in età adulta. Pertanto, una delle principali 
priorità della nostra epoca è quella di analizzare le possibili strategie terapeutiche, in grado di 
contrastare gli effetti negativi sulla salute dei bambini e il rischio di comorbidità più gravi durante 
l'età adulta. Per raggiungere questo obiettivo sono fondamentali delle modifiche dello stile di vita, 
che prevedano quindi cambiamenti dell’alimentazione, del livello di attività fisica e dei 
comportamenti. Tuttavia, le caratteristiche specifiche, la durata, l’intensità e l'efficacia degli 
interventi sullo stile di vita possono variare ampiamente tra gli studi. 
Inoltre, recentemente, molta attenzione è stata posta al microbiota intestinale come ȃfattore 
ambientaleȄ in grado di giocare un ruolo importante nello sviluppo dell'obesità e delle sue 
complicanze e sono stati proposti diversi meccanismi in grado di spiegare questa associazione. 
Questo aspetto dovrebbe essere maggiormente approfondito poiché potrebbe avere un ruolo 
rilevante nella prevenzione e nel trattamento dell’obesità pediatrica. 
Infine, le diete che comprendono un’elevata assunzione di frutta e verdura sono ampiamente 
raccomandate per i loro effetti positivi sulla salute, in quanto frutta e verdura rappresentano 
un’importante fonte di fibra alimentare, vitamine, soprattutto vitamina C ed “, sali minerali e 
sostanze fitochimiche, antiossidanti e polifenoli. È stato suggerito che, tra le sostanze fitochimiche, 
l’acido salicilico potrebbe avere un ruolo rilevante, essendo coinvolto nella regolazione 
dell’infiammazione, dello stress ossidativo e del metabolismo glucidico. 
La presente tesi di dottorato ha cercato di chiarire ulteriormente questi argomenti attraverso tre 
differenti studi. L'obiettivo primario è stato quello di valutare se un ȃlifestyle interventionȄ della 
durata di un anno, basato su dieta normocalorica, promozione dell’attività fisica e cambiamenti 
comportamentali, possa determinare un miglioramento dello stato di obesità, un miglioramento 
del profilo metabolico e delle comorbidità associate all'obesità, tra cui eventuali alterazioni del 
profilo glucidico e lipidico, stato di preipertensione/ipertensione, iperecogenicità epatica e 
sindrome metabolica, in una coorte di bambini obesi. Obiettivi secondari sono stati valutare 
qualitativamente e quantitativamente la biodiversità del microbiota intestinale di bambini obesi e 
normopeso e confrontare il profilo degli acidi grassi a corta catena (SCFA) in relazione al BMI z-
score, per ottenere informazioni sulla composizione e l'attività del microbiota intestinale associato 
all’obesità in età pediatrica. Il terzo scopo è stato quello di determinare le concentrazioni di acido 
salicilico sierico in un gruppo di bambini obesi, rispetto ad un gruppo di controllo rappresentato 
da bambini normopeso, e valutare l’eventuale presenza di un’associazione tra acido salicilico 
sierico e consumo di frutta e verdura. 
I nostri risultati hanno confermato che l'obesità in età pediatrica si associa ad effetti negativi sulla 
salute dei bambini, nei quali si possono già manifestare complicanze quali: 
preipertensione/ipertensione, insulino-resistenza, pre-diabete, iperlipidemia, steatosi epatica e 
sindrome metabolica.  
Inoltre, l'obesità in età pediatrica si può associare a cambiamenti della composizione del 
microbiota intestinale, preesistenti o indotti dalla dieta, e questi cambiamenti potrebbero essere 
coinvolti nell'eziologia dell'obesità. Tra questi è stata osservata una alterazione della composizione 
del microbiota intestinale, caratterizzata da aumentati livelli di Firmicutes e ridotti livelli di 
Bacteroidetes.  
Sebbene gli effetti benefici legati al consumo di frutta e verdura siano ben noti, i risultati del nostro 
studio hanno mostrato che il consumo di frutta e verdura nei bambini era molto basso, circa il 50% 



in meno del valore minimo raccomandato dall'OMS (400 g al giorno). Inoltre, i soggetti affetti da 
obesità hanno mostrato livelli inferiori di acido salicilico sierico rispetto ai bambini normopeso. 
Questi risultati suggeriscono la necessità di promuovere maggiormente un adeguato consumo di 
frutta e verdura in età pediatrica. Inoltre, sebbene l’associazione tra acido salicilico sierico e 
consumo di frutta e verdura non abbia raggiunto la significatività statistica in entrambi gruppi, la 
promozione di frutta e verdura con un maggiore contenuto di acido salicilico potrebbe essere 
considerata parte integrante dell’educazione nutrizionale in caso di obesità essenziale.  
Infine, i risultati del nostro studio longitudinale hanno sottolineato l'importanza del ȃlifestyle 
interventionȄ, basato su una dieta equilibrata, normocalorica e di tipo Mediterraneo, sulla 
promozione dell’attività fisica e sui cambiamenti comportamentali, nel miglioramento dei fattori di 
rischio cardio-metabolici e nella riduzione della prevalenza di alcune comorbidità associate 
all'obesità essenziale in età pediatrica, come la resistenza insulinica, il pre-diabete, la 
preipertensione/ipertensione, l’ipertrigliceridemia, l’iperecogenicità epatica e la sindrome 
metabolica. 
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1. INTRODUCTION   



 

 2 

1.1.CHILDHOOD OBESITY 

 

1.1.1. How big is the problem? 

The so-called ȃGlobesityȄ, global epidemic of obesity and being overweight is rapidly becoming a 

major public health problem in many parts of the world, since it represents a risk factor for serious 

noncommunicable diseases (NCDs), including diabetes mellitus, cardiovascular disease, 

hypertension and stroke, and certain forms of cancer [1].  

Of global concern is especially the childhood obesity epidemic that is rapidly increased in most 

high-income as well as low- and middle-income countries [2]. Indeed, the World Health 

Organization (WHO) considers childhood obesity as one of the most serious global public health 

challenges for the 21st century [3]. In absolute numbers more overweight and obese children live 

in low- and middle-income countries than in high-income countries. For example, in Africa the 

number of children who are overweight or obese has nearly doubled since 1990, increasing from 

5.4 million to 10.3 million [2]. On the other hand, although the rise in obesity prevalence in several 

high-income countries might be reaching a plateau, prevalence is historically high and is 

considered as a ȃtime bombȄ for future demands on health services [4]. Estimates suggest that one 

in five children in Europe is overweight and that 400,000 children become overweight each year 

[5].   

In recent years, the worldwide prevalence of childhood overweight and obesity among 

preschool children increased from 4.2% in 1990 to 6.7% in 2010 and is expected that, in 2020, this 

trend will reach 9.1%, or about 60 million of children [6]. However, from the WHO Childhood 

Obesity Surveillance Initiative (COSI) [7] resulted that in some European countries efforts and 

interventions to decrease the prevalence of childhood obesity may have some positive results, 

although small. Effectively, a recent paper, aiming to explore changes in overweight among 6–9 

year-old children, within and across nine countries, from school years 2007/2008 (Round 1) to 

2009/2010 (Round 2), showed that between rounds, countries with higher prevalence of 

overweight in Round 1, for example Italy and Portugal, showed a decrease in prevalence. On the 

other hand, however, countries with lower prevalence in Round 1, for example Latvia and 

Norway, showed an increase in prevalence [7]. However, the prevalence of obesity in these 

children ranged from 6% to 31% in boys and 5% to 21% in girls [7]. The Health Behaviour in 

School-aged Children study in the WHO European Region in 2009–2010 showed that the 



 

 3 

prevalence of overweight and obesity was 11–33% for children aged 11 years, 12–27% for children 

aged 13 years and 10–23% for those aged 15 years [8]. Recently, in Italy data from a national 

surveillance system promoted by the Ministry of Health in 2007, named ȃOKkio alla S“LUTEȄ, 

showed that although in last years there was a slight and gradual reduction of obesity prevalence, 

it remained still high: in 2014 prevalence of overweight and obesity among Italian children aged 8-

9 years was 20.9% and 9.8%, respectively [9].  

 

1.1.2. The economic burden of obesity  

The ancient concept that ȃbigger is betterȄ, with a ȃchubbyȄ child considered as a healthy child is 

now outdated. Indeed, nowadays it is well-known that childhood obesity may be associated with 

adverse health complications and an increased risk of premature morbidity and mortality later in 

life [6]. The increased incidence of comorbidities in obese children is likely to lead to increased 

health-care utilization and expenditures even during the school-age years and adolescence [10]. 

However, the rise in health-care expenditure and utilization also represent a small subset of 

burden that can be attributed to childhood obesity. It is difficult to quantify indirect costs such as 

lost school days and workdays associated with comorbidities of childhood obesity [10]. Since 

obese children are at greater risk of adult obesity [11,12] a portion of economic costs associated 

with adult obesity may also be attributable to childhood obesity [10]. An analysis of the 2001–2003 

Medical Expenditure Panel Survey recognized that obese children had annual total health-care 

expenditures $220 higher than children with a normal BMI [13]. 

 

1.1.3. Definition 

Overweight and obesity are defined as ''abnormal or excessive fat accumulation that presents a 

risk to health'' [14]. A practical and simple approach, providing an acceptable approximation for 

assessment of total body fat, is represented by the body mass index (BMI). BMI is defined as a 

person's weight in kilograms divided by the square of his height in meters (kg/m2). Since during 

childhood bodies undergo several physiological changes as they grow, different methods for the 

measurement of overweight and obesity are available, depending on the age [14]. 
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0-24 months of age 

Up to 24 months of age, overweight and obesity are identified using weight-for-length WHO child 

growth standards [15], according to the following cut-offs:  

 

 

 

2-5 years of age 

Up to age of 5, overweight and obesity are identified using BMI-for-age WHO child growth 

standards [16], according to the following cut-offs: 

 

 

 

5-18 years of age 

Up to age of 18, overweight and obesity are identified using Italian BMI charts [17] or BMI-for-age 

WHO Growth references [18], according to the following cut-offs:  

 

1.1.4. Causes  

In most cases, obesity is the consequence of a chronic imbalance between energy intake and 

energy expenditure, involving many environmental and life-style factors, such as easy access to 

energy-dense foods, increased portion sizes, reduced physical activity and increased time spent in 

sedentary activities. A chronic exposure over time to these adverse factors may potentiate weight 

gain over many years [19].  

Many children today are growing up in an obesogenic environment that stimulates weight gain 

and obesity. Moreover, the behavioral and biological responses of a child to this environment can 

be shaped by processes even before birth, which can increase the risk of obesity if the child faced 

Risk of overweight >85° percentile >1 SD 

Overweight >97° percentile >2 SD 

Obesity > 99° percentile >3 SD 

Risk of overweight >85° percentile >1 SD 

Overweight >97° percentile >2 SD 

Obesity > 99° percentile >3 SD 

 Cacciari, 2006 WHO 2007 

Overweight >75° percentile >85° percentile >1 SD 

Obesity >95° percentile >97° percentile >2 SD 
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with an unhealthy diet and low physical activity [2]. Among factors that should be considered as 

potentially involved in later risk of obesity there are: maternal prepregnancy weight and 

nutritional status, diet and weight changes in pregnancy, gestational diabetes, placental function, 

markers of fetal growth, breastfeeding and general infant feeding, and infant growth [20]. 

Therefore, early nutrition may program obesity and its comorbidities through three hypothesized 

mechanisms that are not mutually exclusive and could have a greater or lesser impact in different 

circumstancesǱ the fuel mediated ȁin uteroȂ hypothesisǲ the accelerated postnatal weight gain 

hypothesis and the mismatch hypothesis [21]. 

The concomitant increased prevalence of obesity in almost all countries seems to be determined 

mainly by changes in the global food system. Indeed, the economic transition observed in the 

world, from the richest countries to those most disadvantaged, also carried with it several 

transitions: demographic transition (younger to older population distribution, rural to urban); 

epidemiological or health transition (infectious diseases to NCDs); technological transition (low to 

high mechanisation and motorisation); and nutritional transition (traditional foods to more 

processed energy-dense foods). Recently, the rate of these transitions has increased so rapidly that 

many countries are faced with the so-called ȃdouble burdens of diseaseȄ [22]. An example is given 

by the double burden of malnutrition, characterized by the coexistence of undernutrition and 

overweight and obesity, or diet-related noncommunicable diseases, within individuals, 

households and populations, and across the life course [23]. Indeed, undernutrition and 

overnutrition may coexist in the same population as well as within the same subject, sometimes, 

because fetal and infant undernutrition may be followed by adult overnutrition with a double 

effect on the later burden of NCDs [22].  

While economic growth is especially important for low-income countries, for high-income 

countries, economic growth and higher gross domestic product determine greater consumption of 

all products, often leading to overconsumption and obesity. Indeed, cheapest food with lower 

nutritional quality, together with the economic forces that drive consumption, contribute greatly 

to the expansion of childhood obesity, while undernutrition remains unresolved [22].  

 

1.1.5. Consequences  

First of all, the main problem of childhood obesity is that an obese child is at greater risk of adult 

obesity, with consequent higher risk of obesity complications and increasing the public health 

burden of adult obesity [19]. However, it is important to note that the obese child is exposed to 
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obesity detrimental effects on health already during childhood, both in the short and long term, 

with an increased risk of insulin resistance, non-alcoholic fatty liver disease (NAFLD), type-2 

diabetes mellitus (T2DM), dyslipidemia, metabolic syndrome, hypertension, obstructive sleep 

apnea, joint problems, gallstones and psychosocial problems [24]. Moreover, obesity is often 

associated with a chronic low-grade inflammation status, a key mechanism linking obesity to its 

systemic complications. Indeed, adipose tissue may be considered as an endocrine organ able to 

secrete and produce inflammatory mediators and especially visceral fat is characterized by 

increased inflammatory profile [25].  

 

1.1.6. What can ȃweȄ do 

With the Action Plan on Childhood Obesity 2014-2020 [26], the European Union Member States 

(EU) want to contribute to halting the rise in overweight and obesity in children and young 

people (0-18 years) by 2020. It is based on eight key areas for action: support a healthy start in life; 

promote healthier environments, especially in schools and pre-schools; make the healthy option 

the easier option; restrict marketing and advertising to children; inform and empower families; 

encourage physical activity; monitor and evaluate; increase research. Likewise, by adopting the 

WHO European Food and Nutrition Action Plan 2015–2020, Member States took a further decisive 

step towards promoting healthy diets and addressing the alarming rates of obesity and 

noncommunicable diseases across Europe [27]. However, as recognized by the Commission on 

Ending Childhood Obesity [2], established in 2014, ȃit is only by taking a multisectoral approach 

through a comprehensive, integrated package of interventions that address the obesogenic 

environment, the life-course dimension and the education sector, that sustained progress can be 

made. This requires government commitment and leadership, long-term investment and 

engagement of the whole of society to protect the rights of children to good health and well-being. 

The Commission believes that progress can be made if all actors remain committed to working 

together towards a collective goal of ending childhood obesityȄ [2]. 

  



 

 7 

1.1.7. References 

 

1. World Health Organization. Controlling the global obesity epidemic. Available online: 
http://www.who.int/nutrition/topics/obesity/en/ 

2. World Health Organization. Report of the commission on ending childhood obesity. Geneva, 
Switzerland 2016. Available online: 
 http://apps.who.int/iris/bitstream/10665/204176/1/9789241510066_eng.pdf  

3. World Health Organization. Childhood overweight and obesity. Available online: 
http://www.who.int/dietphysicalactivity/childhood/en/ 

4. Lobstein T, Jackson-Leach R, Moodie ML, Hall KD, Gortmaker SL, Swinburn BA, James WP, Wang 
Y, McPherson K. Child and adolescent obesity: part of a bigger picture. Lancet. 2015;385:2510-20. 

5. International Diabetes Federation. Access to quality medicines and medical devices for diabetes care 
in Europe. Available online: https://www.idf.org/sites/default/files/FULL-STUDY_0.pdf 

6. de Onis M, Blössner M, Borghi E. Global prevalence and trends of overweight and obesity among 
preschool children. Am J Clin Nutr. 2010;92:1257-64.  

7. Wijnhoven TM, van Raaij JM, Spinelli A, Starc G, Hassapidou M, Spiroski I, Rutter H, Martos É, Rito 
AI, Hovengen R, Pérez-Farinós N, Petrauskiene “, Eldin N, ”raeckevelt L, Pudule I, Kune:ová M, 
Breda J. WHO European Childhood Obesity Surveillance Initiative: body mass index and level of 
overweight among 6-9-year-old children from school year 2007/2008 to school year 2009/2010. BMC 
Public Health. 2014;14:806. 

8. World Health Organization. HEALTH BEHAVIOUR IN SCHOOL-AGED CHILDREN (HBSC) 
study: international report from the 2009/2010 survey - Social determinants of health and well-being 
among young people. World Health Organization 2012. Available online: 
http://www.euro.who.int/__data/assets/pdf_file/0003/163857/Social-determinants-of-health-and-
well-being-among-young-people.pdf 

9. Istituto Superiore di Sanità. Il Sistema di sorveglianza OKkio alla SALUTE: risultati 2014. Available 
online: http://www.iss.it/binary/publ/cont/ONLINE_Okkio.pdf 

10. Trasande L, Chatterjee S. The impact of obesity on health service utilization and costs in childhood. 
Obesity (Silver Spring). 2009;17:1749-54. 

11. Freedman DS, Khan LK, Serdula MK, Dietz WH, Srinivasan SR, Berenson GS. The relation of 
childhood BMI to adult adiposity: the Bogalusa Heart Study. Pediatrics. 2005;115:22-7. 

12. Guo SS, Wu W, Chumlea WC, Roche AF. Predicting overweight and obesity in adulthood from body 
mass index values in childhood and adolescence. Am J Clin Nutr. 2002;76:653-8. 

13. Finkelstein EA, Trogdon JG. Public health interventions for addressing childhood overweight: 
analysis of the business case. Am J Public Health. 2008;98:411-5. 

14. World Health Organization. Global Strategy on Diet, Physical Activity and Health. Available online: 
http://www.who.int/dietphysicalactivity/childhood_what/en/ 

15. World Health Organization. Child growth standards: Length/height-for-age. Available online: 
http://www.who.int/childgrowth/standards/height_for_age/en/ 

16. World Health Organization. Child growth standards: BMI-for-age. Available online: 
http://www.who.int/childgrowth/standards/bmi_for_age/en/   

17. Cacciari E, Milani S, Balsamo A, Spada E, Bona G, Cavallo L, Cerutti F, Gargantini L, Greggio N, 
Tonini G, Cicognani A. Italian cross-sectional growth charts for height, weight and BMI (2 to 20 yr). J 
Endocrinol Invest. 2006;29:581-93. 

18. World Health Organization. Growth reference 5-19 years: BMI-for-age (5-19 years). Available 
Online: http://www.who.int/growthref/who2007_bmi_for_age/en/ 

19. Sabin MA, Kao KT, Juonala M, Baur LA, Wake M. Viewpoint article: Childhood obesity--looking 
back over 50 years to begin to look forward. J Paediatr Child Health. 2015;51:82-6. 

http://www.who.int/nutrition/topics/obesity/en/
http://apps.who.int/iris/bitstream/10665/204176/1/9789241510066_eng.pdf
http://www.who.int/dietphysicalactivity/childhood/en/
https://www.idf.org/sites/default/files/FULL-STUDY_0.pdf
http://www.euro.who.int/__data/assets/pdf_file/0003/163857/Social-determinants-of-health-and-well-being-among-young-people.pdf
http://www.euro.who.int/__data/assets/pdf_file/0003/163857/Social-determinants-of-health-and-well-being-among-young-people.pdf
http://www.iss.it/binary/publ/cont/ONLINE_Okkio.pdf
http://www.who.int/dietphysicalactivity/childhood_what/en/
http://www.who.int/childgrowth/standards/height_for_age/en/
http://www.who.int/childgrowth/standards/bmi_for_age/en/
http://www.who.int/growthref/who2007_bmi_for_age/en/


 

 8 

20. Koletzko B, Symonds ME, Olsen SF; Early Nutrition Programming Project; Early Nutrition 
Academy. Programming research: where are we and where do we go from here?. Am J Clin Nutr. 
2011;94:2036S-2043S. 

21. Koletzko B, Brands B, Poston L, Godfrey K, Demmelmair H; Early Nutrition Project. Early nutrition 
programming of long-term health. Proc Nutr Soc. 2012;71:371-8. 

22. Swinburn BA, Sacks G, Hall KD, McPherson K, Finegood DT, Moodie ML, Gortmaker SL. The global 
obesity pandemic: shaped by global drivers and local environments. Lancet. 2011;378:804-14. 

23. World Health Organization.  Nutrition: Double burden of malnutrition. Available online: 
http://www.who.int/nutrition/double-burden-malnutrition/en/ 

24. August GP, Caprio S, Fennoy I, Freemark M, Kaufman FR, Lustig RH, Silverstein JH, Speiser PW, 
Styne DM, Montori VM; Endocrine Society. Prevention and treatment of pediatric obesity: an 
endocrine society clinical practice guideline based on expert opinion. J Clin Endocrinol Metab. 
2008;93:4576-99. 

25. Tam CS, Clément K, Baur LA, Tordjman J. Obesity and low-grade inflammation: a paediatric 
perspective. Obes Rev. 2010;11:118-26. 

26. European Commission. EU Action Plan on Childhood Obesity 2014-2020. 24 February 2014 [updated 
12 March and 28 July 2014]. Available online: 
http://ec.europa.eu/health//sites/health/files/nutrition_physical_activity/docs/childhoodobesity_actio
nplan_2014_2020_en.pdf 

27. World Health Organization. European food and nutrition action plan 2015-2020. Copenhagen, 
Denmark, 2014. Available online: 
 http://www.euro.who.int/__data/assets/pdf_file/0008/253727/64wd14e_FoodNutAP_140426.pdf 

  

 

  

http://www.who.int/nutrition/double-burden-malnutrition/en/
http://ec.europa.eu/health/sites/health/files/nutrition_physical_activity/docs/childhoodobesity_actionplan_2014_2020_en.pdf
http://ec.europa.eu/health/sites/health/files/nutrition_physical_activity/docs/childhoodobesity_actionplan_2014_2020_en.pdf
http://www.euro.who.int/__data/assets/pdf_file/0008/253727/64wd14e_FoodNutAP_140426.pdf


 

 9 

1.2.METABOLIC AND CARDIOVASCULAR COMPLICATIONS OF CHILDHOOD 

OBESITY 

In parallel with increasing prevalence of childhood obesity adverse implications on health are 

becoming more common in children. Several metabolic and cardiovascular complications of 

obesity start during childhood and are strictly associated with insulin 

resistance/hyperinsulinemia, the most common abnormality of obesity [1].  

 

1.2.1. Insulin resistance 

The number of children and adolescents with clinical signs of insulin resistance (IR) has increased 

significantly, concomitant with the rise in childhood obesity [2]. From the analysis of the US 

NHANES 1999-2002, involving 1802 adolescents without diabetes, it has resulted that insulin 

resistance prevalence was of 52% among obese adolescents [3] while according to a European 

cohort study involving 232 children with excessive body weight, mean aged 11 years, prevalence 

of insulin resistance was 32% among obese children [4]. Indeed, insulin resistance is considered as 

the most frequent metabolic disorder associated with obesity, representing also an important link 

between obesity and other metabolic abnormalities and cardiovascular complications [5]. Among 

these, insulin resistance plays a major role in development of T2DM as the hyperinsulinemic 

subject may develop impaired glucose tolerance (pre-diabetesǼ and, when the pancreatic Ά-cell 

reserve diminishes, T2DM [2]. The term ȃinsulin resistance,Ȅ refers to a whole-body decrease in the 

ability of insulin to stimulate the use of glucose by muscles and adipose tissue and to a reduced 

ability to suppress hepatic glucose production and output [5]. 

Several mechanisms have been described in the pathogenesis of insulin resistance [6]. A first 

mechanism is represented by an altered partitioning of fat between subcutaneous and visceral or 

ectopic sites. Indeed, hypertrophic adipocytes which characterized visceral adipose tissue are 

highly lipolytic, resulting in greater free fatty acids (FFA) release and impaired secretion of 

adipokines into the circulation. “ccording to the ȃportal theoryȄ these FF“s reach the liver 

through the portal vein, developing hepatic insulin resistance, which could be, according to some 

authors, also a consequence of a higher release of inflammatory cytokines by visceral fat into the 

portal vein [6]. Indeed, adipose tissue produces several inflammatory cytokines: e.g. tumor 

necrosis factor-΅ (TNF- ΅Ǽ which can alter insulin action at different levels in the intracellular 

pathway, as well as interleukin-6 (IL-6), another inflammatory cytokine, that stimulates the 
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hepatic production of C-reactive protein, increasing obesity-related inflammation [5]. Another 

theory, the so-called ȃspillover hypothesisȄ suggests that a reduced ability of adipose tissue to 

expand, in response to a positive energy balance, could lead to the deposition of FFA in visceral 

fat and ectopic non-adipose tissues, such as liver, muscle, pancreas, kidney, bone. Since these 

tissues are unable to oxidize FFA, the consequence could be insulin resistance, cell lipotoxicity and 

apoptosis [6]. Moreover, it should be considered that insulin blood levels are due to insulin 

production by pancreas and insulin clearance, mainly by the liver. This process is characterized by 

the uptake and degradation of insulin and is regulated by several factors, including high levels of 

FFAs that can have an inhibitory effect. In obesity, hyperinsulinemia may be the result of an 

increased production of insulin, induced by high fatty acids and glucose, as well as by a decreased 

clearance of insulin by the liver. Indeed, hyperinsulinemia promotes downregulation of insulin 

receptors leading to a decrease of insulin clearance from circulation. The sympathetic nervous 

system (SNS) may have a role too: visceral obesity increases SNS activity and adrenergic outflow 

increasing lypolisis and FFAs influx to the cell [6].  

The gold standard technique to determine whole-body insulin sensitivity is the 

hyperinsulinemic-euglycemic clamp, but this method is expensive and requires considerable time 

and expertise to be performed. Therefore, several surrogate measures have been developed to 

estimate insulin sensitivity and they are usually based on measuring a fasting insulin 

concentration and glucose, supposing that in the euglycemia, insulin secretion will compensate 

for insulin resistance [7]. The homeostatic model assessment of insulin resistance (HOMA-IR) is 

the most widely used surrogate measure of insulin resistance while the quantitative insulin 

sensitivity check index (QUICKI), more difficult to calculate, is considered as a surrogate measure 

of insulin sensitivity [7]. From a study involving pubertal obese children and adolescents, it has 

been suggested that as a measure of insulin resistance among children and adolescents, HOMA is 

more reliable than QUICKI and that, while for adults the HOMA cut-off point is > 2.5, in children 

and adolescents the HOMA cut-off point for diagnosis of insulin resistance is 3.16 [8]. Moreover, 

among healthy Italian children and adolescents percentiles of HOMA-IR and QUICK indexes, 

grouped by sex and pubertal TannerȂs Stage, have been defined [9]. 

Beyond obesity, several risk factors are associated with the development of insulin resistance in 

children and adolescents [10]. First of all, ethnicity and puberty may have a key role: African-

American, Hispanic, Pima Indian, and Asian children are less insulin sensitive compared with 

Caucasian children and during puberty there is a 25–50% decline in insulin sensitivity. 



 

 11 

Concerning the role of visceral obesity, although some authors [5,10,11] have suggested that also 

in the pediatric population visceral fat was associated with insulin level, insulin resistance and 

inversely correlated with insulin sensitivity, in children this association is not so clear and further 

studies are needed. Indeed, from a study involving 30 overweight and obese children, has 

resulted that insulin sensitivity was negatively correlated with subcutaneous adipose tissue and 

liver fat content while, contrary to what is observed in adults, insulin sensitivity was not 

correlated with visceral fat tissue [12]. Genetics and heritability may play a role too: children with 

a family history of T2DM are more likely to be insulin resistant with an impaired balance between 

insulin sensitivity and secretion; genetic heritable variants associated with insulin sensitivity have 

been also discovered [10]. Moreover, it has been observed that intrauterine exposure to poorly 

controlled maternal gestational diabetes increases the risk of obesity, insulin resistance, and 

impaired glucose tolerance in childhood [10]. In the same way, maternal obesity and excessive 

gestational weight gain may increase the risk of obesity and obesity-related metabolic disorders 

later in life [2]. Among postnatal factors, weight at birth may play a key role: children born small 

for gestational age or large for gestational age are both associated with an increased risk of lower 

insulin sensitivity and of T2DM than their peers of normal birth weight. Rapid postnatal weight 

gain is also associated with an increased risk of obesity and insulin resistance in children and 

adolescents [2].  

It is well known that lifestyle and diet have a key role in the prevention of obesity and insulin 

resistance. It has been observed that sedentary lifestyle is associated with decreased insulin 

sensitivity in children and adolescents and that after interventional studies, increased physical 

activity is associated with improvement of insulin sensitivity independent of weight change [2]. 

Concerning dietary factors, the quality of the diet plays an important role in the pathogenesis of 

insulin resistance: diets high in total fat, as well as high intake of sugars, especially from sugar-

sweetened beverages, are related to lower insulin sensitivity. Moreover, a low intake of whole 

grain carbohydrate or dietary fiber is also associated with lower insulin sensitivity. In general, 

evidence has suggested that a ȃfiesternȄ dietary pattern, high in total fat, saturated fatty acids, 

refined grains, and added sugars, is associated with a greater risk of obesity and insulin resistance 

compared with a ȃMediterraneanȄ pattern, including high consumption of vegetables, fruits, 

legumes, fish, and whole grains [2].  

Insulin resistance is associated with other comorbidities (Figure 1) and clinical manifestations. 

Among clinical manifestations, acanthosis nigricans is a thickened and pigmented skin lesion in 
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the flexural areas, usually armpit, posterior region of the neck, groins elbow, and knuckles, and its 

severity correlates well with the degree of insulin resistance. Moreover, insulin resistance is 

present in most cases of polycystic ovary syndrome (PCOS) in adolescent girls, characterized by 

features of ovulatory dysfunction, hyperandrogenism (acne, hirsutism, or alopecia), and 

polycystic ovarian morphology [2]. Insulin resistance is considered as the driving force of fat 

accumulation in the liver and therefore plays a key role in the development of nonalcoholic fatty 

liver disease (NAFLD), which is associated with both central and peripheral insulin resistance [2].  

It is well known that insulin resistance is a key factor for the development of glucose 

metabolism disorders, dyslipidemias and high blood pressure, components of the metabolic 

syndrome, which in turn is a risk factor for the development of T2DM and cardiovascular disease 

[13]. From a cross-sectional study, recruiting 466 obese children and adolescents between 11-13 

years of age, has resulted that higher levels of IR were associated with a greater degree of 

alterations in the components of the metabolic syndrome. This study suggested that increased 

degree of insulin resistance was associated with higher risk of metabolic syndrome among obese 

children and adolescents [13]. Moreover, for what concern insulin resistance, a recent study 

published on Pediatrics [14], has evaluated the association between childhood fasting insulin 

levels and later T2DM. This longitudinal study, based on fasting insulin values of 2478 children 

and adolescents, age 3 to 18 years, and data on adult T2DM, has shown that elevated insulin 

values in children 3- to 6-year-olds were associated with a higher risk for later type 2 diabetes. 

Instead, in 9- to 18-year-olds, elevated BMI, but not insulin, was associated with later type 2 

diabetes [14].  

 

 

 

 

 

 

 

 

Figure 1. Insulin resistance comorbidities 

 



 

 13 

1.2.2. Impaired fasting glucose (IFG), impaired glucose tolerance (IGT) and type 2 diabetes 

mellitus 

Insulin resistance is a risk factor for impaired fasting glucose, impaired glucose tolerance and 

T2DM in childhood, whose prevalence is increasing among obese children and adolescents both in 

United States and Europe [2]. Impaired glucose tolerance and impaired fasting glucose are 

intermediate stages of glucose metabolism alterations between normal glucose homeostasis and 

diabetes. IFG is a measure of impaired glucose metabolism in the fasting state, whereas IGT is a 

dynamic measure of carbohydrate intolerance after a standardized oral glucose tolerance test 

(OGTT) [15]. In obese adolescents, prediabetes is often transient: around 60% of subjects return to 

normal glucose tolerance within 2 years. However, continuous weight gain is a predictor of 

persistent prediabetes and progression to diabetes [15]. 

The prevalence of prediabetes varies greatly between populations. From a cross-sectional study 

investigating the prevalence of IFG in two nationwide cohorts of obese children in Germany and 

Sweden the total prevalence of IFG among obese children according to the American Diabetes 

Association (ADA) criteria was 5.7% and 17.1% in Germany and Sweden, respectively. This study 

also showed that the prevalence increased with age, although IFG was common also among young 

obese children, was higher in boys than girls, and increased with higher degree of obesity [16]. 

With regard to diagnosis of IFG and IGT, in 1997 and 2003, The Expert Committee on Diagnosis 

and Classification of Diabetes Mellitus [17,18] recognized the existence of subjects whose glucose 

levels do not meet criteria for diabetes, although are higher than normal. Therefore, impaired 

fasting glucose is identified for fasting plasma glucose levels of 100 mg/dl (5.6 mmol/l) to 125 

mg/dl (6.9 mmol/l)] while impaired glucose tolerance is characterized by values of 140 mg/dl (7.8 

mmol/l) to 199 mg/dl (11.0 mmol/l)] after 2-h in the OGTT [19] Diagnosis of pre-diabetes can be 

made also by glycated hemoglobin (HbA1c) values between 5.7%-6.4% (39–47 mmol/mol) [19].  

The mechanism behind IFG and IGT is still not fully understood. However, IFG may be 

considered as a prediabetic state characterized by disorder of glucose-sensing organs ǻΆ-cells and 

liver), thus associated to alterations in glucose sensitivity of first-phase insulin secretion and in 

insulin sensitivity of liver glucose output. On the other hand, IGT seems to be characterized by 

impaired peripheral insulin sensitivity and a compensatory increase in basal glucose clearance. 

Finally, a great insulin resistance, associated with an additional defect in Ά-cells may explain the 

combined phenotype IFG/IGT [20]. Longitudinal studies evaluating if insulin resistance predicts 

the development of IGT and T2DM are limited [10]. In this regard, it has been suggested that obese 
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adolescents progressing to IGT show primary defects in Ά-cell function, then exacerbated by a 

progressive decline in insulin sensitivity [21].  

In parallel with childhood obesity epidemic, the prevalence of type 2 diabetes, once thought to 

be an adulthood metabolic disorder, is significantly increased in the pediatric population. From 

epidemiologic studies has resulted that incidence of T2DM in children and adolescents have a 

range of 1-51/1000, depending upon ethnicity [22]. Until 15 years ago, type 2 diabetes was 

associated with less than 3% of all new-onset diabetes in adolescents while at present around 45% 

of cases are ascribed to it [23]. Diabetes may be diagnosed based on the fasting plasma glucose 

(FPG) or the 2-h plasma glucose (2-h PG) value after an OGTT [in children 1.75 g ⁄ kg body weight 

(up to a maximum of 75 g)] or the glycated hemoglobin (A1C) (Table 1) [19]. 

 

Table 1. Criteria for the diagnosis of diabetes [19] 

 

 

 

 

 

 

 

 

 

Diabetes mellitus is a metabolic disease characterized by hyperglycemia resulting from defects 

in insulin secretion, insulin action, or both [24]. T2DM arises when insulin secretion is inadequate 

to meet the increased request due to insulin resistance, leading to relative insulin deficiency [25]. 

Therefore, type 2 diabetes development is progressive and is the consequence of insulin resistance 

and Ά-cell dysfunction. Initially, peripheral insulin resistance is compensated by hyperinsulinemia 

(insulin secretion increases to maintain a normal glucose tolerance) [22]. The ability of the Ά-cell to 

secrete sufficient levels of insulin depends on several factors, including Ά-cell mass and secretory 

capacity, which are influenced by genetic and environmental factors. Afterwards, pancreatic Ά-

cells fall to produce adequate insulin over time, thus leading to hyperglycemia [22,23].  

While in adulthood the transition from prediabetes to type 2 diabetes is usually a gradual 

process that occurs over 5–10 years, it has been suggested that in pediatric age this process is 
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shorter and that the deterioration in Ά-cell function in youth with type 2 diabetes is more 

accelerated than that observed in adults. This observation has also suggested a more aggressive 

course in the development of T2DM in children and adolescents than in adults [23]. 

According to ȃISPAD Clinical Practice Consensus Guidelines 2014 CompendiumȄ [25] 

characteristics of individuals with youth-onset T2DM may include:  

• onset occurring often during the second decade of life, usually concomitant with the peak 

of physiologic pubertal insulin resistance; 

• onset rarely occurring before puberty; 

• family history of type 2 diabetes (first and second degree relatives); 

• ethnicity: much greater prevalence in those of non-White European descent, e.g., those of 

Black African descent, native North American, Hispanic (especially Mexican)-American, 

Asian, South Asian (Indian Peninsula), and Native Pacific islanders; 

• overweight/obesity (not true among Asian population).  

For what concern comorbidities, since their development is time-dependent, the presence of 

T2DM from childhood will probably determine a greater increase of long-term morbidities. It 

should be underlined that the chronic hyperglycemia of diabetes is associated with long-term 

damage, dysfunction, and failure of several organs, especially the eyes, kidneys, nerves, heart, and 

blood vessels [24]. Indeed, poor glycemic control eventually results in serious health complications 

such as retinopathy, neuropathy, nephropathy and cardiovascular disease [22]. In this regard the 

Treatment Options for type 2 Diabetes in Adolescents and Youth (TODAY) study [26], designed to 

primary examine the effect of three different treatments on the durability of glycemic control on 

699 obese participants (10–17 years old) with T2DM, has also observed and described the 

complications and comorbidities of T2DM in these youths. Findings from this study show that 

hypertension was present in 11.6% of the population at baseline and increased to 33.8% by the end 

of the study. Prevalence of high-risk LDL-cholesterol increased from 4.5% at baseline to 10.7% at 

the end of the study. Microalbuminuria was found in 6.3% of the cohort at baseline and increased 

to 16.6%. Retinopathy was observed in 13.9% of the population at the end of the study. These data 

have suggested that in pediatric age complications and comorbidities are similar to that seen in 

adults but their development and onset is more rapid and that these youths may be probably early 

burdened with the consequences of cardiovascular disease, nephropathy, and retinopathy in the 

third and fourth decades of life [26].  
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1.2.3. Atherogenic dyslipidemia 

As a consequence of childhood obesity epidemic, during the last decades the prevalence of 

atherogenic dyslipidemia is increasing among children and adolescents. The atherogenic 

dyslipidemia consists of a combination of hypertriglyceridemia, increased very-low-density 

lipoprotein (VLDL), small dense LDL (sdLDL) particles, and reduced levels of HDL cholesterol, 

thus showing components of the metabolic syndrome [27]. Data from the National Health and 

Nutritional Examination Survey (NHANES III) showed that the prevalence of abnormal lipid 

levels among youths aged 12–19 years was 20.3%. This prevalence was different according to BMI: 

14.2% of normal weight youths, 22.3% of overweight and 42.9% of obese had at least one abnormal 

lipid level [28].   

Acceptable, borderline, and high plasma lipid, lipoprotein, and apolipoprotein concentrations 

(mg/dL) for children and adolescents, according to the Expert Panel on Integrated Guidelines for 

Cardiovascular Health and Risk Reduction in Children and Adolescents, are shown in table 2 [29].  

 

Table 2. Acceptable, borderline-high, and high plasma lipid, lipoprotein, and 
apolipoprotein concentrations for children and adolescents [29] 

 

 

 

 

 

 

 

Although the pathogenetic mechanism of dyslipidemia is multifactorial and still unknown, 

visceral obesity and insulin resistance play a key role one in its development and progression [27]. 

An excessive caloric intake with a consequent excessive weight gain may determine a great 

increase in visceral adiposity, reflecting the inability of the subcutaneous fat to expand its storage 

capacity and resulting in ectopic fat deposition, primarily in the viscera but also in the liver, heart, 

and skeletal muscle [30]. As explained, visceral adipose tissue may be considered as an endocrine 

organ able to produce significant amounts of proinflammatory cytokines, which may interfere 

with normal insulin action in fat and muscle cells, and release great amounts of free fatty acids to 

the liver via the portal vein [30]. Indeed, when insulin resistance is established, fatty acid 

esterification and increased lipolysis are defective. This condition is probably due to the reduced 
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suppression of hormone-sensitive lipase (HSL), usually mediated by insulin, leading to an 

increased mobilization of fatty acids from the visceral adipose tissue. Furthermore, there is a 

decreased clearance of triglycerides (TG)-rich lipoproteins in the circulation due to lipoprotein 

lipase dysfunction. Therefore, the fatty acids flux to the liver is enhanced and associated with 

insulin-stimulated hepatic TG synthesis, leading to increased production of triglycerides and 

VLDL secretion [27]. Insulin resistance alters function of lipoprotein, increasing the risk of 

atherogenesis. Indeed, an entropic mechanism involves TG-rich particles exchanging their TG for 

cholesterol ester via cholesterol-ester transfer protein (CETP) thereby enriching LDL and HDL 

with TG (this process is increased by insulin resistance). Both LDL and HDL become substrates for 

hepatic TG lipase (HTGL), which is upregulated, leading to the formation of small dense LDL and 

small HDL susceptible to degradation (Figure 2) [31].  

 

Figure 2. Lipoprotein metabolism in insulin resistance [31] 
 

The combined dyslipidemia associated with obesity is particularly atherogenic because small 

dense LDL particles are inefficiently cleared by LDL receptors, because elevated circulating LDL 

particles increase the risk of binding at the arterial wall, with higher oxidation susceptibility, and 

because decreased large HDL particles reduce reverse cholesterol transport [32]. In childhood 

obesity the atherogenic dyslipidemia may be associated with structural and functional vascular 

changes, as increased carotid intima-media thickness (cIMT) and increased arterial stiffness [32]. 

Therefore, the atherosclerotic process may begin during childhood thus increasing the risk of early 

cardiovascular events in adulthood. Indeed, it has been observed that high non–HDL cholesterol 

and low HDL cholesterol were associated with autopsy evidence of premature atherosclerosis, as 
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well as high triglycerides and low HDL cholesterol in youth were associated with increased cIMT, 

higher pulse wave velocity, and increased carotid artery stiffness [30]. Clinical events such as 

myocardial infarction, stroke, peripheral arterial disease, and ruptured aortic aneurysm, that occur 

during adulthood, are the end stage of a long vascular process of atherosclerosis. Pathologically, 

the process begins with the accumulation of abnormal lipids in the vascular intima, a reversible 

stage, progresses with the covering of a core of extracellular lipid by a fibromuscular cap, and 

culminates in thrombosis, vascular rupture, or acute ischemic syndromes [29]. 

 

1.2.4. Hypertension  

Hypertension is the leading cause of premature death among adults throughout the world, both 

in developed and developing countries, being associated with increased risk of myocardial 

infarction, stroke, and cardiovascular mortality [33]. Changes in health-related behaviors, 

including the childhood obesity epidemic, are also associated with increasing rates of elevated 

blood pressure among children and adolescents [34]. Indeed, as observed in a NHANES pediatric 

cohort, a strong relationship between blood pressure and BMI exists [35]. Since blood pressure 

varies according to sex, age, ethnicity and degree of obesity, the prevalence of high blood pressure 

levels, and in particular hypertension is highly heterogeneous (7-33%), ranging from 4%–14% in 

overweight children to 11%–33% in obese children [35,36]. “ccording to the ȃFourth Report on the 

Diagnosis, Evaluation, and Treatment of High ”lood Pressure in Children and “dolescentsȄ 

realized by the ȃNational High ”lood Pressure Education Program fiorking Group on High Blood 

Pressure in Children and “dolescentsȄ the definition of hypertension in children and adolescents 

is based on the normative distribution of blood pressure in healthy children. Blood pressure is 

considered as normal if systolic blood pressure (SBP) and diastolic blood pressure (DBP) are 

below the 90th percentile for gender, age, and height. Prehypertension is defined as average SBP 

or D”P levels that are ǃ şŖth percentile but < 95th percentile. However, adolescents with BP levels 

>120/80 mmHg but < 90th percentile should be considered prehypertensive. Finally, hypertension 

is defined as average systolic or diastolic blood pressure ǃ şśth percentile for gender, age, and 

height on at least 3 separate occasions. In this case, hypertension should be staged: stage 1 if BP is 

ǃ şśth percentile but < 99th percentile plus 5 mmHg; stage 2 if blood pressure is ǃ şşth percentile 

plus 5 mmHg. If a patient has blood pressure levels ǃ şśth percentile in a physicianȂs office or 

clinic, but is normotensive outside a clinical setting, has ȃwhite-coat hypertensionȄ [33]. 
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Potential factors involved in the pathophysiology of hypertension in overweight and obese 

children have been widely discussed in a recent systematic review [37]. It has been underlined 

that obesity can determine increased sympathetic nervous system activity and decreased vagal 

activity, thus probably leading to the development of hypertension in obese children. Moreover, 

there seems to be a role for: endocrine determinants, such as renin–angiotensin–aldosterone 

system that plays an important role in blood pressure regulation by inĚuencing the regulation of 

vascular tone and sodium homeostasis; corticosteroids, such as cortisol; and adipokines, such as 

adiponectin, retinol binding protein 4 and visfatin, whose levels can be reduced or increased in 

subjects with obesity [37]. Concerning insulin resistance, although this review [37] did not show a 

clear role of insulin in the development of hypertension, other studies demonstrated that insulin 

resistance per se may determine hypertension influencing sympathetic nervous system activity, 

sodium retention by kidney, and vascular smooth-muscle growth stimulation [38]. Moreover, in 

obese children, disturbed sodium homeostasis may influence blood pressure regulation and thus 

the risk of hypertension. Also oxidative stress, inflammation and endothelial dysfunction may 

play a role in the pathogenesis of hypertension although their role is complex and it is often 

difficult to establish what is the cause and the effect in this relationship. Finally, an association 

between variants of obesity-associated genes and hypertension has been observed [37]. There is 

increasing evidence that maternal malnutrition, gestational diabetes and the exposure to an 

adverse environment during intrauterine life will impact organogenesis, with future consequences 

for adult health. Therefore, higher blood pressure may be also the consequence of an unfavorable 

programming of the child [39].  

Among obese children with prehypertension/hypertension, vascular abnormalities and early 

target organ damage may occur. Indeed, it has been observed that in obese children and 

adolescents, higher blood pressure may be associated with left ventricular hypertrophy (LVH), 

which is the most prominent evidence of target-organ damage, structural changes in forearm 

vessels, carotid intima-media thickness and arterial stiffness. Moreover, higher blood pressure in 

childhood may be associated with alteration in the microvasculature and impaired cognitive 

function [34,39]. Finally, it should be considered that, although uncommon, adolescents with 

severe elevation of blood pressure have increased risk of adverse outcomes, including 

hypertensive encephalopathy, seizures, and even cerebrovascular accidents and congestive heart 

failure [33].   
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1.2.5. Non-alcoholic fatty liver disease (NAFLD) 

NAFLD, considered as hepatic manifestation of metabolic syndrome, is the most common chronic 

liver disease in children of industrialized countries, reaching a prevalence up to 40%-70% in obese 

children [40]. NAFLD includes different diseases ranging from ȁsimpleȂ hepatic steatosis, with 

pathological accumulation of fat in excess of 5% of liver weight, to non-alcoholic steatohepatitis 

(NASH), a liver disease characterized by steatosis and periportal and lobular inflammation, with 

or without fibrosis. The main complication of NAFLD is represented by progression to hepatic 

fibrosis and cirrhosis, characterized by advanced fibrosis with disruption of hepatic architecture 

and regenerative nodules. It should be noted that ȁN“FLDȂ refers to both one sub-group of the 

spectrum and the whole spectrum of disease [41,42].  

NAFLD is associated with both hepatic and peripheral IR [10]. Moreover, it seems that hepatic 

steatosis is both caused by and exacerbates insulin resistance [41]. This relation between insulin 

resistance and NAFLD seems to be, in part, explained by abdominal fat content [10]. Indeed, in 

almost all cases, the initiating factor is the development of excess visceral fat [41], secreting high 

quantity of FFAs in the blood, especially in the presence of a condition of insulin resistance. Then, 

these FFAs are absorbed by liver cell, representing one of the mechanisms that possibly affect 

triglycerides deposition in the liver [43].   

Transformation from NAFLD to NASH has been explained by the so-called ȃtwo hitsȄ 

hypothesisǱ the ȃfirst hitȄ is characterized by intrahepatic accumulation of fatty acids, which 

augments hepatocytes susceptibility to secondary insults, such as oxidative stress, mitochondrial 

dysfunction, overproduction and release of pro-inflammatory cytokines, and endotoxin-mediated 

activation of the innate immune response. This step represents the ȃsecond hitȄ, explaining the 

progression of NAFLD to NASH [44] (Figure 3).  

 

 

Figure 3. The ȃtwo hitsȄ hypothesis [44] 
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Nowadays NAFLD pathogenesis and progression is largely explained by the ȃmultiple-hitȄ 

hypothesis, involving several factors, deriving at the same time from adipose tissue and gut [40]. 

As explained, overeating causes an overload in hepatic fat accumulation that worsens hepatic 

insulin resistance, dysregulating insulin signaling pathways and hormone-sensitive lipase. 

Moreover, the activity of lipoprotein lipase (LPL) in peripheral tissue is inhibited thus leading the 

hepatic uptake of TGs-rich chylomicrons remnants. In this process adipose tissue is a crucial 

player, releasing free fatty acids and secreting pro-inflammatory cytokines, which lead to 

progressive liver damage. Excessive FFA influx to the liver overwhelms the mitochondria and 

causes the accumulation of fatty acids, ceramide and diacylglycerides. Increased beta-oxidation 

may lead to the accumulation of electrons, ROS (reactive oxygen species) production, and cellular 

damage, thus increasing the oxidative stress [40]. 

Beyond glucose and saturated fatty acids, that may regulate de novo lipogenesis, high fructose 

intake plays a key role in NAFLD pathogenesis. Fructose, a highly lipogenic sugar metabolized 

almost totally in the liver via GLUT5, is relatively unregulated by insulin but it can ultimately 

increase insulin resistance. Moreover, it determines increased VLDL production and hepatic fat 

storage. Finally, it may alter the microbiome, which increases the movement of endotoxins into the 

portal system, increasing liver inflammation and IR via Toll-like receptor (TLR)-4 activation. 

Moreover, it has been suggested that Farnesoid X receptor (FXR), a nuclear bile acid receptor, is 

involved in the regulation of insulin sensitivity and NAFLD pathogenesis, as well as, endogenous 

ethanol produced by gut microbiota or resulting from an insulin-dependent impairment of alcohol 

dehydrogenase activity in liver tissue. Others factors involved in the progression of NAFLD are: 

oxidative stress, due to perturbations of iron and copper homeostasis; the ghrelin-ghrelin O-

acyltransferase system, which is involved in IR, lipid metabolism dysfunction, and inflammation; 

low levels of vitamin D; and obesity-related obstructive sleep apnea syndrome (OSAS), a sleep 

disorder that may stimulate progression to steatohepatitis, by a chronic intermittent hypoxia that 

promotes liver inflammation and fibrosis. Finally, liver steatosis may be the result of mutations in 

several genes involved in lipid and glucose metabolism, redox cellular state and inflammation [40]. 

In clinical practice the diagnosis of NAFLD is usually suggested by elevated serum 

hepatobiliary enzymes and/or evidence of a bright liver on ultrasound (US), usually among 

overweight/obese children. However, the sensitivity of alanine aminotransferase (ALT) as 

biochemical marker is low and does not permit to exclude liver steatosis. Accurate noninvasive 

imaging techniques have been developed: US which is safe but unable to quantify steatosis or 
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fibrosis; MRI, not cost-effective, even if it could allow rapid, reproducible measurements of 

steatosis and fibrosis and fibroscan, not yet suitable for widespread use [42].  

According to ESPGHAN guidelines, liver biopsy is required for definitive diagnosis of NAFLD. 

However, indications for liver biopsy are still discussed and it is not proposed for screening, 

because invasive and expensive. Therefore, for clinical purposes, the diagnosis of NAFLD is at 

present usually based on presence of one features of the metabolic syndrome, ultrasound imaging 

of the liver showing liver brightness, and eventually increased transaminase activity. Exclusions of 

other steatotic or nonsteatotic liver diseases are mandatory in pediatrics [42].  

 ȃChronicȄ excessive food intake and sedentary lifestyle, resulting in obesity and insulin 

resistance, are important environmental risk factors associated also with NAFLD pathogenesis 

[45]. In this regard, energy-dense diet of high fat and high fructose in association with a reduced 

physical activity but also sugar-sweetened beverages consumption, especially within a low fiber 

diet, have a highly relevant role [41]. Beyond obesity and diet and sedentary lifestyle, obstructive 

sleep apnea may be another relevant risk factors. NAFLD development is associated also with non-

modifiable risk factors as being male, Hispanic origin, family history of NAFLD or T2DM, parental 

(maternal) obesity, low birth weight and genetic polymorphisms [41]. 

In adults NAFLD is often associated with abdominal obesity, insulin resistance and 

dyslipidemia, all of which are components of metabolic syndrome. Indeed, NAFLD is, nowadays, 

considered as the liver manifestation of metabolic syndrome [46]. Emerging data suggest that also 

in children metabolic syndrome may be associated with NAFLD. Indeed, a study including 254 

children and adolescents, aged 6-17 years, has shown that metabolic syndrome is prevalent among 

children with NAFLD and is associated with severity of steatosis, hepatocellular ballooning, NAS, 

NAFLD pattern, and the presence of advanced fibrosis, evaluated through liver biopsies [47]. 

However, the concept that NAFLD is the liver manifestation of the metabolic syndrome may be 

outdated [48]. Indeed, in pediatric age it has been suggested that a vicious circle between NAFLD 

and metabolic syndrome exists [49] (Figure 4).   
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Figure 4. The vicious circle between NAFLD and metabolic syndrome [49] 
 

1.2.6. Metabolic syndrome  

Metabolic syndrome is a cluster of cardiovascular risk factors, as hypertension, altered glucose 

metabolism, dyslipidemia, and abdominal obesity, which increases the risk for cardiovascular 

disease (CVD) and type 2 diabetes mellitus [50]. First defined as ȁȁa link between insulin resistance, 

hypertension, dyslipidemia, impaired glucose tolerance and other metabolic abnormalities 

associated with an increased risk of athero-slerotic cardiovascular diseases in adultsȂȂ [38] 

metabolic syndrome prevalence is increased also among children and adolescents during last 

decades. Evaluating the prevalence of metabolic syndrome in children is controversial because 

more than ŚŖ definitions have been proposed and none of these is ȃuniversally acceptedȄ [51]. 

Differences among definitions consist of different components measured, different threshold 

values and essential criterion used [52]. However, some common features include the estimation of 

obesity (usually by body mass index (BMI) or waist circumference), the measurement of blood 

pressure, blood lipids (usually triglycerides, HDL cholesterol or LDL cholesterol], and risk factor 

associated with diabetes (fasting glucose, glucose tolerance or insulin) [51]. Among different 

criteria, those more used (with or without modification) are the International Diabetes Federation 

ǻIDFǼ, National Cholesterol Education ProgramȂs “dult Treatment Panel III ǻ“TPǼ, and fiorld 

Health Organization (WHO) criteria [52].  

The IDF definition of metabolic syndrome [53] is different according to ages. Indeed, there are 

three age groups ǻŜ to < ŗŖ, ŗŖ to < ŗŜ, and ǃ ŗŜ yrǼ and in all of them abdominal obesity is the ȁsine 

qua nonȂ criterion. ”elow the age of ŗŖ years, the metabolic syndrome is not diagnosed, from ŗŖ to 
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16 years the diagnosis of metabolic syndrome requires the presence of abdominal obesity (waist 

circumference greater than or equal to the 90th percentile or adult cut off if lower) plus the 

presence of two or more of the other 4 criteriaǱ triglycerides ǃ ŗśŖ mg/dL, HDL-cholesterol < 40 

mg/dL, systolic blood pressure ǃ ŗřŖ or diastolic blood pressure ǃ Şś mmHg, and fasting plasma 

glucose ǃ ŗŖŖ mg/dL or or known TŘDM. Finally, in adolescents aged ǃ ŗŜ years the IDF adult 

criteria can be used. Another relevant criterion used in children and adolescents aged between 12 

and 19 years is the National Cholesterol Education Program/Adult Trial Panel III as modified for 

adolescents [54]. The diagnosis of metabolic syndrome requires the presence of three or more of 

the criteria: waist circumference greater than or equal to the 90th percentile, level of triglycerides ǃ 

110 mg/dL, HDL-C level ǂ ŚŖ mg/dL, systolic or diastolic blood pressure ǃ the şŖth percentile for 

age, sex, and height, and fasting plasma glucose ǃ ŗŗŖ mg/dL [54]. Finally, considering WHO 

diagnostic criteria, the diagnosis of metabolic syndrome requires the presence of impaired glucose 

tolerance or impaired fasting glucose or insulin resistance plus the presence of two or more of the 

other criteria: waist circumference or BMI above the 95th or 97th percentile, HDL cholesterol level 

<5th percentile, level of triglycerides > 95th percentile and blood pressure above the 95th percentile 

[52].  

On the basis of these three criteria (with or without modifications) a systematic review [52], 

including 85 papers, highlighted that the median prevalence of metabolic syndrome among 

overweight and obese children was 11.9% and 29.2%, respectively. Moreover, the median 

metabolic syndrome prevalence was higher in older children (5.6 %) than younger children (2.9 %) 

and was higher in boys (5.2 %) than girls (3.1 %) [52], as confirmed also by the 2014 NHANES 

report [55] on the metabolic syndrome in adolescents showing a prevalence of metabolic syndrome 

of 7.9 % in boys compared with 6.7 % in girls. Therefore, concerning gender, the prevalence of 

metabolic syndrome tends to be higher in boys than in girls, irrespective of the criteria used; while, 

concerning pubertal status, metabolic syndrome prevalence seems to be higher in pubertal 

children than prepubertal [51]. However, it should be considered that the prevalence of metabolic 

syndrome in children is highly variable according to the criteria used. Nowadays there is not 

agreement on this topic, although some promote the use of IDF criteria.  

As previously explained insulin resistance is highly involved in the pathogenesis of the 

metabolic syndrome and specifically may have a direct effect on the single components of the 

syndrome [13]. Along with insulin resistance, metabolic syndrome in children is associated with a 

proinflammatory state, although it is not yet known if this state is a consequence of metabolic 
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syndrome and insulin resistance or if, viceversa, the increase release of inflammatory cytokines 

from adipose tissue may be partly responsible for insulin resistance and metabolic syndrome [38]. 

Furthermore, it has been recently suggested that probably the partitioning of adipose tissue, which 

refers to the distribution of body fat, is the major link between insulin resistance, NALD and 

metabolic syndrome in obese children [38]. Indeed, usually, excess fat is stored in subcutaneous 

depots but it may also be stored in intra-abdominal (visceral) adipose tissue, muscle and liver 

(altered lipid partitioning). Lipid accumulation in these tissues is associated with a metabolic 

profile characterized by elevated free fatty acids and inflammatory cytokines with reduced levels 

of adiponectin. This combination can independently lead to peripheral insulin resistance and to 

endothelial dysfunction, thus driving the development of altered glucose metabolism and of 

cardiovascular disease (Figure 5) [50].  

 

Figure 5. A hypothesized mechanism linking obesity and metabolic syndrome [50] 
 

As explained for single components, the quality of the diet plays a key role in the pathogenesis 

of the metabolic syndrome by increasing hepatic insulin resistance and/or increasing ROS 

formation [50]. It has been observed that higher intake of nonroot vegetables, higher consumption 

of sugar-sweetened beverages, higher consumption of low-fat vegetable-oil-based margarine, and 

lower consumption of vegetable oils were associated with a higher metabolic risk [51]. Moreover, it 

has been observed that rapid BMI gain in childhood and adolescence and earlier adiposity 

rebound are associated with adult metabolic syndrome [56,57].  

Finally, there are some issue about the concept of and the application of metabolic syndrome to 

pediatric age. Firstly, cut points may be difficult to apply in the pediatric population given the 
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fluctuations associated with growth and puberty [51,58]. Moreover, ethnic differences make a 

single definition questionable for metabolic syndrome. Finally, the clinical utility of the metabolic 

syndrome in children continues to be debated, especially if the patients are still treated for the 

individual risk factors. However, it has been recognized that modeling the metabolic syndrome 

allows clinicians to see how the risk factors cluster together differently in different populations of 

children, thus better understanding the underlying pathophysiologic processes [51].  
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1.3.THE ROLE OF DOCOSAHEXAENOIC ACID IN OBESITY AND RELATED 

DISEASES 

The role of docosahexaenoic acid (C22:6 n-3, [DHA]), a long chain polyunsaturated fatty acid, in 

obesity and obesity-related metabolic comorbidities has been largely discussed in the following 

published reviews, considering its possible association with obesity and metabolic syndrome and 

its role in NAFLD treatment.  
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Abstract: Prevalence of metabolic syndrome is increasing in the pediatric population. 

Considering the different existing criteria to define metabolic syndrome, the use of the 

International Diabetes Federation (IDF) criteria has been suggested in children. 

Docosahexaenoic acid (DHA) has been associated with beneficial effects on health. The 

evidence about the relationship of DHA status in blood and components of the metabolic 

syndrome is unclear. This review discusses the possible association between DHA content 

in plasma and erythrocytes and components of the metabolic syndrome included in the IDF 

criteria (obesity, alteration of glucose metabolism, blood lipid profile, and blood pressure) 

and non-alcoholic fatty liver disease in obese children. The current evidence is inconsistent 

and no definitive conclusion can be drawn in the pediatric population. Well-designed 

longitudinal and powered trials need to clarify the possible association between blood 

DHA status and metabolic syndrome. 

Keywords: metabolic syndrome; obesity; DHA; n-3 LCPUFA; glucose metabolism; lipid 

profile; blood pressure; NAFLD 
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1. Introduction 

Childhood obesity is one of the most pressing public health issues [1] and a major risk for adult 

obesity and related comorbidities [2], which may already develop during pediatric age, such as insulin 

resistance, non-alcoholic fatty liver disease (NAFLD), type-2 diabetes mellitus (T2DM), dyslipidemia, 

hypertension, metabolic syndrome (MS), obstructive sleep apnea, joint problems, gallstones, and 

psychosocial problems [3]. 

There has been a marked increase in the prevalence of both obesity and metabolic syndrome in 

children over the past decades [4]. Metabolic syndrome is defined as a cluster of cardiovascular and 

type-2 diabetes risk factors, as hypertension, altered glucose metabolism, dyslipidemia, and abdominal 

obesity [5]. More than 40 definitions have been proposed to define metabolic syndrome and none of 

these is “universally accepted” [6]. However, some common features include the assessment of obesity 

(usually through body mass index (BMI) or waist circumference), the measurement of blood pressure 

and blood lipids (usually triglycerides (TG), high-density lipoprotein (HDL) cholesterol or low-density 

lipoprotein (LDL) cholesterol), and evaluation of risk factors associated with diabetes (fasting glucose, 

glucose tolerance and insulin resistance) [6]. 

Among different criteria to define metabolic syndrome in children, International Diabetes 

Federation (IDF), National Cholesterol Education Program’s Adult Treatment Panel III (ATP), and 

World Health Organization (WHO) criteria (with or without modification) are the most used [7]. 

Although there is no agreement on what criteria to use, recently the use of IDF-based criteria has been 

suggested [7]. The IDF definition of metabolic syndrome [8] in childhood is different according to age 

(6 to <10, 10 to <16, and ≥16 years). Below the age of 10 years the metabolic syndrome is not 

diagnosed; from 10 to 16 years the diagnosis requires the presence of abdominal obesity (waist 

circumference greater than or equal to the 90th percentile) plus the presence of two or more of: blood 

level of triglycerides ≥150 mg/dL, level of HDL-cholesterol <40 mg/dL, systolic blood pressure ≥130 

or diastolic blood pressure ≥85 mmHg, and fasting plasma glucose ≥100 mg/dL or known T2DM.  

In adolescents aged ≥16 years the IDF adult criteria can be used [8]. 

The prevalence of metabolic syndrome in children is highly variable according to the criteria used. 

A systematic review of studies using one of the main three criteria (IDF, ATP III, WHO) to define  

MS [7], highlighted that the median prevalence of metabolic syndrome was 3.3% in the whole 

population of children while it was 11.9% and 29.2% in overweight and obese children, respectively. 

Moreover, the median metabolic syndrome prevalence was higher in older (5.6%) than younger 

children (2.9%) and was higher in boys (5.2%) than girls (3.1%) [7]. Similar results were published in 

National Health and Examination Survey (NHANES) report [9] showing a metabolic syndrome 

prevalence in adolescents of 7.9% in boys compared to 6.7% in girls. Moreover, the prevalence of 

metabolic syndrome tends to be higher in pubertal than prepubertal children [6]. 

Finally, the link between metabolic syndrome and NAFLD should be evaluated. Indeed, in parallel 

to the rising epidemic of metabolic syndrome, also the prevalence of NAFLD has increased [10]. 

NAFLD is also often associated with clinical and biochemical features of metabolic syndrome [11] in 

children [12]. Although NAFLD might be considered the liver manifestation of the metabolic 

syndrome, this concept may be outdated [11]. A vicious cycle between NAFLD and metabolic 

syndrome could exist in pediatric age [13]. A recent review suggested that NAFLD is a determinant for 



Int. J. Mol. Sci. 2015, 16 19991 

 

 

the onset of the metabolic syndrome and, therefore, a precursor [11]. Therefore, although to date 

NAFLD is not a component of the diagnostic criteria for metabolic syndrome its importance needs to 

be stressed [11,14]. 

2. Docosahexaenoic Acid: Metabolism and Properties 

Long chain n-3 polyunsaturated fatty acids (n-3 LCPUFAs) are long chain fatty acids (20 carbons or 

more), with the first double bond located after the third carbon from the methyl end [15]. Together 

with eicosapentaenoic acid (C20:5 (n-3), EPA) and docosapentaenoic acid (C22:5 (n-3), DPA), 

docosahexaenoic acid (C22:6 (n-3), DHA) is a main n-3 LCPUFAs in food sources [16]. Alfa-linolenic 

acid (C18:3 (n-3), ALA), an essential dietary fatty acid that cannot be synthesized in humans, is the 

precursor of all n-3 LCPUFAs [4]. Humans can convert ALA to EPA and DHA, but, since conversion 

efficiency is low, an adequate dietary intake is required [16]. 

Significant amounts of EPA and DHA characterize fish and derivative fish oil, especially salmon, 

tuna, mackerel, anchovy, and sardines, while ALA can be found in vegetable oils [4]. Moreover, DHA 

is found in human milk and it is necessary for optimal development of the brain and the retina of  

the infant [16]. However, DHA content in human milk varies substantially depending on the  

maternal intake of DHA, genetics, and other environmental factors [17], such as maternal smoking 

during pregnancy [18]. 

EPA and DHA intake through the diet increases the n-3 LCPUFA content of phospholipids, the 

main component of the cell membrane, also reducing arachidonic acid (AA) levels [15]. Fatty acids in 

erythrocyte are considered as the most reliable markers of habitual dietary intake of n-3 LCPUFAs, 

reflecting the intake over several months [19]. Fatty acids in plasma phospholipids reflect the intake 

over a relatively short period [19]. However, plasma phospholipids may reflect the fatty acids 

composition of erythrocyte lipids [20] and, in turn, erythrocyte fatty acids composition may reflect the 

fatty acids (especially PUFAs) composition of muscle membrane phospholipids [21]. 

n-3 LCPUFAs are associated with health benefits. EPA and DHA are essential for optimal fetal 

development and healthy aging [22], constitute phospholipids of most biological membranes with a 

relevant role in structure and function [16], have anti-inflammatory properties and modulate viscosity 

of cell membranes [22], and contribute to membrane fluidity, which can influence the function of 

membrane receptors [16]. Moreover, EPA and DHA are the precursors of numerous metabolites that 

function as lipid mediators with a plausible beneficial role in the prevention or treatment of several 

diseases [22]. Series D resolvins and protectins, two active metabolites derived from DHA, may 

modulate the inflammatory response by decreasing cytokine production and promoting the resolution 

of inflammation [23]. These metabolites could have a potential and important role in metabolic 

syndrome since a low-grade inflammation characterizes this condition [24]. It has been suggested that 

reducing the ratio of n-6/n-3 PUFA in diet (currently estimated about 10:1 in the Western diet), the risk 

factors of metabolic syndrome could be reduced [25]. However, the evidence about the relationship of 

n-3 PUFAs and components of the metabolic syndrome is inconsistent [26]. 
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Topic of Review 

This paper reviews the literature published in the last decade and discusses the relationships of 

blood DHA with each component of IDF criteria for metabolic syndrome (obesity, alteration of 

glucose metabolism, blood lipid profile and blood pressure) and NAFLD in obese children. 

3. Childhood Obesity: Relationship between DHA Content in Plasma and in Erythrocytes and 

Metabolic Syndrome Criteria and NAFLD 

3.1. Obesity 

Abdominal obesity, rather than obesity, can predict the presence of insulin resistance and related 

metabolic syndrome [27]. A systematic review and meta-analysis [28], including a total of 21 studies 

(11 conducted in childhood) for a total of 1575 participants, was performed in order to evaluate 

LCPUFA status in blood in overweight/obese subjects. Compared with healthy controls, overweight/ 

obese subjects showed lower DHA levels in total plasma lipids but no difference was found in plasma 

phospholipid and plasma cholesteryl ester fraction, suggesting that DHA deficiency might be not 

systemic [28]. 

Only a few studies have been conducted considering DHA status in blood among the obese 

pediatric population [29–36]. A case-control study on 67 normolipidemic obese children, aged  

8–12 years, and 67 age- and sex-matched normal-weight children, observed that obese children 

showed significantly lower levels of DHA/ALA ratio in total plasma fatty acids compared to  

normal-weight controls [29]. Moreover obese children in the highest quartile of BMI z-score showed 

lower levels of DHA, DHA/AA, and DHA/ALA ratios than normal-weight children, despite a higher 

dietary PUFAs intake, suggesting a metabolic dysfunction in the synthetic pathway of the n-3 series in 

severely obese children [29]. Saito et al. [30] assessed the analysis of fatty acid composition of plasma 

phospholipids in 32 obese children and found an inverse association (almost statistically significant) of 

DHA content with BMI. Similarly, a study found that 60 overweight adolescents had lower total n-3 

PUFA and DHA concentrations in plasma phospholipids, compared to normal-weight controls [31]. 

Another study conducted on adolescents, showed that obese girls, but not boys, had lower 

concentrations of n-3 PUFAs, including DHA in plasma phospholipids compared to normal-weight 

controls, and that DHA was inversely associated with all fat depots, measured by magnetic resonance 

imaging, except visceral adipose tissue, both in girls and in boys [32]. Furthermore, in another study, 

obese children showed after one year of nutritional-behavioral intervention a decreased BMI z-score of 

12.3% and increased plasma levels of DHA and DHA⁄AA ratio, compared to baseline, with a 

consequent disappearance of the difference for DHA⁄AA ratio between obese children and  

normal-weight controls [33]. It should be interestingly noted that in this study, whereas the plasma 

PUFA increased after one year, the dietary PUFA intake decreased [33]. However, further studies are 

needed to better clarify the role of dietary change on specific plasma fatty acid in obese children. On 

the contrary, a study performed on obese prepubertal children with metabolic syndrome showed higher 

levels of DHA in total plasma lipids, compared to normal-weight controls while no difference was 

observed in plasma phospholipid and plasma cholesteryl ester fraction [34]. Another study found no 
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difference in total plasma lipid levels of DHA between obese children and normal-weight  

controls [35]. 

Moreover, in a recent study, 33% of obese children showed an n-3 index (calculated by adding 

EPA% and DHA% (weight/weight) values) <4.0 (associated to high risk of cardiovascular disease) in 

erythrocytes compared to 17% of non-obese children, suggesting that obese children may have an 

altered erythrocyte fatty acid composition [36]. 

As a whole, several discussed studies found blood DHA may be lower in obese children and 

negatively associated with the degree of obesity, but further studies are needed to better understand the 

relationship between DHA status and obesity. 

3.2. Glucose Metabolism Alterations 

An important key factor in the pathogenesis of metabolic syndrome is insulin resistance [37], a 

whole-body decrease in the ability of insulin to stimulate the use of glucose by muscles and adipose 

tissue and to suppress glucose production in the liver [38]. Prevalence of insulin resistance has 

increased significantly in children in the last three decades [39]. Indeed, the analysis of the US 

NHANES 1999–2002, involving 1802 adolescents without diabetes, has shown that insulin resistance 

prevalence was 52% among obese children [40]. A marked increase of the prevalence of pre-diabetic 

stages’ conditions and type 2 diabetes mellitus among obese children and adolescents has also been 

observed [39]. 

Low levels of LCPUFAs, especially DHA, and a high n-6/n-3 LCPUFA ratio in skeletal muscle 

membrane phospholipids have been associated with insulin resistance in adults [41]. Moreover, 

membrane flexibility, determined by the polyunsaturated fatty acid/saturated fatty acid (PUFA/SFA) 

ratio, could impact on the effectiveness of glucose transport by insulin-independent glucose 

transporters (GLUTs) and the insulin-dependent GLUT4 [42]. 

Literature concerning blood DHA status in the pediatric obese population is scanty [30–33,43,44]. 

In obese children, DHA content in plasma phospholipids was not associated with parameters of 

glucose metabolism as fasting glucose, fasting insulin, and homeostasis model assessment-insulin 

resistance (HOMA-IR) [30]. The lack of association between plasma DHA levels and HOMA-IR was 

confirmed in other different studies [31,33]. On the contrary, a study found that DHA in plasma 

phospholipids was inversely associated with serum insulin and HOMA ȕ-cell function [32] and other 

studies conducted on obese children showed that HOMA-IR was negatively associated with DHA in 

plasma phospholipids [43,44]. 

On the whole, the evidence from existing literature is not conclusive about the association between 

DHA status in blood and glucose metabolism alterations in obese children. However, it should be 

pointed out that breastfeeding, as the best feeding practice in early life, could have a protective role on 

glucose metabolism derangements [45,46], possibly also involving DHA in breast milk [18,45]. 

Indeed, fatty acids composition of breast milk, including DHA, may increase LCPUFAs in skeletal 

muscle membranes protecting against insulin resistance, ȕ-cell failure, and type-2 diabetes [18,45]. 
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3.3. Abnormal Blood Lipid Profile 

The alterations of blood lipid profile associated with metabolic syndrome are usually characterized 

by increased triglycerides, very-low-density lipoproteins (VLDLs), small dense LDL particles, and 

reduced HDL cholesterol levels [47,48]. Visceral obesity and insulin resistance could be key factors 

involved in the promotion of atherogenic dyslipidemia by increasing the synthesis of TG-rich VLDLs 

in the liver [4]. 

In adults, increased plasma levels of EPA and DHA might be inversely associated with the risk of 

the progression of coronary atherosclerosis, sudden cardiac death, and coronary heart disease, clinical 

conditions related to risk factors for cardiovascular disease, including dyslipidemia [49]. 

The possible relationships of DHA with blood lipid profile have been poorly investigated in the 

pediatric population [30,31,33]. A study performed on 32 obese children showed that plasma 

phospholipids’ DHA content was negatively associated with VLDL-triglyceride, a major factor 

involved in the development of metabolic syndrome [30]. A cross-sectional study did not find any 

associations of DHA in both plasma phospholipids and cholesteryl esters with parameters of blood 

lipid profile in overweight adolescents, while the PUFA/SFA and linoleic acid levels in plasma 

phospholipids were positively associated with HDL cholesterol [31]. Another study, analyzing  

total plasma fatty acids on 57 normolipidemic obese children, concluded that after one year of  

nutritional-behavioral intervention changes in plasma DHA and DHA/AA ratio (both increased) were 

inversely associated with changes in plasma total TGs [33]. 

In conclusion, association between plasma DHA levels and blood lipid profile alterations in 

pediatric obese population is inconsistent. 

3.4. Blood Pressure Alterations 

The prevalence rates of hypertension and obesity are increasing worldwide in children [50]. The 

blood pressure lowering effect of DHA, observed in adults, could be mediated by the adenosine 

triphosphate (ATP) release from the endothelium, which increases vasodilation by stimulating the 

release of nitric oxide, and by the decrease in noradrenaline levels [51]. 

To our knowledge, only one study evaluated the association between DHA status in blood and 

blood pressure in obese children. This study, analyzing plasma fatty acid composition in 60 overweight 

adolescents found that DHA status was not associated with systolic blood pressure [31]. 

Regarding breastfeeding, a systematic review stated that breastfeeding has a small protective effect 

against high systolic blood pressure, although residual confounders had to be eliminated [45]. One of 

the plausible mechanisms that has been suggested to explain this protective effect is represented by the 

presence of LCPUFAs, including DHA, which are important structural components of the vascular 

endothelium [45]. In a multicenter, randomized, controlled trial, children fed with a formula 

supplemented with LCPUFAs (mainly DHA and EPA) showed at age 6 years lower blood pressure 

than children fed with a formula without LCPUFAs [52]. 

In conclusion, while in adults an association of DHA status with blood pressure has been observed, 

in obese children the literature is limited and further longitudinal studies would be desirable. 
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3.5. NAFLD (Non-Alcoholic Fatty Liver Disease) 

In children of industrialized countries, NAFLD is the most common chronic liver disease, reaching 

a prevalence up to 80% in obese or overweight children [53]. NAFLD includes different diseases 

ranging from “simple” liver steatosis, with pathological accumulation of fat in excess of 5% of liver 

weight, non-alcoholic steatohepatitis (NASH), with different degree of inflammation and fibrosis, to 

end-stage liver disease with cirrhosis and hepatocellular carcinoma [54]. 

Obese adults with NAFLD showed lower levels of n-3 LCPUFAs, EPA, DHA, and a higher n-6/n-3 

ratio in liver than controls [55]. Lower n-3 LCPUFA levels in liver have also been associated with 

lower levels in erythrocyte phospholipids [56]. The low n-3 LCPUFA levels in liver, by promoting  

the synthesis of fatty acids and triglycerides with parallel imbalance in the oxidation of fatty acids  

and export of triglycerides from the liver, could determine fat accumulation and promote liver  

steatosis [55,57]. To our knowledge there are no studies investigating the association between fatty 

acids composition of liver phospholipids, and especially liver levels of DHA, and NAFLD in obese 

children. Only one study showed that in obese children with single-nucleotide polymorphism (SNP), 

276G>T at adiponectin gene, the increased liver echogenicity could be associated with higher levels of 

n-6 PUFA in plasma phospholipids (unpublished results, presented at 44th ESPGHAN Annual 

Meeting, Sorrento) [58]. However, some trials evaluated the effect of DHA supplementation on 

pediatric NAFLD [59,60]. A reduced liver hyperechogenicity was observed in children with NAFLD 

after DHA supplementation for 6, 12, 18, and 24 months [59]. After 18 months of DHA treatment an 

improvement of histo-pathological parameters (NAFLD activity score, ballooning, and steatosis) has 

been also observed [60]. 

Only one study has evaluated the association between breastfeeding and NAFLD in children. This 

retrospective study suggested that breastfeeding might be protective against NASH and liver fibrosis, 

suggesting a long-lasting effect of breast milk DHA [61]. The authors speculated that DHA,  

supplied by breast milk, could be protective, acting as a peroxisome proliferator-activated receptors  

(PPAR)-agonist,  a transcription factor involved in protection against fibrosis [61,62]. 

In conclusion, further studies are needed to evaluate the existence of a relationship between DHA 

status in blood and NAFLD in children and to confirm the protective role of DHA in breast milk 

against NAFLD progression. 

4. Discussion and Conclusion 

The metabolic syndrome, considered in the past as an adulthood disorder, also affects children with 

increasing prevalence [4,5]. 

DHA has been associated with beneficial effects on health and in treatment of several diseases [22], 

such as cardiovascular disease, cancer, inflammatory, thrombotic and autoimmune disease, coronary 

heart disease, hypertension, and type-2 diabetes, in adults [16]. The reduction of dietary n-6/n-3 PUFA 

ratio could reduce risk factors associated with metabolic syndrome [25,63]. 

Table 1 summarizes the observed relationship between DHA content in plasma and erythrocytes 

and components of IDF criteria for metabolic syndrome in obese children. The current evidence  

is inconsistent and no definitive conclusion can be drawn in the pediatric population. Further  
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well-designed studies are needed to evaluate a possible role of DHA supplementation as a prevention 

strategy of obesity-related comorbidities in childhood. 

Table 1. DHA status in blood and components of IDF criteria for metabolic syndrome in 

obese children. 

Metabolic Syndrome Components [Ref] Blood DHA Status 

Obesity [29–36] 

DHA content is lower in obese children and 

negatively associated with the degree of 

obesity, except for two studies [34,35] 

Glucose metabolism alterations [30–33,43,44] Inconsistent results 

Abnormal blood lipid profile [30,31,33] Inconsistent results 

Blood pressure alterations [31] None association with systolic blood pressure 
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EDITORIAL Open Access

Docosahexaenoic acid and non-alcoholic fatty
liver disease in obese children: a novel approach?
Elvira Verduci1,2*, Carlotta Lassandro1,2, Giovanni Radaelli1,2 and Laura Soldati2

Abstract

Non-alcoholic fatty liver disease represents the most common chronic liver disease in obese children of industrialized

countries. Nowadays the first line of treatment of pediatric non-alcoholic fatty liver disease is based on dietary and

lifestyle intervention; however compliance to these interventions is very difficult to maintain in long term

period. This editorial discusses about docosahexaenoic acid treatment as possible novel approach for non-alcoholic

fatty liver disease in obese children. Docosahexaenoic acid may modulate the inflammatory response, improve insulin

sensitivity and could be effective in enhancing intestinal barrier integrity, essential to protect a healthy gut-liver axis.

Indeed alteration of gut microbiota composition and increased intestinal permeability may rise the exposure of

liver to gut-derived bacterial products, causing activation of signalling pathways implicated in liver inflammation

and fibrogenesis. This mechanism has been observed in vitro and animal models of non-alcoholic fatty liver

disease but also in a clinical study in adults. While evidence suggests that n-3 long-chain polyunsaturated

fatty acids supplementation may decrease liver fat in adults, in pediatric population only a study examined

this topic. In obese children with non-alcoholic fatty liver disease well designed randomized controlled trials

are needed to better clarify the possible efficacy of docosahexaenoic acid treatment, and underlying mechanisms,

to identify the optimal required dose and to evaluate if the docosahexaenoic acid effect is limited to the duration of

the treatment or it may continue after the end of treatment.

Keywords: DHA, Childhood obesity, NAFLD, n-3 LCPUFA

Background

Non-alcoholic fatty liver disease (NAFLD), considered as

liver manifestation of metabolic syndrome, represents

the most common chronic liver disease in obese chil-

dren of industrialized countries, with a reported preva-

lence of 3% to 10% in the general pediatric population

and reaching a prevalence of 80% in obese or overweight

children [1]. NAFLD is characterised by the pathological

accumulation of liver fat without relation to alcohol intake,

ranging from ‘simple’ liver steatosis to non-alcoholic stea-

tohepatitis (NASH). Significant complications of NAFLD

are represented by progression to liver fibrosis and cirrho-

sis [2]. Excess food intake and sedentary lifestyle, resulting

in obesity and insulin resistance, are important environ-

mental risk factors associated with NAFLD [1]. However

the complete pathogenesis remains unexplained and seems

to involve several factors. Recently, a great deal of attention

has been focused on the gut-liver axis malfunction [small

intestinal bacterial overgrowth (SIBO), intestinal dysbiosis,

and increased intestinal permeability (“leaky gut”)], consid-

ered as another key factor involved in development and

progression of NAFLD [2]. Indeed intestinal epithelium,

gut microbiota and dietary pattern are linked in different

ways. For example, a high fat diet can stimulate a proin-

flammatory microbiota and interfere with intestinal perme-

ability [2]. Alteration of gut microbiota composition and

increased intestinal permeability may rise the exposure of

the liver to gut-derived bacterial products, as lipopolysac-

charides (LPS), which could determine endotoxemia. Then,

endotoxemia can stimulate Toll-Like Receptors (TLR),

causing activation of signalling pathways implicated in liver

inflammation and fibrogenesis [3]. This mechanism has

been observed in vitro and animal models of NAFLD but

also a clinical study has shown that NAFLD in adults is as-

sociated with increased intestinal permeability and SIBO,

related to severity of liver steatosis [4]. Moreover, Giorgio

et al. [3] showed that intestinal permeability is increased
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also in pediatric population with NAFLD, according to

severity of liver disease, suggesting its important role

in NAFLD progression. Therefore it appears that intes-

tinal barrier integrity is essential to protect a healthy gut-

liver axis.

Nowadays the first line of treatment of NAFLD in obese

children is represented by dietary and lifestyle interven-

tion; however compliance to these interventions is very

difficult to maintain in long term period, especially in

pediatric population [1]. The aim of this editorial is to dis-

cuss the possible role of DHA in treatment of NAFLD in

childhood obesity with respect to current evidence.

Main text

Several studies showed that NAFLD is characterized by

a low total level of n-3 fatty acids, in turn associated with

steatosis, increased oxidative stress and NASH [5]. More-

over, from studies in NAFLD experimental models, it has

been shown that n-3 fatty acids may alter liver gene ex-

pression (switching intracellular metabolism from lipogen-

esis and storage to fatty acid oxidation and catabolism),

improve insulin sensitivity, have anti-inflammatory prop-

erties and reduce tumor necrosis factor levels [5].

Supplementation with n-3 long-chain polyunsaturated

fatty acids (LCPUFA), and in particular DHA, has been

experienced as potential treatment for obesity-related

NAFLD especially in adult population. Indeed, a recent

systematic review showed that n-3 LCPUFA (eicosa-

pentaenoic acid and docosahexaenoic acid) supplemen-

tation may decrease liver fat in adults [6]. Currently,

there is in literature only a study examining this topic in

pediatric age [7]. Indeed a randomized controlled trial

reported that DHA supplementation was associated with

improved liver steatosis in obese children with NAFLD

[7]. This study showed that DHA supplementation may re-

duce liver hyperechogenicity in children with NAFLD after

6 months of treatment, with comparable effect using a

dose of 250 mg/day or 500 mg/day of DHA. The improve-

ment in echogenicity observed at 6 months remained un-

changed also after 24 months of treatment. Hovewer, it

should be pointed out that in this study the results were

obtained using liver ultrasound sonography test (US) only

and caution has to be paid in inferring any definitive con-

clusion. Indeed Chemical shift magnetic resonance imaging

(MRI) (opposed-phase imaging) should be also considered

for its recognized its ability to quantify hepatic fat content

accurately, and in turn to identify fat regression or accumu-

lation over time in children with NAFLD [8,9].

The potential protective effect of DHA has been sug-

gested also from a retrospective study evaluating early

type of feeding (breastfed versus formula-fed and duration

of breastfeeding) in a cohort of children with NAFLD

[10]. It has been speculated that DHA, delivered by hu-

man milk after prolonged lactation, could be protective

against progression of the liver disease from simple steato-

sis to steatohepatitis and fibrosis (NASH) acting as peroxi-

some proliferator-activated receptors agonist (PPAR-agonist),

transcription factor involved in protection against fibrosis

[11]. Recently it has been also suggested that DHA, and in

particular two active metabolites derived from it, resolvins

and protectins, can modulate the inflammatory response

not only by decreasing cytokine production but also with

promotion of the resolution of inflammation [12]. Indeed,

animal models showed that these mediators might re-

duce inflammation induced by excessive adipose tissue

and improve insulin resistance, stimulating adiponectin

expression [12].

Furthermore, considering the importance of the gut-

liver axis in the development and progression of NAFLD,

a significant result, derived from animal models, suggests

that DHA could be effective in enhancing intestinal bar-

rier integrity, by increasing, for example, protein expres-

sion of intestinal tight junction proteins [12]. It seems to

be a bi-directional relationship between DHA and gut

microbiota: DHA may alter the gut microbial populations,

and some microbial species such as Bifidobacterium may

improve the tissue distribution of DHA [12].

Conclusions

In conclusion, DHA might exert a positive role in treat-

ment of NAFLD in pediatric age but it remains to be

demonstrated. Further well designed randomized con-

trolled trials are needed to better clarify the possible effi-

cacy of DHA treatment, and underlying mechanisms, in

obese children with NAFLD, to identify the optimal re-

quired dose and to evaluate if the DHA effect is limited

to the duration of the treatment or it may continue after

the end of treatment.
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1.4.THE ROLE OF THE GUT MICROBIOTA IN OBESITY AND OBESITY-RELATED 

DISEASES: A BRIEF FOCUS 

Recently, a great deal of attention has been focused on gut microbiota as ȃenvironmental factorȄ 

playing an important role in the development of obesity and its complications.  

 

1.4.1. Introduction 

Humans may be considered as supra-organisms that carry two sets of genes, those encoded on 

their own genome and those encoded in genome of microorganisms living in it. Indeed, the human 

microbioma, that is the genome of the entire population of microorganisms associated to the 

human body, is composed by about 3 million genes, that means over 100 times the number of 

human genes [1]. Moreover, on average humans harbor more bacterial cells than their own cell 

numbers (1014 vs. 1012). Considering the existing high inter-individual variability, the microbiota 

(the entire population of microorganisms associated to human body) of each subject can be 

considered as a specific "fingerprint", although a "core" consisting by at least 57 bacterial species, 

common to all individuals, exists [2]. 

A great number of human-associated microorganisms are distributed throughout the gut [3]. 

The gut microbiota is an ecosystem formed by many ecological niches, with different bacterial 

species (about 300-500) and a large amount of strains [2]. The gut microbiota is mostly represented 

by anaerobic bacteria of the phyla Firmicutes and Bacteroidetes. Other bacterial phyla identified in 

the human gut include Actinobacteria, Proteobacteria, Verrucomicrobia, Fusobacteria, 

Cianobacteria and Spirochaeta spp [4].  However, it has been suggested that the gut microbiota of 

most individuals can be categorized into one of three variants or "enterotipi", on the basis of the 

dominant genera (Bacteroides, Prevotella or Ruminococco) [5].  

The gut microbiota plays numerous metabolic and enzymatic activities that can also 

compensate functions that human organism is unable to do, and exert numerous protective, 

structural and metabolic effects on the epithelium. Specifically, the gut microbiota is involved in 

the functioning of mucosal barrier, in normal development and function of the mucosal immune 

system, in enterocyte tropism, in resistance to pathogens, in the extraction of energy from the 

fermentation of non-digestible polysaccharides with the production of short chain fatty acids 

(SCFA), in the production of vitamins B and K and ion absorption, and in degradation of 

xenobiotics (Figure 1) [6]. SCFAs provide an additional source of energy for the body: propionate 
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is taken up by the liver and used as a precursor for liponeogenesis, gluconeogenesis and protein 

synthesis; acetate is used as a substrate for cholesterol synthesis; and butyrate is the main energy 

supply for colonic epithelial cells [7]. 

 

 

 

 

 

 

 

 

 

 

 

The composition of the gut microbiota may change over time. Specifically, during the first 

period of life, which is considered as a critical window for the development of gut microbiota, the 

mode of infant delivery, antibiotic exposure, nutrition and other extrinsic factors influence 

microbial ecology. Therefore, microbial diversity increases during the first few years of life and 

then stabilizes when the child is around 2–4 years of age, with a composition similar to that of an 

adult [8] (Figure 2).  

 

 

 

Figure 2. Development of gut microbiota [8]. 

 

Figure 1. Protective, structural and metabolic effects of commensal bacteria on the 
intestinal mucosa [6] 
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Afterwards, although the intestinal microbiota is relatively stable throughout life, stress, alcohol 

consumption, exercise and diet may determine changes in the composition and function of the 

microbiota [8].  

 

1.4.2. Diet and gut microbiota composition 

Diet is a major driver of gut microbiota composition: any major change in lifestyle or diet may 

affect microbial stability. From the first stages of life, diet results as a main determinant in the 

development of the microbiota colonization pattern [9]. Indeed, gut microbiota composition is 

different among breastfed infants and formula-fed infants: in breastfed, microbiota is enriched in 

bifidobacteria and lactobacilli, which results in a more acidic intestinal content with a higher 

abundance of short-chain fatty acids, whereas formula-fed infant microbiota has more enterococci 

and enterobacteria [9,10]. This difference may be partially explained by the differences in 

composition between human milk and standard infant formula: breast milk is rich in prebiotic 

oligosaccharides, which act as substrates for fermentation in the distal gut and promote the growth 

of beneficial microbes as bifidobacteria. Indeed, the human milk oligosaccharides (HMOs) are not 

directly digested by the host, but instead serve as an energy source for colonic bacteria [9,10,11]. 

During the weaning, the introduction of solid food leads to a large compositional shift into the 

intestinal microbiota composition, as observed by comparing gut microbiota composition between 

Burkina Faso and Italian children during the weaning [12]. In mice it has been observed that diet 

changes explained 57% of the total variation in gut microbiota, while genetic mutation accounted 

for no more than 12% [13]. Moreover, in conventional mice the shift from a diet with low fat and 

high polysaccharides to a ȃwestern dietȄ is associated with a signięcantly higher relative 

abundance of the Firmicutes ǻespecially MollicutesǼ and a signięcantly lower relative abundance of 

the Bacteroidetes [14]. In addition, this change seems to take place within 24 hours [15].  Similarly, 

in humans, the transition from a "high-fat / low-fiber" to a "low-fat / high-fiber" diet determines 

significant changes in the gut microbiota within 24 hours. It was also noted that different diets may 

be associated with specific enterotypes that seems to remain stable over time: the Bacteroides 

enterotype was associated with animal protein and saturated fats while the Prevotella enterotype 

was associated with carbohydrates and simple sugars [16].  
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1.4.3. Gut microbiota, obesity, insulin resistance and NAFLD 

As anticipated, the gut microbiota has been suggested as a driving force in the development of 

obesity and related comorbidities, although underlying mechanisms are not fully understood. This 

assumption stems from the study performed by Ley et al. who, for the first time, showed that, 

compared to wild-type lean mice, ob/ob mice (genetic obese mice homozygous for a mutation in 

the leptin gene) had a different composition of the gut microbiota, with 50% reduction in the 

abundance of Bacteroidetes and a proportional increase in Firmicutes [17]. Moreover, it was 

observed that transplantation of gut microbiota from ob/ob mouse to germ-free mice and thus 

colonization of germ-free mice with an ȁobese microbiotaȂ induces a significantly greater increase 

in total body fat than colonization with a ȁlean microbiotaȂ ǻŚŝ% vs. Řŝ%Ǽ [18].  

In humans, some studies have reported an increased Firmicutes/Bacteroidetes ratio in both 

obese adults [9,19,20] and children [21,22], but other studies did not find consistent results, thus 

showing a reduced Firmicutes/Bacteroidetes ratio [23] or no differences between groups [24] as 

also recently confirmed by meta-analyses [25]. Moreover, it has been observed that subjects with 

low bacterial richness gained more weight and had increased inflammation, insulin resistance and 

dyslipidemia than subjects with high bacterial richness suggesting that microbial diversity may 

have a relevant role in obesity and comorbidities [26]. Similarly, it has been shown that, in obese 

adults, microbiota cluster was characterized by diminished bacterial diversity, decreased ratio of 

Bacteroidetes to Firmicutes, and was associated with intestinal and systemic inflammation [27]. 

Moreover, since intestinal permeability was not altered in obesity nor associated with 

inflammation, it has been suggested that the ȃobeseȄ microbiota may modulate intestinal and 

systemic inflammation independently of gut permeability [27]. 

Several mechanisms able to explain the association between gut microbiota and obesity have 

been proposed [28,29]. A first mechanism is represented by the extraction of energy from dietary 

fiber. Indeed, gut microbiota is able to "break" indigestible polysaccharides (fiber) to SCFA, 

butyrate, propionate, acetate, providing 80 to 200 kcal/daily and increasing hepatic lipogenesis. In 

addition, gut microbiota, may be able to modulate the expression of host genes, suppressing 

fasting-induced adipocyte factor (FIAF) in the gut, which in turn increases lipoprotein lipase (LPL) 

activity in adipocytes with consequent increased energy storage as fat. A third mechanism could 

be represented by the inhibition of adenosine monophosphate-activated protein kinase (AMPK), 

normally involved in fatty acids oxidation. By interfering negatively with the AMPK activity, the 

gut microbiota determines an increased accumulation of fatty acids. Finally, an obese microbiota 
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may favor higher gut permeability with higher plasma lipopolysaccharide (LPS) level, known as 

metabolic endotoxemia, promoting the state of ȃlow-grade inflammationȄ with a consequent 

reduction of insulin sensitivity [28,29] (Figure 3). 

 

 

Figure 3. Hypothesized mechanisms linking gut microbiota to obesity [28] 

 

However, the theory of ȃincreased energy harvestȄ from fiber seems to contradict health 

benefits associated with high fiber intake and SCFA production. Indeed, especially butyrate, seems 

to have, through several presumed mechanisms of actions, beneficial effects on obesity and related 

comorbidities. It may increase satiety and decrease energy intake and postprandial glycemia via 

modification of gut peptide production. In addition, butyrate is the main energy source for 

enterocytes, and therefore, regulates cell proliferation and differentiation and induces glucagon-

like peptide (GLP)-2 production, strengthening the gut barrier function. Butyrate also reduces 

oxidative damage and inflammation by inhibiting histone deacetylases and the activation of the 

transcription factor nuclear factor-κ” and the associated cytokine production. However, 

obesogenic diets, like the western diet, may promote disbiosis and the growth of potential 

pathogens, which could trigger an inflammatory response, thus leading to a leaky gut, 

translocation of microbial molecules (especially LPS), and overall, promotion of systemic 
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inflammation. Therefore, considering the relevant role of inflammation in obesity-related 

comorbidities, a reduced abundance of some butyrate-producing bacteria with an increased 

abundance of opportunistic pathogens may favor the development of insulin resistance and type-2 

diabetes [30]. 

Gut microbiota is highly involved also in the pathogenesis of non-alcoholic fatty liver disease. 

Indeed, recently, gut-liver axis malfunction [small intestinal bacterial overgrowth (SIBO), intestinal 

dysbiosis, and increased intestinal permeability (leaky gut)], has emerged as another key factor 

involved in development and progression of NAFLD [31]. High fat diet and high fructose 

consumption seem to affect microbiota composition and intestinal permeability [31]. Indeed, this 

kind of diet may disrupt intestinal barrier and increase intestinal permeability to gut-derived 

products (LPS, DNA, RNA, etc.), known as pathogen-associated molecular patterns (PAMPs). The 

final effect is the activation of the signaling cascade triggered by specific immune receptor 

resulting in the expression of pro-inflammatory cytokine genes including TNF-΅ and several 

interleukins that may exacerbate hepatocyte damage. Therefore, endotoxemia causes activation of 

signalling pathways implicated in liver inflammation and fibrogenesis [32]. In this regard, Giorgio 

et al showed that, intestinal permeability is augmented in pediatric population with NAFLD, as in 

adults, according to the severity of liver disease, suggesting its important role in NAFLD 

progression [32]. Therefore, gut microbiota can contribute to the development and maintenance of 

liver steatosis and hepatic inflammation, as observed in animal models of NAFLD/NASH and 

patients, through several mechanisms: the altered microbiome may produce more SCFAs and 

alcohol, and carry more Gram-negative bacteria that supply LPS to the portal circulation and to the 

liver [33].  

 

1.4.4. Future directions  

The recent evidence that gut microbiota may be involved in the development of obesity and 

related diseases, through several underlying mechanisms that need to be further elucidated, 

suggests future prospective of prevention and treatment. Indeed, in the future, gut microbiota 

manipulation through probiotics and prebiotics could, theoretically, change microbial 

composition, thus promoting host health.  
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1.5. THE TREATMENT OF CHILDHOOD OBESITY AND RELATED 

COMORBIDITIES  

Guidelines for prevention and treatment of childhood obesity recommend intensive lifestyle 

modifications, involving diet, physical activity and behaviors, for the entire family and the child, in 

an age-appropriate manner [1]. However, compliance to multifactorial interventions (behavioral/ 

dietary/ physical) may be difficult to maintain in long term period, especially in school and 

adolescence age. In this regard, a meta‐analysis of randomized trial performed in children showed 

a significant 1.5 kg/m2 decrease in body mass index (BMI) when lifestyle modifications were 

implemented with family support, but showed only a 0.4 kg/m2 decrease in BMI in the absence of 

family support [2]. In confirmation of this, a Cochrane systematic review stated that in children 

family-based lifestyle interventions aimed at changing dietary, behavioral and physical activity 

patterns can determine a reduction in overweight, compared to standard care or self-help [3].  

Pharmacotherapy, associated with lifestyle modifications, is supported for obese children who 

failed intensive lifestyle intervention and with severe comorbidities that persist also after intensive 

lifestyle modification, especially if they have a strong family history of T2DM or cardiovascular 

disease [1]. The only obesity medication approved in children is Orlistat, that acts locally in the 

stomach and intestine to inhibit the action of gastric and pancreatic lipases, decreasing fat 

absorption by up to 30%. Adverse effects are usually localized and transient, but frequent 

gastrointestinal-related events may cause therapy discontinuation and low compliance [4]. Finally, 

for adolescents with BMI >50 kg/m2 or BMI >40 kg/m2 with severe comorbidities who failed 

lifestyle modifications and/or pharmacotherapy, bariatric surgery could be an option [1,5].  

 

1.5.1. The Italian Consensus 

According to the Italian consensus [6] about prevention, diagnosis and treatment of pediatric 

obesity, published in ŘŖŖŜ, the first goal should generally be the ȃachievementȄ of a healthy diet 

and life-style, through the involvement of parents and the entire family. 

Specifically, in overweight children and adolescents, the goals will be the weight maintenance 

until the BMI reaches the range of normality and an improvement or disappearance of 

complications (dyslipidemia, insulin-resistance, hypertension, liver steatosis, OSAS, joint pain). 

Similarly, in obese children and adolescents without complications the goal will be firstly the 

weight maintenance over time, while in obese children and adolescents older than 6 years and 
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with complications, weight loss can be pursued until the BMI reaches the range of normality and 

obesity-related complications improve or disappear. To set up weight loss program the energy 

expenditure should be estimated and calorie surplus should be calculated on the basis of weight 

gain in the last months (7000 Kcal/kg body weight). Follow-up visits should be scheduled every 2 

months (at maximumǼ during the phase of ȃweight lossȄ and every Ŝ months ǻat maximumǼ 

during the ȃmaintenanceȄ phase. 

Concerning diet, a nutrition education program is an essential element to modify bad eating 

habits and promote lifelong healthy diets in the child and its family. Daily energy intake should be 

divided into five meals (3 main meals + 2 snacks). As a first approach, a diet, rather than nutrition 

education, is not recommended, especially if unbalanced (very low calorie diet, increased-protein 

diet, low-carbohydrate diet). The caloric restriction can be reached by the limitation and 

elimination of high-calorie foods also with the aid of "traffic lightȄ approach, which is 

characterized by the categorization of foods as GREEN, YELLOW, and RED, on the basis of their 

energy density. Healthier food choices include that low-glycemic index foods should be preferred 

(cereals such as pasta, barley and whole cereals (2 times a day), legumes (4 times a week), fruits 

and vegetables (5 portions a day), rather than high-glycemic index foods (bread, rice, potatoes, 

sugar sweetened beverages, desserts, candies).  

In obesity treatment programs, increasing the time spent in physical activities, together with the 

reduction of sedentary behaviors, is essential, as well as nutrition education and counseling, to 

achieve the goal. Parents should be motivated to an active lifestyle involving the child: time spent 

watching TV or playing video games should be highly reduced, the child should be involved in 

physical activity including play, games, sports, physical education, or planned exercise. The type 

of exercise mainly recommended is aerobic exercise, like swimming, biking or walking. The 

duration of exercise should be initially of 30 minutes, which can be gradually increased in 

subsequent session.  

Cognitive-behavioral therapy may be useful for obese children but requires a specific training 

of involved personnel and the collaboration with a psychologist team. The cognitive-behavioral 

techniques include: dietary record for self-monitoring, stimulus control, positive reinforcement, 

cognitive restructuring and training on contingency planning.  

Pharmacological therapy in childhood obesity may be hypothesized only if intensive lifestyle 

intervention (dietary intervention plus physical activity plus cognitive-behavioral therapy) is 
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failed and obesity is associated with severe comorbidities. Similarly, bariatric surgery may be 

considered as an option only in adolescents with highly refractory obesity [6].  

 

1.5.2. Multifactorial intervention for childhood obesity: a revision of the literature  

Nowadays, there are not randomized clinical trials examining the effects of diet only on weight 

and body composition independently from intensity of the treatment, behavioral intervention and 

physical activity, in pediatric age. However, recently a systematic review, comparing effectiveness 

of diets with different macronutrient distribution on BMI and cardio-metabolic profile in 

overweight and obese children, has been performed [7]. According to defined inclusion criteria, 14 

studies were included: 7 studies compared a low-carbohydrate diet to a conventional low-fat diet, 

6 studies compared an increased-protein diet to an isocaloric standard-protein diet and 1 study 

compared an increased-fat to an isocaloric standard-fat diet. It has been observed an improvement 

in weight-related outcomes irrespective of the macronutrient distribution, as well as 

improvements in blood lipids, glucose and insulin homeostasis, and blood pressure. However, it 

has been underlined that a specific macronutrient distribution may be relevant to target specific 

cardiometabolic risk factors. These results suggest that a dietary intervention should firstly 

determine a reduction of total energy intake [7]. However, very-low calorie diet may be ineffective 

in the long term because are associated with higher risk of drop-out and, as a consequence, the 

worsening of obesity and related complications. 

As already mentioned, it is very difficult to differentiate diet from physical activity. In this 

regard, a recent systematic review and meta-analysis [8] about lifestyle interventions in obese 

children and adolescents, incorporating different types of dietary interventions (trafęc light or 

modięed trafęc tight diet, hypocaloric diet or a calorie restriction approach, general healthy eating 

educational approach or undefined dietary intervention), exercise and/or behavioral intervention, 

has been performed. From this review has resulted that lifestyle interventions may lead to 

significant weight loss compared with no treatment, significant reduction on BMI and BMI z-score, 

compared with written information only, over a 6- to 12-months intervention period, and 

improvements in LDL cholesterol, triglycerides, fasting insulin and blood pressure up to 1 year 

from baseline. 

The importance of both dietary intervention and physical activity has been highlighted also by 

another systematic review and meta-analysis [9], comparing the effect of diet-only intervention 
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and diet plus physical activity or physical activity-only on weight loss and cardiometabolic 

outcomes. Results from this meta-analysis showed that although both diet-only and combined 

interventions (diet plus exercise) may result in weight loss and metabolic improvement in the 

overweight/obese pediatric population, diet plus exercise determine greater improvements of HDL 

cholesterol, fasting glucose and fasting insulin that diet only, over 6 months.  

Other two systematic reviews evaluated the effect of exercise-only intervention, showing that 

exercise intervention is associated with the reduction of BMI [10,11], as well as the reduction of 

body weight, body fat percentage and waist circumference among overweight/obese adolescents 

[11]. Moreover, although the evidence was limited exercise intervention may be associated with 

the improvement of some cardiometabolic risk factors (capacity to regulate glucose and insulin 

during an OGTT, HOMA index and systolic blood pressure) [11]. 

Another key element in the treatment of pediatric obesity is the reduction of sedentary 

behaviors. Indeed, systematic reviews indicate that sedentary behaviors (especially TV viewing 

and screen-time) may be important determinants of health, independently of physical activity, 

thus being associated with obesity [12]. Indeed, it has been underlined that watching TV for more 

than 2 hours/day is associated with unfavorable body composition and decreased fitness and that 

the risk for obesity increased in a dose response manner with increased time spent in sedentary 

behaviors [13]. Therefore, interventions to reduce sedentary behaviors have resulted in BMI 

reduction in overweight/obese children, especially in the range from ś to ŗŘ years of age [14]. In 

this regard, exergames, a new generation of active video games, may be considered as an 

additional strategy to reduce physical inactivity of overweight/obese children and adolescents. 

Indeed, a systematic review showed that exergaming may lead to a more active lifestyle by 

increasing the level of physical activity, energy expenditure, and cardiorespiratory function and by 

reducing body fat and sedentary behaviors [15], although according to another systematic review 

the evidence remains unclear due to design problems, measurement issues and other methodology 

concerns, thus highlighting the needs for further studies about this topic [16].  

Lifestyle intervention should include also behavioral components and cognitive skills training 

to target weight-related behaviors [17]. Indeed, cognitive-behavioral therapy (CBT) may be 

essential to achieve results in the short, medium and long term. The most effective techniques 

include stimulus control (e.g., restructuring the home to encourage healthy behaviors and limit 

unhealthy behaviors associated with eating and activity) and self-monitoring of weight, eating, 

and physical activity. Moreover, in family-based interventions, parents should become as models 
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for their children by monitoring and modifying their own behaviors; they are also encouraged to 

use a behavioral ȃrewardsȄ system, in which the achievement of a goal, as weight loss, reduced 

caloric intake, increased physical activity, is positively reinforced with rewards that are 

interpersonal and/or promote healthy behavior (e.g., family outings, bike riding, ice skating) [17]. 

A meta-analysis of family-based interventions targeting childhood obesity, including studies 

published between the years 2000-2009, showed that this intervention based on family active 

involvement is successful in producing weight loss in the short and long-term, although future 

research is needed [18].  

 

1.5.3. The importance of the Mediterranean diet 

The traditional Mediterranean diet has been described as the dietary pattern found in the olive-

growing areas of the Mediterranean region between the late 1950s-early 1960s, when the 

consequences of World War II had been overcome but before fast-food culture had reached this 

area. This diet is characterized by a high intake of vegetables, legumes, fruits and nuts, and whole 

cereals, and a high intake of olive oil but a low intake of saturated lipids, a moderately-high intake 

of fish, a low-to-moderate intake of dairy products, a low intake of meat and poultry, and a regular 

but moderate intake of wine, generally during meals [19]. Recently a new graphic representation of 

the Mediterranean diet pyramid, that can be adapted to the different nutritional and socio-

economic contexts of the Mediterranean region, has been realized [20] (Figure 1).  
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Figure 1. The new Mediterranean diet pyramid [20] 

 

Since the early 1970s many investigators have reported the effects on health of the 

Mediterranean diet, as originally reported by Keys in the seven countries study [21]. In this regard, 

a meta-analysis by Sofi et al. [22] showed that, in an overall analysis comprising more than 1.5 

million healthy adults and 40000 fatal and non-fatal events, greater adherence to a Mediterranean 

diet is significantly associated with a reduced risk of overall mortality, cardiovascular mortality, 

cancer incidence and mortality, and incidence of ParkinsonȂs disease and “lzheimerȂs disease, thus 

systematically assessed, for the first time, the possible association between adherence to this diet, 

mortality, and the occurrence of chronic diseases in the general population [22]. A recent review 

also showed a strong evidence of association between adherence to a Mediterranean diet and 

cardiovascular disease, T2DM, metabolic syndrome and obesity, supporting the role of this diet in 

the prevention of cardiodiabesity in adults, a hybrid term used to define and describe the well-

known relationship between T2DM, obesity, metabolic syndrome and cardiovascular disease [23]. 

Moreover, from another review, examining data on the association between the Mediterranean 

diet and NAFLD in adults, has resulted that greater adherence to the Mediterranean diet may be 
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associated with reduced liver enzymes at 6 and 12 months of intervention, reduced liver steatosis 

and improved insulin sensitivity at 6 weeks of intervention [24]. The therapeutic role of 

Mediterranean diet has been observed also in obese children with NAFLD [25]. The beneficial 

effects of this diet on NAFLD may be due to several intrinsic factors, such us the low glycemic 

index, the olive oil, the high content in n-3 PUFA e phytonutrients [24] (Figure 2). Recently, it has 

been suggested that the adherence to the Mediterranean diet is also associated with a 

ȁnormalizationȂ trend of gut microbiota, characterized by an increase of Bacteroidetes and 

Clostridium clusters and reduction in Proteobacteria and Bacillaceae bacterial phyla [26].  

Concerning the relationship between Mediterranean diet and obesity, several mechanisms that 

can explain the protective role of Mediterranean diet have been suggested [27]. This diet is rich in 

dietary fiber that may increase satiety and satiation through mechanisms, such as prolonged 

mastication, increased gastric detention and enhanced release of cholecystokinin. Moreover, the 

Mediterranean diet is characterized by low energy density, low glycemic load and high water 

content that may lower total calorie intake, helping to prevent weight gain. Among the other 

positive characteristics, it should be considered that the fatty acids profile of Mediterranean diet 

has important health benefits, as it is low in cholesterol-rising fats (saturated and trans fats) and 

high in monounsaturated fats (approximately 67% of fat energy) as that found in olive oil. Diets 

with higher monounsaturated fatty acids have been associated with improved glucose 

metabolism, and increased postprandial fat oxidation, diet-induced thermogenesis and overall 

daily energy expenditure, compared with diets with higher saturated fats. Furthermore, the 

habitual use of olive oil in salads and vegetable and legume dishes enhances palatability of these 

foods and of the overall diet thus possibly increasing the compliance. Finally, this type of diet 

provides a high intake of both non-nutritional factors and micronutrients (especially antioxidants), 

with additional health benefits [27] (Figure 2). 
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Figure 2. Beneficial properties of Mediterranean diet [24] 

 

The association of the Mediterranean diet with childhood obesity has been evaluated in a cohort of 

children from the IDEFICS study. It has been observed that a Mediterranean-like dietary pattern, 

evaluated by a food frequency-based Mediterranean Diet Score, was inversely associated with 

overweight including obesity and fat mass percentage, independently of confounding factors. 

Furthermore, a high adherence at baseline was protective against increases in BMI z-score, waist 

circumference and waist-to-height ratio with a similar trend observed for percent fat mass [28]. 

Unfortunately, the Mediterranean pattern seems to be uncommon among children living in the 

Mediterranean region, with a prevalence of high adherence ranging from 55.9%, among the Italian 

pre-school boys, to 26.0%, among the Spanish school-aged girls [28,29].  

 

 

Figure 3. Prevalence of high adherence to a Mediterranean-like dietary pattern among pre-school (dark grey) 
and school children (light grey), stratified by country, participating at the IDEFICS study [29] 
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To our knowledge, only one study has evaluated the effect of a Mediterranean-like diet on 

cardiovascular risk factors in obese children and adolescents. Forty-nine obese children were 

randomized to receive a Mediterranean diet rich in polyunsaturated fatty acids, fiber, flavonoids 

and antioxidants or a standard diet. At the end of the intervention period (16 weeks) the 

Mediterranean diet group showed a significant decrease in BMI, lean mass, fat mass, glucose, total 

and LDL cholesterol and triglycerides, concomitant with a significant increase in HDL cholesterol. 

Moreover, in the group of children who followed the Mediterranean-like diet, the prevalence of 

several components of the metabolic syndrome also significantly decreased, as well as the 

prevalence of the metabolic syndrome at the end of the intervention period. In the other group, 

only glucose levels and the frequency of glucose >100 mg/dL significantly improved, thus 

supporting the positive effect of the Mediterranean diet in the treatment of childhood obesity and 

related comorbidities [30].  

 

Health benefits of fruit and vegetables: is there a role for salicylic acid?  

Fruit and vegetables are the basis of the Mediterranean diet pyramid [20]. A WHO/FAO report 

recommends a minimum of 400g of fruit and vegetables per day (excluding potatoes and other 

starchy tubers) for the prevention of chronic diseases such as heart disease, cancer, diabetes and 

obesity, as well as for the prevention and improvement of several micronutrient deficiencies [31]. 

Therefore, diets high in fruits and vegetables are widely recommended for their health-promoting 

properties. Fruits and vegetables are important sources of dietary fiber, vitamins, especially 

vitamins C and A, minerals, especially electrolytes and phytochemicals, especially antioxidants 

and polyphenols [32]. All these nutrients provide support for the biological plausibility that fruits 

and vegetables play a role in health [32]. It has been suggested that, among phytochemicals, 

salicylic acid (SA) may have an important role, at least in part, in the explanation of the beneficial 

effects associated with diets rich in fruit and vegetable [33,34]. 

Salicylic acid (SA) and its acetylated form, AspirinTM, have a long history of therapeutic and 

disease-preventative use, especially when inflammation and oxidative stress are involved. Indeed, 

the use of salicylates as anti-inĚammatory and antipyretic treatments may date back to the third 

millennium before Christ. SA is produced by plants as part of their defense systems against 

pathogen attack and environmental stress. Being widely distributed throughout the plant 

kingdom, the systemic presence of salicylic acid in humans may arise from fruits and vegetables, 

wines, tea, fruit juices, herbs and spices [35].  
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Actually, information about the salicylate content of foods is difficult to obtain, since it is 

influenced by numerous factors, including plant varieties, seasonality, growing conditions, storage 

and cooking [35]. To date the most definitive estimate of the salicylate content of foods is 

represented by a systematic review of the literature [36], where included data derived from food 

items randomly selected and purchased from various commercial outlets during different seasons 

of the year. Therefore, this review provided the first comprehensive and systematic assessment of 

the salicylate content of commonly consumed foods [36] (Table 1).  

 

Table 1. Examples of total salicylate content of food items [35] 

 

Concerning salicylate intake, to date published estimates of daily SA intake vary markedly, 

ranging from 0.4 to 200 mg/day (generally considered as an overestimation) so it is unclear 

whether the fiestern diet can provide sufęcient amount of salicylates to exert beneficial effects on 

health. According to the review by Wood et al [36], estimated salicylate intakes in a Scottish 

population were of 4.42 and 3.16 mg/day for males and females, respectively. Primary food sources 

of salicylates were alcoholic beverages (22%), herbs and spices (17%), fruits (16%), non-alcoholic 

beverages including fruit juices (13%), tomato-based sauces (12%) and vegetables (9%) [36].  

Fruit and vegetables intake may influence serum salicylic acid concentration. Indeed, in 2007 

Spadafranca et al. [37] observed a positive association between circulating levels of SA and fruit 

and vegetables intake of both the last week and the day before the sampling, in heathy adults. 

Previously, Blacklock et al. [38] reported that vegetarian adults may exhibit higher serum 

concentration of SA than nonvegetarians.  

SA has anti-inflammatory properties and maybe the ability to modulate activity and/or 

expression of components involved in oxidative stress processes [35]. Studies performed on adults 
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have reported that treatment with salicylates may improve glycemic control and reduce glycated 

hemoglobin levels, in patients with type 2 diabetes [39,40,41]. The exact mechanism by which 

salicylate acts on glucose metabolism is not entirely clear. Furthermore, in a longitudinal double-

blind, placebo-controlled trial, conducted on obese nondiabetic adults, administration of 4 g/day of 

salsalate (a dimer of salicylic acid) for 1 month was related to reduced c-reactive protein levels and 

increased adiponectin concentration, suggesting that salsalate might modulate inflammatory 

cardiovascular risk indexes in obese adults [42].   

Obviously, the amount of salicylic acid introduced with the diet cannot be compared to 

therapeutic doses introduced as Aspirin. Therefore, caution has to be paid, also because, besides 

salicylates, other different phenolic compounds with recognized anti-inĚammatory and redox-

related bioactivity are widely distributed through the plant kingdom. 
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2. AIMS OF THE PhD THESIS  

 

The global epidemic of childhood obesity as well as the increasing diffusion of related 

comorbidities among children and adolescents underlines the need to investigate possible 

therapeutic strategies able to counteract negative effects on child health and the risk of more severe 

comorbidities during adulthood. Intensive lifestyle interventions, including diet, physical activity 

and behaviors, are fundamental to achieve this goal. However, as previously discussed, the 

characteristics of all intervention components as well as the length, the intensity, and the 

effectiveness of lifestyle interventions may vary largely among studies. Additionally, the role of 

gut microbiota in the development of obesity and related-comorbidities needs to be further 

investigated, to identify potential future therapeutic options. Finally, it is well-known that higher 

intakes of fruit and vegetable are associated with beneficial effects on health, also due to the 

presence of phytochemicals. Among phytochemicals, salicylic acid may have an important role 

being involved in the regulation of inflammation, oxidative stress and glucose metabolism.  

The present PhD thesis tries to further elucidate these important topics through three different 

tasks.  

The primary aim of the present PhD thesis was to evaluate whether a 1-year lifestyle 

intervention, based on normocaloric diet, promotion of physical activity and behavior changes, 

may improve obesity, metabolic profile and obesity-related comorbidities, as glucose metabolism 

alterations, hyperlipidemia, prehypertension/hypertension, increased liver echogenicity and 

metabolic syndrome, in a cohort of obese children.  

Secondary aims were to evaluate qualitatively and quantitatively gut microbiota biodiversity in 

obese and normal-weight children and to compare gut microbiota profiles with SCFAs and BMI z-

scores to gain insights into the structure and activity of the microbiota in pediatric obesity. 

The tertiary aim was to determine the concentrations of serum salicylic acid in a group of obese 

children, compared to normal-weight children, and to evaluate if an association may exist between 

serum salicylic acid and fruit and vegetable consumption.   
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3. EFFECTIVENESS OF 1-YEAR LIFESTYLE INTERVENTION, BASED 

ON MEDITERRANEAN DIET, ON OBESITY AND RELATED 

COMORBIDITIES 

 

The aim of this study was to evaluate whether a 1-year lifestyle intervention, based on 

normocaloric diet, promotion of physical activity and behavior changes, may improve obesity, 

metabolic profile and obesity-related comorbidities, as glucose metabolism alterations, 

hyperlipidemia, prehypertension/hypertension, increased liver echogenicity and metabolic 

syndrome, in a cohort of obese children.  

 

3.1. EXPERIMENTAL SECTION 

A cohort of 125 obese children (61 boys and 64 girls) was consecutively recruited among those 

admitted with diagnosis of obesity by primary care pediatricians to the Department of Pediatrics, 

San Paolo Hospital, Milan, between March 2014 and August 2015, according to the following 

eligibility criteria: 

Inclusion criteria:  

 age ǃŜ yearsǲ 

 obesity according to Italian BMI charts [1];  

 weight at birth ǃŘśŖŖ g and <ŚŖŖŖ gǲ  

 gestational age 37–42 weeks; 

 single birth; 

 Italian children residing in Milan or neighborhood (<30 km).  

 

Exclusion criteria: 

 severe malformations interfering with nutrition, physical activity and/or growth; 

 syndromic, organic and hormonal conditions besides obesity. 

 

The parents of eligible children or their legal guardian received detailed explanation about the aim 

of the study, and signed a consent form. The Hospital Ethics Committee approved the study 

protocol and gave ethical clearance. 
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3.1.1. Anthropometry and Blood Pressure 

A medical history was collected at recruitment from parents by a standardized questionnaire 

during a personal interview conducted by the pediatrician. Moreover, the pediatrician made a 

general examination of the child and evaluated the Tanner stage of puberty [2]. The pediatrician 

also took anthropometric measurements and blood pressure of children both at baseline and at the 

end of intervention, assisted by an experienced operator.  

Anthropometric measurements included: 

 body weight; 

 height; 

 triceps skinfold thickness; 

 waist circumference (WC). 

 

Body weight and height were measured using a mechanical column scale (seca 711; seca GmbH & 

KG, Hamburg, Germany) with integrated measuring rod (seca 220; seca GmbH & KG). BMI was 

calculated from the ratio of weight to height squared (kg/m2). BMI were transformed to age- and 

sex-specific z-scores according to WHO reference data 2007 [3]. Waist circumference was measured 

using the measuring tape seca 203 (seca GmbH & KG) to the nearest 0.1 cm at the mid-point 

between the iliac crest and the lower edge of the ribs at the end of a normal expiration. The 

waist/height ratio was calculated and a cut-off ǃ 0.6 was used to identify children with higher 

cardiometabolic risk [4]. Triceps skinfold thickness was measured on the left side of the body, 

using the Harpenden Skinfold Caliper (Chasmors Ltd, London, UK) halfway between the 

acromion process and the olecranon process [5]. Body composition was determined by bioelectrical 

impedance analysis, using the BC-418 Segmental Body Composition Analyzer (Tanita Corporation 

of America, Inc, Arlington Heights, Illinois, USA). 

Blood pressure was measured according to recommendations of the National High Blood Pressure 

Education Working Group [6]. Systolic or diastolic blood pressure ǃ şŖth percentile for gender, age, 

and height were considered as indicative of prehypertension/hypertension [6].  
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3.1.2. Biochemistry 

Biochemical measurements were performed at baseline and one year (±5 day) after starting 

intervention (end of intervention). Fasting blood samples were taken at 8 h ± 30 min a.m. and 

immediately analyzed at the hospital laboratory of biochemistry for total cholesterol, HDL 

cholesterol, LDL cholesterol, triglycerides, apolipoprotein A1 (ApoA1), apolipoprotein B (ApoB), 

insulin, glucose and glycated hemoglobin (HbA1c) on the cobas® 6000 analyzer series, c501 and 

e601 modules (Roche Diagnostics GmbH, Hoffmann-La Roche ltd, Mannheim, Germany). 

Furthermore, alanine aminotransferase (ALT), aspartate aminotransferase (AST), and gamma 

glutamyltransferase ǻ·GTǼ were determined to test liver function, and high sensitivity C-reactive 

protein (hs-CRP) and erythrocyte sedimentation rate (ESR) were determined as inflammation 

markers. Finally, vitamin D was measured out. Oral glucose tolerance test was performed: 

flavored glucose at a dose of ŗ.ŝś g ⁄ kg body weight ǻup to a maximum of ŝś gǼ was given orally 

after fasting blood sample, and additional blood samples were taken for measurements of plasma 

glucose at 120 min. 

 

3.1.3. Glucose metabolism  

Several glucose metabolism indices have been calculated. Specifically, insulin resistance was 

evaluated by: 

 the homeostatic model assessment of insulin resistance (HOMA-IR), calculated as [7]: 

HOMA-IR: (fasting glucose (mmol/L) x fasting insulin (µU/mL))/22.5. Insulin resistance 

was defined as HOMA-IR >3.16 [8]; 

 the triglyceride glucose index (TyG index), calculated as [9,10]: 

TyG index: ln [fasting triglycerides (mg/dL) × fasting glucose (mg/dL)/2]. 

Insulin sensitivity was evaluated by: 

 the quantitative insulin sensitivity check (QUICK) index, calculated as [11]: 

QUICK: 1/(log10 fasting plasma insulin in µU/mL + log10 glucose in mg/dL).  

Pancreatic Ά-cell function was evaluated by: 

 HOMA-Ά%, calculated as [7]: 

HOMA-Ά%Ǳ ǻŘŖ × fasting insulin in µU/mLǼ/ǻfasting glucose in mmol/L−ř.śǼ.  



 

 73 

The ratio triglycerides/HDL cholesterol was used to identify obese children at risk of IGT with a 

cut-off value of 2.2 [12].  

Impaired fasting glucose was identified for fasting plasma glucose levels of 100 mg/dl (5.6 mmol/l) 

to 125 mg/dl (6.9 mmol/l)] while impaired glucose tolerance by values of 140 mg/dl (7.8 mmol/l) to 

199 mg/dl (11.0 mmol/l)] after 2-h in the OGTT. Pre-diabetes was also identified by HbA1c values 

between 5.7%-6.4% (39–47 mmol/mol), according to ADA criteria [13]. Diabetes was diagnosed 

according to ADA criteria, too [13] (Table 1. Criteria for the diagnosis of diabetes, subchapter 

1.2.2.).  

 

3.1.4. Lipid profile  

ApoB/apoA ratio, LDL/HDL cholesterol ratio, total cholesterol/HDL cholesterol ratio and 

triglycerides/HDL cholesterol ratio were calculated. It has been observed that triglycerides/HDL 

cholesterol ratio may be useful to identify children with atherogenic dyslipidemia, insulin-

resistance and preclinical signs of early organ damage [14,15]. Therefore, triglycerides/HDL ratio 

ǃŘ.Ř was also considered as a biomarker of atherogenic dyslipidemia and altered cardiometabolic 

risk [14,16]. Furthermore, the logarithm of the ratio of plasma triglycerides to HDL-cholesterol 

(Log [Triglycerides/HDL]), called atherogenic index of plasma (AIP), was calculated as it is 

considered a marker of plasma atherogenicity [17]. 

Regarding hyperlipidemia, the prevalence of children with borderline-low/high concentration 

of plasma lipids was determined according to proposed cut-off by the Expert Panel on Integrated 

Guidelines for Cardiovascular Health and Risk Reduction in Children [18] (Table 1).  

 

Table 1. Acceptable, Borderline-Low/High Plasma Lipid and Lipoprotein for children and adolescents [18] 

 

 

 

 

 

 

 

Category  Acceptable (mg/dL) Borderline-Low/High (mg/dL) 

Total cholesterol <170 ǃŗŝŖ 

LDL-cholesterol <110 ǃŗŗŖ 

Triglycerides 

0-9 years 

10-19 years 

 

<75 

<90 

 

ǃŝś 

ǃşŖ 

HDL-cholesterol >45 ǂŚś 
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3.1.5. Abdominal ultrasonography (US) 

Abdominal US was performed according to a randomized sequence. The same radiologist (AR) 

performed US by a GE Logiq 9 (General Electric Healthcare Medical Systems, Milwaukee, WI, 

United States) using a 3.5 MHz convex array transducer.  

 

3.1.6. Metabolic Syndrome 

Metabolic syndrome was defined in accordance with the International Diabetes Federation (IDF) 

criteria for children and adolescents (Table 2) [19,20]. As IDF suggests that below the age of 10 

years metabolic syndrome cannot be diagnosed, in this study it was evaluated only in children of 

10 years or older. 

Table 2. IDF definition of metabolic syndrome in children and adolescents aged 10-16 years [19,20]. 

HDL, high density lipoprotein; BP, blood pressure; FPG, fasting plasma glucose 
 
 
 
 

3.1.7. Dietary Habits 

Dietary habits of children were assessed at baseline and at the end of intervention by a food 

frequency questionnaire ǻFFQǼ originally developed at our Department in ŗşşŖȂs on the original 

Block FFQ [21] and then revised and updated in 2008 on the basis of the full-length Block 2005 FFQ 

© (NutritionQuest, Berkeley, CA, USA) and the 2007 national food composition tables [22], to 

appropriately adjust for cultural food/beverage items of the Italian pediatric population. Parents 

completed the FFQ about their childrenȂs habits during an interview of approximately śŖ min, 

conducted at hospital by the same nutritionist. Each meal was analyzed to find out which food was 

eaten and how often. Usual portion sizes were estimated using household measures and the 

weight (e.g., pasta) or unit (e.g., fruit juice) of the purchase. A 24-h recall was additionally 

recorded at the end of the interview to standardize the usual serving size. Quantification and 

analysis of the energy intake and nutrient composition were performed with an ad hoc PC software 

program developed by a consultant. 

Years Obesity (WC) Triglycerides HDL-C  Blood pressure Glucose 

10  - < 16 

years 

fiC ǃ 90th pc or adult 
cut-off if lower 

ǃ 150 mg/dL 
(1.7 mmol/L) 

< 40 mg/dL 
(1.03 mmol/L) 

Systolic BP ǃ 130 or 
diastolic BP ǃ 85 

mm Hg 

FPG ǃ 100 
mg/dL 

(5.6 mmol/L)** 
or 

known T2DM 
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3.1.8. Intervention 

The intervention was based on the promotion of a normocaloric diet, balanced for the 

macronutrient distribution, in accordance with the national guidelines for treatment of childhood 

obesity [23] and the reference intake levels for nutrients and energy, defined by the Italian Society 

of Human Nutrition [24]. Specifically, it was recommended that children follow, for a 1-year 

period, a normocaloric diet (daily caloric intake by age and sex) consisting of protein (population 

reference intake (PRI): 0.94 – 0.99 g/kg×die, according to age and sex), carbohydrates (45%–60% 

En), fat (20%–35% En; <10% En from saturated fatty acids, 5-10% En from polyunsaturated fatty 

acids, ǂŗś% En from monounsaturated fatty acidsǼ and fiber ǻŞ.Ś g/ŗŖŖŖ kcalǼ [24]. Additionally, it 

was recommended that children engage in at least 60 min of moderate- to vigorous-intensity 

physical activity (MVPA) daily [25], based on walking, and tailored to individual preferences. 

MVPA was estimated by a physical activity recall.  

During 1-h educational session (at least) held at hospital a pediatrician and a nutritionist 

provided counseling and instructed parents and children about the intervention to be performed 

and actions to maintain throughout a 1-year period. Education was based and focused on 

regulation of energy expenditure, body composition, physical activity, consequences of sedentary 

lifestyle, principles of nutrition, food sources, glycemic index and glucose metabolism, to 

continuously enhance and maintain parental and self-efficacy for dietary change. This educational 

session also took into account a range of behavior change techniques from the revised CALO-RE 

taxonomy (items 1, 2, 5, 6, 8, 16, 21, and 26) [26]. In particular, written educational guidelines were 

given to the parents, including general nutritional advice, food choice lists, a Mediterranean diet 

pyramid for the pediatric age (ATTACHMENT 1), and recommended average servings for 

principal food categories, according to updated Italian Dietary Reference Values [24] 

(ATTACHMENT 2). The Mediterranean diet pyramid was developed ad hoc at our Department, on 

the basis of the Mediterranean diet pyramid for adults [27]. General nutritional advice included 

increasing fruit and vegetable intake, increasing legume and fish intake while decreasing meat 

consumption, using more whole grain, avoiding sugary beverages and limiting sweets, according 

to a Mediterranean pattern [27].  

An educational and illustrated brochure about potential benefits of daily physical activity, 

about the importance of accumulate at least 60 minutes of MVPA daily and to include 

ȃprogrammedȄ physical activity ř times per week, was also given to the child and the parents 

(ATTACHMENT 3). A progressive increase in physical activity to gradually achieve the target 
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was recommended, especially for inactive childrenǱ ȃit may be appropriate to start with smaller 

amounts of physical activity and gradually increase duration, frequency and intensity over time.Ȅ 

The concept that, during childhood, physical activity includes walk, bike ride, play, games, sports, 

physical education, or planned exercise, in different contest was strongly stressed, as well as, the 

importance to reduce sedentary activities, as watching TV, playing videogames, etc.  

Medical examinations were scheduled every 6 months during the intervention period. At each 

visit, parents of children or their legal guardians filled out a 24-hour recall (plus FFQ at 12 months) 

and physical activity recall to evaluate adherence to lifestyle recommendations. 
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CONSIGLI PER UNA SANA ALIMENTAZIONE 

-AREA MEDITERRANEA- 

 

L’organismo umano consuma continuamente energia, gli alimenti forniscono le sostanze necessarie 

per garantire il fabbisogno energetico e le necessità dei diversi organi. 

Per mantenersi in forma si consiglia di: 
 fare attività fisica quotidiana per almeno 1 ora. Alimentazione corretta ed attività fisica 

costante sono una coppia inseparabile per vivere bene ed in salute.                                        

Impara a mantenerti in esercizio!  Quando si parla di attività fisica non si deve pensare solo a 

sport o fatica.  Le attività che favoriscono l’utilizzazione del tessuto adiposo sono quelle che 

possiamo praticare ogni giorno: andare in bicicletta, con pattini o skate, camminare, fare una 

passeggiata con il cane, ballare, salire le scale anziché prendere l’ascensore, saltare con la corda, 
giocare con amici a bandiera, a nascondino ….. Per il tempo libero, quindi, non solo computer, 

televisione, videogiochi. 

 alimentarsi in modo variato ed equilibrato; 

 mantenere l’abitudine di una prima colazione sostanziosa che è il carburante per la mattinata, 

l’attività scolastica e il gioco.  
 evitare periodi di digiuno prolungati e distribuire ogni giorno gli alimenti in 4-5 pasti:  

 COLAZIONE: 15% delle calorie 
Un’abitudine importante da mantenere è quella di fare una buona prima colazione: è il carburante 

per la mattinata, l’attività scolastica e per il gioco. La prima colazione può essere molto semplice 
ma deve essere completa: 

 Latte parzialmente scremato o yogurt bianco  
+ Cereali pronti o fette biscottate o pane integrale con marmellata o muesli o plum cake  

      + Frutta fresca o eventualmente spremuta di arancia 

 SPUNTINO AL MATTINO: 5% delle calorie  
 MERENDA A METÀ POMERIGGIO 10% delle calorie 

La merenda di metà mattina e quella del pomeriggio sono momenti importanti della giornata 

perché servono a non lasciare un lungo intervallo tra i pasti, evitando di arrivare a pranzo o a 

cena affamati, con il rischio di mangiare troppo.  

 Frutta di stagione. Saltuariamente sorbetto di frutta; 

 Yogurt bianco; 

 Pane integrale (ad esempio pane e olio o pane e pomodoro). 

 PRANZO 40% delle calorie, CENA 30% delle calorie 
 

Per assicurare un corretto apporto di tutti i nutrienti devono essere presenti carboidrati, proteine, 

lipidi e fibre. Due possono essere gli schemi da seguire: 

 

1. piatto unico: primo piatto, pasta o riso o orzo o farro o polenta conditi con carne o pesce o 

legumi o formaggio o uova + verdura + frutta. 

 

2. primo piatto: pasta o riso orzo o farro o polenta conditi con verdura + secondo piatto (carne 

o pesce o legumi o formaggio o uova) + verdura + frutta. 
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I 14 pasti settimanali possono essere così suddivisi: 
 
       FRUTTA E VERDURA              3-5 PORZIONI AL GIORNO 

       PASTA o RISO o ALTRI CEREALI        3-5 PORZIONI AL GIORNO 

      TUBERI                                                        1-2 VOLTE LA SETTIMANA  

       LATTE E YOGURT             1-2 PORZIONI AL GIORNO 
 NOCI E SEMI                                             1 PORZIONE AL GIORNO (es 3-4 noci) 

       CARNE                                     MASSIMO 3 VOLTE LA SETTIMANA (≤ 2                                                                          
PORZIONI A SETTIMANA DI CARNI 

BIANCHE, < 2 PORZIONI DI CARNI   

ROSSE, ≤ 1 PORZIONE A SETTIMANA DI 
CARNI LAVORATE es prosciutto cotto e 

bresaola)                

 PESCE      3-4 VOLTE LA SETTIMANA 

 LEGUMI      4-5 VOLTE LA SETTIMANA 

 FORMAGGI     2 VOLTE LA SETTIMANA       

         UOVA      1-2 VOLTE LA SETTIMANA 

----------------------------------------------------------------------------------------------------------------------------------- 

 

COME ORIENTARSI NELLA SCELTA DEGLI ALIMENTI 
 

LATTE  parzialmente scremato 

YOGURT  bianco 

CEREALI privilegiare cereali integrali e riso parboiled (quest’ultimo massimo 2 volte alla 
settimana).  Si raccomanda la cottura al dente. Variare la scelta considerando anche altri cereali 

quali orzo, farro, sorgo, grano saraceno, miglio, quinoa, amaranto.   

PANE  1 panino al giorno, preferire quello preparato con farine integrali o con farina tipo 1. 

CARNE pollo, coniglio, tacchino, vitello, manzo magro, maiale magro.  

PESCE  fresco o surgelato, preferire il pesce azzurro (sarde, alici). Merluzzo, nasello, sgombro, 

spigola o pesce persico meglio non più di 1 volta a settimana. Cefalopodi (calamari, polpo) non più 

di 1 volta a settimana. Crostacei e molluschi bivalvi saltuariamente. Da evitare pesce di grossa 

taglia (pesce spada e tonno). 

LEGUMI freschi, secchi o surgelati vanno sempre associati nello stesso pasto ai cereali (pasta, riso, 

orzo). Non sono verdure, ma una alternativa a carne, pesce, uova e formaggi. 

FRUTTA  2-3 volte al giorno. Da preferire quella di stagione. Non frullata o passata. Da      

assumere non più di 2-3 volte alla settimana: kiwi o uva o banana o ananas o papaya o melone. Da 

limitare (≤ 1 volta alla settimana): datteri o avocado o tamarindo o anguria.  
VERDURA fresca o surgelata, non frullata o passata, 2 volte al giorno. Da preferire verdura di    

stagione (le patate sono da limitare). 

CONDIMENTI privilegiare olio extravergine di oliva, aceto e limone. 

SALE da limitare  

COTTURA   in umido, al vapore, al forno, al cartoccio. 
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LA PIRAMIDE DELLA DIETA MEDITERRANEA PEDIATRICA 
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Porzioni e frequenze alimentari per la fascia di età 4-6 anni 

ALIMENTI QUANTITA’ CONSIGLIATA* FREQUENZE DI CONSUMO 

Pasta/riso (anche integrali), 

polenta, orzo, farro, ecc. 
40-50 g 2 volte al giorno 

Pastina in brodo/ minestra 

d’oƌzo 
30 g  

Gnocchi 120 g  

Tortellini in brodo 50 g  

Pane  (anche integrale) 30 g 2-3 volte al giorno 

Pizza 150 g 
1 volta alla settimana 
(in sostituzione di pasta, 

riso, pane, patate, ecc.) 

Pƌodotti da foƌŶo peƌ l’iŶfaŶzia 
e cereali da colazione (anche 

integrali) 

4 biscotti 
o 

4 fette biscottate 
o 

40 g cereali da colazione 

1 volta al giorno  

Patate 150 g 
1 volta alla settimana 

(in sostituzione del pane) 

Verdure  

50 g crude 
(es.: pomodori, lattuga, ecc.) 

o 

130 g da cuocere 
(es.: bieta, spinaci, ecc.) 

2 volte al giorno  

Frutta fresca 100 g frutta 2-3 volte al giorno  

Legumi 
20-25 g secchi  

o 

60-70 g lessi 
4-5 volte alla settimana 

Latte  200 mL 1 volta al giorno 

Yogurt da latte intero 125 g (1 vasetto) 4 volte alla settimana 

Formaggio 

40 g fresco (es.: mozzarella) 

o 

30 g semistagionato  
(es.: caciotta) 

o 

20 g stagionato (es.: 

parmigiano) 

2 volte alla settimana  

Pesce** 50 g 3-4 volte alla settimana 

Carne*** 40-50 g 

Max 3 volte alla settimana (incluso 

massimo 1 volta settimana carni 

trasformate) 

Carni trasformate  
30 g ( es.1 fetta e ½  di prosciutto 

cotto) 
 

Uova 60 g (1 uovo) 1-2 volta alla settimana 

Olio 
10 g extra vergine di oliva  

5-10 g semi di girasole  

2 volte al giorno 

1 volta al giorno 

Dolci 

30 g dolci da forno  

(es.: crostata, ciambellone, ecc.) 

o 

10-15 g cioccolato, 

marmellata, ecc. 

Limitare al minimo  

(Max 1 volta alla settimana) 
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* Le ƋuaŶtità si ƌifeƌiscoŶo all’aliŵeŶto cƌudo, al Ŷetto degli scaƌti o, iŶ alcuŶi casi, pƌoŶto peƌ il coŶsuŵo  
     (es.: latte e derivati, pane, ecc.). 

**Limitare il consumo di pesce di taglia grande (es.: tonno e pesce spada, meglio variare). 

*** Preferire tagli magri e carne bianca (pollo, tacchino e coniglio). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

o 

100 g dolci a cucchiaio  
(es.: gelato, budino, ecc.) 

Acqua 200 mL (un bicchiere medio) 
6 bicchieri (circa 1200 mL) nell’arco della 

giornata 
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Porzioni e frequenze alimentari per la fascia di età 7-11 anni 

ALIMENTI QUANTITA’ CONSIGLIATA* FREQUENZE DI CONSUMO 

Pasta/riso (anche integrali), 

polenta, orzo, farro, ecc. 
70-80 g 2 volte al giorno 

Pastina in brodo/ minestra 

d’oƌzo 
40 g (pastina/orzo)   

Gnocchi 150 g  

Tortellini in brodo 50 g  

Pane (anche integrale) 50 g 2-3 volte al giorno 

Pizza 200 g 
1 volta alla settimana 
(in sostituzione di pasta, 

riso, pane, patate, ecc.) 

Prodotti da forno e cereali 

da colazione (anche integrali) 

4 biscotti 
o 

4 fette biscottate 
o 

40 g cereali da colazione 

1 volta al giorno  

Patate 150 g 
1 volta alla settimana 

(in sostituzione del pane) 

Verdure  

50 g crude  
(es.: pomodori, lattuga, ecc.) 

o 

150 g da cuocere 
(es.: bieta, spinaci, ecc.) 

2-3 volte al giorno  

Frutta fresca 100 g frutta 2-3 volte al giorno  

Legumi 
30-35 g secchi  

o 

90-100 g freschi 
4-5 volte alla settimana 

Latte  200 mL 1 volta al giorno 

Yogurt  125 g (1 vasetto) 4 volte alla settimana 

Formaggio 

70 g fresco (es.: mozzarella) 

o 

50 g semistagionato (es.: caciotta) 

o 

30 g stagionato (es.: parmigiano) 

2 volte alla settimana  

Pesce** 80 g 3-4 volte alla settimana 

Carne*** 70-80 g 

 

Max 3 volte alla settimana 

(incluso massimo 1 volta 

settimana carni trasformate) 

Carni trasformate  40 g (es. 2 fette prosciutto cotto)  

Uova 60 g (1 uovo) 1-2 volte alla settimana 

Olio 
10 g extra vergine di oliva  

10 g semi di girasole  

2 volte al giorno 

1 volta al giorno 

Dolci 

30-50 g dolci da forno  

(es.: crostata, ciambellone, ecc.) 

o 

20-30 g cioccolato, marmellata, ecc. 
o 

100-125 g dolci a cucchiaio  
(es.: gelato, budino, ecc.) 

Limitare al minimo  
(Max 1 volta alla settimana) 
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* Le ƋuaŶtità si ƌifeƌiscoŶo all’aliŵeŶto cƌudo, al Ŷetto degli scaƌti o, iŶ alcuŶi casi, pƌoŶto peƌ il coŶsuŵo  
   (es.: latte e derivati, pane, ecc.). 

** Limitare il consumo di pesce di taglia grande (es.: tonno e pesce spada, meglio variare). 

*** Preferire tagli magri e carne bianca (pollo, tacchino e coniglio). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Acqua 200 mL (un bicchiere medio) 
6 bicchieri (circa 1200 mL) 

nell’arco della giornata 
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Porzioni e frequenze alimentari 12-15 anni 

ALIMENTI QUANTITA’ CONSIGLIATA* FREQUENZE DI CONSUMO 

Pasta/riso (anche integrali), 

polenta, orzo, farro, ecc. 
90-100 g 2 volte al giorno 

Pastina in brodo/ minestra 

d’oƌzo 
50 g (pastina/orzo)   

Gnocchi 220-250 g  

Tortellini in brodo 100-110 g  

Pane (anche integrale) 50 g 2-3 volte al giorno 

Pizza 300 g 
1 volta alla settimana 
(in sostituzione di pasta, 

riso, pane, patate, ecc.) 

Prodotti da forno e cereali 

da colazione (anche integrali) 

4 biscotti 
o 

4 fette biscottate 
o 

40 g cereali da colazione 

1 volta al giorno  

Patate 150 g 
1 volta alla settimana 

(in sostituzione del pane) 

Verdure  

80 g crude  
(es.: pomodori, lattuga, ecc.) 

o 

200 g da cuocere 
(es.: bieta, spinaci, ecc.) 

2-3 volte al giorno  

Frutta fresca 150 g frutta 2-3 volte al giorno  

Frutta secca 20-30 3-4 volte alla settimana 

Legumi 
40-45 g secchi  

o  
120-130 g lessi 

4-5 volte alla settimana 

Latte  250 mL 1 volta al giorno 

Yogurt  125 g (1 vasetto) 4 volte alla settimana 

Formaggio 

80 g fresco (es.: mozzarella) 

o 

50 g semistagionato (es.: caciotta) 

o 

50 g stagionato (es.: parmigiano) 

2 volte alla settimana  

Pesce** 100 g 3-4 volte alla settimana 

Carne*** 90 g 

Max 3 volte alla settimana 

(incluso massimo 1 volta 

settimana carni trasformate) 

Carni trasformate  50 g (es. 2 fette prosciutto cotto)  

Uova 120 g (2 uova) 1 volte alla settimana 

Olio 
10 g extra vergine di oliva  

10-15 g semi di girasole  

2 volte al giorno 

1 volta al giorno 

Dolci 

30-50 g dolci da forno  

(es.: crostata, ciambellone, ecc.) 

o 

20-30 g cioccolato, marmellata, ecc. 
o 

100-125 g dolci a cucchiaio  
(es.: gelato, budino, ecc.) 

Limitare al minimo  

(Max 1 volta alla settimana) 
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* Le ƋuaŶtità si ƌifeƌiscoŶo all’aliŵeŶto cƌudo, al Ŷetto degli scaƌti o, iŶ alcuŶi casi, pƌoŶto peƌ il coŶsuŵo  
   (es.: latte e derivati, pane, ecc.). 

** Limitare il consumo di pesce di taglia grande (es.: tonno e pesce spada, meglio variare). 

*** Preferire tagli magri e carne bianca (pollo, tacchino e coniglio). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Acqua 200 mL (un bicchiere medio) 
6 bicchieri (circa 1200 mL) 

nell’arco della giornata 
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PROMOZIONE DELL’ATTIVITA’ FISICA IN BAMBINI E  

ADOLESCENTI  

 

LE REGOLE D’ORO PER STARE IN FORMA 

 

 Prendi le scale al posto dell’ascensore  
 Fai una passeggiata con il cane per 30 minuti al giorno 

 Vai a scuola a piedi o in bici 

 Quando senti la musica, balla 

 Gioca al parco con gli amici 

 Aiuta la mamma nei lavori di casa 

 

FARE ATTIVITÀ FISICA COSTANTEMENTE PORTA TANTI 

BENEFICI! 

 

 

 

 

 

 

 

 

 

 

FA BENE 

AL CUORE 

RIMANI IN 

FORMA 

CONOSCI 

NUOVI AMICI 

MIGLIORA 

IL SONNO 

AIUTA LO 

SVILUPPO E LA 

COORDINAZIONE 

AIUTA LA 

CONCENTRAZIONE 

DIVENTI 

FORTE 

TI FA 

SENTIRE 

BENE 

ATTACHMENT 3 
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ALMENO 60 MINUTI AL GIORNO 

 

 

 

 

 

 

Femmine 
(6-12 anni) 

Maschi  
(6-12 anni) 

Adolescenti  Categoria 

≥14.000 passi ≥17.500 passi ≥ 13.000 passi MOLTO ATTIVO 

12.000 – 15.000 passi 15.000 – 17.500 passi 11.000 – 13.000 passi ATTIVO 

9.500 – 12.000 passi 12.500 – 15.000 passi 9.500 – 11.000 passi ABBASTANZA ATTIVO 

7.000 – 9.500 passi 10.000 – 12.500 passi 7.000 – 10.000 passi POCO ATTIVO 

<7.000 passi <10.000 passi <7.000 passi SEDENTARIO 

 

TRE VOLTE A SETTIMANA ATTIVITA’ 
PROGRAMMATA 

 

 

 

 

INFINE, RIDUCI LA SEDENTARIETA’! 

 

 

 

Arti marziali 

Sport Danza Ginnastica 
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3.1.9. Sample Size 

The sample size was calculated in a previous study [28] to detect a mean longitudinal variation of 

5% or more of HDL cholesterol, based on the baseline mean and standard deviation estimated in 

children already recruited. Assuming a type I error level of 0.05 with a power of 0.80, and allowing 

for a drop-out of 5% at least 87 children needed to be recruited [28]. 

 

3.1.10. Statistical Analysis 

Descriptive data are reported as mean and standard deviation (SD) or 95% confidence interval 

(CI), or number of observations (percentage). Normality of the distribution of continuous variables 

was assessed by the Kolmogorov–Smirnov test. Means were adjusted for age, sex, baseline BMI z-

score and Tanner stage, as appropriate. Statistical significance of longitudinal variations was tested 

by the StudentȂs t test for paired data or the Wilcoxon test, and also adjusted by ANOVA for 

repeated measures. At this analysis non-normally distributed continuous variables entered the 

model after logarithmic transformation. Association between changes in anthropometric 

parameters with changes in metabolic parameters was assessed by SpearmanȂs correlation 

coefficient. All values of p< 0.05 were considered to indicate statistical significance (two-tailed test). 

The statistical package for social sciences (SPSS) package version 20.0 (SPSS Inc., Chicago, IL, USA) 

for Windows (Microsoft, Redmond, WA, USA) was used, for the statistical analysis. 
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3.2. RESULTS  

One hundred eighteen obese children (94.4%), 54 boys and 64 girls, completed the intervention. At 

recruitment mean (SD) age and duration of obesity were 9.8 (2.5) years (range 6–15) and 4.2 (2.2) 

years, respectively. At the end of the intervention reduction of daily energy intake and 

macronutrient redistribution towards the recommended range were observed (Table 1). Mean (SD) 

MVPA was 44.4 (32.0) min/day at baseline and 52.8 (34.6) min/day at the end of intervention (p = 

0.065). At 6 and 12 months of intervention, compliance with diet and MVPA, evaluated by the 24-h 

recall (plus FFQ at 12 months) and recall of physical activity, was 87% and 90% (diet) and 84% and 

86% (MVPA), respectively. 

Table 1. Dietary intake of energy, macronutrients and fiber at baseline and at the end of intervention. Values 
are mean [SD]†. 

† Mean and related P-value adjusted for age and sex      
* Statistically significant 

Variable Baseline (n= 118) End of intervention 

(n=118) 

P-value Recommended intake [24] 

Energy  
   kcal/d 
   kcal/kg 

 
2492.66 [838.39] 

46.55 [17.88] 

 
2029.32 [785.11] 

36.99 [16.72] 

 
<0.001* 
0.001* 

1380-3330 kcal/d 
depending on age and sex 

[6-15 y] 

Protein 
   g/d 
   
% Energy 

 
97.60 [32.36] 

 
15.60 [3.99] 

 
76.08 [26.40] 

 
15.00 [2.63] 

 
<0.001* 

 
0.052 

 
AR: 16-50 g/die depending 

on age and sex [6-15 y] 
- 

Carbohydrates 
   g/d 
   % Energy 

 
342.33 [123.00] 

52.10 [7.71] 

 
306.66 [119.53] 

57.03 [9.33] 

 
0.045* 
0.001* 

 
- 

45-60% Energy 
Sugars 
   g/d 
   % Energy 

 
113.55 [58.12] 
18.30 [6.09] 

 
83.78 [46.93] 
15.43 [4.41] 

 
0.002* 

<0.001* 

 
- 

< 15% Energy 
Fats 
   g/d 
   % Energy 

 
90.93 [35.69] 
31.62 [5.63] 

 
63.97 [21.48] 
28.72 [4.11] 

 
<0.001* 
<0.001* 

 
- 

20-35% Energy 
   Saturated 

   g/d 

   % Energy 

 
31.53 [13.33] 
11.44 [3.39] 

 
19.06 [8.10] 
8.70 [2.58] 

 
<0.001* 
<0.001* 

 
- 

< 10% Energy 
   Monounsaturated 

   g/d 

   % Energy 

 
34.65 [15.81] 
12.72 [4.41] 

 
22.56 [11.84] 
10.11 [3.40] 

 
<0.001* 
0.033* 

 
- 

ǂ ŗś% Energy 
   Polyunsaturated 

   g/d 

   % Energy 

 
14.94 [6.63] 
5.15 [1.73] 

 
9.43 [5.30] 
4.76 [1.75] 

 
<0.001* 
0.072 

 
- 

5-10% Energy 
Fiber  
   g/d 
   g/1000 kcal 

 
13.23 [6.82] 
5.50 [2.46] 

 
17.13 [8.24] 
8.86 [3.70] 

 
0.002 

<0.001* 

 
- 

8.4 g/1000 kcal 
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3.2.1. Change in anthropometry and obesity prevalence after 1-year intervention 

Throughout the intervention period BMI z-score decreased ǻmean variation, Δ, -0.52; 95% CI, (-

0.59; -0.45)), as well as waist circumference ǻ−Ŗ.ŜŚǲ ǻ−ŗ.řśǲ Ŗ.ŖŝǼ cmǼ, triceps skinfold thickness (-

2.15; (-3,34; -0,96) mm) and waist to height ratio (-0.02; (-0.03; -.01)). Total lean mass (kg) increased 

at the end of the intervention (4.43; (3.83; 5.03)). Furthermore, the prevalence of children with waist 

to height ratio ǃ0.60 was reduced by 29.8% (Table 2). The within-subjects longitudinal variation of 

obesity status was significant (Figure 1-2). 

 

Table 2. Anthropometric measurements at baseline and at the end of intervention. Values are 

mean [SD]† or number of children (percentage). 

Variable Baseline 

(n= 118) 

End of intervention 

(n=118) 

P-value 

BMI Z-score 3.41 [0.95] 2.89 [0.86] <0.001* 
Waist circumference (cm) 84.90 [10.27] 84.26 [10.30] 0.001* 
Triceps skinfold thickness (mm) 27.94 [5.35] 25.79 [6.10] 0.036* 
Waist/Height 0.60 [0.05] 0.58 [0.05] 0.021* 
Total fat mass (kg) 23. 33 [9.20] 24.08 [9.35] 0.139 
Total fat mass (%) 38.18 [6.03] 36.56 [6.13] 0.242 
Total lean mass (kg) 35.73 [8.73] 40.16 [9.05] <0.001* 
Total lean mass (%) 61.82 [6.03] 63.45 [6.12] 0.243 
    

Waist/Height ǃ 0.60 [Yes] 57 (48.3) 40 (33.9) 0.005* 
† Mean and related P-value adjusted for age, sex, baseline BMI z-score. 
* Statistically significant. 
 
 
 
 

 
 

Figure 1. Within-subjects longitudinal variation of obesity status (according to Italian BMI 
charts [1] throughout the intervention period† ǻfigures are number of childrenǼ. 
† Significance of longitudinal variation was P<0.001 (Wilcoxon test). 
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Figure 2. Within-subjects longitudinal variation of obesity status (according to WHO BMI 
for age charts [29] throughout the intervention period† ǻfigures are number of childrenǼ. 
† Significance of longitudinal variation was P=0.014 (Wilcoxon test). 
 

 

3.2.2. Change in blood pressure, metabolic profile and liver steatosis after 1-year intervention 

At the end of intervention children showed lower mean (SD) systolic blood pressure than at 

baseline (112.72 (9.61) vs. 114.36 (11.66) mmHg; P = 0.040), while no change was observed for 

diastolic blood pressure (65.88 (7.99) vs. 66.67 (9.36) mmHg; P = 0.569). Moreover, the prevalence of 

children with systolic or diastolic blood pressure ǃşŖth pc for gender, age, and height [6] 

significantly decreased at the end of the intervention (number of children (percentage): 35 (29.7) vs. 

48 (40.7); P = 0.028).  

Throughout the intervention period there was a reduction in glucose after OGTT (-7.35; (-10.48; 

-4.22)) mg/dL), HOMA-Ά% ǻ-86.90; (-137.60; -36.20), TyG index (-0.25; (-0.32; - 0.18) and 

triglycerides/HDL cholesterol ratio (-0.69; (-0.94; -0.44)), while QUICK index significantly increased 

(0.008; (0.004; 0.012). Furthermore, the prevalence of insulin resistance decreased by 30.4% and the 

prevalence of children with glycated hemoglobin between 39-46 mmol/mol decreased by 36.0% 

(Table 3). Only one child at baseline had fasting glucose between 100-125 mg/dL (IFG) while only 

one child at the end of intervention showed post OGGT glycemia between 140-199 mg/dL [13].  
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Table 3. Glucose metabolism variables and distribution of children according to insulin resistance 
[8], triglycerides/HDL ǃ Ř.Ř [ŗŘ] and pre-diabetes [13], at baseline and at the end of intervention. 
Values are mean [SD]† or number of children ǻpercentageǼ. 

Variable Baseline (n= 118) End of intervention 

(n=118) 

P-value 

Glucose (mg/dL) 84.88 [6.15] 84.82 [5.34] 0.242 

Glucose at 120 min (mg⁄dL)** 98.01 [13.62] 90.66 [12.42] 0.043* 

Insulin ǻµU/mLǼ 18.12 [13.22] 14.16 [8.51] 0.062 
HOMA-IR   3.82 [2.97] 2.98 [1.88] 0.057 
HOMA-Ά% 332.74 [291.60] 245.84 [131.53] 0.043* 
QUICK index 0.33 [0.03] 0.33 [0.03] 0.025* 
TyG index 8.33 [0.50] 8.08 [0.44] <0.001* 
Triglycerides/HDL 2.49 [1.64] 1.80 [1.12] <0.001* 

Glycated hemoglobin (mmol/mol) 35.26 (4.57) 36.23 (3.54) 0.237 
   P-value†† 

Insulin resistance (yes) 56 (47.5) 39 (33.0) 0.003* 
Triglycerides/HDL ǃ Ř.Ř 56 (47.5) 25 (21.2) <0.001* 
Glycated hemoglobin: 39-46 
mmol/mol  

25 (21.1) 16 (13.6) 0.029* 

HOMA-IR, homeostasis model assessment of insulin resistance; QUICK, quantitative insulin sensitivity 
check; TyG, triglyceride glucose. Insulin resistance (yes): HOMA-IR >3.16 [8] 
† Mean and related P-value adjusted for age, sex, baseline BMI z-score, Tanner stage. 
**Missing value: n=12 
† † fiilcoxon test for paired data. 
* Statistically significant. 
 

 

HDL cholesterol increased throughout the intervention period (2.28; (0.77;3.79) mg/dL) while 

there was a reduction in total cholesterol (-5.60; (-9.65; -1.55) mg/dL), triglycerides (-25.73; (-34.11; -

17.35) mg/dL), LDL/HDL cholesterol ratio (-0.17; (-0.25; -0.09)), total/HDL cholesterol ratio (-0.26; (-

0.38; -0.14)), triglycerides/HDL cholesterol ratio (-0.69; (-0.94; -0.44)) and atherogenic index (-0.13; (-

0.16; -0.10) (Table 4). 
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Table 4. Blood lipid profile at baseline and at the end of intervention. Values are mean [SD]† or 
number of children (percentage). 

Variable Baseline 

(n= 118) 

End of intervention 

(n=118) 

P-value 

Total cholesterol (mg/dL) 164.14 [29.82] 158.54 [31.66] 0.023* 
LDL cholesterol (mg/dL) 97.38 [27.87] 93.56 [29.28] 0.151 
HDL cholesterol (mg/dL) 48.02 [9.76] 50.30 [10.33] <0.001* 
Triglycerides (mg/dL) 109.71 [54.87] 83.98 [38.38] <0.001* 
Apo A1 (mg/dL) 132.45 [21.68] 133.96 [20.82] 0.891 
Apo B (mg/dL) 74.73 [20.24] 74.23 [19.42] 0.150 
ApoB/ApoA 0.57 [0.19] 0.57 [0.19] 0.788 
LDL/HDL cholesterol 2.14 [0.80] 1.97 [0.78] 0.007* 
Total chol/HDL cholesterol 3.55 [0.95] 3.29 [0.93] 0.001* 
Triglycerides/HDL 2.49 [1.64] 1.80 [1.12] <0.001* 
Atherogenic index 0.32 [0.27] 0.19 [0.23] <0.001* 
LDL, low-density-lipoprotein; HDL, high-density-lipoprotein; Apo A1, apolipoprotein A1; Apo B, 
apolipoprotein B.  
† Mean and related P-value adjusted for age, sex, baseline BMI z-score, Tanner stage. 
* Statistically significant. 
 

The prevalence of children with borderline-high levels of triglycerides decreased significantly 

during the intervention period by 36.8% and the prevalence of children with triglycerides to HDL 

cholesterol ratio ǃ Ř.Ř decreased by 55.4% (Table 5).  

 

Table 5. Distribution of children according to hyperlipidemia cut-offs [18] and 
triglycerides/HDL ǃ Ř.Ř [ŗŚ,ŗŜ] at baseline and at the end of intervention. Values are number of 
children (percentage). 

Variable Baseline 

(n= 118) 

End of intervention 

(n=118) 

P-value† 

Total cholesterol border/high 
ǻǃŗŝŖ mg/dLǼ 

47 (39.8) 39 (33.0) 0.059 

LDL cholesterol border/high 
ǻǃŗŗŖ mg/dLǼ 

35 (29.7) 31 (26.3) 0.285 

HDL cholesterol border/low 
ǻǂŚś mg/DLǼ 

49 (41.5) 41 (34.7) 0.095 

Triglycerides border/high 
ǻǃŝś/şŖ mg/dLǼ †† 

76 (64.4) 48 (40.7) <0.001* 

Triglycerides/HDL ǃ Ř.Ř 56 (47.5) 25 (21.2) <0.001* 
LDL, low-density-lipoprotein; HDL, high-density-lipoprotein. 
† Wilcoxon test for paired data. 
†† According to age. 
* Statistically significant. 
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With regard to liver function, no significant difference was observed for ALT levels (mean (SD): 

28.83 (11.87) vs 32.30 (14.87) U/l; p=0.429) while a decrease in AST (29.06 (10.80) vs 29.90 (10.47) U/l; 

p=0.005) and ·GT (14.98 (5.62) vs. 18.25 (7.46) U/l; p<0.001) was observed.  

The rate of increased liver echogenicity declined by 50.0%, from 28.8% to 14.4% (Figure 3). 

 

 

 

 

 

 

 

 
 
 
 

Figure 3. Within-subjects longitudinal variation of liver hyperechogenicity over the intervention 
period† ǻfigures are number of childrenǼ. 
† Significance of longitudinal variation was P=0.001 (Wilcoxon test). 

 

 

Finally, high sensitivity-CRP decreased at the end of the intervention (n=107; 2.34 (2.41) vs. 4.09 

(5.07) mg/L; p=0.004) while no difference was observed for erythrocyte sedimentation rate levels 

(n=101; 26.58 (17.32) vs. 22.74 (20.62) mm/h; p=0.460). Furthermore, no significant improvement 

was observed for vitamin D levels (n=103; 19.61 (5.32) vs 19.77 (7.93) ng/mL; p=0.738). 

 

3.2.3. Change in metabolic syndrome prevalence after 1-year intervention 

For the evaluation of the effect of the 1-year intervention on metabolic syndrome, a subsample of 

61 children of 10 years and older was considered.  

At the end of the intervention, prevalence of metabolic syndrome was reduced by 66.7% (Table 6). 

Considering specific component of metabolic syndrome, the prevalence of children with 

triglycerides ǃ ŗśŖ mg/dL, HDL cholesterol ǂŚŖ mg/dL and high blood pressure was significantly 

reduced (Table 6). The prevalence of higher liver echogenicity declined by 56.5% (Figure 4). No 

component worsened for any child. Twenty children recovered one of the metabolic syndrome 

components and two children recovered 2 components.  

All the children with metabolic syndrome had HOMA-IR > 3.16 and triglycerides/ HDL cholesterol 

ratio ǃŘ.Ř. The ŚŚ.Ś% of them had higher liver echogenicity.  

34 

End of intervention 

101 

17 

84 

Baseline 

Liver 

hyperechogenicity 

NO liver 

hyperechogenicity 

17 

17 

84 
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Table 6. Distribution of children according to International Diabetes Federation criteria for 
metabolic syndrome† [19,20] at baseline and at the end of intervention. Values are number of 
children (percentage). 

 Baseline (n= 61) End of intervention 

(n= 61) 

P-value †† 

Metabolic syndrome 9 (14.8) 3 (4.9) 0.014* 

Component 

fiaist circumference ǃ şŖth percentile 60 (98.4) 59 (96.7) 0.317 

Triglycerides ǃŗśŖ mg/dL 13 (21.3) 5 (8.2) 0.021* 

HDL cholesterol <40 mg/dL  18 (29.5) 11 (18.0) 0.008* 

Blood pressure:  
   Systolic ǃ ŗřŖ/Diastolic ǃ Şś mmHg 

12 (19.7) 5 (8.2) 0.020* 

Glucose ǃŗŖŖ mg/dL  0 (0.0) 0 (0.0) 1.000 

HDL, high-density-lipoprotein.  
† Evaluated in children aged 10-<16 years (27 boys, 34 girls). Diagnosis of metabolic syndrome requires waist 
circumference ǃ şŖth percentile and two or more of the other components.   
†† fiilcoxon test for paired data.  
* Statistically significant. 
 

 

 

 

 

 

 

 

 

 

Figure 4. Within-subjects longitudinal variation of liver hyperechogenicity over the intervention period 
in the subsample of children aged ǃ ŗŖ years (figures are number of children). 
† Significance of longitudinal variation was P=0.002 (Wilcoxon test). 
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3.2.4. Association between change in anthropometric parameters and change in metabolic 

profile variables  

Change in BMI z-score was positively associated with change in glucose, insulin, HOMA-IR, 

HOMA-Ά% and TyG index and negatively associated with change in QUICK index. Other 

significant associations have been observed also between changes in waist circumference and 

triceps skinfold thickness and longitudinal changes of different glucose metabolism variables 

(Table 7).  

 

 
Table 7. Correlation coefficient (p-valueǼ † of change ǻend of treatment-baseline) in anthropometric 
parameters with change (end of treatment-baseline) of glucose metabolism. 

 

 

 

 

 

 

 

 
 
 

HOMA-IR, homeostasis model assessment of insulin resistance; QUICK, quantitative insulin sensitivity check; TyG, 
triglyceride glucose.  
† “djusted for age, sex, baseline ”MI z-score, Tanner stage.  
*Statistically significant. 
 

 

 

 

 

 

 

 

 

 

 

N= 118 Δ ”MI Z-score Δ Waist 
circumference (cm) 

Δ Triceps skinfold 

thickness (mm) 

Δ Glucose (mg/dL) 0.296 (0.004)* 0.171 (0.114) 0.259 (0.045)* 

Δ Insulin ǻµU/mLǼ 0.289 (0.004)* 0.193 (0.074) 0.340 (0.008)* 

Δ HOM“-IR   0.291 (0.004)* 0.181 (0.093) 0.361 (0.005)* 

Δ HOM“-β% 0.237 (0.021)* 0.206 (0.055) 0.248 (0.056) 

Δ QUICK index -0.325 (0.001)* -0.215 (0.045)* -0.294 (0.022)* 

Δ TyG index 0.334 (0.001)* 0.310 (0.003)* 0.055 (0.674) 
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Change in BMI z-score was positively associated with change in triglycerides, LDL/HDL 

cholesterol, triglycerides/HDL cholesterol and atherogenic index. Change in waist circumference 

was positively associated with change in total cholesterol, LDL cholesterol, triglycerides and 

related ratios. Similarly, change in triceps skinfold thickness was associated with change in total 

cholesterol, LDL/HDL cholesterol and total/HDL cholesterol (Table 8).  

 

Table  8. Correlation coefficient (p-valueǼ † of change (end of treatment-baseline) in anthropometric 
parameters with change (end of treatment-baseline) of lipid variables. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

LDL, low-density-lipoprotein; HDL, high-density-lipoprotein; Apo A1, apolipoprotein A1; Apo B, apolipoprotein B. 
† Adjusted for age, sex, baseline BMI z-score, Tanner stage.  
*Statistically significant. 

 
 

 

 

 

 

 

 

 

 

 

 
  

N=118 Δ ”MI Z-score Δ Waist 
circumference 

Δ Triceps skinfold 
thickness  

Δ Total cholesterol (mg/dL) 0.057 (0.582) 0.227 (0.035)* 0.303 (0.019)* 

Δ LDL cholesterol (mg/dL) 0.146 (0.157) 0.230 (0.032)* 0.237 (0.069) 

Δ HDL cholesterol (mg/dL) -0.100 (0.337) -0.057 (0.597) -0.184 (0.160) 

Δ Triglycerides ǻmg/dLǼ 0.281 (0.006)* 0.293 (0.006)* 0.017 (0.895) 

Δ “po “1 ǻg/LǼ 0.113 (0.277) 0.199 (0.062) 0.188 (0.121) 

Δ “po ” ǻg/LǼ 0.056 (0.589) 0.066 (0.541) 0.123 (0.350) 

Δ LDL/HDL cholesterol 0.204 (0.047)* 0.259 (0.016)* 0.317 (0.014)* 

Δ Total chol/HDL cholesterol 0.168 (0.104) 0.283 (0.008)* 0.381 (0.003)* 

Δ Triglycerides/HDL cholesterol 0.280 (0.006)* 0.313 (0.003)* 0.076 (0.564) 

Δ “therogenic index 0.298 (0.003)* 0.290 (0.007)* 0.080 (0.542) 
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3.3. DISCUSSION 

This longitudinal study evaluated whether a 1-year lifestyle intervention, based on a normocaloric 

Mediterranean balanced diet, promotion of physical activity and behavior changes, may improve 

obesity and related comorbidities (glucose metabolism alterations, hyperlipidemia, 

prehypertension/hypertension, high liver echogenicity and metabolic syndrome) in obese children 

aged ǃŜ years. Although beneficial effects on health of Mediterranean diet are widely recognized in 

adults [30], to our knowledge only a study has evaluated the effect of a Mediterranean-like diet on 

cardiovascular risk factors in obese children and adolescents [31].  

At the end of intervention, children showed a decrease in mean BMI z-score of 15%, and the 

prevalence of obesity declined from 100% to 67%, with 33% of obese children who became 

overweight. This result confirms the effectiveness of nutritional/lifestyle interventions in the 

reduction of BMI z-score [28,31-38] and obesity prevalence, as previously observed [28]. However, 

differently from our previous results [28], a decrease in waist circumference was observed, 

confirming results from other studies [32,33,36,38]. Moreover, waist to height ratio and triceps 

skinfold thickness also decreased at the end of the intervention. Importantly, the prevalence of 

children with waist/height ratio ǃ 0.6 decreased significantly, thus suggesting also an important 

reduction of the cardiometabolic risk [4]. Indeed, waist measures may be effective indicator of 

central adiposity and the waist/height ratio cut-off of 0.6 has been suggested as a useful index of 

central adiposity and increased risk of abnormal cardiometabolic risk factor [4]. Considering body 

composition, total lean mass increased significantly, as also observed in obese children after 16 

weeks of intervention based on a Mediterranean-like diet [31].  

The prevalence of children showing prehypertension or hypertension significantly decreased 

by 27% at the end of the intervention, similarly to results showed in another study, evaluating the 

effect of a lifestyle intervention in 83 overweight/obese children [34]. As previously discussed, the 

prevalence of hypertension among children and adolescents is highly heterogeneous [39]; in this 

cohort of obese children 41% of them showed, at baseline, systolic or diastolic blood pressure equal 

or higher than 90th pc for age, gender and height [6]. Specifically, the prevalence of hypertension 

(systolic or diastolic blood pressure ǃ şśth percentile) was of 24%. Moreover, at the end of the 

intervention a decrease in mean systolic blood pressure was observed, as also showed by another 

study evaluating the effect of a 1-year lifestyle intervention on 484 obese children, although they 

found also decreased diastolic blood pressure [33].  
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Concerning lipid profile, this study showed a significant reduction of total cholesterol, 

triglycerides, LDL/HDL cholesterol, total cholesterol/HDL cholesterol, triglycerides/HDL 

cholesterol ratios and in the atherogenic index of plasma, with a concomitant increase in HDL 

cholesterol. These results are in agreement with that of other studies evaluating the effect of 

lifestyle intervention on obese overweight/children and especially showing improvement in 

triglycerides and HDL cholesterol levels [31,33,34,38]. However, systematic reviews and meta-

analysis [40,41] examining the impact of lifestyle interventions, including dietary caloric 

restrictions and/or nutrition education, on cardio-metabolic risk factors in overweight/obese 

children, reported that fewer than half of considered studies showed significant improvements in 

HDL cholesterol or triglycerides levels and that the association of diet plus exercise may determine 

a greater improvement in HDL cholesterol than diet-only interventions. 

An important result of this study is represented by the significant reduction of the atherogenic 

index of plasma. Indeed, it has been suggested that AIP may predict the risk of atherosclerosis and 

coronary heart disease in adults, reflecting the relationship between protective and atherogenic 

lipoprotein and being associated with the size of pre- and anti-atherogenic lipoprotein particle [42]. 

To our knowledge this study is the first intervention study that evaluated atherogenic index in a 

pediatric population, and found that it decreased at the end of the intervention.  

Interestingly, the prevalence of children with triglycerides to HDL ratio equal or greater than 

2.2 declined too, by 55%. The triglycerides/HDL cholesterol ǃŘ.Ř has been confirmed as a marker of 

atherogenic lipid profile as well as a screening tool able to identify insulin resistance, high blood 

pressure, metabolic syndrome, liver steatosis, higher carotid intima-media thickness, and 

concentric left ventricular hypertrophy [14,16]. Finally, it has been suggested that this cut-off may 

be useful to predict the risk of impaired glucose tolerance in the pediatric population, especially in 

children [12]. Another important result of this study is represented by the reduction of the prevalence of 

children with borderline-high triglycerides that are a central element in the definition of atherogenic 

dislypidemia, characterized by hypertriglyceridemia, increased VLDL, small dense LDL, and reduced 

HDL cholesterol [43]. To our knowledge no intervention studies on obese children have evaluated the 

effectiveness of a lifestyle intervention on the prevalence of hyperlipidemia, according to the same criteria 

[18].  

With regard to glucose metabolism, a significant decrease in triglyceride glucose index, an emergent 

useful indicator, affording an easily and widely available simple laboratory method as a surrogate to 

estimate the insulin sensitivity [9,10], was observed at the end of the intervention, confirming results from 
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previously published 1-year nutritional-behavioral intervention study [28]. Moreover, a significant 

reduction of HOMA-Ά% and a concomitant increase of QUICK index, indicating increased insulin 

sensitivity, were observed, while longitudinal variation of insulin levels and HOMA-IR did not 

reach the statistical significance. This result is not in line with that of other lifestyle-intervention 

studies, characterized by hypocaloric diet [38] or not [33,35], which reported decreased insulin 

and/or HOMA-IR after one year of intervention. However, importantly, the prevalence of insulin 

resistance, evaluated by the HOMA cut-off >3.16 [8], significantly declined by 30%, as previously 

observed [28], from a baseline prevalence of 47.5%. Although only one child at baseline had fasting 

glucose higher than 100 mg/dL, a metabolic disorder identified as IFG, 21% of obese children had 

glycated hemoglobin values in a range of 39-46 mmol/mol, which identifies pre-diabetes, and thus 

children at high risk for future diabetes [13]. This prevalence declined by 36% at the end of the 

intervention, thus showing a beneficial effect also on this relevant cardiometabolic risk factor.  

Additionally, considering the increasing prevalence of NAFLD in industrialized countries, 

especially among obese children, the effect of this lifestyle intervention, also based on a 

Mediterranean diet for children, on liver hyperechogenicity was evaluated. At the end of the 

intervention, the prevalence of increased liver echogenicity declined by 50%, from a baseline value 

of 29%, with a concomitant reduction of “ST and ·GT, thus showing a result comparable to that 

reported by Verduci et al [44] after a 1-year nutritional intervention on 46 obese children. 

However, in this study the prevalence of liver hyperechogenicity was lower than that reported by 

other studies [44,45].  

Finally, as obesity is often associated with a chronic low-grade inflammation status, the 

longitudinal variation of ESR and hs-CRP was evaluated. Indeed, the hepatic production of CRP is 

stimulated by interleukin-6, one of the several cytokines produced by the adipose tissue [46]. 

Although no difference was observed in ESR levels, hs-CRP was significantly decreased at the end 

of the intervention, as also resulted from a 6-month lifestyle intervention study, based also on 

hypocaloric diet [47]. 

Considered in the past as a cluster of metabolic abnormalities associated with an increased 

risk of cardiovascular diseases in adults, metabolic syndrome prevalence is increasing among 

children and adolescents as a consequence of childhood obesity. In this study the prevalence of 

metabolic syndrome, evaluated according to IDF criteria [19,20] in a subsample of 61 children aged 

10 years of older, was of 15% and declined by about 67% to a prevalence of 5%, thus showing a 

decline comparable to that observed in other 1-year intervention studies [28,48]. From the study 
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evaluating the efficacy of a Mediterranean-style diet to decrease cardiovascular risk factors in 24 

obese children and adolescents has resulted that at the end of 16 weeks of intervention the 

prevalence of metabolic syndrome declined from 67% to 21% among children [31]. For what 

concerns specific components of metabolic syndrome, in this study the number of children with 

triglycerides ǃ ŗśŖ mg/dL, low levels of HDL cholesterol and high blood pressure declined by 61%, 

39% and 58%, respectively, while no significant improvement was observed in the prevalence of 

abdominal obesity, evaluated by waist circumference ǃşŖth pc. In the study conducted by Reinehr 

et al. [48] variation of IDF components was significant for blood pressure only, with a reduction of 

about 50%, while in the study by Velázquez-López et al. [31] a significant reduction in the 

percentage of children with triglycerides ǃ 150 mg/dL and HDL cholesterol ǂŚŖ was observed, 

from 88% to 8% and from 83% to 29%, respectively.  

As previously explained, insulin resistance is highly involved in the pathogenesis of the 

metabolic syndrome [49]. Therefore, it should be underlined that among the 9 children with 

metabolic syndrome all of them had insulin resistance and triglycerides/HDL ǃŘ.Ř. Furthermore, 

almost half of them had increased liver echogenicity thus confirming the relationship between 

metabolic syndrome, insulin resistance and liver steatosis.  

In this study we also evaluated if a relationship may exist of longitudinal changes in 

anthropometric measurements with changes in metabolic profile parameters after a 1-year lifestyle 

intervention. Indeed, changes in BMI z-score, waist circumference and triceps skinfold thickness 

were associated with changes of some parameters of both lipid and glucose metabolism profile. 

This result underlines the importance of the reduction in BMI z-score and the importance of 

adipose tissue distribution in longitudinal improvement of cardiovascular risk factors and 

components of metabolic syndrome. In this regard, it has been observed that even a modest 

reduction in BMI z-score after 1 year of combined hospital/and public health nurse intervention 

may be associated with improvement in several cardiovascular risk factors, as lower insulin, total 

cholesterol, LDL and total/HDL cholesterol ratio [35]. Specifically, a BMI z-score reduction ǃ0.25 

seems to be already associated with improvement in body composition and cardiometabolic risk 

factors although losing at least 0.5 BMI z-score may determine greater benefits on health [50]. 
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Strength and limitation  

A first strength of this study is that the participation rate was high and after 1-year intervention a 

drop-out of 5.6% only was observed. Moreover, this study was characterized by the use of strict 

international definitions and cut-off, as that used for blood pressure [6], lipids [18], glucose 

metabolism alterations [13] and metabolic syndrome [19,20], and accurate anthropometric and 

biochemistry measurement. Finally, compliance with nutritional intervention was acceptable, with 

90% of children who recovered at the end of the intervention towards recommended ranges of 

macronutrient distribution [24]. A limitation of this study is represented by the use of the FFQ and 

24-h recall, instead of a three- or seven-day food diary. However, it should be considered that it 

was chosen to primary estimate compliance with intervention and not its effect size. Similarly, 

another limitation of this study is represented by the use of a physical activity recall, instead of 

portable activity monitors, such as pedometers, heart rate monitors, and accelerometers. Finally, 

the study did not fully meet the revised CALO-RE taxonomy [26], since only a subset of items was 

extracted by a consultant psychologist from the original 26-item taxonomy [51]. Anyway, it should 

be noted that most of the selected items have been recently recognized as providing effective 

behavior change techniques for childhood obesity [52]. 

 
Conclusion 

As a conclusion, within the limitations of this study, one may conclude that in obese children, 

lifestyle intervention, based on a normocaloric Mediterranean balanced diet for pediatric age, 

promotion of physical activity and behavior changes, may determine a decrease in BMI z-score, 

waist circumference, triceps skinfold thickness and waist to height ratio, associated with a 

significant improvement of the metabolic profile. Moreover, this intervention may determine a 

decrease in the prevalence of obesity and related-comorbidities, reducing the prevalence of insulin 

resistance, pre-diabetes, prehypertension/hypertension, hypertriglyceridemia, higher liver 

echogenicity and metabolic syndrome. Although further well-design trials are desirable, results of 

this study suggest that in children a normocaloric diet, based on a Mediterranean diet pyramid for 

the pediatric age, associated with regular physical activity, may have an important role in the 

treatment of obesity and related-comorbidities, with beneficial effects on health.  
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3.4. CHANGE IN METABOLIC PROFILE AFTER 1-YEAR NUTRITIONAL-

BEHAVIORAL INTERVENTION IN OBESE CHILDREN 

The effect of a 1-year intervention, based on normocaloric diet and physical activity, on body mass 

index, blood lipid proęle, glucose metabolism and metabolic syndrome in a cohort of 85 obese 

children was discussed in a previously published paper.  
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Abstract: Research findings are inconsistent about improvement of specific cardio-metabolic
variables after lifestyle intervention in obese children. The aim of this trial was to evaluate
the effect of a 1-year intervention, based on normocaloric diet and physical activity, on body
mass index (BMI), blood lipid profile, glucose metabolism and metabolic syndrome. Eighty-five
obese children aged ě6 years were analyzed. The BMI z-score was calculated. Fasting blood
samples were analyzed for lipids, insulin and glucose. The homeostatic model assessment of
insulin resistance (HOMA-IR) was calculated and insulin resistance was defined as HOMA-IR
>3.16. HOMA-β%, quantitative insulin sensitivity check index and triglyceride glucose index were
calculated. The metabolic syndrome was defined in accordance with the International Diabetes
Federation criteria. At the end of intervention children showed a reduction (mean (95% CI)) in
BMI z-score (´0.58 (´0.66; ´0.50)), triglycerides (´0.35 (´0.45; ´0.25) mmol/L) and triglyceride
glucose index (´0.29 (´0.37; ´0.21)), and an increase in HDL cholesterol (0.06 (0.01; 0.11) mmol/L).
Prevalence of insulin resistance declined from 51.8% to 36.5% and prevalence of metabolic syndrome
from 17.1% to 4.9%. Nutritional-behavioral interventions can improve the blood lipid profile and
insulin sensitivity in obese children, and possibly provide benefits in terms of metabolic syndrome.

Keywords: childhood obesity; nutritional-behavioral intervention; lipid profile; glucose
metabolism; metabolic syndrome

1. Introduction

Childhood obesity has become a worldwide concern, affecting children of high-income countries
as well as middle-income and low-income countries [1]. Although recent studies suggested
that progresses have been made in the control of the obesity epidemic [2,3] the prevalence of
childhood obesity remains high [1]. Obese children are exposed to detrimental short and long-term
effects on health, thus showing components of metabolic syndrome [4], such as dyslipidemia [5],
hypertension [6], insulin resistance and disturbed glucose metabolism [7]. In most cases, obesity
is consequence of a chronic imbalance between energy intake and energy expenditure, involving
environmental and lifestyle factors, e.g., easy access to energy-dense foods, increased portion sizes,
reduced physical activity and increased time spent in sedentary activities [8]. Chronic exposure over
time to these factors may potentiate weight gain over many years [8].
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Guidelines for treatment of childhood obesity recommend intensive lifestyle interventions,
involving diet, behavioral and physical activity for the child and the entire family, in an
age-appropriate manner [9]. A Cochrane systematic review stated that in children, family-based
lifestyle interventions aimed at changing dietary, behavioral and physical activity patterns can
lead to a reduction in overweight, compared to standard care or self-help [10]. A meta-analysis
of randomized trials conducted on overweight/obese children showed a small to moderate effect
from combined lifestyle interventions on body mass index (BMI) [11]. The largest effects were
observed when lifestyle modifications were implemented with parental involvement [11]. In a recent
meta-analysis, Ho et al. [12] evaluated randomized controlled trials with a follow-up period of at least
2 months from baseline and highlighted that lifestyle interventions, incorporating diet and physical
exercise and/or behavioral treatment, can lead to improvement in weight and cardio-metabolic
outcomes, compared to no treatment/wait-list control, usual care, or written education materials.
These authors also reported that although both diet-only and combined interventions (diet plus
exercise) may result in weight loss and metabolic improvement in the overweight/obese pediatric
population, combined interventions can determine larger improvement in levels of high-density
lipoprotein (HDL) cholesterol, fasting glucose and insulin over 6 months [13]. Other authors
suggested that improved weight status may be achieved by a reduced-energy diet, but the need for
an adequate content of macronutrients has to be considered when aiming at specific cardio-metabolic
risk factors [14]. Studies evaluated the effect of a lifestyle intervention, in overweight/obese children,
characterized by nutritional counseling and education, within an intervention period ranging from
20 weeks to 12 months [15–19]. While a decrease in BMI z-score has been observed [15–19], research
findings are inconsistent about improvement of specific cardio-metabolic variables.

The primary aim of this study was to evaluate whether a 1-year intervention based on
normocaloric diet and physical activity may impact the BMI status, blood lipid profile and glucose
metabolism indicators in obese children. Additionally, metabolic syndrome was assessed.

2. Experimental Section

A cohort of 90 obese children (44 boys and 46 girls) was consecutively recruited among
those admitted with diagnosis of obesity by primary care pediatricians to the Department of
Pediatrics, San Paolo Hospital, Milan, Italy, between 1 January 2012 and 31 December 2014,
according to the following eligibility criteria: age ě6 years, weight at birth ě2500 g and <4000 g,
gestational age 37–42 weeks, single birth, children having white parents and residing in Milan
or neighborhood (<30 km). Children having syndromic, organic and hormonal conditions besides
obesity were excluded.

A child was defined obese in accordance with the International Obesity Task Force, i.e., if her/his
BMI was above the age- and sex-adjusted BMI Cole’s curve passing through the cut-off of 30 kg/m2 at
age 18 years [20]. The parents of eligible children or their legal guardian received detailed explanation
about the aim of the study, and signed a consent form. The Hospital Ethics Committee approved the
study protocol and gave ethical clearance.

2.1. Anthropometry and Blood Pressure

A medical history was collected at recruitment from parents by a standardized questionnaire
during a personal interview conducted by the same pediatrician that saw children for a general
examination and evaluated the Tanner stage of puberty [21]. The pediatrician also took
anthropometric measurements and blood pressure of children both at recruitment and at the end
of intervention, assisted by an experienced operator. Body weight and height were measured
using a mechanical column scale (seca 711; seca GmbH & KG, Hamburg, Germany) with integrated
measuring rod (seca 220; seca GmbH & KG). BMI was calculated from the ratio of weight to height
squared (kg/m2). BMI z-scores were calculated and adjusted for age and sex by using Cole’s LMS
method [22] and Italian reference data [23]. Waist circumference (WC) was measured using the
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measuring tape seca 203 (seca GmbH & KG) to the nearest 0.1 cm at the mid-point between the iliac
crest and the lower edge of the ribs at the end of a normal expiration. Triceps skinfold thickness was
measured on the left side of the body, using the Harpenden Skinfold Caliper (Chasmors Ltd, London,
UK) halfway between the acromion process and the olecranon process [24]. Blood pressure was
measured according to recommendations of the National High Blood Pressure Education Program
Working Group [25].

2.2. Biochemistry

Biochemical measurements were performed within 3 ˘ 1 day (baseline) of recruitment and one
year (˘5 day) after starting intervention (end of intervention). Fasting blood samples were taken
at 8 h ˘ 30 min a.m. and immediately analyzed at the hospital laboratory of biochemistry for total
cholesterol, HDL cholesterol, low-density-lipoprotein (LDL) cholesterol, triglycerides, apolipoprotein
A1, apolipoprotein B, insulin and glucose on the cobasr 6000 analyzer series, c501 and e601
modules (Roche Diagnostics GmbH, Hoffmann-La Roche ltd, Mannheim, Germany), which has
been recognized as providing robust chemistry and immunochemistry [26]. The homeostatic
model assessment of insulin resistance (HOMA-IR) was calculated as the product of fasting
glucose (mmol/L) and fasting insulin (µU/mL) divided by 22.5 [27], and insulin resistance was
defined as HOMA-IR >3.16 [28]. The quantitative insulin sensitivity check (QUICK) index was
calculated as 1/(log10 fasting plasma insulin in µU/mL + log10 glucose in mg/dL) [29]. Pancreatic
β-cell function was evaluated by HOMA-β% as (20 ˆ fasting insulin in µU/mL)/(fasting glucose
in mmol/L ´ 3.5) [27]. The triglyceride glucose index (TyG index) was calculated as ln [fasting
triglycerides (mg/dL) ˆ fasting glucose (mg/dL)/2] [30,31].

2.3. Dietary Habits

Dietary habits of children were assessed at baseline and at the end of intervention by a food
frequency questionnaire (FFQ) originally developed at our Department in 1990’s on the original
Block FFQ [32] and then revised and updated in 2008 on the basis of the full-length Block 2005
FFQ © (NutritionQuest, Berkeley, CA, USA) and the 2007 national food composition tables [33], to
appropriately adjust for cultural food/beverage items of the Italian pediatric population. Parents
completed the FFQ about their children’s habits during an interview of approximately 50 min,
conducted at hospital by the same experienced dietitian unaware of the obesity status of children.
Each meal was analyzed to find out which food was eaten and how often. Usual portion sizes
were estimated using household measures and the weight (e.g., pasta) or unit (e.g., fruit juice) of
the purchase. A 24-h recall was additionally recorded at the end of the interview to standardize the
usual serving size. Quantification and analysis of the energy intake and nutrient composition were
performed with an ad hoc PC software program developed by a consultant.

2.4. Metabolic Syndrome

Metabolic syndrome was defined in accordance with the International Diabetes Federation (IDF)
criteria for children and adolescents [34,35]. As IDF suggests that below the age of 10 years metabolic
syndrome cannot be diagnosed [34,35], in this study it was evaluated only in children of 10 years
or older.

2.5. Intervention

The intervention was based on promotion of a normocaloric diet, balanced for the macronutrient
distribution, in accordance with the national guidelines for treatment of childhood obesity [36].
Specifically, it was recommended that children follow, for a 1-year period, a normocaloric diet (daily
caloric intake by age and sex [37]) consisting of protein (12%–15%), carbohydrates (55%–60%), fat
(25%–30%; <10% saturated fatty acids, polyunsaturated up to 10%, monounsaturated up to 15%) and
fiber (range: age (year) plus 5 g–age (year) plus 10 g) [36,37]. Additionally, it was recommended
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that children engage in at least 60 min of moderate- to vigorous-intensity physical activity (MVPA)
daily [38], based on walking, and tailored to individual preferences. MVPA was estimated using
3-day physical activity recall (3DPAR). During a first round 1-h educational session, held at hospital
on the day of recruitment, a pediatrician and an experienced dietitian provided illustration and
instructed parents and children about the intervention to be performed and actions to maintain
through a 1-year period. Education was based and focused on regulation of energy expenditure,
body composition, physical activity, consequences of sedentary lifestyle, principles of nutrition, food
sources, glycemic index and glucose metabolism, to continuously enhance and maintain parental and
self-efficacy for dietary change. This education managing also took into account a range of behavior
change techniques from the revised CALO-RE taxonomy (items 1, 2, 5, 6, 8, 16, 21, and 26) [39].
In particular, written guidelines were given to the parents, including general nutritional advice, food
choice lists, selected week menu, and recommended average servings for principal food categories,
according to age and sex. General nutritional advice included increasing fruit and vegetable intake,
increasing legume and fish intake while decreasing meat consumption, using more whole grain food,
avoiding sugary beverages and limiting sweets. Educational and incentive documentation (friendly,
illustrated brochures) about potential benefits of a routinely normocaloric diet and physical activity
for the child and family were also given to parents, together with a diary for recording the physical
activity of their child, in terms of type, frequency, duration and intensity. A second explanatory
session tailored for parents requests was held at the hospital on the day of blood sampling (i.e., within
3 ˘ 1 day of recruitment) to resolve any doubts parents had about intervention, providing them
with an instructive point-by-point reply. Lastly, the study design scheduled a dietitian to contact the
parents by phone on a midweek day at 3-month intervals to fill out a 24-h recall and ask about the
physical activity of the child as recorded in the diary. Parents were also invited to actively contact a
pediatrician by phone (8–20 h) at any time of the intervention, when necessary.

2.6. Outcomes

The primary outcome measures were the change in BMI z-score and HDL cholesterol at the end
of intervention. Secondary measures were the change in the other blood lipid variables and insulin
resistance, and in the prevalence of metabolic syndrome.

2.7. Sample Size

The sample size was calculated iteratively to detect a mean longitudinal variation of 5% or more
of HDL cholesterol, based on the baseline mean and standard deviation estimated in children already
recruited. Assuming a type I error level of 0.05 with a power of 0.80, and allowing for a drop-out of
5% at least 87 children needed to be recruited.

2.8. Statistical Analysis

Descriptive data are reported as mean and standard deviation (SD) or 95% confidence interval
(CI), or number of observations (percentage). Normality of the distribution of continuous variables
was assessed by the Kolmogorov–Smirnov test. Means were adjusted for age, sex and baseline BMI
z-score, as appropriate. Statistical significance of longitudinal variations was tested by the Student’s
t test for paired data or the Wilcoxon test, and also adjusted by ANOVA for repeated measures.
At this analysis non-normally distributed continuous variables entered the model after logarithmic
transformation. All values of p < 0.05 were considered to indicate statistical significance (two-tailed
test). The statistical package for social sciences (SPSS) package version 20.0 (SPSS Inc., Chicago, IL,
USA) for Windows (Microsoft, Redmond, WA, USA) was used, for the statistical analysis.
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3. Results

Eighty-five children (94.4%), 42 boys and 43 girls, completed the intervention. At recruitment,
mean (SD) age and duration of obesity were 9.7 (2.6) years (range 6–15) and 4.0 (2.1) years,
respectively. At the end of intervention there was a reduction of daily energy intake and
macronutrient redistribution towards the recommended range (Table 1). Mean (SD) MVPA was 45.4
(33.2) min/day at baseline and 54.7 (35.0) min/day at the end of intervention (p = 0.089). No change
was observed for systolic (113.33 (11.2) vs. 112.8 (9.5) mmHg; p = 0.524) and diastolic (68.47 (9.25) vs.

67.83 (7.52) mmHg; p = 0.321) blood pressure.

Table 1. Daily dietary intake of energy, macronutrients and fiber, and overall glycemic index and
glycemic load at baseline and at the end of intervention. Values are mean (SD) †.

Variable Baseline (n = 85)
End of Intervention

(n = 85)
p-Value

Recommended
Intake [36,37]

Energy

kcal/day
kcal/kg/day

2460.46 (795.84)
45.43 (18.86)

1855.62 (614.31)
34.39 (16.94)

<0.001 *
0.001 *

1380–3330 kcal/day
depending on age

and sex (6–15 year)

Protein

g/day 96.32 (29.50) 71.12 (23.74) <0.001 * 12%–15% Energy% Energy 15.82 (3.02) 15.54 (3.16) 0.006 *

Carbohydrates

g/day 332.69 (113.51) 268.04 (106.59) <0.001 * 55%–60% Energy% Energy 54.20 (7.19) 58.07 (9.62) 0.001 *

Fats

g/day 84.54 (37.94) 57.27 (21.04) <0.001 * 25%–30% Energy% Energy 31.44 (5.48) 27.97 (4.16) <0.001 *

Saturated

g/day 31.64 (14.40) 19.48 (8.36) <0.001 * <10% Energy% Energy 11.69 (3.07) 9.44 (3.15) <0.001 *

Monounsaturated

g/day 34.53 (15.49) 22.31 (9.28) <0.001 *
ď15% Energy% Energy 12.64 (2.87) 10.80 (3.52) 0.022 *

Polyunsaturated

g/day 14.92 (7.20) 9.83 (3.93) <0.001 *
ď10% Energy% Energy 5.40 (1.57) 4.72 (1.74) 0.016 *

Fiber g/day 11.30 (5.15) 17.11 (8.02) <0.001 *
age (year) plus
5 g–age (year)

plus 10 g

Overall Glycemic
Index 43.58 (22.42) 41.57 (22.32) 0.146

Glycemic Load 418.73 (565.56) 307.56 (377.64) 0.124
† Mean and p-value adjusted for age and sex; * Statistically significant.

At the end of intervention children showed lower BMI z-score than at recruitment (2.96 (0.96) vs.

3.54 (1.04); p < 0.0001) and lower triceps skinfold thickness (24.05 (5.74) vs. 27.18 (5.42) mm; p < 0.038),
while no difference was found for waist circumference (81.76 (9.88) vs. 83.69 (10.68) cm; p = 0.150).
The within-subject longitudinal variation of obesity status was significant (Figure 1).
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Figure 1. Within-subject longitudinal variation of obesity status through the intervention period
(figures are number of children). Significance of longitudinal variation was p < 0.0001 (Wilcoxon test).

HDL cholesterol increased through the intervention period (mean variation, ∆, 0.06; 95% CI,
(0.01; 0.11) mmol/L) while there was a reduction in triglycerides (´0.35; (´0.45; ´0.25) mmol/L) and
triglycerides/HDL cholesterol ratio (∆ = ´0.36; (´0.46; ´0.26)) (Table 2). Reduction in triglyceride
glucose index (´0.29; (´0.37; ´0.21)) and prevalence of insulin resistance were observed (Table 3).

Table 2. Blood lipid profile at baseline and at the end of intervention. Values are mean (SD) †.

Variable Baseline (n = 85) End of Intervention (n = 85) p-Value

Total cholesterol (mmol/L) 4.40 (0.62) 4.21 (0.70) 0.072
LDL cholesterol (mmol/L) 2.58 (0.58) 2.50 (0.65) 0.116
HDL cholesterol (mmol/L) 1.26 (0.21) 1.32 (0.26) 0.034 *

Triglycerides (mmol/L) 1.29 (0.66) 0.94 (0.40) 0.024 *
Apo A1 (g/L) 1.33 (0.23) 1.34 (0.21) 0.772
Apo B (g/L) 0.76 (0.19) 0.70 (0.17) 0.164
ApoB/ApoA 0.58 (0.18) 0.54 (0.16) 0.546

Triglycerides/HDL cholesterol 1.13 (0.77) 0.77 (0.45) 0.018 *
LDL/HDL cholesterol 2.14 (0.80) 1.99 (0.76) 0.181
Total cholesterol/HDL

cholesterol 3.62 (0.95) 3.34 (0.95) 0.078

LDL, low-density-lipoprotein; HDL, high-density-lipoprotein; Apo A1, apolipoprotein A1; Apo B,
apolipoprotein B. SI conversion factors: to convert cholesterol, divide values by 0.0259; to convert triglycerides,
divide values by 0.0113; to convert Apo A1 and Apo B divide values by 0.01. † Mean and p-value adjusted for
age, sex, baseline BMI z-score. * Statistically significant.

Table 3. Glucose metabolism variables at baseline and at the end of intervention. Values are mean
(SD) † or number of children (percentage).

Variable Baseline (n = 85) End of Intervention (n = 85) p-Value

Glucose (mmol/L) 4.78 (0.33) 4.74 (0.29) 0.341
Insulin (pmol/L) 133.28 (102.22) 98.64 (59.51) 0.399

HOMA-IR 4.10 (3.30) 3.01 (1.92) 0.281
HOMA-β% 317.10 (221.23) 237.61 (123.26) 0.368

QUICK index 0.32 (0.03) 0.33 (0.03) 0.250
TyG index 8.38 (0.51) 8.09 (0.43) 0.030 *

Insulin resistance (yes) 44 (51.8) 31 (36.5) 0.008 *,††

HOMA-IR, homeostasis model assessment of insulin resistance; QUICK, quantitative insulin sensitivity check;
TyG, triglyceride glucose. SI conversion factors: to convert glucose, divide values by 0.0555; to convert insulin,
divide values by 6.945. Insulin resistance (yes): HOMA-IR >3.16. † Mean and p-value adjusted for age, sex,
baseline BMI z-score. †† Wilcoxon test. * Statistically significant.

At the end of intervention, prevalence of metabolic syndrome was reduced by 71.4% (Table 4).
No component worsened for any child. The only child who had waist circumference decreased below
the 90th percentile was not syndromic at baseline. Fourteen children recovered one of the other
metabolic components and two children recovered 2 components.
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At 3, 6, 9 and 12 months of intervention, compliance with diet and MVPA, evaluated by the 24-h
recall (plus FFQ at 12 months) and diary of physical activity, was 84%, 86%, 88% and 92% (diet) and
83%, 86%, 85% and 87% (MVPA), respectively.

Table 4. Distribution of children according to International Diabetes Federation criteria for metabolic
syndrome † [34,35] at baseline and at the end of intervention. Values are number of children
(percentage).

Baseline (n = 41) End of Intervention (n = 41) p-Value ††

Metabolic syndrome 7 (17.1) 2 (4.9) 0.025 *
Component

Waist circumference ě90th percentile 40 (97.6) 39 (95.1) 0.317
Triglycerides ě1.7 mmol/L 10 (24.4) 3 (7.3) 0.008 *

HDL cholesterol <1.03 mmol/L 12 (29.3) 7 (17.1) 0.025 *
Blood pressure: Systolic ě130/Diastolic

ě85 mmHg 9 (22) 3 (7.3) 0.034 *

Glucose ě5.6 mmol/L 0 (0) 0 (0) 1.000

HDL, high-density-lipoprotein. SI conversion factors: to convert cholesterol, divide values by 0.0259; to
convert triglycerides, divide values by 0.0113. † Evaluated in children aged ě10 years (20 boys, 21 girls).
Diagnosis of metabolic syndrome requires waist circumference ě90th percentile and two or more of the other
components. †† Wilcoxon test. * Statistically significant.

4. Discussion

This longitudinal study evaluated whether a 1-year nutritional-behavioral intervention, based
on normocaloric balanced diet and physical activity, may impact the BMI status and metabolic profile
of obese children aged ě6 years. The participation rate was high, ranging from 100% at baseline to
94.4% at the end of intervention. Strict international definitions and accurate anthropometric and
biochemistry measurement procedures were used. Compliance with treatment, as based on national
recommended dietary energy and macronutrient intakes [36,37], was acceptable, with more than 90%
of children who recovered at the end of intervention towards the recommended range. However,
owing to the study design, which did not include a control group of obese children on a free diet, and
based on the dietary assessment on the Food Frequency Questionnaire, caution should be exercised
in drawing definitive conclusions. Indeed, it should be pointed out that while the absence of a
control group on a free diet is a limitation, the recruitment of such a group was discouraged by the
Hospital Ethics Committee due to the opinion that all obese children and their families should have
the same opportunity to be instructed about dietary recommendations, while also taking into account
the current international guidelines [9]. The use of the FFQ and 24-h recall, instead of a three- or
seven-day food diary, was chosen as it provides for immediate collection of data and because the
dietary assessment was primarily planned to estimate compliance with intervention and not its effect
size. Another limitation is that the study did not fully meet the revised CALO-RE taxonomy [39].
Indeed, while the revised CALO-RE taxonomy was not available before starting this study, only a
subset of items was extracted by a consultant psychologist from the original 26-item taxonomy [40]
due to financial constraints. Regardless, it should be noted that most of the selected items have been
recently recognized as providing effective behavior change techniques for childhood obesity [41].

At the end of intervention, children showed a decrease in mean BMI z-score of 16%, and
25% of them recovered from obesity to overweight. Other studies [15–19,42,43] conducted on
overweight/obese children found, at the end of nutritional/lifestyle interventions, a decrease in
mean BMI z-score, ranging from about 5% [18,19] to 20% [15]. In this study no overall significant
change was detected for waist circumference while a decrease in triceps skinfold thickness was
observed. It should be pointed out that skinfold thickness is de facto a measure of subcutaneous fat
unable to quantify visceral adiposity, while waist circumference is a useful indicator for identifying
children at increased risk of cardiovascular disease and metabolic syndrome [44]. The authors
observed a waist circumference decrease in obese/overweight children after lifestyle interventions
based on hypocaloric diet [43] or not [15,16,19] while no change of waist circumference was
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detected in obese/overweight children aged 7–9 years after a 1-year lifestyle intervention based on
a recommended dietary allowance of about 1800 kcal or nutrition education program [17]. A study
conducted on 484 children who underwent a 1-year intervention based on physical activity, nutrition
education, and behavior therapy found decreased blood pressure [16]. In this study no significant
change was observed in mean blood pressure, as was also found in a trial that evaluated the effects
of a 20-week exercise and diet guidance intervention on 19 overweight school-aged children [15].

HDL cholesterol and triglycerides have a key role in cardiovascular disease. HDL cholesterol
protects against vascular disease by removing the “bad” cholesterol from the walls of arteries while
high triglycerides increase the risk of atherosclerotic cardiovascular disease [45]. In our study,
increased HDL cholesterol and decreased triglycerides levels were found. While these findings agree
with other studies [16,17,43], it should be noted that a recent systematic review and meta-analysis
examining the impact of lifestyle interventions, including dietary caloric restrictions and/or nutrition
education, on cardio-metabolic risk factors in overweight/obese children reported that fewer than
half of evaluated studies demonstrated significant improvements in HDL cholesterol or triglycerides
levels [12]. The same authors [13] suggested that diet plus exercise interventions may produce greater
improvement in HDL cholesterol than diet-only interventions. Concerning the other lipid variables,
no improvement in total cholesterol, LDL cholesterol, Apolipoprotein A1 and Apolipoprotein B
was observed while other authors reported a significant change of at least one of these lipid
variables [16–18,43].

Lifestyle interventions based on a hypocaloric diet [43] or not [16,18] reported decreased insulin
and/or HOMA-IR after one year of intervention. In this study, the change in insulin, HOMA-IR,
HOMA-β% and QUICK index was not statistically significant. However it should be noted that
the prevalence of insulin resistance decreased by 30%, from a baseline value of 51.8%, which is
comparable with estimates reported in the literature, ranging from 32% [46] to 52% [47]. Triglyceride
glucose index is an emergent useful indicator, affording an easily and widely available simple
laboratory method as a surrogate to estimate the insulin sensitivity [30,31]. Only one study examined
its usefulness in pediatric age, suggesting that it could be used in the metabolic evaluation of
obese adolescents [31]. To our knowledge this study is the first intervention study that evaluated
triglyceride glucose index in a pediatric population, and found that it decreased at the end of the
intervention. This result also suggests that assessment of triglyceride glucose index might be included
in future research investigating on glucose-metabolism alterations in obese children.

Metabolic syndrome was firstly defined in adult population as “a link between insulin
resistance, hypertension, dyslipidemia, impaired glucose tolerance and other metabolic abnormalities
associated with an increased risk of athero-sclerotic cardiovascular diseases” [48] and it has also been
successively defined in the pediatric population. Recently, the International Diabetes Federation has
suggested a unified definition that can be profitably used in children [35]. In this study, the prevalence
of metabolic syndrome, defined according to IDF criteria [34,35], was 17% and 5% at, respectively, the
baseline and the end of intervention. Reinehr et al. [49], when using the IDF definition, found in obese
children a comparable decline of prevalence, going from 19% to 9% after 1-year lifestyle intervention.
Other authors found a variation of prevalence from 17% to 10%, after 1-year lifestyle intervention
characterized by a diet with a caloric intake 250–500 kcal less per day than the daily requirement, but
variation was not statistically significant [43].

Concerning specific components of metabolic syndrome, the percentage of children with blood
level of triglycerides ě1.7 mmol/L, lower levels of HDL cholesterol and high systolic or diastolic
blood pressure significantly declined by 70%, 42% and 67%, respectively. In the study conducted
by Reinehr et al. [49] variation of IDF components was significant for blood pressure only, with a
reduction of about 50%. Direct comparison with findings reported in other studies is not here possible
due to the different adopted definition of the metabolic syndrome (e.g., [17]).

On the whole, within the limitations of this study, one may conclude that in obese children,
interventions based on normocaloric diet and physical activity could result in a decrease of BMI
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z-score and also benefit blood lipid profile and insulin sensitivity. Additionally, it might play a
positive role in terms of metabolic syndrome. Large longitudinal trials with adequate power, and
hopefully meeting the revised CALO-RE taxonomy, are desirable to better evaluate the clinical
relevance and long-term effectiveness of nutritional-behavioral interventions based on normocaloric
diet and physical activity.
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4. GUT MICROBIOTA BIODIVERSITY IN OBESE AND NORMAL-

WEIGHT CHILDREN 

 

The aims of this study were to evaluate qualitatively and quantitatively gut microbiota 

biodiversity in obese and normal-weight children and to compare gut microbiota profiles with 

SCFAs and BMI z-scores to gain insights into the structure and activity of the microbiota in 

pediatric obesity. 

Methods and results have been largely discussed in the following published papers.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



Relative Abundance in Bacterial

and Fungal Gut Microbes in Obese Children:

A Case Control Study

Francesca Borgo, PhD,1 Elvira Verduci, MD,2 Alessandra Riva, MSc,1 Carlotta Lassandro, MSc,1

Enrica Riva, MD,2 Giulia Morace, PhD,1 and Elisa Borghi, PhD1

Abstract

Background: Differences in relative proportions of gut microbial communities in adults have been correlated with intestinal
diseases and obesity. In this study we evaluated the gut microbiota biodiversity, both bacterial and fungal, in obese and normal-
weight school-aged children.
Methods: We studied 28 obese (mean age 10.03 – 0.68) and 33 age- and sex-matched normal-weight children. BMI z-scores were

calculated, and the obesity condition was defined according to the WHO criteria. Fecal samples were analyzed by 16S rRNA
amplification followed by denaturing gradient gel electrophoresis (DGGE) analysis and sequencing. Real-time polymerase chain
reaction (PCR) was performed to quantify the most representative microbial species and genera.
Results: DGGE profiles showed high bacterial biodiversity without significant correlations with BMI z-score groups. Compared to

bacterial profiles, we observed lower richness in yeast species. Sequence of the most representative bands gave back Eubacterium
rectale, Saccharomyces cerevisiae, Candida albicans, and C. glabrata as present in all samples. Debaryomyces hansenii was present
only in two obese children. Obese children revealed a significantly lower abundance in Akkermansia muciniphyla, Faecalibacterium
prausnitzii, Bacteroides/Prevotella group, Candida spp., and Saccharomyces spp. (P = 0.031, P = 0.044, P = 0.003, P = 0.047, and
P = 0.034, respectively).
Conclusion: Taking into account the complexity of obesity, our data suggest that differences in relative abundance of some core

microbial species, preexisting or diet driven, could actively be part of its etiology. This study improved our knowledge about the
fungal population in the pediatric school-age population and highlighted the need to consider the influence of cross-kingdom
relationships.

Introduction

O
ver the last decade, the microbial composition of
the gut has been widely investigated, and recog-
nized as having an impact in various physiological

and pathological conditions.1 The Human Microbiome
Project2 and Metagenomics of the Human Intestinal Tract
(MetaHIT) (www.metahit.eu/) project clearly demon-
strated that gut microorganisms are not just passive resi-
dents, carrying out a range of biological functions that are
important in nutrition and well-being of the individual.
Molecular analyses revealed the presence of more than

1000 microbial species and highlighted the deep diversity
within human gastrointestinal (GI) tracts.3 However, these
species belong to only 8 of the 55 known bacterial phyla,

with the Firmicutes (low-GCC gram-positives), Bacter-
oidetes, and Actinobacteria (high-GCC gram-positives)
being the most widely represented.4

Moreover, the human microbiota is more complex than a
bacterial community. It also involves Archeabacteria and
fungi.5 Very few studies encompass the fungal gut popu-
lation, and even fewer in the pediatric population. Thus,
the exact role of colonizing fungi has not been fully ex-
plored. Coexistence of cross-kingdom communities within
the human gut could affect the final relationship with the
host. The most representative genera are Candida and
Saccharomyces.6

The composition and activity of the gut microbiota co-
develop with the host from birth and is subjected to a
complex interplay that depends on the host genome,

1Department of Health Sciences, Università degli Studi di Milano, Milan, Italy.
2Department of Pediatrics, San Paolo Hospital, Milan, Italy.
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nutrition, and lifestyle. The gut microbiota in relation to
pediatric metabolic disorders has been poorly studied, al-
though in recent years has emerged as a significant factor
involved in obesity, even if no causal relationship has been
established.7

Turnbaugh et al.8 reported that adult obesity is associated
with microbial compositional changes at the phylum level.
They found that individuals with high BMIs had a lower
proportion of Bacteroidetes and a higher proportion of
Actinobacteria when compared to leaner individuals.
However, a number of studies have failed to confirm this
association or reported the opposite association.9,10 Karls-
son et al.11 investigated the gut microbial biodiversity in
preschool children with normal and excessive body weight;
they found in the overweight group a significant reduction
of Akkermansia muciniphyla and Desulfovibrio spp., to-
gether with an increase of Enterobacteriaceae.
In our study we aimed at evaluating, both qualitatively

and quantitatively, gut microbiota biodiversity in obese
and normal-weight children aged 8–12 years. Prevention
and treatment of childhood obesity involve mainly school-
aged children, and additional research needs to be done on
such a cohort in order to understand the critical window of
a child’s life in which environmental factors such as diet
and microbiota can be shaped to promote health.

Methods

Subjects and Sample Collection
This observational case control study included 28 obese

children (15 females and 13males), mean age 10.03 (standard
deviation [SD] 0.68), among patients consecutively admitted
to the pediatric department of the San Paolo Hospital, Milan,
Italy, betweenDecember2013andSeptember 2014 inorder to
evaluate obesity-related metabolic profile, and 33 sex- and
age-matched normal-weight children. Inclusion criteria were
children living in north Italy born fromCaucasian parentswith
birthweight ‡2500 grams, gestational age 37–42 weeks, sin-
gleton birth, no neonatal disease or congenital malformation.
Exclusion criteria were having chronic or acute intestinal
diseases and treatmentswith antibiotic and probiotic/prebiotic
in the previousmonth, obesity-related comorbidity conditions
(e.g., insulin resistance, nonalcoholic fatty liver disease).
Data were collected for all subjects concerning mode of

delivery and exclusively breastfeeding or formula feeding.
Weight (kg), height (cm), and BMI (kg/m2) were trans-
formed to age- (in days) and sex-specific z scores ac-
cording to WHO growth standards.12,13 Obesity was
defined by using WHO criteria.14 Fasting blood samples
were analyzed for insulin and glucose. Insulin resistance
was estimated by homeostatic model assessment (HOMA)
and defined as HOMA >3.16 according to the most recent
cut-off for the pediatric population.15 Abdominal ultraso-
nography (US) was performed according to a randomized
sequence to evaluate liver echogenicity.
A fresh fecal sample was self-collected at home by each

enrolled subject and stored immediately at -20�C. The

collection took place in the same week as the dietary
record. Subsequently, the fecal samples were transported
to the laboratory and stored at -20�C until further anal-
ysis. The dietary habits of the children were assessed at
recruitment by means of an age-adjusted food frequency
questionnaire made up of 116 items.16

DNA Extraction and 16S Ribosomal

(rRNA Bacteria) and ITS Ribosomal

(Fungi) DNA Amplification
Total microbial DNA extraction was performed with the

Spin Stool DNA Plus Kit (Stratec Molecular, Berlin, Ger-
many) according to manufacturer instruction, using 200mg
aliquot of wet feces. The V2-V3 region of the gene that
encodes for 16S rRNA was amplified using the following
primers: HDA1-GC (50-CGC CCG GGG CGC GCC CCG
GGC GGGGCGGGGGCACGGGGG G-ACT CCT ACG
GGA GGC AGCAGT-03) and HDA2 (50-GTA TTA CCG
CGGCTGCTGGCAC-03). Primers were used in a reaction
mix (Thermo Scientific Dream Taq Master Mix) at a final
concentration of 0.5lM. The amplification cycles were as
follow: initial denaturation at 94�C for 5 minutes, followed
by 35 cycles at 94�C for 1 minute, 56�C for 1 minute, 68�C
for 1 minute, and a final extension at 68�C for 7 minutes.17

Polymerase chain reaction (PCR) products (220 bp) were
visualized on a 1.5% agarose gel and subsequently subjected
to denaturing gradient gel electrophoresis (DGGE) analysis.
For fungi, the 5.8S ITS rDNA region was amplified by
means of a nested-PCR approach using the primers ITS1 (50-
TCC GTAGGTGAACCTGCGG-30), ITS4 (50-TCC TCC
GCT TAT TGA TAT GC-30), NL1 with a GC clamp (50-
CGC CCG CCG CGC GCG GCG GGC GGG GCG GGG
GCA TAT CAA TAA GCG GAG GAA AAG-30), and LS2
(50-ATT CCC AAA CAA CTC GAC TC-30). Amplification
cycles were as follows: initial denaturation at 94�C for
3 minutes and 35 cycles of 94�C for 30 seconds, 52�C for
30 seconds, and 74�C for 2 minutes followed by 74�C for 10
minutes.18 PCR products were separated by gel electro-
phoresis on a 1.0% (wt/vol) agarose gel, detected by ethi-
dium bromide staining, and subsequently subjected to
DGGE analysis.

Denaturing Gradient Gel Electrophoresis Analysis
DGGE was performed using a PhorU system (Ingeny

International, Goes, The Netherlands) in 1X tris-acetate-
EDTA (TAE) buffer at 60�C. PCR products were loaded
onto 8% polyacrylamide gels in 1X TAE. The electropho-
retic conditions were the following: 18 hours at 90V in a
40%–60% denaturating agent gradient. The gels were
stained in 1X TAE buffer with SYBR Green I nucleic acid
stain (Roche Products Ltd., Welwyn Garden City, UK) for
30 minutes and visualized by UV radiation. Banding pat-
terns of DGGE profiles were analyzed with Fingerprinting II
software (Bio-Rad Laboratories, Hercules, CA), using the
Pearson product moment correlation coefficient and the
unweighted-pair group method with averages (UPGMA) for

2 BORGO ET AL.

F
O
R
 P

E
R
S
O
N
A
L
 U

S
E
 O

N
L
Y
 

N
O
T
 I
N
T
E
N
D
E
D
 F

O
R
 D

IS
T
R
IB

U
T
IO

N
 

O
R
 R

E
P
R
O
D
U
C
T
IO

N



the generation of dendrograms. Pearson coefficient is a
measure of the degree of similarity. Two identical profiles
create a similarity value of 100%, whereas completely dif-
ferent profiles result in a similarity value of 0%.8

Excision and Sequence Analysis of Products
Individual bands were cut out from the gel, placed in 50ll

sterile distilled water, and incubated overnight at 4�C. Two
microliters of the eluate were amplified with the original
primer pairs and amplification products checked by agarose
gel electrophoresis. PCR products were purified using the
NucleoSpin Extract II kit (Macherey-Nagel GmbH, Düren,
Germany) and subjected to Sanger sequencing (Eurofins
Biolab S.r.l., Milan, Italy). The sequences were compared
with those available in the National Center for Biotechnol-
ogy Information (NCBI) GenBank (www.ncbi.nlm.nih.gov/
) and those in the Ribosomal Database Project (RDP) using
the Sequence Map tool (rdp.cme.msu.edu/).

Quantification by Real-Time Polymerase

Chain Reaction
Absolute quantification by real-time PCR was per-

formed using the following control strains: Escherichia
coli American Type Culture Collection (ATCC) 25922T,
Akkermansia muciniphyla DSM 22959T, Candida albi-
cans ATCC 90028T, Deutsche Sammlung von Mikroor-
ganismen und Zellkulturen; Bacteroides uniformis,
Lactobacillus reuteri, Bifidobacterium animalis, Faeca-
libacterium prausnitzii, and Saccharomyces cerevisiae
(from the Clinical Microbiology Laboratory collection,
Health Sciences Department, Università degli Studi di
Milano). Firstly, the microbial DNA was extracted for
each control strain using Prepman Ultra (Applied Bio-
systems, Foster City, CA). Real-time PCR was carried out
using the StepOne instrument (Applied Biosystems) and
SYBR� Green chemistry (Thermo Scientific, Waltham,
MA). The analysis was performed in a total volume of
15 ll and each sample analyzed in triplicate. Standard
curve was carried out for each qPCR run using five serial
dilutions of control DNA. The specific 16S rRNA primers
and qPCR conditions used for Bacteroides/Prevotella
group, Bifidobacterium spp., Enterobacteriaceae group,
and F. prausnitzii are reported by Bartosch et al.;16 for
Lactobacillus spp. and A. muciniphyla we used the con-
ditions designed by Delroisse et al.17 and Collado et al.20

The specific yeast quantification was carried out for
Candida spp. and Saccharomyces spp. as described by
Hierro et al.21 and Zott et al.,22 respectively.

Data Analysis
Statistical analysis has been performed using Graph Pad

Prism (Graph Pad Software, La Jolla, CA) statistical soft-
ware. Variables have been expressed as mean and standard
deviation. Mean values were compared among subjects us-
ing the Whitney U test, and ANOVA was used to compare
variables between all groups. A probability value (P value)
less than 0.05 was considered statistically significant.

Results

Cohort Composition
Twenty-eight children were included in the obese (O)

group and 33 in the control normal-weight (N) group. BMI
z-scores were 2.9 (SD 0.66) and 0.29 (SD 0.79), respectively
(P< 0.001). Eighty percent of normal-weight and 54% of
obese children were born by vaginal delivery; furthermore,
50% of N and 53% of O were exclusively breastfed. Com-
pared to normal-weight children, obese children showed
higher dietary intakes of energy—1906 (SD 474) Kcal vs.
2593 (SD 989) Kcal, P=0.0007; proteins, 64 (SD 13) grams
vs. 97 (SD 31) grams, P < 0.0001; carbohydrates 271 (SD 55)
grams vs. 368 (SD 137) grams, P=0.0004; total fats 58
(SD15) grams vs. 92 (SD37) grams,P<0.0001; saturated fats
19 (SD 6) grams vs. 31.5 (SD 11) grams, P < 0.0001; mono-
unsaturated fats 20 (SD 6) grams vs. 31 (SD 11) grams, P <

0.0001; and polyunsaturated fats 7 (SD 3.5) grams vs. 13
(SD 7) grams, P < 0.0001.

Gut Microbial Ecosystem
The DGGE analysis of the gut bacterial population in-

dicated a high degree of individual variation in the intes-
tinal microbial community profiles obtained by using
universal 16S rRNA primers (Figure 1a), while the DGGE
patterns obtained for the yeast population contained a
relatively low number of bands and had low interindividual
variability (Figure 1b).
Figure 1a shows an example of the unweighted pair group

method with arithmetic mean (UPGMA) dendrogram ob-
tained for the children’s microbiota. Two main clusters
(50% similarity) are reported; one is represented by a sole
severely obese child and the other group included four
subclusters without significant differences among BMI z-
score groups. The most representative bands—13 individual
bands, identified from A to P (Figure 1a)—were excised
from DGGE gel and subjected to sequencing. The respec-
tive bacterial species are indicated in Table 1. A similarity
rate ‡90% was considered significant. In particular, se-
quencing of excised bands revealed that band F/G (Eu-
bacterium rectale) was present in all children, while band H
(F. prausnitzii) were absent in two severely obese children.
The UPGMA dendrogram obtained for the fungal gut pop-
ulation revealed two main clusters (37% similarity), one
represented by the sole severely obese child and the second
composed by two subclusters without significant differences
among BMI z-score groups (Figure 1b). The sequencing of
fungal gut population DGGE excised bands, reported in
Table 1, revealed that the bands relative to Saccharomyces
cerevisiae, Candida albicans, and Candida glabrata were
present in all samples, whereas bands 7 and 11 (Debar-
yomyces hansenii) were present only in two obese children.

Microbial Genome Quantification by Real-Time

Polymerase Chain Reaction
Quantification of the bacterial and yeast groups using real-

time PCR was performed on N and O distinct populations
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(Figure 2). We did not observe differences in the Bifido-
bacterium spp. (P= 0.606), Lactobacillus spp. (P= 0.420),
and Enterobacteriaceae (P= 0.168), whereas A. mucini-
phyla,F. prausnitzii, andBacteroides/Prevotella groupwere
significantly less abundant in obese children (P= 0.031,

P= 0.044, and P= 0.003, respectively). The average copy
number of the yeasts was higher in the normal-weight pop-
ulation compared to the obese population, with a significant
P value forCandida spp. (P= 0.047) and for Saccharomyces
spp. (P= 0.034). No significant differences in microbiota

Figure 1. Representative cluster analysis of DGGE profiles in obese and normal-weight children (panels A and B). Panel A: bacterial
population; panel B: fungal population. O = obese; N =normal weight.

Table 1. Sequenced DGGE bands and relative species identification

B
ac
te
ri
al

sp
ec
ie
s

Band letters Nearest species Similarity Accession number

A Parabacteroides distasonis 92% NR 074376

B Alistipes putredinis. 98% NR 113152

C Clostridium parabutiricum 98% NR 11903

D Paraprevotella clara 96% NR 113073

E Flavonifractor plautii 94% NR 452852

F/G Eubacterium rectale 100% NR 074634

H Faecalibacterium prausnitzii 97% NR 043680

L Clostridium aldenense 100% NR 043680

M Clostridium spp. 97% NR 029355

N/O Gemmiger formicilis 93% NR 104846

P Flavobacterium spp. 96% NR 108535

F
u
n
g
al

sp
ec
ie
s

1/2/4/5/6/13 Saccharomyces cerevisiae 100% KM103045

10 Candida albicans 99% AM998790

3 Candida parapsilosis 99% EF568035

7/11 Debaryomyces hansenii 98% KF214434.1

8/9/11 Candida glabrata 99% AF336837
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composition were observed comparing different types of
delivery: Bifidobacterium spp. (P= 0.868), Lactobacillus
spp. (P= 0.908), Enterobacteriaceae (P= 0.959), A. muci-
niphyla (P= 0.800), F. prausnitzii, (P= 0.389), Bacteroides/
Prevotella group (P= 0.070), Candida spp. (P= 1), and
Saccharomyces spp. (P= 0.959).
The lack of significant differences was also observed

comparing breast and formula feeding: Bifidobacterium
spp. (P = 0.228), Lactobacillus spp. (P= 0.354) and En-
terobacteriaceae (P = 0.102), A. muciniphyla (P = 0.384),
F. prausnitzii (P = 0.612), Bacteroides/Prevotella group
(P = 0.236), Candida spp. (P= 0.658), and Saccharomyces
spp. (P = 0.684).

Discussion

Key activities of the gut microbiota are the efficient
extraction of calories from ingested food and the regulation
of fat storage by modulation of lipoprotein lipase activity
and subsequent triglyceride storage. The diet could induce
strong modifications of the gut microbiota composition,
and indeed, obese people have been reported to have lower
bacterial diversity in the gastrointestinal tract compared to
lean subjects.23 Modifications in the proportions of mi-
croorganisms in the gut and, consequently, in the con-
centrations of metabolites produced and released by them
in the lumen, have been suggested to play a role in the
development of several pathological conditions24 such as
metabolic disorders.
In this study we evaluated, both qualitatively and

quantitatively, the gut microbiota biodiversity in obese and
normal-weight children. The combined use of two meth-
ods—DGGE (qualitative) and real-time (quantitative)—
allows for a good evaluation of microbial ecology profile in
the two studied populations. The DGGE profiles of total
bacterial population demonstrated high interindividual
heterogeneity in the microbial species. We failed to find
common pattern strongly associated to high BMI z-score,

even though a lower microbial biodiversity was high-
lighted in subjects with severe obesity.
The presence of interindividual differences is well reported

in the literature, although the presence has been demonstrated
of a core of microbiota, relatively stable and resilient,25 that
depends on the age, health, diet, and even geographical lo-
cation of the individuals. To rule out differences related to the
above conditions, our cohort was selected to minimize dif-
ferences related to age and geographical location. Both
groups of children had a ‘‘Western-style’’ diet, high in fat and
refined sugars. The quantification of the common genera that
are part of the core microbiota showed no significant differ-
ences in the number of genomes of Lactobacillus spp., Bifi-
dobacterium spp., and Enterobacteriaceae.
It is well known from the literature that the significant

less abundance of A. muciniphyla is related with an ex-
cessive weight in adult and preschool children.11,26 In this
study we corroborate this finding in school-aged children.
A. muciniphyla is a mucin-degrading bacterium (phylum
Verrucomicrobia) and the dominant colonizer of the in-
testinal mucus layer.27 In the mouse, a high-fat diet in-
duced increased body mass, endotoxemia, adiposity,
fasting hyperglycemia, and insulin resistance, while all of
the above were reversed with the administration of A.
muciniphyla.26 In addition, A. muciniphyla increases the
expression of acylglycerols, important compounds in gut
barrier integrity, and reverses the thinning of the mucus
layer caused by a high-fat diet.
In addition, we found in obese children a reduction of F.

prausnitzii. Different authors suggested that a lower pres-
ence of F. prausnitzii could result from a long-standing
inflammation.28 F. prausnitzii appears to have significant
anti-inflammatory activity with decreased production of
proinflammatory cytokines (IL-8, IL-12, and IFN-c) and
increased production of anti-inflammatory IL-10 in cell
cultures.29 Studies in germ-free mice suggest that F.
prausnitzii in conjunction with another common commen-
sal, Bacteroides thetaiotaomicron, plays a role in goblet

Figure 2. Box and whisker plots to compare relative abundance of microbial species in obese and normal-weight children. The box plot
representation shows the median (designated by a line) and the 25th and 75th percentiles. Significant values (P-values) between the two
groups are displayed on the plots. *P < 0.05; **P< 0.01. O = obese; N = normal weight.

CHILDHOOD OBESITY Month 2016 5

F
O
R
 P

E
R
S
O
N
A
L
 U

S
E
 O

N
L
Y
 

N
O
T
 I
N
T
E
N
D
E
D
 F

O
R
 D

IS
T
R
IB

U
T
IO

N
 

O
R
 R

E
P
R
O
D
U
C
T
IO

N



cells differentiation and in the production of the mucus
layer.30An intact mucus layer is an important component of
the intestinal barrier that limits exposure of the epithelial
monolayer to proinflammatory bacteria in the gut lumen.
Concerning the Bacteroides/Prevotella group, we found a
lower abundance of this microbial group in obese subjects.
This data is in agreement with other authors reporting in the
obese adult population a variation of the Firmicutes/Bac-
teroides ratio, with an increase in Firmicutes.7–8,31

In order to obtain a complete picture of the studied cohort,
the fungal microbiota has been investigated. DGGE profiles
of fungal population showed a lower biodiversity, expressed
by a lower bands number, compared with bacteria profiles,
without significant differences between normal-weight and
obese children. However, we have to consider that the
overall fungal population is underrepresented compared to
the bacterial one, and the DGGE technique may in turn
underestimate some species that are quantitatively poorly
present. At this time, our knowledge on commensal fungi
inhabiting the gut of children is incomplete. Nonetheless,
the few literature data on adult population are in agreement
with our results on Ascomycota as the most detected phy-
lum. Indeed,C. albicans,C. glabrata, and S. cerevisiaewere
the most representative species in both groups. Debar-
yomyces hansenii, sequenced from two excised bands, was
found only in two obese children; this species in closely
related to food, in particular to cheeses and dry-cured meat
products. Future studies are needed to better understand if
the presence of D. hansenii is due to the ingestion of yeast-
containing foods or if this species might contribute to obe-
sity pathology.
However, we found significant differences in the two

groups in terms of abundance. Normal-weight group was
characterized by a higher number of genomes of Candida
spp. and of Saccharomyces spp. Hoffmann and cowork-
ers32 analyzed the influence of diet on fungal and bacterial
levels in the gastrointestinal tract. Candida spp. was pos-
itively correlated with carbohydrate consumption and
negatively correlated with total saturated fatty acids, but no
correlation was observed for Saccharomyces spp. with
both diets. Moreover, Candida species are well-known
human commensals, whereas for the Saccharomyces spe-
cies we cannot rule out if they are transiently present be-
cause of diet (bread, pizza) or true commensals.
The influence of trans-kingdom relationships and diet on

the coexistence of the microbial communities within the
human gut has not yet been defined. One possible scenario
could be the role of Candida spp. in breaking down starch
in carbohydrate foods, leading to the release of simple
sugars, which are in turn fermented by bacteria (for ex-
ample, Prevotella and Ruminococcus).
One limitation of the present study is that Archaebacteria

are not included in the analysis of the gut microbial ecology,
although their contribution to obesity is still debated. Animal
studies suggested a potential role for methanogens Archaea,
mainly Methanobrevibacter smithii, in promoting obesi-
ty.33,34 Literature data on humans, however, are inconsistent,

with some authors reporting a negative association with
BMI35,36 and others reporting a positive association.37,38

Further studies, especially on obese children, would be
useful in elucidating their role.
In conclusion, taking into account the complexity of

obesity, our data suggest that changes of some core mi-
crobial species, preexisting or diet induced, could actively
be part of the syndrome’s etiology. Obese children are
highly prone to become obese adults, and in order to fight
obesity-related complications, prevention and prompt
treatment are crucial. The most important strategies to
manage childhood obesity are therapeutic lifestyle chan-
ges, but the failure rate of such interventions is still high.
The microbiota analysis of obese children could provide
new elements of the puzzle to pave the way for designing
customized diets and improve the current strategies.

Ethical Considerations
The medical ethical committee of our institution ap-

proved this study (protocol number 2015/ST/135). Written
informed consent was signed by a parent of all the enrolled
subjects.

Author Disclosure Statement

The authors declare that no competing financial interests exist.

References

1. Khan I, Yasir M, Azhar EI, et al. Implication of gut microbiota in
humanhealth.CNSNeurolDisordDrugTargets 2014;13:1325–1333.

2. Human Microbiome Project Consortium. Structure, function and
diversity of the healthy human microbiome. Nature 2012;486:
207–214.

3. O’Hara AM, Shanahan F. The gut flora as a forgotten organ.
EMBO Reports 2006;7:688–693.

4. Turnbaugh PJ, Ley RE, Hamady M, et al. The human microbiome
project. Nature 2007;449:804–810.

5. Wang ZK, Yang YS, Stefka AT, et al. Review article: Fungal
microbiota and digestive diseases. Aliment Pharmacol Ther 2014;
39:751–766.

6. Huffnagle GB, Noverr MC. The emerging world of the fungal
microbiome. Trends Microbiol 2013;21:334–341.

7. Ley RE, Turnbaugh PJ, Klein S, et al. Microbial ecology: Human
gut microbes associated with obesity. Nature 2006;444:1022–1023.

8. Turnbaugh PJ, Hamady M, Yatsunenko T, et al. A core gut mi-
crobiome in obese and lean twins. Nature 2009;457:480–484.

9. Mueller S, Saunier K, Hanisch, C, et al. Differences in fecal mi-
crobiota in different European study populations in relation to age,
gender, and country: A cross-sectional study. Appl Environ Mi-
crobiol 2006;72:1027–1033.
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Summary

An altered gut microbiota has been linked to obesi-

ty in adulthood, although little is known about

childhood obesity. The aim of this study was to

characterize the composition of the gut microbiota

in obese (n5 42) and normal-weight (n536) chil-

dren aged 6 to 16. Using 16S rRNA gene-targeted

sequencing, we evaluated taxa with differential

abundance according to age- and sex-normalized

body mass index (BMI z-score). Obesity was asso-

ciated with an altered gut microbiota characterized

by elevated levels of Firmicutes and depleted levels

of Bacteroidetes. Correlation network analysis

revealed that the gut microbiota of obese children

also had increased correlation density and cluster-

ing of operational taxonomic units (OTUs).

Members of the Bacteroidetes were generally better

predictors of BMI z-score and obesity than Firmi-

cutes, which was likely due to discordant

responses of Firmicutes OTUs. In accordance with

these observations, the main metabolites produced

by gut bacteria, short chain fatty acids (SCFAs),

were higher in obese children, suggesting elevated

substrate utilisation. Multiple taxa were correlated

with SCFA levels, reinforcing the tight link between

the microbiota, SCFAs and obesity. Our results

suggest that gut microbiota dysbiosis and elevated

fermentation activity may be involved in the etiolo-

gy of childhood obesity.

Introduction

The gut microbiota is involved in the regulation of multiple

host pathways and participates in metabolic and immune-

inflammatory axes connecting the gut with the liver, muscle

and brain. The gut microbiota co-develops with its host

from birth and is subjected to a complex interplay that is

influenced by host genome, nutrition and lifestyle

(Nicholson et al., 2012). Diet can have a particularly

marked impact on the gut environment, affecting factors

such as gut transit time and pH. In particular, alterations in

the intake of carbohydrates, proteins and fats can signifi-

cantly affect the composition of the microbiota (Scott et al.,

2013). One of the main activities of the gut microbiota is to

break down substrates such as resistant starch and dietary

fiber, which are incompletely hydrolysed by host enzymes

in the small intestine. The main fermentation products

resulting from fiber breakdown are the short chain fatty

acids (SCFAs) acetate, propionate and butyrate, which

play different roles in energy salvage (Schwiertz et al.,

2009). Microbially-derived SCFAs provide an additional

source of energy for the body: propionate is taken up by

the liver and used as a precursor for liponeogenesis, gluco-

neogenesis and protein synthesis; acetate is used as a

substrate for cholesterol synthesis; and butyrate is the

main energy supply for colonic epithelial cells (Kallus et al.,

2012).

The adult human gastrointestinal tract microbiota has

been extensively studied in relation to its role in gut

homeostasis and various diseases (Schwiertz et al.,

2009). Notably, alterations in the gut microbiome and

metabolome have been associated with the development

of obesity (Choquet et al., 2010; Vinolo et al., 2011). Obe-

sity is a multifactorial disease that predisposes to several

comorbidities (Ang et al., 2013) and is considered to be a

global epidemic by the World Health Organisation

(Schwiertz et al., 2009). In recent years, the prevalence of

childhood obesity has increased substantially worldwide,
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and currently 23% of children and adolescents in devel-

oped countries can be classified as overweight or obese

(Ng et al., 2014).

Information regarding the structure and function of the

gut microbiota during childhood is limited. Although it has

been suggested that the microbiota reaches a relatively

stable adult-like state in the first three years of life, other

evidence indicates that it continues to develop through

adolescence (Hollister et al., 2015). As such, childhood

may provide unique opportunities for microbiota interven-

tions to promote health or prevent disease. It is, therefore,

vital to establish a baseline understanding of pediatric gut

microbiota structure and function, as during this period the

gastrointestinal tract undergoes a transition from an imma-

ture to a mature state (Hollister et al., 2015).

The goal of the present study was to characterize the

composition of the gut microbiota in obese and normal-

weight children using 16S rRNA gene-targeted sequenc-

ing. We recruited a large cohort of children from the same

geographic area to reduce variation unrelated to obesity.

We compared gut microbiota profiles with SCFAs and BMI

z-scores to gain insights into the structure and activity of

the microbiota in pediatric obesity.

Results

Pediatric cohort characteristics

A total of 78 children were enrolled at the Pediatric Depart-

ment of San Paolo Hospital, Milan, Italy. Fecal samples

were collected from 36 normal-weight (N) and 42 obese

(O) children (N, BMI z-score: 22.12 to 1.56; O, BMI z-

score: 2.14–5; p<0.0001). Cohort characteristics, includ-

ing age, sex, BMI z-score, mode of delivery in childbirth

and history of breastfeeding or formula feeding as an infant

were considered (Supporting Information Table S1). There

was no significant relationship between history of breast-

feeding or formula feeding as an infant with obese and

normal-weight classification (Chi-square test; p50.610).

Children born by Caesarean section tended to be obese,

although this trend did not reach statistical significance at

the p50.05 level (Chi-square test; p5 0.068). Dietary

habits were also collected and obese children showed

higher dietary intakes of energy and macronutrients (pro-

teins, carbohydrates, sugars and fats) compared to

normal-weight subjects (Supporting Information Table S3).

SCFAs are increased in the stool of obese children

We observed significantly higher concentrations of acetate,

propionate and butyrate, as well as total SCFAs, in the

stool of obese compared to normal-weight subjects

(p< 0.05 for all comparisons; Supporting Information Table

S2). Moreover, we found that the concentration of total

SCFAs was significantly associated with obesity

(p5 0.0317) and was positively correlated with BMI

z-score (p5 0.001).

The intestinal microbiota is altered in obese children

At the phylum level, the predominant bacterial taxa in feces

of both obese and normal-weight subjects were Bacteroi-

detes and Firmicutes, followed by Actinobacteria,

Verrucomicrobia and Proteobacteria (Fig. 1A, Supporting

Information Table S4). The most abundant families were

Ruminococcaceae, Lachnospiraceae, Bacteroidaceae,

Veillonellaceae, Bifidobacteriaceae, Prevotellaceae, Verru-

comicrobiaceae, Rikenellaceae and Christensenellaceae

(Fig. 1B, Supporting Information Table S4). The most

abundant genera were Bacteroides, Subdoligranulum,

Faecalibacterium, Dialister, Bifidobacterium, Pseudobutyri-

vibrio and Blautia (Supporting Information Fig. S1,

Supporting Information Table S4).

The overall composition of the intestinal microbiota, con-

sidered at OTU level as well as taxonomic levels ranging

from genus to phylum, was significantly affected by obesity,

as determined by non-parametric multivariate analysis of

variance testing (perMANOVA; p< 0.05 for all levels). Ordi-

nation showed that samples from normal-weight and

obese children were distinctly grouped (Fig. 1C). This

grouping was confirmed for every taxonomic level by the

analysis of similarity (ANOSIM) test, which evaluates sig-

nificance of sample grouping (p< 0.01 for all levels). The

intestinal microbiota of obese children was enriched in Fir-

micutes (N: 60.96 14.1, O: 72.1612.1; mean6 sd) and

depleted in Bacteroidetes (N: 30612.6, O: 16.66 11.8)

(Supporting Information Table S5). Accordingly, the Firmi-

cutes/Bacteroidetes ratio was significantly elevated in

obese children (p< 0.0001; N: 2.661.83, O: 7.76 7.1)

(Fig. 1D). In agreement with previous observations, the Fir-

micutes/Bacteroidetes ratio for obese children displayed a

much larger range than for normal-weight children, which

may be partially attributable to the wide range of BMI z-

score in the obese group. Consistent with the shifts

observed at phylum level, at the family level Ruminococca-

ceae (N: 33.3611.5, O: 42.56 12.7) was enriched and

Bacteroidaceae (N: 21.46 12.2, O: 106 7.1) was deplet-

ed. At the genus and OTU levels, we observed significant

depletion of Bacteroides (N: 21.46 12.2, O: 10.56 7.1) as

well as Bacteroides OTU 7 (best BLAST hit: Bacteroides

vulgatus with 100% sequence similarity of 422 bp). There

were, however, no significant shifts in members of the

Ruminococcaceae (Supporting Information Table S5).

Gut microbiota richness estimates were not significantly

different between samples from obese and normal-weight

children (Observed species: p50.59; Chao1 estimated

richness: p50.98). Likewise, alpha diversity metrics,

which take into account both community richness and

evenness, were not significantly different between groups
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(Shannon: p5 0.065; inverse Simpson p50.34) (Support-

ing Information Fig. S2). We also found that mode of

delivery and infant feeding were not significantly associat-

ed with microbiota composition at any taxonomic level

(perMANOVA, p>0.05 for all levels). In order to determine

whether the higher proportion of Caesarean deliveries

among the obese group could impact the difference in

microbiota profiles, we grouped the samples according to

delivery mode (vaginal or Caesarean section) and calculat-

ed if there was a difference in the abundance of taxonomic

groups. No significant differences were found at any taxo-

nomic level. Therefore, we conclude that delivery mode did

not significantly influence the composition of the

microbiota.

BMI z-score and SCFAs are associated with intestinal

microbiota composition

Childhood obesity is typically defined using age and sex

normalized BMI (BMI z-score), to classify subjects into

normal-weight and obese. In order to gain a more fine-

grained understanding of the relationship between the

intestinal microbiota and obesity, we evaluated how BMI

z-score was associated with microbiota composition. BMI

z-score and the SCFAs acetate and propionate were sig-

nificantly associated with microbiota composition at every

taxonomic level (OTU to phylum; p< 0.05 at all levels).

Additionally, alpha diversity metrics were largely negatively

correlated with BMI z-score and SCFA levels (Supporting

Fig. 1. Abundant bacterial taxa in stool samples of normal-weight (n536) and obese (n5 42) children.

Phylum-level (A) and family-level (B) taxon profiles are shown. Abundant taxa, defined as having a mean relative abundance of >1%, are

shown.

C. Redundancy analysis ordination of the gut microbiota according to normal-weight (blue) and obese (red) groups.

D. Firmicutes/Bacteroidetes ratio for normal-weight (N) and obese (O) children. The ratio is significantly higher in obese compared to normal-

weight children (p< 0.0001).
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Information Table S6). We performed redundancy analysis

to visualize the relationship between microbiota composi-

tion, BMI z-score and SCFAs (Fig. 2). This analysis

revealed a strong relationship between BMI z-score and

acetate, and to a lesser extent, butyrate levels.

BMI z-score was positively correlated with the abun-

dance of Firmicutes (as well as Ruminococcaceae) and

negatively correlated with Bacteroidetes (as well as Bacter-

oidaceae and Bacteroides) (Table 1). At the OTU level,

Faecalibacterium OTU 3 (Best BLAST hit: Faecalibacte-

rium prausnitzii with 100% seq. similarity over 402 bp) was

positively correlated with BMI z-score, and Bacteroides

OTUs 7 and 49 (Best BLAST hit: Bacteroides stercoris

spp. with 99% seq. similarity over 422 bp) were negatively

correlated with BMI z-score.

The abundances of multiple taxa were also correlated

with levels of major SCFAs. Several genera within the Bac-

teroidetes were negatively correlated with acetate levels,

and multiple genera within the Firmicutes were either posi-

tively or negatively correlated with acetate (Supporting

Information Table S7). At the OTU level, Faecalibacterium

OTU 3 was positively correlated with acetate. Compared to

acetate, the number of correlations was much more limited

for propionate and butyrate. The family Prevotellaceae, the

genus Prevotella as well as Prevotella OTU 26 (Best

BLAST hit: Prevotella copri with 99% seq. similarity over

422 bp) were positively correlated with propionate levels.

The genus Faecalibacterium as well as Faecalibacterium

OTU 3 were positively correlated with butyrate levels.

Comparing models to predict BMI z-score based on

microbiota composition

We next determined the best microbial predictors of BMI z-

score by comparing generalized linear regression models

at different taxonomic levels. This revealed that the total

explanatory power of the models increased at more refined

taxonomic levels (Supporting Information Fig. S3). Bacter-

oides was the main contributor to the genus-level model

(relative importance: 0.172), followed by two genera of the

Ruminococcaceae, Faecalibacterium and Subdoligranu-

lum (rel. imp.: 0.08 and 0.03 respectively). At the OTU-

level, the main contributors to the model were Bacteroides

OTU 7 (rel. imp.: 0.12), Faecalibacterium OTU 3 (rel. imp.:

0.08) and Bacteroides OTU 49 (rel. imp.: 0.07) (Supporting

Information Fig. S3).

The obese gut microbiota has an altered correlation

network structure

We performed a correlation network analysis to evaluate if

obesity was associated with changes in the correlation

structure and putative interaction structure of the gut

microbiota. We found that networks constructed from sam-

ples of normal-weight children had fewer edges, a lower

mean degree and lower transitivity, indicating that there

were fewer significant correlations and less clustering of

OTUs compared to samples from obese children (Fig. 3A

and B; Supporting Information Table S8). The between-

ness centrality was higher in normal-weight sample

networks, which indicates that only a few OTUs are highly

connected in the network.

We next evaluated whether there were differences in

intra-taxon correlations within the families Bacteroidaceae

and Ruminococcaceae. Interestingly, in both networks

Bacteroidaceae OTUs with intra-family correlations were

positively correlated with one another, whereas Rumino-

coccaceae OTUs had both positive and negative intra-

family correlations (Supporting Information Table S8). To

further explore the difference in intra-taxon correlations

between these groups we extracted clusters of correlating

Bacteroidaceae and Ruminococcaceae OTUs (Supporting

Information Table S9). We found that Bacteroidaceae

OTUs form two communities based on co-abundance pat-

terns, with the most abundant (Bacteroidaceae CB1:

8 OTUs, including OTUs 7 and 49) negatively correlated

with BMI z-score and the less abundant not significantly

correlated (Bacteroidaceae CB2: 2 OTUs). Ruminococca-

ceae was composed of three communities based on

co-abundance patterns, and while the most abundant

(Ruminococcaceae CR1: 11 OTUs, including OTU 3) was

Fig. 2. Redundancy analysis of gut microbiota composition with

respect to BMI z-score, acetate, propionate and butyrate. The

direction of the arrows shows the correlation between variables.

Normal-weight samples are represented by blue dots and obese
with red dots.
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positively correlated with BMI z-score, the second was

negatively correlated (Ruminococcaceae CR2: 8 OTUs),

and the third (CR3: 20 OTUs) was not significantly correlat-

ed (Supporting Information Figs. S4 A, B).

Discussion

The gut microbiota is affected by many factors, such as

diet, genetics, health status, environment and lifestyle

(Rodr�ıguez et al., 2015). Childhood and adult obesity are

accompanied by changes in the composition of the gut

microbiota (Karlsson et al., 2012; Bervoets et al., 2013;

Borgo et al., 2016). In the present study we found altera-

tions in gut microbiota composition and SCFA levels in a

cohort of 42 obese and 36 normal-weight Italian children.

We observed that children born by Caesarean section

tended to be obese, although this result did not reach sta-

tistical significance. Past studies have found that

Caesarean section delivery increases the risk of obesity

(Goldani et al., 2011; Mueller et al., 2015; Portela et al.,

2015) and impacts the infant gut microbiota (Gr€onlund

et al., 1999). In our study, delivery mode and infant feeding

history (breast-fed vs. formula-fed) were not significantly

associated with obesity or the gut microbiota composition

of children (mean age511). The impact of delivery mode

and infant feeding history on the gut microbiota may, there-

fore, be lost after the first years of life, although it is still

unclear exactly when (Penders et al., 2006; Biasucci et al.,

2010). Gut microbiota composition has been reported to

begin to converge toward an adult-like microbiota by the

end of the first year of life and fully resemble the adult

microbiota by 2.5 years of age (Clemente et al., 2012),

although other studies have shown that the microbiota of

children up to 4 years of age differs from that of adults

(Kulka et al., 2013; Hollister et al., 2015), suggesting that

conversion to an ‘adult-like’ microbiota may be a long and

gradual process.

Recent scientific advances implicate the gut microbiota

as a contributor to over-nutrition. The gut microbiota ena-

bles hydrolysis of indigestible polysaccharides to easily-

absorbable monosaccharides and activation of lipoprotein

lipase by direct action of the villous epithelium. Conse-

quently, glucose is rapidly adsorbed and fatty acids are

stored in excess (Kalliom€aki et al., 2008), providing an

additional source of energy for the body (Turnbaugh et al.,

2006). The significantly higher concentration of SCFAs in

obese participants in our study may indicate that in obese

children colonic fermentation is elevated, or alternatively

that there is decreased SCFA absorption due to low-grade

inflammation or more rapid gut transit. This has previously

been observed in cohorts of both children (Payne et al.,

2011) and adults (Schwiertz et al., 2009; Fernandes et al.,

2014). Elevated fecal concentrations of total or individual

SCFAs might result from increased microbial production,

shifts in microbial cross-feeding patterns or low mucosal

absorption (Schwiertz et al., 2009).

We observed a clear alteration in the gut microbiota in

obese children at every taxonomic level. This was charac-

terized at the phylum level by an increased abundance of

Firmicutes and a decreased abundance of Bacteroidetes

in obese children. It has been hypothesized that an

increased ratio of Firmicutes to Bacteroidetes may contrib-

ute to the pathophysiology of obesity and is associated

with increased production of SCFAs and energy harvest

from colonic fermentation (Turnbaugh et al., 2006; Fer-

nandes et al., 2014). Although an elevated Firmicutes/

Bacteroidetes ratio in obese subjects has been reported in

multiple studies (Turnbaugh et al., 2009; Xu et al., 2012;

Bervoets et al., 2013), a reduced Firmicutes/Bacteroidetes

ratio in obese adults has also been found (Schwiertz et al.,

2009). A recent meta-analysis concluded that there were

no statistically significant differences across multiple stud-

ies in the Firmicutes/Bacteroidetes ratio between obese

and normal-weight adults (Walters et al., 2014). In agree-

ment with this meta-analysis, some pediatric studies have

Table 1. Bacterial taxa correlated with BMI z-score.

Taxonomic level Taxon R p-value

Phylum Firmicutes 0.4145 0.0001

Bacteroidetes 20.4538 <0.0001

Class Clostridia 0.3688 0.0008

Bacteroidia 20.4538 <0.0001

Order Clostridiales 0.3687 0.0008

Bacteroidales 20.4538 <0.0001

Family Ruminococcaceae 0.3778 0.0006

Bacteroidaceae 20.4930 <0.0001

Genus Bacteroides 20.4930 <0.0001

OTU OTU 7: Bacteroides vulgatus 20.4321 <0.0001

OTU 3: Faecalibacterium prausnitzii 0.3058 0.0064

OTU 49: Bacteroides stercoris 20.3252 0.003

Pearson correlation coefficient (r) and p-value are shown for significantly correlating taxa and operational taxonomic units (OTUs).
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found an increase in Firmicutes and a decrease in Bacter-

oidetes (Bervoets et al., 2013; Ferrer et al., 2013) while

others have not (Abdallah Ismail et al., 2011; Payne et al.,

2011). Although in our study the Firmicutes/Bacteroidetes

ratio was significantly elevated in obese individuals, we

observed large variation in the ratio, particularly within the

obese group. This large variation, as well as the contradict-

ing results from previous studies, suggests that the

Firmicutes/Bacteroidetes ratio may not be a robust marker

for obesity.

We reasoned that the classification of individuals into

normal-weight and obese groups might be too coarse of a

description for the physiological differences present at dif-

ferent BMI z-scores. We found that the alpha diversity of

the gut microbiota was negatively correlated with BMI

z-score and we recovered the same broad trends as we

observed with obesity classification such as a positive cor-

relation with the Firmicutes/Bacteroidetes ratio, but with

additional insights such as positive correlation of Faecali-

bacterium OTU 3 (F. prausnitzii) with BMI z-score and a

Fig. 3. Correlation networks of samples from normal-weight and obese children.

A, B. Networks show significant positive (green) and negative (pink) pairwise correlations between operational taxonomic units (OTUs). OTUs

are coloured by phylum affiliation and sized by mean relative abundance.

C, D. Correlating communities of Bacteroidaceae (CB) and Ruminococcaceae (CR) and their abundances with respect to BMI z-score.

Relative abundances (C) and z-score transformed abundances (D) are shown. Data points were processed using Lowess smoothing and 95%

confidence intervals are shown.
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negative correlation of Bacteroides OTU 7 and 49 (B. vul-

gatus and B. stercoris respectively) with BMI z-score.

Faecalibacterium, a group of major butyrate producers in

the colon (Louis et al., 2009), was also positively correlated

with acetate and butyrate, reinforcing the tight link between

SCFAs and obesity. Literature data are conflicting about

the level of F. prausnitzii in obesity, with studies showing

positive (Balamarugan et al., 2010), negative (Borgo et al.,

2016) or no association (Feng et al., 2014). These contra-

dictory results may be due to experimental factors such as

small cohort sizes or the use of different primer sets, or

may be explained by the existence of multiple F. prausnitzii

phylotypes (Louis et al., 2009; Hippe et al., 2016). Indeed,

Hippe and colleagues (2016) suggested that the two identi-

fied phylotypes display different physiological properties

and seem to produce different amounts of butyrate in the

gut. Propionate levels were positively correlated with mem-

bers of the Prevotellaceae, which are known propionate

producers (Schwiertz et al., 2009), although this was not

related to BMI z-score. Interestingly, increase of colonic

propionate has been shown to prevent weight gain in over-

weight adults by stimulating the release of PYYand GLP-1

from human colonic cells and thereby reducing energy

intake (Chambers et al., 2014).

In order to determine if the structure of the gut micro-

biota is also altered in obesity, we performed a correlation

network analysis and found that there were fewer correla-

tions and less clustering of OTUs in normal-weight

compared to obese children. The betweenness centrality

was higher in the normal-weight network, which indicates

that in the obese microbiota there are more OTUs that are

highly connected to other OTUs. It is tempting to speculate

that the altered network structure in obese children may be

involved in the increased fermentation capacity of the gut

microbiota.

Interestingly, intra-taxon correlations within the families

Bacteroidaceae and Ruminococcaceae demonstrated that

in both networks Bacteroidaceae OTUs were positively

correlated with one another, whereas Ruminococcaceae

OTUs had both positive and negative intra-family correla-

tions. This indicates a lack of intra-family ecological

cohesion for Ruminococcaceae across these samples and

may explain why Bacteroidetes taxa were generally better

predictors of BMI and obesity than Firmicutes taxa. To fur-

ther investigate the difference between Bacteroidaceae

and Ruminococcaceae responses, we extracted from the

complete network the communities of co-abundant OTUs

from these two groups. We identified five distinct correlat-

ing communities (2 Bacteroidaceae [CB1 and CB2] and 3

Ruminococcaceae [CR1-CR3]). Interestingly, while Rumi-

nococcaceae CR1 was positively correlated with BMI z-

score, Ruminococcaceae CR2 was negatively correlated.

The divergent response of members of the Ruminococca-

ceae with respect to BMI z-score may indicate different

niche preferences within this group and may also help to

explain why the increased Firmicutes/Bacteroidetes ratio is

not found in all studies, as it groups together Firmicutes

populations with discordant shifts in obesity. Divergent

responses of members of the clostridia have previously

been observed in other conditions such as inflammation

(Berry et al., 2012). It is likely that the extensive physiologi-

cal and metabolic diversity in members of the clostridia is

responsible for these contrasting responses, and additional

studies are needed to better characterize and functionally

categorize the members of this abundant group.

Although it is recognized that the gut microbiota has the

potential to change along with the development of its host,

information regarding the structure and function of the

microbiome in children remains limited (Hollister et al.,

2015). We hypothesized that an aberrant gut microbiota

composition and activity might contribute to the develop-

ment of childhood obesity. We found that members of the

Bacteroidetes and certain populations of Firmicutes were

associated with childhood obesity, although members of

the Firmicutes exhibited contrasting shifts. Additional stud-

ies are needed to better characterize the members of

Firmicutes and their roles in obesity. Obesity is often asso-

ciated with altered dietary habits, and in the present study

obese children had higher caloric intake. It is therefore not

possible to determine if an altered microbiota is a causa-

tive factor in pediatric obesity or a consequence of diet,

and this must be tested with future research that takes into

account diet and physiology and which includes detailed

functional analyses of the metabolic activity of the gut

microbiota. Together, this will advance our understanding

of the role of the gut microbiota in obesity and provide

opportunities to improve health and prevent disease.

Experimental procedures

Subjects and sample collection

Seventy-eight children (36 males/42 females, 9–16 years)

were enrolled in the study at the Pediatric Department of San

Paolo Hospital in Milan from December 2013 to February

2015. The enrollment conditions were performed as previously

described (Borgo et al., 2016). Briefly, children’s BMI was cal-

culated by reported weight/height2 (kg m22), and classification

of obese (O) and normal weight (N) was made according to

Cole (Cole et al., 2000). Weight (kg), height (cm) and BMI

(kg m22) were transformed to age and sex-specific z-scores

(Cole et al., 1995). Inclusion criteria were: children living in

Northern Italy born from Caucasian parents with birth

weight� 2500 g, gestational age 37–42 weeks and singleton

birth. Children with neonatal disease, congenital malformation,

antibiotic or probiotic/prebiotic usage in the previous six

months, chronic or acute intestinal and obesity-related co-

morbidity conditions were excluded. Data concerning mode of

delivery and type of feeding were collected for all subjects and

the dietary habits were assessed at recruitment by means of

an age-adjusted food frequency questionnaire made up of 116
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items (Verduci et al., 2007). Fecal samples were collected

24 h before medical examination and stored at 2208C until

processing.

The study was conducted in accordance with the local med-

ical ethical committee (protocol number 2015/ST/135). Written

informed consent was given by a parent for all enrolled

subjects.

DNA extraction and preparation of 16S rRNA gene

amplicon libraries

The total bacterial DNA extraction was performed using the

Spin stool DNA kit (Stratec Molecular, Berlin, Germany),

according to the manufacturer’s instructions and amplified by

PCR. Amplification was performed with a two-step barcoding

approach according to Herbold and colleagues, 2015. In

the first-step PCR, 16S rRNA genes of all Bacteria

were amplified with forward primer S-D-bact-0341-b-S-17 (5-

CCTACGGGNGGCWGCAG-30) and reverse primer S-D-bact-

0785-a-A-21 (5-GACTACHVGGGTATCTAATCC-30), which

also contained head adaptors (50-GCTATGCGCGAGCTGC-

30). In the second-step PCR, PCR products from the first step

were amplified with primers consisting of the 16 bp head

sequence and a sample-specific 8 bp barcode from a previ-

ously published list at the 50 end (Hamady et al., 2008). Each

PCR reaction (20 lL in first step, 50 lL in second step) con-

sisted of 103 Taq buffer (Fermentas, USA), 2 mM dNTPmix

(Fermentas), 25 mM MgCl2 (Fermentas), 5 U ll21 Taq DNA

polymerase (Fermentas), 20 mg ml21 bovine serum albumin

(Fermentas), 50 lM of each of the forward and reverse pri-

mers and 5 ll of sample. Thermal cycle conditions were: 958C

for 3 min; 958C for 30 s, a primer-specific annealing tempera-

ture of 558C for 30 s, 728C for 1 min for 25 cycles and an

elongation time of 728C for 7 min (step1); 528C for 30 s, 728C

for 1 min for 5 cycles (step 2) and an elongation step of 728C

for 7 min. The first PCR reaction was performed in triplicate,

pooled for use as a template in the second step and evaluated

qualitatively by gel electrophoresis. The barcoded amplicons

were purified between the first step and the second step and

after the second step with ZR-96 DNA Clean-up Kit (Zymo

Research, USA) and quantified using the Quant-iT PicoGreen

dsDNA Assay (Invitrogen, USA). An equimolar library was

constructed by pooling samples, and the resulting library was

sent sequenced on the Illumina MiSeq platform at Microsynth

AG (Balgach, Switzerland). Sequence data have been depos-

ited in the NCBI Short Read Archive under SRP073251.

Short chain fatty acids (SCFAs) measurement

Stool samples were analysed for acetic acid, propionic acid

and butyric acid using capillary electrophoresis. For determi-

nation of SCFAs concentration one aliquot of frozen fecal

sample (50 mg) was used and 200 ll of Milli-Q filtered water

was added. The solution was mixed by vortexing for 10 min

and then centrifuged 30 min at 21,000 3 g. A standard mix

composed of acetic acid, propionic acid, butyric acid, lactic

acid, formic acid and succinic acid with consecutive concen-

tration of 50 lM, 100 lM, 250 lm and 350 lM, were run as

external standards and calibrated. Caproic acid (100 mM final

concentration) was used as internal control. A buffer with

0.01M NaOH, 500 lM CaCl2 and 100 lM caproic acid was

prepared to run samples. Because we detected interference

between phosphates and propionic acid peaks, a final concen-

tration of 500 lM of CaCl2 was added in order to precipitate

phosphates usually present in human fecal matter. Ceofix

Anions 5 kit (Beckman Coulter, USA) was utilized to prepare

anion buffers for the machine. SCFAs concentration was

determined in 100ml supernatant using P/ACE MDQ Molecular

Characterisation System Beckam Coulter (USA) with a fused

silica capillary of 75 lm internal diameter 3 363 lm outer

diameter (Polymicro Tecnologies, USA). Thirty-two karat soft-

ware (Beckman Coulter, USA) was used for data processing.

SCFAs concentration in fecal samples was expressed in

micromoles per gram (mmol g21) of feces.

Sequence pre-processing and data analysis

Sequence data were sorted into libraries using the 8 nt

sample-specific barcode and primer using a custom-made in-

house script, quality-filtered according to the Earth Micro-

biome Project guidelines and paired end reads were

concatenated (Bokulich et al., 2013). Reads were then clus-

tered into species-level operational taxonomic units (OTUs) of

97% sequence identity, checked for chimeras using

USEARCH, and taxonomically classified using the Ribosomal

Database Project n€aive Bayesian classifier (Wang et al.,

2007). Statistical analysis was performed using the statistical

software R (https://www.r-project.org/). To avoid biases related

to uneven library depth, sequencing libraries were sub-

sampled to a number of reads smaller than the smallest

library (2000 reads). The statistical significance of factors

affecting microbiota composition was evaluated using non-

parametric permutational multivariate analysis of variance

(perMANOVA), significant clustering of groups was evaluated

with analysis of similarities (ANOSIM), ordination was per-

formed using redundancy analysis (RDA) in the vegan

package (Oksanen et al., 2010). Alpha and beta diversity met-

rics were also calculated with the vegan package. Indicator

species analysis was performed using the indicspecies pack-

age (De Caceres et al., 2009). Network analysis was

performed for all OTUs present in at least 30% of samples as

recommended in (Berry and Widder, 2014) using graphical

lasso technique cclasso to mitigate biases associated with

compositional data (Danaher et al., 2014). Network topological

and node-level properties were determined using the igraph

package (Csardi, 2015) and networks were visualized using

Cytoscape (Shannon et al., 2003). Statistical analysis of

cohort-related data was performed using Student’s t-test, chi-

square test, correlation analysis (Pearson correlation coeffi-

cient) and linear regression modeling. Variables were

expressed as mean6 standard deviation (sd), and for multiple

comparisons p-values were adjusted with the False Discovery

Rate method. A p-value less than or equal to 0.05 was consid-

ered statistically significant.
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Supporting information

Additional Supporting Information may be found in the

online version of this article at the publisher’s web-site.

Fig. S1. Abundant bacterial taxa in stool samples of normal-

weight (n536) and obese (n542) children. Genus level

taxon profiles are shown. Abundant taxa, defined as hav-

ing a mean relative abundance of >1%, are shown.

Fig. S2. Intestinal microbiota richness and diversity in nor-

mal-weight and obese children. Observed species, Chao1

estimated richness, Shannon diversity, and inverse Simpson

diversity estimators show no significant difference between

the two groups (Observed species: p50.59; Chao1:

p50.98; Shannon: p50.065; Inverse Simpson p50.34).

Fig. S3. Generalized linear regression models at different

taxonomic levels. (A) The coefficient of determination (R2),

which indicates the proportion of the variance in the depen-

dent variable that is predictable from the independent vari-

able, increases at genus and OTU levels. (B) The Akaike

information criterion (AIC), a measure of the relative quality

of statistical models for a given set of data, is lowest at

genus and OTU levels.

Fig. S4. Correlating communities of Bacteroidaceae (CB)

and Ruminococcaceae (CR) and their abundances with

respect to BMI z-score. Relative abundances (A) and z-

score transformed abundances (B) are shown. Data points

were processed using Lowess smoothing and 95% confi-

dence intervals are shown.

Table S1. Characteristics of the study cohort. The cohort

was composed of normal-weight (N) and obese (O) chil-

dren. Body mass index (BMI) was calculated as weight/

height2 (kg/m2), and was transformed to age- and sex-

adjusted z-scores. Values are expressed as mean 6 sd.
aInformation not available for two subjects. bInformation not

available for three subjects.

Table S2. Short chain fatty acid (SCFA) levels in the stool

of normal-weight (N) and obese (O) subjects. Concentra-

tions are calculated as lmol/g wet weight and are

expressed as mean 6 sd. Total SCFA is calculated as the

sum of acetate, propionate, and butyrate concentrations.

Table S3. Daily caloric and dietary intake in obese and nor-

mal-weight children. Values are expressed as mean 6 sd.

Table S4. The relative abundance of abundant bacteria

taxa in the study. Abundant taxa are defined as having a

mean abundance greater than 1%. *Taxa significantly

increased or decreased in obese children (complete details

are presented in Table S4).

Table S5. Taxa that were increased (1) or decreased (2)

in abundance in obese children (O).

Table S6. Correlation of alpha diversity metrics with BMI z-

score and SCFAs. Observed OTUs, Chao1 estimated rich-

ness, Shannon and inverse Simpson diversity indexes were

correlated and the Pearson correlation coefficients (r) and

respective p-values are shown. *indicates p<50.05 and

**indicates p <50.01.
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Table S7. Taxa correlated with acetate concentration. The

Pearson correlation coefficients (r) and respective p-values

are shown.

Table S8. Properties of correlation networks generated

from samples from normal-weight (N) or obese children

(O). Nodes are OTUs and edges are significant correlations

between OTUs. Other parameters are metrics related to the

topology of the network.

Table S9. Clusters of correlating Bacteroidaceae and Rumi-

nococcaceae OTUs extracted from the correlation network.

The closest cultured species and its similarity to each OTU

(% sequence similarity) are shown.

Gut Microbiota in Obese and normal-Weight Children 11
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5. SERUM SALICYLIC ACID AND FRUIT AND VEGETABLE 

CONSUMPTION IN OBESE AND NORMAL-WEIGHT CHILDREN 

The aim of this study was to evaluate the concentrations of serum salicylic acid in a group of obese 

children, compared to normal-weight children, and to evaluate if an association may exist between 

serum salicylic acid and fruit and vegetable consumption. 

Methods and results have been largely discussed in the following published paper.  
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ABSTRACT

Salicylic acid (SA), a phenolic compound produced by plants, may play a beneficial role on health.
This pilot study evaluated whether there might be an association between serum SA and fruit
and vegetable (FV) consumption in obese and normal-weight children. Thirty-four obese children
(17 boys and 17 girls) and 34 normal-weight children were recruited. Dietary intake was eval-
uated by the 7-day dietary record. Serum SA was measured using gas chromatography-mass
spectrometry method. FV intake in obese and normal-weight children was not different between
groups (175.00 (97.66) g versus 192.29 (90.54) g, p¼ .455). Obese children had lower serum SA
than normal-weight children [mean difference, �0.025; 95% CI (�0.044; �0.006) lmol/L]. Serum
SA was not associated with daily intake of FV in obese (p¼ .111) and normal-weight (p¼ .092)
children. Further studies are needed to evaluate the role of FV on serum SA, taking into account
also the quantity and the type.

ARTICLE HISTORY

Received 29 July 2016
Revised 11 October 2016
Accepted 14 October 2016
Published online 3 November
2016

KEYWORDS

Salicylic acid; fruit and
vegetables; salicylate intake;
childhood obesity

Introduction

Fruits and vegetables (FV) are known for their health-

promoting properties in the prevention of chronic dis-

eases, as dietary sources of fibre, vitamins, minerals

and phytochemicals (Slavin & Lloyd 2012). Among

these phytochemicals salicylic acid (SA), a phenolic

compound produced by plants as a defence system

against pathogens and stress, may play a beneficial role

on health (Paterson & Lawrence 2001; Paterson et al.

2006). It has been suggested that beneficial effects asso-

ciated with diets rich in FV could be due, at least in

part, to salicylate intake (Paterson & Lawrence 2001;

Paterson et al. 2006), although it is not yet fully clear

what component or combination of components in FV

is protective (Duthie & Wood 2011). Moreover, accur-

ately estimating the dietary intake of SA might be diffi-

cult, since salicylate content varies considerably among

foods (Swain et al. 1985; Wood et al. 2011) and is add-

itionally affected by factors as seasonality, storage and

cooking (Duthie & Wood 2011). To date, a systematic

review of the literature (Wood et al. 2011) shows the

most definitive estimate of salicylate content of foods.

By using this database, the total salicylate intake in a

Scottish population was estimated of 4.42 and 3.16mg/

day, for males and females respectively, with FV as

major sources (Wood et al. 2011).

It has been reported that vegetarian adults may

exhibit higher serum concentration of SA than non-

vegetarians (Blacklock et al. 2001) and that in healthy

adults not in therapy with aspirin, the most common

anti-inflammatory drug, serum SA can be related to

FV consumption (Spadafranca et al. 2007). Although

in the future SA may become a nutritional biomarker

of FV intake, nowadays no study has been performed

to define cut-offs distinguishing between “normal”,

“excess” or “deficiency” levels of serum SA nor to

evaluate the response of this compound to therapeutic

interventions, such as nutritional–behavioural intervention.

SA has anti-inflammatory properties and possibly

the ability to modulate activity and/or expression of

components involved in oxidative stress processes

(Duthie & Wood 2011). Both inflammation and oxida-

tive stress are related to the pathogenesis of many

chronic diseases, including cardiovascular diseases,

diabetes and cancer (Camps & Garc�ıa-Heredia 2014).

The prevalence of childhood overweight and obesity

has increased dramatically worldwide in the last

CONTACT Elvira Verduci elvira.verduci@unimi.it Department of Paediatrics, San Paolo Hospital, Department of Health Science, University of Milan,
Milan 20142, Italy

� 2016 Informa UK Limited, trading as Taylor & Francis Group

INTERNATIONAL JOURNAL OF FOOD SCIENCES AND NUTRITION, 2016

http://dx.doi.org/10.1080/09637486.2016.1249829



decades, becoming a public health issue (Lobstein

et al. 2015). Obesity is often associated with chronic

low-grade systemic inflammation (Makki et al. 2013)

and in children, not only it may be associated with

several acute health problems, but it can also result in

later adult obesity and its related comorbidities

(Lakshman et al. 2012).

Studies on this issue are lacking in the paediatric

age. This pilot study evaluated whether an association

may exist between serum SA and FV consumption in

obese and normal-weight children.

Materials and methods

This observational case–control pilot study included a

series of 34 obese children (17 boys and 17 girls), con-

secutively recruited among those admitted with diag-

nosis of obesity at Day Hospital of the Department of

Paediatrics, San Paolo Hospital, Milan, Italy, between

1 January and 30 June 2015, and 34 healthy children

(control group). For each obese child, an age (±1 year)

and sex-matched control was recruited within 2 weeks

among those undergoing minor surgery at the Day

Surgery Clinic of San Paolo Hospital. Inclusion criteria

were age �6 years; weight at birth �2500 g and <4000 g;

gestational age 37–42 weeks; single birth; having

Caucasian parents. Exclusion criteria were any syn-

dromic, organic and hormonal conditions besides obes-

ity; use of anti-inflammatory drugs, including aspirin, in

the last month; any allergy, food intolerance or adoption

of special diets (gluten-free, vegetarian, vegan diet).

At recruitment, a medical history was collected from

parents by a standardised questionnaire during a per-

sonal interview, conducted by the same paediatrician

that was in charge of the children’s general examination.

Body weight and height were measured using a mech-

anical column scale (seca 711; seca GmbH & KG,

Hamburg, Germany) with integrated measuring rod

(seca 220; seca GmbH & KG). Body mass index (BMI)

was calculated from the ratio of weight to height

squared (kg/m2). BMI z-scores were calculated and

adjusted for age and sex by using Cole’s LMS method

(Cole 1990) and Italian reference data (Cacciari et al.

2002). A child was defined obese in accordance with the

International Obesity Task Force (Cole et al. 2000). The

parents or legal guardian of eligible children received a

detailed explanation about the aim of the study, and

signed a consent form. The Hospital Ethics Committee

approved the study protocol and gave ethical clearance.

Daily dietary record

Dietary intake of children was assessed after recruit-

ment using a 7-day dietary record. Parents received

complete oral and written instructions about how to

weigh food and the recording of such data. They were

trained by a dietician to weigh each food offered to

the child before consumption and the leftovers, and to

record these weights each time. Vegetable intake was

quantified, excluded potato and legumes. Quantification

and analysis of the energy intake and nutrient compos-

ition were performed with an ad hoc PC software pro-

gramme (M�etadieta
VR
, 2013). Individual salicylate

intakes, derived from FV, of the last day before the

blood sample were estimated by using a dietary data-

base containing the median salicylate content of 27

types of fruits and 21 vegetables (Wood et al. 2011)

and, for those items missing, a database developed in

1985 by Swain et al. (1985) (Table 1).

Serum salicylic acid determination

Fasting blood samples were taken on the day after the

dietary record was completed, at 8 h ± 30min a.m.,

since it has been observed that circulating SA is sig-

nificantly related both to daily FV intake of the entire

previous week and of the last day (Spadafranca et al.

2007). Measurement of SA serum concentration was

performed using a sensitive stable isotope dilution and

gas chromatography-mass spectrometry method, as

previously described (Battezzati et al. 2006). This pro-

cedure provides high sensitivity and is adequate for

population studies as small serum quantity is required

(�100ll) (Battezzati et al. 2006).

Statistical analysis

Descriptive data are reported as mean and SD, median

and 25th–75th percentile. Normality of the distribution

of continuous variables was assessed by the

Kolmogorov–Smirnov test. Comparison between obese

Table 1. Salicylate content of fruit and vegetables adapted
from Wood et al. (2011) and Swain et al. (1985)a.

Food item Salicylates/mg kg�1 Food item Salicylates/mg kg�1

Fruits Vegetables
Grapes red 4.71 Peppers-green 6.01
Cherry 4.43 Broccoli 3.25
Lemon 2.50 Peppers 2.07
Pear 1.46 Asparagus 1.35
Strawberry 0.63 Onion 1.20
Apple 0.55 Cauliflower 0.80
Plum 0.50 Green beans 0.59
Banana 0.40 Carrots 0.50
Kiwi fruit 0.31 Tomato 0.36
Melon honeydew 0.11 Cucumber 0.24
Orange 0.11 Peppers-red 0.10
Apricot 0.10 Peppers-yellow 0.10
Tangerine 0.06 Spinach 0.06
Grapes white 0.04 Lettuce 0.02
Lychees 0.04 Courgette 0.00
aOnly fruit and vegetables consumed by the studied children are reported
here.
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and normal-weight children for continuous variables

was performed by the Student’s t-test for unpaired data

or the Mann–Whitney test, as appropriate. A multivari-

ate analysis using binary logistic regression analysis was

performed to evaluate whether daily dietary intake of

energy, macronutrients, fibre and FV were influenced

by age and sex and whether serum SA concentration was

influenced by age, sex, FV intake and salicylate intake

from FV. The association of SA with FV consumption

was assessed by Spearman’s correlation coefficient.

All values of p< .05 were considered to indicate

statistical significance (two-tailed test). The Statistical

Package for Social Sciences (SPSS), version 20.0 (SPSS

Inc., Chicago, IL) for Windows (Microsoft, Redmond,

WA), was used for the statistical analysis.

Results

Mean (SD) age of obese and normal-weight children was

10.2 (2.2) years and 10.3 (2.2) years, respectively,

(p¼ .882). BMI z-score was 3.17 (0.83) in obese children

and 0.14 (0.89) in normal-weight children (p< .001).

Daily dietary intake of energy, protein, carbohy-

drates, fats and fibre is shown in Table 2. Obese chil-

dren had higher energy intake than normal-weight

children. In both groups protein intake (as % of total

energy) was close to the upper recommended

threshold, while carbohydrates and lipids were within

the third quartile of the recommended range (SINU

2014). In obese children, fibre intake (g/1000 kcal) was

lower (p< .001) than recommended (SINU 2014). No

significant difference was observed for FV intake

between obese and normal-weight children (Table 2).

Estimated dietary salicylate intake was lower in obese

children than normal-weight children [0.15 (0.12) ver-

sus 0.21 (0.10) mg/day, p¼ .030].

Figure 1 compares serum SA between obese and

normal-weight children. Obese children had lower

Table 2. Daily dietary intake of energy, macronutrients, fibre and fruit and vegetables in obese and normal-weight
children.

Variable Obese children (n¼ 34)
Normal-weight children

(n¼ 34) p Valuea Recommended intakeb

Average of the 7-day record
Energy

kcal 2316.44 (473.17) 1723.61 (389.02) <.001� 1380–3170 kcal/day depending
on age and sex

kJ 9691.98 (1979.75) 7211.60 (1627.67)
Protein

g 90.07 (26.92) 64.71 (20.64) <.001�

% Energy 15 (3) 15 (3) .576 <15% Energy
Carbohydrates

g 309.70 (79.65) 239.22 (53.95) <.001�

% Energy 54 (5) 56 (7) .206 45–60% Energy
Fats

g 79.13 (21.82) 57.44 (20.90) <.001�

% Energy 31 (4) 30 (5) .562 20–35% Energy
Fibre

g 16.44 (5.69) 16.02 (6.43) .784
g/1000 kcal 7.10 (1.93) 9.44 (2.56) <.001� 8.4 g/1000 kcal

Fruit and vegetables

Average of the 7-day record
Amount (g) 175.00 (97.66) 192.29 (90.54) .455 �400 g/day
Median (25th–75th percentile) 125.00 (76.75–275.00) 170.00 (100.00–255.00)

Last day record
Amount (g) 180.00 (93.07) 205.00 (91.18) .268 �400 g/day
Median (25th–75th percentile) 143.00 (65.33–293.12) 181.00 (90.80–315.71)

Values are mean (SD).
aAdjusted for age and sex.
bEnergy, macronutrients and fibre (SINU 2014); amount of fruit and vegetables (WHO/FAO 2003).
�Statistically significant.
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Figure 1. Box-Whisker plot of salicylic acid in obese and nor-
mal-weight children. Significance of difference between groups
was p¼ .013 (crude) and p¼ .608 (adjusted for age, sex, FV
intake and estimated salicylate intake from FV).
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mean (SD) SA serum concentration [0.08 (0.04) lmol/

L versus 0.11 (0.04) lmol/L, p¼ .013 (crude), p¼ .608

(adjusted for age, sex, FV intake and estimated salicyl-

ate intake from FV)]. Median (25th–75th percentile)

serum SA was 0.08lmol/L (0.05–0.11) in obese chil-

dren and 0.09lmol/L (0.07–0.12) in normal-weight

children. Correlation coefficient of serum SA with

daily intake (g) of FV (average of the 7-day record)

was 0.286 (p¼ .111) in obese children and 0.301

(p¼ .092) in normal-weight children.

Discussion

This is the first study evaluating if there might be an

association between serum SA and FV consumption

in obese and normal-weight children. While serum SA

was detected in all children, ranging within an interval

(0.03–0.24lmol/L) partially overlapping that reported

in non-vegetarian adults (Blacklock et al. 2001;

Spadafranca et al. 2007), the mean concentration was

around 30% lower in obese than normal-weight chil-

dren, with 38% of the obese children having serum SA

below the 25th percentile of normal-weight children.

Consistent with the results from an active national

surveillance system, showing that out of 46,307 chil-

dren aged 8–9 years, 48.8% did not eat vegetables and

28.7% did not eat fruit daily (Lauria et al. 2015), in

this study the mean amount of FV consumed by chil-

dren was not compliant with the World Health

Organisation guidelines (WHO/FAO 2003), i.e. it was

about 50% lower of the minimum recommended value

of 400 g daily. This result is also in agreement with

data from the PRO GREENS cross-sectional survey

(Lynch et al. 2014), performed in a sample of 8158

children aged 11 years in 10 European countries,

showing that total mean consumption of FV was

263 g/day and therefore none of the participating

countries met the WHO population goal. Considering

the well-known beneficial effects associated with FV

consumption, these data on the paediatric population

are alarming. In this regard, recently, data from

IDEFICS study (Gonz�alez-Gil et al. 2015), a large mul-

ticentre study involving 16.228 children aged 2–9 years

from eight European countries, found that high-

frequency intake of vegetables was negatively associated

with inflammatory status in children, evaluated measur-

ing high sensitivity-c reactive protein levels.

Dietary macronutrient distribution did not differ

between obese and normal-weight children, as also

previously observed (Verduci et al. 2007). In obese

children mean intake of fibre was 15% lower than the

defined “adequate intake” (SINU 2014). In this regard,

NHANES 2003–2006 data (Brauchla et al. 2012) report

a lower risk for childhood obesity with increasing diet-

ary fibre intake. Moreover, it should be noted that

fibre intake (g/1000 kcal) in obese children was signifi-

cantly lower than observed in normal-weight children,

although no difference in FV intake was observed.

This result could be due to a lower consumption of

legumes and whole grain in obese than normal-weight

children.

In this study, the relationship of serum SA with FV

consumption did not reach statistical significance both

in obese and normal-weight children. Spadafranca et al.

(2007) evaluated 36 healthy adults and found an associ-

ation of serum SA with FV consumption. However, it

should be noted that the subjects taken in consideration

(Spadafranca et al. 2007) consumed a mean daily

amount of FV about three times higher than children

examined in this study. While studies in paediatric age

are lacking, other studies on adults have suggested that

SA concentration may be influenced by FV consump-

tion (Blacklock et al. 2001; Rinelli et al. 2012).

Differently from other studies that did not deter-

mine salicylate intake through the diet (Blacklock

et al. 2001; Spadafranca et al. 2007), results from this

study showed that, although FV consumption did not

differ between obese and normal-weight children, esti-

mated salicylate intake was lower in obese children.

This result may be due to different choices in the type

of FV consumed, as well as to a greater monotony in

food habits of obese children.

Salicylates have anti-inflammatory properties, in

part by modifying the binding of transcription factors

to the promoter region of genes involved in pro-

inflammatory processes, and are involved in the regu-

lation of activity/expression of transcription factors of

oxidative stress processes (Duthie & Wood 2011).

Moreover treatment with salicylates at high doses may

have a role in glucose metabolism. Indeed, a review

(Rumore & Kim 2010) suggests that potential underly-

ing mechanisms of salicylates on glucose metabolism

may include the inhibition of NF-jB, a transcription

factor that stimulates inflammatory responses associ-

ated with insulin resistance, and the increased

expression of peroxisomal proliferator-activated

receptor-c and adiponectin, an adipokine with insu-

lin-sensitizing effect that is often decreased in obesity

(Lara-Castro et al. 2007). However, it should be con-

sidered that salicylates doses employed in trials

exceed the quantity which can be obtained from diet

alone (Duthie & Wood 2011) and that besides salicy-

lates, other different phenolic compounds with recog-

nised anti-inflammatory and redox-related bioactivity

are widely distributed in the plant kingdom (Duthie

& Wood 2011).
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As a conclusion, results obtained in this pilot study

indicate that obese children have lower levels of serum

SA than normal-weight children as well as lower esti-

mated salicylate intake from FV. FV consumption was

not different between groups, and was lower in all

children compared to WHO recommendation.

Therefore, it can be speculated that the absence of an

association of serum SA with FV may be due to the

lower intake of FV, also compared to that observed in

Spadafranca et al. (2007), as well as to specific FV

choices. Moreover this result could also be due to the

small sample size, which is one of the main limitations

of the study. Another limitation that should be consid-

ered is that dietary intake was assessed by a 7-day

dietary record. This methodology cannot exclude the

“Hawthorne effect”, especially in obese children and

their parents, thus probably lowering the inter-individual

variability of FV intake.

Nutrition education of both children and parents

towards an adequate FV consumption should be

stressed in children. Additionally, the promotion of

FV with higher content of SA might be considered as

part of the nutrition counselling for obese children,

taking into account individual dietary habits and

health conditions, such as food allergy or intolerance

(Skypala et al. 2015). Further larger studies with

appropriate power calculation of sample size are

needed in the paediatric age to confirm these results

and to better evaluate the role of FV on serum SA lev-

els, taking into account both the quantity and the type

of FV intake.
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6. CONCLUSION 

Unhealthy dietary patterns and sedentary behaviors are major determinants of childhood obesity, 

one of the most serious global public health challenges. The great problem of childhood obesity 

epidemic is that it may be associated with adverse health complications and an increased risk of 

premature morbidity and mortality later in life. Therefore, addressing the alarming rates of 

obesity and noncommunicable diseases is a major priority.  

Our results confirm that obesity is associated with detrimental effects on health already during 

pediatric age, thus children may show prehypertension/hypertension, insulin resistance, pre-

diabetes, hyperlipidemia, liver steatosis and metabolic syndrome. 

Moreover, our findings suggest that childhood obesity may be associated with changes of some 

core microbial species, preexisting or diet-induced, and these changes may be involved in the 

etiology of obesity. Indeed, an alteration of the gut microbiota composition of obese children, 

characterized by an increased abundance of Firmicutes and a decreased abundance of 

Bacteroidetes, has been observed. It could be hypothesized that an aberrant gut microbiota 

composition and activity might contribute to the development of childhood obesity, although to 

date it is not possible to determine if it is a causal factor or a consequence of unbalanced dietary 

patterns.  

It is well-known from the literature that the adherence to a Mediterranean pattern has 

beneficial effects on health in adults. Fruit and vegetables, widely recommended for their health-

promoting properties as important sources of dietary fiber, vitamins, minerals and 

phytochemicals, are at the base of the Mediterranean diet pyramid. However, results from our 

study show that fruit and vegetables consumption in children is very low, about 50% lower of the 

minimum recommended value by WHO (400 g daily). Furthermore, obese children have lower 

levels of serum salicylic acid, a phenolic compound produced by plants and thus found also in 

fruit and vegetables, than normal-weight children. This result may have a relevant role since, 

although further studies are needed, it has been suggested that beneficial effects associated with 

fruit and vegetables could be due, at least in part, to salicylate intake. Therefore, results from our 

study suggest that nutrition education towards an adequate fruit and vegetables consumption 

should be stressed in children. Moreover, the promotion of fruit and vegetables with higher 

content of salicylic acid might be considered as part of the nutrition counseling for obese children. 
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Finally, findings from our longitudinal study clearly highlight the importance of a lifestyle 

intervention, based on a normocaloric Mediterranean balanced diet for pediatric age, promotion 

of physical activity and behavior changes, in the improvement of cardio-metabolic risk factors and 

in the reduction of prevalence of some obesity-related comorbidities, as insulin resistance, pre-

diabetes, prehypertension/hypertension, hypertriglyceridemia, higher liver echogenicity and 

metabolic syndrome. Although further well-design trials are desirable, we can suppose that the 

developed Mediterranean diet pyramid for the pediatric age provides a useful instrument for a 

food-based approach in the treatment of childhood obesity and related comorbidities.  
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