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Abstract

The Thesis concerns the management and analysis of mobility data. The per-
vasiveness of geo-positioning technologies, sensors and communication networks
has led to the collection of large amounts of data on the movement of objects.
A major issue is thus how to effectively organize and access such a data. An
important category of mobility data is that of spatial trajectories. A spatial tra-
jectory describes the continuous movement of an object in a reference space, e.g.
the Euclidean plane, through a set of temporally annotated and ordered sample
points. Spatial trajectories can represent the movement of vehicles, people and
animals, for example equipped with a GPS receiver.

Yet, spatial trajectories can represent the movement exclusively in terms of
locations, thus the evolution of the context in which the movement takes place
is ignored. In general, the contextual data can be acquired directly from the
environment, for example through the use of sensors, or be the result of an ana-
lytical process. In this sense, spatial trajectories lack expressivity. An important
step towards the specification of richer and more expressive data models, is the
symbolic trajectories data model. This model allows for the representation of
sequences of activities (or labels), each annotated with a time period. A major
novelty of the model is the query language that is based on pattern matching.
Nevertheless also this solution presents important limitations because the notion
of symbolic trajectory is orthogonal to that of spatial trajectory and thus does
not include any location information.

The Thesis addresses the problem of integrating the spatial dimension with
the symbolic one, providing as well a mechanism enabling the efficient access to
a database of spatio-textual trajectories. The major contribution of this research
is the proposal of a framework for the indexing of spatio-textual trajectories.
The goal of the index is to support the processing of queries taking the form
of Sequenced queries, that is complex queries expressed as sequences of ordered
simple spatio-textual queries. The index is called IRWI. The system is hybrid
in that it combines an R-tree for the indexing of spatial trajectory segments
with inverted files for the indexing of the textual part. A Sequenced query is
next processed in parallel, evaluating first every single query of the sequence,
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and finally analyzing and recomposing the sequence. A related though different
topic of the Thesis regards the study of techniques for mobility data analysis.
The objective is to extract behavioral patterns from spatial trajectories and next
represent them in terms of spatio-textual trajectories. The major contribution is
the definition of an algorithm for the segmentation of the trajectories based on
clustering and relying on a novel model of noise. Finally, a case study illustrates
and summarizes the methodology proposed for the analysis and representation
of mobility data. Specifically the above segmentation technique is used for the
extraction of the migratory behavior of a group of animals equipped with GPS
collars. Next such a knowledge is encoded in terms of spatio-textual trajectories.

The results of this research, spanning data representation and analysis, have
been presented in conferences and journals.
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Chapter 1

Introduction

1.1 Motivation

1.1.1 Mobility Data

Mobility is one of the major contexts that characterize the current trends of de-
velopments of any modern society. Due to the wide spread of GPS-embedded
devices and geo-location services and technologies, recent years have witnessed a
proliferation of applications in different disciplines that collect and record location
and possibly additional contextual information about moving entities, including
people, animals, objects. That motivates the increased availability of large mo-
bility data sets [51]. Mobility data often take the form of location histories,
commonly referred to as spatial trajectories. Spatial trajectories, especially those
reporting the traces of a large population of individuals over a significant period,
represent a valuable source of information and an enabling factor in a variety of
applications. For example, intelligent transportation, and more generally smart
cities applications, can leverage citizens’ mobility patterns detected in trajecto-
ries (e.g., traffic distribution in space and time), to plan more efficient public
transportation and social services, in this way contributing to a better quality
of life [53]. Similarly, in the field of animal ecology, modern animal telemetry
and sensor networks (e.g., GPS receivers and other sensors mounted on devices
deployed on animals, such as collars) make it possible to collect large amounts
of mobility data at a unprecedented level of accuracy, opening up new exciting
perspectives in the study of animal behavior [22].

Generally speaking, trajectories are complex structured data encompassing
time and data. Spatial trajectories, for example, are sequences of temporally
annotated points (p1, t1)...(pn, tn) sampling the physical movement of the entity
in a geographical space [68]. The sampling rate depends on both the application
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needs and the geo-location technologies employed for data collection. When-
ever the sampling rate is sufficiently high, the velocity of the object is likely not
to change significantly between two consecutive samples, thus the missing loca-
tions can be estimated using (linear) interpolation. The result is an approximate
representation of the continuous movement as shown in Figure 1.1. However,
historical mobility data is not limited to spatial trajectories. Following current
trends, time-varying data other than location can be acquired for example from
mobile sensors or result from some sophisticated analytical task, for example, the
Geolife dataset[67]. As a consequence, trajectories may have a complex structure.

Mobility datasets tend also to have a huge size. In this sense, mobility data
represent a prominent example of “big data”. For example the dataset released by
the New York City Taxi & Limousine Commission is described as a staggeringly
detailed historical dataset covering over 1.1 billion individual taxi trips in the city
from January 2009 through June 2015. Taken as a whole, the detailed trip-level
data is more than just a vast list of taxi pickup and drop off coordinates: it’s
a story of New York. How bad is the rush hour traffic from Midtown to JFK?
Where does the Bridge and Tunnel crowd hang out on Saturday nights? 1. Note
that in this example, the taxi trips take the form of spatial trajectories while the
reported questions exemplify the kind of analysis that could be performed over
such trajectories.

In the light of these considerations, it is clear that the efficient handling
of large amounts of complex structured trajectories becomes a prime demand
for organizations willing to capitalize on mobility data. That raises important
challenges because of the intrinsic limitations of the available technologies, still
anchored to a GPS-driven view of the movement. Such challenges cannot be ad-
equately tackled unless devising, developing and experimenting novel techniques
for trajectory data management and analysis, which is the topic of this thesis.

1http://toddwschneider.com/posts/analyzing-1-1-billion-nyc-taxi-and-uber-trips-with-a-
vengeance/
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Figure 1.1: Spatio-temporal representation of a spatial trajectory

1.1.2 Trajectory Data Management

As we have seen, a trajectory often takes the form of a spatial trajectory repre-
senting the continuous movement of an object. A straightforward approach to
trajectory data management is to store spatial trajectories in a standard spatial
database, e.g., PostGIS [18]. Indeed, this is the naive approach entailing a sepa-
rate representation of the two components of the object, i.e., space and time, as
well as the ad-hoc management of the interrelationship between the two compo-
nents. This solution is typically very inefficient and thus not suitable for large
trajectories datasets. A much more effective solution is to store spatial trajec-
tories in a moving object database [30]. In essence, a moving object database
provides a set of data types for the representation of time-varying objects, such
as geometric objects, e.g., moving point, and objects of simple type, e.g., moving
real. In addition, a set of operations support the manipulation of the spatial and
temporal components, either taken separately or simultaneously. For example,
one can query when two moving vehicles are at a distance of at most 100 meters or
determine the percentage of people that move with an average speed greater than
10 km/h in a given spatial region. While dedicated indexing frameworks have
been developed to speed up the processing of spatio-temporal queries [13, 55, 47],
the development of effective access methods remains a priority.

In the recent years, especially following the spread of sensors and analyti-
cal techniques, there has been an increasing concern for the notion of semantic
trajectory [45]. Basically, semantic trajectories are trajectories that, besides the
location history, incorporate supplementary contextual information, also called
annotations, such as the weather conditions during a travel, the places of in-
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terest visited by a tourist (hotels, entertainment spots), the sequence of home
ranges traversed by an animal, the activities (shopping, driving), the transporta-
tion means used during a trip, etc. The ultimate goal of semantic trajectories
is to facilitate the understanding of the moving object behavior. For instance,
biologists can leverage the information on the sequences of land types traversed
by the observed animals to analyze the interaction of those animals with the en-
vironment. Presently, however, the notion of semantic trajectory is exclusively
defined at conceptual level, namely in an abstract and substantially informal way.
This means that no operational artifact has been developed such as a ’semantic
trajectory database’.

The notion of trajectory annotation has been given a precise meaning in
the symbolic trajectory data model recently presented in [31]. Accordingly, an
annotation is simply a short character string typically representing the value of a
categorical attribute. For example the annotation can regard the transportation
means used by the individual moving in the city. A symbolic trajectory can be
represented by a stepwise function, as shown in Figure 1.2.

Figure 1.2: Stepwise representation of a symbolic trajectory representing the
sequence of transportation means used by the individual in time

More specifically, a symbolic trajectory is a time dependent label, namely a
function from time into labels. Such a function can be represented as a sequence
of pairs, called units, (I1, l1), ..., (In, ln) where Ij is a time interval and lj a label.
For example, a symbolic trajectory can be written:

([8 : 30− 8 : 45), walk)([8 : 45− 9 : 13], train)([9 : 30− 10 : 00], walk)

The symbolic trajectory data model includes a language for pattern matching
and rewriting [31]. Pattern matching is used to retrieve symbolic trajectories
matching a given pattern, whereas rewriting can be used to translate a symbolic
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trajectory into some other form, classify it into certain categories, or retrieve the
parts matching a pattern [31].

Departing from the traditional notion of trajectory, symbolic trajectories rep-
resent a major step ahead towards the definition of an effective and modern tra-
jectory data model. However, important issues are still open. One of the major
concerns is related to the fact that, in practice, symbolic and spatial trajectories
are handled as if they were orthogonal concepts, despite the intuitive interrela-
tionships that may exist in real applications between them. That has important
consequences, in particular queries combining spatio-temporal and symbolic con-
ditions cannot be straightforwardly solved by using one of the two models, alone.
For example, even the processing of simple queries such as determine how many
people use public transport to move from Milan to Rome can result to be extremely
inefficient execution. For a more comprehensive solution, a tighter integration of
spatial and contextual data is desirable. In this thesis we address such an issue.

1.1.3 Research Focus

This thesis focuses primarily on the problem of combining spatial and symbolic
trajectories. That leads to the definition of trajectories containing both geometric
information and textual information. These trajectories are called spatio-textual.
Two main questions are addressed in this research:

(i) How to efficiently access large datasets of spatio-textual trajectories

(ii) How to extract textual annotations from spatial trajectories (and thus build
spatio-textual trajectories).

(i) Efficient Access to Spatio-Textual Trajectories. We argue that the
problem is rooted in real applications. For example a popular dataset containing
both spatial and textual trajectories (separately) is GeoLife. This dataset is used
throughout the thesis as running example.

GeoLife [67] is a well-known dataset reporting the traces of a group of indi-
viduals monitored in Beijing for over three years. GeoLife consists of two distinct
datasets. The main dataset contains the spatial trajectories of 178 individuals
in the form of timestamped point sequences, i.e., {(ti, pi)}i∈[1,n] where ti is the
timestamp of point pi. In addition, Geolife contains symbolic trajectories on the
transportation modes for a subset of 69 individuals. A sequence takes the form
{(Ii, li)}i∈[1,m], where Ii is a time interval and li a label in the set: {walk, bike,
car, bus, airplane, other}. An example of symbolic trajectory is shown in Table
1.1.
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Start Time End Time Transportation Mode
2007/10/19 05:23:15 2007/10/19 05:51:00 taxi
2007/10/19 05:52:18 2007/10/19 09:39:28 walk
2007/10/19 11:18:44 2007/10/19 11:53:40 bike

Table 1.1: GeoLife: a fragment of a symbolic trajectory

This dataset exemplifies a situation increasingly common in modern applica-
tions, that is the coexistence of heterogeneous and temporally aligned trajectories
describing different aspects of the object’s movement. To better illustrate the
practical usefulness of spatio-textual trajectories resulting from the integration
of the original trajectories, we report a few examples of queries over the Geolife
dataset involving conditions on space, time and text. These queries could be of
interest for example for a urban planner.

Q1.1. Find people who use bikes in a park region during the weekend

Q1.2. Find people who move from region A to region B by their own cars in less
than 2 hours

Q1.3. Find the number of people in a city that use public transport to move from
home to a far away workplace.

These queries are difficult to solve efficiently, because the conditions to be
satisfied concern all of the three dimensions, while existing query processing
techniques and indexing frameworks are designed for space-time only. More-
over, queries may consist of sequences of conditions to be solved in the given
order, thus differently from the standard SQL queries. All that calls for the de-
velopment of a suitable query processing framework enabling the fast access to
spatio-textual trajectories.

(ii) Extracting Textual Annotations from Spatial Trajectories. The
textual annotations or labels appearing in spatio-textual trajectories have an
application-dependent meaning. Such labels can be obtained in different ways.
For example, labels can be added manually by users, for instance involved in a
data collection campaign, or labels can denote mobility patterns extracted from
spatial trajectories, for instance using data mining techniques. The latter case is
the most interesting. A popular class of mobility patterns is called stop-and-move
[45]. The patterns of this class express the movement as a sequence of transitions
from one stop to another, where the stop indicates the temporary suspension
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of the movement at the chosen level of abstraction. Interestingly, the stop-and-
move pattern can be straightforwardly represented as symbolic trajectory with
labels representing stops (e.g., places) and moves (e.g., transportation modes).
Various techniques have been proposed in the literature to extract stop-and-move
patterns from human and object trajectories such as [70]. As we will demonstrate
later on, these techniques have several limitations, in particular rely on narrow
assumptions that compromise the generality of the approach. Moreover, the
validation on real data is often insufficient. In this thesis, the stop-and-move
pattern is revisited and restrictive assumptions have been relaxed in favor of a
more general solution which is subsequently applied to a case study in the field
of animal ecology.

1.2 Contributions

The contribution of this thesis is two-fold. The first contribution is a spatio-
textual trajectory data model together with a novel indexing framework, called
IRWI, for the efficient access to spatio-textual trajectories. The goal in this case
is not to propose another model alternative to symbolic trajectories but rather to
devise efficient query processing techniques. The second contribution is a novel
spatio-temporal clustering technique, called SeqScan for the detection of stops
and moves in low-sampling rate spatial trajectories. The result is a summarized
representation of the movement that can be expressed as spatio-textual trajectory.
The key ideas developed for each topic are briefly summarized in the sequel.

1.2.1 The IRWI Indexing Framework

A spatio-textual trajectory is defined as a sequence of units u1, ..un with

ui = (Ii, segi, li)

The unit indicates that during the time interval Ii the moving object is located
along the segment segi and its activity or status is labeled li. We introduce
a new class of queries, called sequenced queries. A sequenced query is defined
as a sequence of simple range queries that are to be solved in the respect of
the temporal order. A simple range query, denoted (I,L,R), consists of a time
period I, a spatial region R and a set of labels L. Sequenced queries are important
because they represent the skeleton of more complex queries. For the efficient
processing of sequenced queries, we propose the IRWI indexing framework. A
key feature of the IRWI index is that all of the dimensions of the trajectory
(spatial, symbolic and temporal) are indexed simultaneously. Basically, the IRWI
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index is an R-tree [32] augmented with inverted files [71]. The inverted files
are stored in the internal nodes, in order to keep track of the labels present in
each subtree. As a consequence, at the level of a simple query, all the range
conditions (spatial, temporal and textual) can be evaluated together. The result
is a faster query processing compared to evaluating each condition in a separate
index. Another key feature of IRWI is that all of the simple queries in the
sequence are processed concurrently. To make this strategy sustainable, a number
of techniques are put in place to enable the early pruning of irrelevant trajectories,
including a spatio-textual cost function. Experiments, conducted on both real
and synthetic datasets, show a gain of 50% in CPU time and I/O over state-
of-the-art techniques, i.e., IF-R* [69] and IR-tree [17]. In summary, the major
contributions of this part of the thesis are as follows:

• Introduction of the novel concepts of spatio-textual trajectory and se-
quenced query. Proposal of a first data and query model.

• Development of the IRWI index for the efficient access to spatio-textual
trajectories.

• Specification of usage scenarios for spatio-textual trajectories.

1.2.2 The Stay Region Model and the SeqScan Algorithm

The stay-region model is the conceptualization of a mobility pattern of type ’stop-
and-move’ and takes inspiration from the migratory behavior of animals [12].
Stops are called stay regions. A stay region is the residence of an object. An object
can experience periods of absence from a stay region or, conversely, definitely
leave the stay region for another stay region. It has been shown that this model
cannot be built on existing segmentation and clustering techniques such as [20].
A novel stop-temporal clustering solution is thus proposed, called SeqScan. This
technique partitions the spatial trajectory into a sequence of temporally disjoint
and spatially separated sub-trajectories representing stay regions, excursions, and
transitions from one region to another regions. The technique is built on an
existing density-based clustering algorithm [24], from which it differs, however,
in many aspects especially related to the use of time. For validation purposes, the
algorithm has been applied to the study of animal migrations, in collaboration
with a group of biologists (Fondazione E. Mach (TN)), and then contrasted with
a more recent clustering algorithm developed by biologists [11, 12]. In summary,
the main achievements of this part of the thesis are:

• The SeqScan clustering algorithm for the extraction of sequences of stay
regions [20].



1.3 Organization of the Thesis 9

• An application of the technique for the study of roe deer migrations and
comparison with a clustering solution developed by biologists.

• Use of the case study to represent the summarized movement in terms of
spatio-textual trajectories.

1.3 Organization of the Thesis

The rest of the thesis is structured as follows:

• Chapter 2 reviews existing literature on trajectory data models, focusing
in particular on the three major paradigms: spatial trajectories, semantic
trajectories and symbolic trajectories

• Chapter 3 presents the framework for the efficient access to spatio-textual
trajectories, finally focusing on the IRWI index

• Chapter 4 presents the spatio-temporal clustering algorithm SeqScan and
its application to the study of the animals’ migratory behavior

• Chapter 5 presents two usage scenarios illustrating practical applications of
spatio-textual trajectories

• Chapter 6 concludes the thesis with a discussion on the open issues.





Chapter 2

Trajectory Data Models:
Literature Review

In this chapter, we review related literature. In particular, we survey trajectory
data models focusing on the three major paradigms of spatial trajectories, seman-
tic trajectories and symbolic trajectories. In Section 2.1, we present popular data
models for the representation of spatial trajectories together with major indexing
techniques developed for the efficient access to spatial trajectories databases. In
Section 2.2, we introduce the semantic trajectory as a conceptual model for an-
notated trajectories. Finally, Section 2.3 introduces the symbolic trajectory data
model proposed for modeling and querying annotated trajectories in databases.
Throughout this chapter, we refer to the Geolife dataset for the examples. We
recall that Geolife contains both types of mobility information: spatial and con-
textual, the latter describing the transportation means used by the individuals
during the observation period.
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2.1 Spatial Trajectories

A spatial trajectory [68] is defined as a continuously time-varying position that
describes the movement of a moving entity over time. At lower level of ab-
straction, a spatial trajectory consists of a sequence of timestamped positions.
Over the past decades, massive amounts of trajectory data have been generated
by GPS and other positioning devices for the benefit of different applications.
However, traditional database management systems are unable to handle large
amounts of spatial trajectories in an efficient way. In fact, a traditional database
forces a decomposition of spatial trajectories into multiple attributes of simple
type and in multiple rows. This makes even simple queries difficult to formulate,
and furthermore hopelessly inefficient to process because the decomposed values
must be reconstructed at query time. The limitations of the traditional database
technology motivates the extensive research on novel database models conducted
in the late 1990s and early 2000.

2.1.1 Spatial Trajectories Data Models

The foundational model is the Moving Object data model [29]. The model con-
sists of a set of abstract data types for the representation and manipulation of
time-varying objects, including spatial objects of type point, line and polygon and
objects of simple type, e.g., real. Data types for time-varying objects are created
using the moving type constructor: given an argument of type α, moving(α)
defines a type whose values are functions from time to the domain of α. For
example the values of type moving(point), abbreviated in mpoint, are functions
from time to space, while those of type moving(real) (mreal) are functions from
time to the domain of real numbers. A value of type mpoint describes the move-
ment of an object in space, namely a spatial trajectory, while an attribute of type
mreal, for example, can represent the time varying distance between two moving
points describing, e.g., two vehicles.

The rich set of types provided by the model offers a large set of operations.
We list a subset of operators in Table 2.1 while the full set of operations can
be found in [29]. For example, the atinstant operator computes the position
of a moving point at a given instant of time (yielding a pair of an instant and
a point), the trajectory operator projects a moving point into the 2-D space
(resulting in a 2-D curve). The distance between two moving points is calculated
by the distance operator, while atmin restricts the moving real to the instants
where the value is minimum. While these data types characterize the abstract
data model, the discrete data model [26] defines the concrete representations
and data structures for all the types of the abstract model. In particular, the
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Table 2.1: Moving Object data model: a subset of operators.

Operator Signature
deftime moving(α) → periods
trajectory moving(point) → line
initial moving(α) → intime(α)
derivative mreal → mreal
speed mpoint → mreal
val intime (real) → real
turn mpoint → mreal
velocity mpoint → mpoint
present moving(α) × periods → bool
atinstant moving(α) × instant → intime(α)
at moving(α) × β → moving(α)
atperiods moving(α) × periods → moving(α)
atmin moving(α) → moving(α)
atmax moving(α) → moving(α)
when moving(α) × ( α → bool ) → moving(α)

object’s movement is represented using a sliced representation, namely the tem-
poral development is subdivided into fragments, i.e., slices, and within the slice
the location is determined using an interpolation function. Concretely, a spatial
trajectory is represented by a sequence of units while the interpolation function
is commonly a linear function. Each unit has a form (I, seg), where I represents
the time interval of maximum width during which the time-varying location falls
along the segment seg. The spatial trajectory can thus be represented by the
sequence:

(i1, seg1), (i2, seg2), .., (in, segn)

The units are temporally disjoint, temporally ordered, and two adjacent units
have different segments. The Moving Object model has been implemented as
part of SECONDO, an extensible database system that provides a rich set of
data types to support non-standard database applications [28]. Another system
relying on the Moving Object data model is the HERMES database [46]. In the
following, we illustrate a few examples of queries over the spatial trajectories of
the Geolife dataset.

Example 2.1. The spatial trajectories are stored in a database table that con-
tains two attributes, the identifier of the moving object and the spatial trajectory
of type mpoint. Five SQL queries are reported below:
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Geolife(Id:string, Trace:mpoint)

Q2.1: Select the time periods for which the spatial trajectories in Geolife are
defined:

SELECT deftime(Trace)

FROM Geolife

Q2.2: Select the ids of individuals whose spatial trajectories are longer than
5km:

SELECT Id

FROM Geolife

WHERE length(trajectory(Trace)) > 5000

Q2.3: Select the individuals that move with a velocity less than 20 Km/h:

SELECT Id

FROM Geolife

WHERE var(initial(atmax(velocity(Trace)))) < 20000/3600

Q2.4: Select the individuals that stay in a region R for more than 1 hour:

SELECT Id

FROM Geolife

WHERE duration(deftime(at(Trace,R))) > 3600

Q2.5: Select all the pairs of individuals who during their trips came closer to
each other than 100 meters:

SELECT p.Id, q.Id,

FROM Geolife p, Geolife q

WHERE var(initial(atmin(distance(p.Trace,q.Trace)))) < 100

A major stream of research concerns the development of indexing techniques
for the fast retrieval of trajectories and their parts. Most of the proposed indexes
for accessing spatial trajectories are based on the R-tree index [32]. Because the
R-tree is also at the basis of the IRWI index we now describe the main features
of this access method.
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2.1.2 The R-tree Index

The R-tree is a balanced tree used for the dynamic organization of d dimensional
objects [40]. For simplicity, we instantiate the description of the R-tree on the
case of spatial objects (2-dimensional objects). Spatial objects are represented
in the R-tree through a minimum bounding box (MBB). The MBB unifies the
representation of spatial objects, and simplifies that of complex spatial objects.
However, during the query processing, the MBB representation introduces an
extra cost due to the need of filtering out the spatial objects that do not satisfy
the query, despite their MBBs. In the R-tree, every node occupies one disk page
and every non-root node contains a number of entries in the range [m,M ], where
m ≤M/2 with M depending on the disk page size.

Figure 2.1: Example of R-tree

Data structure. Consider the R-tree shown in Figure 2.1. The tree consists
of leaf and internal nodes. The objects (or pointers to objects) are inserted in
the leaf nodes. The internal nodes split the spatial space covered by the objects
into possibly overlapping regions while leaf nodes contain a set of leaf entries,
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one for each object. More in detail: a) a leaf entry consists of a pair of logical
pointers: a pointer to the object in the database, and the MBB of such object;
b) An internal node contains a set of non-leaf entries, each containing a pointer
to and the MBB of a child node. The MBB of the child node ni is the union of
all the MBBs that are present in the entries of ni.

Search. Consider a range query attempting to retrieve the objects contained
in a given query-rectangle. The search process scans the R-tree starting from the
root through the sub-trees whose MBB intersects the query rectangle until the
leaf nodes are reached. It should be noted that minimizing the overlap between
the MBBs of the internal nodes will reduce the number of candidate sub-trees
that are to be scanned in the search process, thus making the processing more
efficient. At the leaf level, the search process uses the logical pointers in the
leaf entries to read the candidate spatial objects and filter out those that do not
satisfy the range query. More details on the process will be given in Chapter 3
when we will introduce the IRWI index.

Insertion. For the insertion of a new spatial object, the R-tree is traversed
starting from the root and searching for an appropriate leaf accommodating the
new entry. At each level of the tree, a node is selected based on the least enlarge-
ment criteria, i.e., the selected node is the one whose corresponding MBB requires
the least enlargement to enclose the MBB of the new object. If the selected leaf
node can accommodate the new entry (i.e., contains less than the maximal al-
lowed entries), the entry is then inserted and the ancestor nodes are updated
accordingly. Otherwise, if the selected leaf node already contains the maximum
number of entries, the node is split into two leaf nodes and the ancestor nodes
are adjusted accordingly.

Splitting a node entails a re-distribution of its entries between two nodes. The
objective of the splitting algorithms is to minimize the probability of visiting both
nodes for the same query by minimizing the total area of the MBBs of both nodes.
To that end, a straightforward approach is to compute all the possible groupings
of entries and choose the one minimizing the MBB area. This solution is, however,
time consuming therefore a trade-off between time complexity and minimization
criteria satisfaction is needed. In this line a popular splitting algorithm is the
quadratic algorithm presented by Guttman [32].

2.1.3 Access Methods based on R-tree

Numerous access methods based on R-tree have been proposed for the indexing
of spatial trajectories [43, 40]. The basic technique employs two separated data
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Figure 2.2: Discrete representation of spatial trajectory where every segment is
bounded by the 3D MBB [40]

structures, a 2D R-tree and a 1D R-tree, the former for the indexing of the spatial
component of the trajectories, i.e., the segments connecting consecutive points,
and the latter for the indexing of their temporal component. The processing
of a spatio-temporal range query consists of two steps. First, the two groups of
candidate trajectories satisfying the spatial condition and the temporal condition,
respectively, are selected. Next, the trajectories that are in common between
these two groups are extracted.

A different technique employs a 3D R-tree [55]. The idea is to use a unique
data structure integrating both the spatial and temporal dimension. Accordingly
every spatio-temporal segment of the trajectory is bounded by a 3D MBB, as
shown in Figure 2.2, and inserted into the three-dimensional R-tree. The exper-
iments show that, for spatio-temporal range queries, this index is more efficient
than the basic access method while it is not equally performant for time-slice
queries where the efficiency depends on the total number of entries in the history.
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Historical R-tree and HR-tree, [42] try to overcome these limitations. In partic-
ular, the Historical R-tree creates an R-tree for each timestamp. The index data
structure keeps a vector of pointers, each one pointing to one of these R-trees.
In place of a complete R-tree, the Historical R-tree creates an R-tree exclusively
for the objects whose location has changed since the last timestamp, maintain-
ing as well a pointer to the unchanged nodes in the preceding R-tree. Given a
time-sliced query, the search process scans the R-tree that contains the trajecto-
ries for the specific time slice. The drawback of the technique is that it requires
the scanning of multiple R-trees in case of range queries. To overcome these
limitations, Tao and Papadias propose the Multi-version 3D R-tree [54] which
combines Multi-version B-trees (MVR tree) and 3D R-trees. The main idea is
to build two trees, an MVR tree to process time-slice queries, and a 3D R-tree
to process efficiently range queries. Other indexes have been proposed for the

Figure 2.3: An example of a trajectory stored in a TB-tree [40].

efficient processing of topological queries. Pfoser et al. [47] propose the STR-tree
and TB-tree. The STR-tree organizes the line segments forming a trajectory not
only based on spatial properties, but also trying to group segments belonging to
the same trajectory. By contrast, the TB-tree forces the line segments belonging
to the same trajectory, to be stored in the same leaf node, ignoring thus their
spatial proximity. To enable the fast access to the whole trajectory, leaf nodes
belonging to the same trajectory are linked by means of a doubly linked list.
The main problem with this technique is the dead space in each MBB that may
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lead to the degradation of both update and query efficiency [40]. In general, the
TB-tree performs better than the other access methods on queries involving the
history while for queries involving the objects’ coordinates, the performance of
the TB-tree is worse than that of the 3D R-tree.

2.2 Semantic Trajectories

Representing the objects’ movement in terms of spatial trajectories is useful when
the goal is to locate objects in space and time or compute statistics on the spatio-
temporal characteristics of trajectories, e.g., speed [45]. However, in modern
applications, there is an increasing body of evidence that describing the movement
exclusively in spatial terms is no longer sufficient [19]. For example, an important
feature of the movement is the context in which such a movement takes place,
such as the weather conditions during a travel, the places of interest being visited,
the people in proximity and so forth. All that motivates the growing concern for
solutions advancing the classical Moving Object data model.

Semantic trajectories is the term coined to indicate those data models that
target the representation of knowledge about the movement of entities. In the
recent years, the research on semantic trajectories has experienced a significant
growth as demonstrated with a variety of research works, especially those carried
out in the projects GeoPKDD in Europe [27] and Geolife in Asia [67]. In the
sequel, we overview related works focusing on the aspects of conceptual modeling
and semantic enrichment of trajectories.

2.2.1 Conceptual Models

The first conceptualization is known as stop-and-move model [45]. The basic idea
is to describe the movement as a sequence of transitions from one stop to another
where the stop indicates the temporary suspension of the movement at the chosen
level of abstraction. For example, stops can describe the points of interest visited
by tourists during their travels while the moves can indicate the use of trans-
portation means. The concepts of stop, move have been next generalized in that
of episode in [45]. Episodes result from the temporal partitioning of the move-
ment history in semantically meaningful segments. The semantics is expressed
through annotations. Under this view, stops and moves are simply different kind
of episodes. Accordingly, a semantic trajectory is defined as sequence of episodes,
where each episode holds an annotation. Figure 2.4 represents a semantic trajec-
tory describing a touristic trip. The semantic trajectory consists of a sequence of
alternating stop and move episodes, where stops are annotated with a place label
and the moves with the label of a transportation means. CONSTAnT is another
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Figure 2.4: The semantic trajectory describing a touristic trip with annotated
stop and move episodes [45]

conceptual model that extends the stop-and-move framework integrating several
semantic dimensions for movement analysis (e.g., goal, behavior) [8]. In CON-
STAnT, the movement is described as a sequence of semantic sub-trajectories,
where each semantic sub-trajectory has multiple properties.

None of these models has been translated into a database system. We will
come back to this point later on. Moreover none of these techniques specifies
how to detect the episodes. Indeed, this problem is addressed by a different class
of techniques also known as semantic enrichment techniques, briefly presented
next.

2.2.2 Semantic Enrichment Frameworks

ST-DMQL [7] is proposed as semantic trajectory query language providing func-
tionalities for trajectory processing and mining. The ST-DMQL query language
provides an operator for generating stop and move episodes from spatial tra-
jectories. The operator generates a stop episode when a certain constraint is
satisfied, specifically if the spatial trajectory is inside one of the candidate stops
for a minimum duration where the candidate stops are user-defined. A limitation
of ST-DMQL is that it does not provide any other kind of episode besides these
narrowly defined stop and move episodes.

The work of Yan et al. [61, 62] tries to overcome this limitation by defining a
more general methodology. The authors propose a generic multi-layer framework
called SeMiTri for the annotation of spatial trajectories at different levels of
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abstraction. The idea is to first extract basic abstractions (e.g., stop, move)
and then further characterize these episodes through the definition of higher-
level abstractions. This methodology is applied as follows: during the annotation
process, SeMiTri leverages contextual and geographical knowledge together with
movement properties such as density, velocity and direction, to extract from
the trajectory a sequence of stop and move episodes. Next, points of interest
and activities are extracted from stop episodes while the information on the
transportation means is extracted from the move episodes.

A more flexible and generic environment is provided by Baquara [25]. Baquara
is an ontology-based framework for trajectory annotations where annotations can
be selected from linked data. In general, an ontology describes taxonomies and
classification networks, essentially defining the structure of knowledge for various
domains. The ontology introduced in Baquara [25] defines concepts like events,
places, moving objects, episodes and semantic trajectories. Driven by the on-
tology, an automated technique selects the appropriate linked data according to
the spatio-temporal scope of the movement and the application domain (tourism,
traffic, ecology).

Beyond the multiplicity of techniques, a question that remains unsolved is the
scalability aspect, i.e., how to deal with large amounts of semantic trajectories.
The issue poses several challenges [19]: it requires the definition of a rigorous data
model, the specification of an effective query language enabling the retrieval of
semantic trajectories or parts of them, and the development of efficient data access
mechanisms. To deal with these aspects, two main directions have been explored:
the first is presented below and implies the use of Semantic Web technologies,
the second calls for novel database solutions and is discussed in the subsequent
section.

2.2.3 Semantic Web Trajectory Databases

The early work in [63] starts from the stop-and-move conceptual model to define a
Semantic Trajectory Ontology that is next stored onto a commercial database that
has a reasoning extension, Oracle with OWL-Prime. Semantic Trajectory Ontol-
ogy is a combination of three sub-ontologies: the Trajectory Ontology describes
the trajectories in terms of stop and move, the Geographic Ontology describes
the contextual information, and the Application Domain Ontology describes the
application dependent concepts.

A different approach is presented in [36]. Instead of defining an application
dependent ontology, the authors define the Geo-ontology as an ontology design
pattern that serves as skeleton for the creation of complex ontologies. The Geo-
ontology is application independent, while domain specific ontologies can be cre-
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Figure 2.5: Semantic Trajectory Ontology [63]

Figure 2.6: Geo-ontology [36]



2.3 Symbolic Trajectories 23

ated by sub-typing (i.e., extending) the classes defined in the Geo-ontology. The
Geo-ontology consists of basic classes (i.e., fix, segment, semantic trajectory) and
a number of generic classes (Source, Position, Attribute) providing the appli-
cation developer with the possibility of integrating geographic and application
dependent knowledge into the final ontology. For example, the fix denotes the
position of the moving object at a certain instant, the segment is defined by
the starting and ending fixes, the semantic trajectory is a sequence of segments.
The Position can represent any geographic feature of interest for the application
(e.g., tourist attraction, schools). This concept can be extended for integrating
any existing POI ontology. Attribute is another generic concept that connects
fixes and segments to their attribute values, such as speed or the bearing of a
segment. The model has been represented using the Web Ontology Language
(OWL). Dealing with large amounts of trajectory data remains however an issue.

2.3 Symbolic Trajectories

A recent stream of research leverages database technology and the Moving Object
data model, originally developed for the representation of spatial trajectories, to
provide a system for the representation and querying of annotated trajectories
stored in a database. A major result is the Symbolic Trajectories data model and
its implementation [31].

In abstract terms, a symbolic trajectory is a time dependent name or label
where the label is an element of an application-dependent vocabulary. Labels can
represent for example the street of a city, the cell IDs of a cellular network, the
different transportation modes (bus, metro, walk...) or even the speed profile of
a movement (slow, medium, fast,...).

2.3.1 Trajectory Representation

In practice, the discrete model of symbolic trajectories consists of a sequence of
units u1, .., un where ui = (Ii, li) is the generic unit defined by a time interval Ii
and label li. The interval Ii, in turn, is defined by the tuple (start, end, lc, rc),
specifying the beginning of the period (start), the end (end) and whether the
interval is left or right closed respectively (lc, rc).

Example 2.2. A symbolic trajectory representing the sequence of transportation
means used by a particular individual can be specified as follows:

([8:30-8:45), walk), ([8:45-9:13), train), ([9:13-9:19], walk)



24 Chapter 2

This trajectory can describe, for example, the home-work travel of an individual.
The individual walks for 15’ from 8:30 until 8:45 before taking the train from
where he/she gets off at 9:13. Next he/she walks again for a while to reach the
destination.

The basic mechanism used for the representation of symbolic trajectories is
the abstract data type. Accordingly, the symbolic trajectories are simply treated
as values of a novel data type formally defined by a specific algebra encompassing
a set of operations specific for the type. This new data type can be used to specify
the attribute types in a database table, while SQL can be used to interrogate sets
of symbolic trajectories. More in detail, the novel data type introduced for the
representation of symbolic trajectories is called mlabel (moving label). A label
is basically a string thus, literally, a moving label is a time-varying string. A
pleasant feature is that the type mlabel inherits the generic operations defined
for Moving Objects. For example, the operator atinstant(o,t), that we have
met in a previous section, returns the label of the symbolic trajectory o at time
t; deftime(o) returns the period in which the symbolic trajectory o is defined.

Example 2.3. The sequences of transportation means used by the individuals in
the Geolife dataset can be stored in a database table consisting of two attributes,
one for the individual Id and the other for the symbolic trajectory (attribute
Trans). Two basic examples of SQL queries are reported next:

Geolife(Id:string, Trans:mlabel)

Q2.6: Find people who walk sometimes:

SELECT Id

FROM Geolife

WHERE Trans passes "walk"

Q2.7: Find walking time periods of geolife people:

SELECT deftime(at(Trans,"walk"))

FROM Geolife

WHERE Trans passes "walk"

2.3.2 Pattern-based Query Language

A major feature of the symbolic trajectory data model is the pattern-based query
language. Patterns can be expressed as regular expressions extended with supple-
mentary conditions and variables. Queries can be performed using two different
operators for matching and rewriting respectively. The two operators, matches
and rewrite, have the following signatures:



2.3 Symbolic Trajectories 25

matches : mlabel × pattern→ bool rewrite : mlabel × pattern→ set(mlabel)

The operator matches returns true if the input symbolic trajectory matches the
input pattern (otw false); rewrite returns the portions of symbolic trajectory
matching the pattern. Operationally, the pattern matching algorithm loops over
the units of a trajectory, updating the set of active states of a non-deterministic
finite automaton (NFA). In the following we present a few examples of patterns
and show how the queries can be specified.

Example 2.4. Q2.8: Find all symbolic trajectories matching the pattern: walk
at morning and evening of the same day. The corresponding pattern is:

X(morning,walk) * Y(evening,walk) // (Y.end-X.start)< 1 day

X and Y are variables bound to the first and last unit of the symbolic trajectory;
the part on the right following // is a condition expressed over those variables
specifying that the duration of the entire trip should be less than 1 day. The
symbol ∗ is a wildcard matching any sequence of units.

The rewrite operation can be used for the extraction of parts of symbolic
trajectories as well as for aggregating sub-sequences of units into higher-level
concept. A few examples are reported next.

Example 2.5. Q2.9: Find all symbolic trajectories matching the previous pattern
and set the label of the output to home. The pattern is as follows:

X(morning,walk) * Y(evening,walk) // (Y.end-X.start)< 1 day

=> X Y // X.label := "Home", Y.label := "Home"

The part on the right following the symbol => specifies that the output trajectory
should only contain the units denoted by the variables X, Y while the respective
labels are to be replaced by ’Home’.

Example 2.6. Q2.10: rewrite the symbolic trajectories that contain bus, metro
or train into a symbolic trajectory that contains ’Public Transport.’

SELECT rewrite(Trans," * X(_,{bus,metro,train}) *

=> X // X.label =Public transport")

FROM Geolife

Q2.11: retrieve the trajectories of people continuously walking for at least 1
hour:

SELECT Id

FROM Geolife

WHERE Trans matches " * X(_,walk) *

// X.duration > 1 hour "
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2.3.3 Indexing Symbolic Trajectories

To enable the fast processing of the matching and rewriting operations, an access
method for the indexing of spatial trajectories has been defined by Valdes and
Güting [57]. The index consists of two separated components: a trie, for the
indexing of labels, and a 1D R-tree, for the indexing of time intervals. A symbolic
trajectory is indexed as follows: for every unit i, the label, the unit position and
the trajectory ID are stored all together in the trie as represented in Figure 2.7.
In contrast, the time interval with the unit position and trajectory ID are stored
in the R-tree. The textual and the time components are thus kept on distinct
data structures.

Figure 2.7: The trie used for the indexing of the symbolic trajectories labels. [57]

Given a query specifying a pattern represented by a sequence of atoms, the
algorithm identifies the transitions that are mandatory for the automaton to reach
any of the final states. The result is a set of candidate trajectories that are then
evaluated for the exact matching. Compared to the linear scan, the computational
cost of the index-based matching operation is reduced by more than an order of
magnitude. The proposed index is implemented using the SECONDO platform.

2.4 Summary

In this section we have presented the three major paradigms for the represen-
tation of trajectories. The Moving Object data model is the reference model
for the representation of spatial trajectories; the Semantic Trajectories paradigm
includes different approaches for the semantic enrichment of trajectories; finally
Symbolic Trajectories is the recent framework proposed for the handling of trajec-
tories in textual form. In the next chapter we present the first major contribution
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of the thesis, specifically a framework for the integration of spatial and symbolic
trajectories.





Chapter 3

Modeling and Indexing
Spatio-Textual Trajectories

3.1 Overview

Accessing large datasets of temporally aligned spatial and textual trajectories can
provide valuable information on where certain behaviors take place. In this chap-
ter we introduce the spatio-textual trajectory data model and a novel index frame-
work, called IRWI, for the efficient processing of queries on aligned spatio-textual
trajectories formulated as sequences of ordered spatio-textual range queries q =
q1,.., qn (sequenced queries). Our specific goal is not to propose an expressive
data model somehow extending symbolic trajectories, but rather to focus on the
efficiency of query processing. For that reason and also for the sake of generality,
we prefer to use the term ’textual’ in place of ’symbolic’. IRWI consists of a
hybrid, i.e., spatial and textual, index data structure, enriched with a number
of features that facilitate the early pruning of trajectories during the concurrent
evaluation of the sub-queries q1,.., qn.

The chapter is organized as follows: Section 3.2 introduces the spatio-textual
trajectory data model and the notion of sequenced query. Section 3.3 first dis-
cusses the baseline technique and next the IRWI solution. Sections 3.4 and
3.5, describe the index construction process and the query processing algorithm
respectively. Experiments are reported in Section 3.6 where we contrast our ap-
proach with two methods, the first based on IR-tree [17], the latter on IF R* [69],
utilizing three different real and synthetic datasets.
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3.2 Spatio-Textual Trajectories

3.2.1 Representation

At the abstract level, we define a spatio-textual trajectory as the function tr(t)
that for each instant of the temporal domain returns the pair (l, p) where p = f(t)
is a point of space and l = g(t) the label annotating this point. For example, the
function g(.) can return the transportation means used by the individual in time,
while f(.) is simply a time varying location. This abstract definition is mapped
onto a discrete model. In practice, a spatio-textual trajectory is represented as
sequence of units, e.g.:

ui = (Ii, li, segi)

where the unit ui specifies that during the time interval Ii the individual is located
along the line segment segi, performing the activity labeled li. We recall from
Chapter 2 that the discrete representation of a spatial trajectory consists of a
sequence of segments. The spatial trajectory is thus annotated at the level of
segment. Within the sequence, the time intervals of units are disjoint or adjacent
and units are ordered by time intervals. In line with the Moving Object data
model, time intervals are represented by the tuple (s, e, lc, rc), where s and e are
instants with s < e, and lc and rc boolean values denoting whether the interval
is left-closed/open and right-closed/open.

Table 3.1 reports the sequence of units representing the trajectory in Figure
3.1. In this example, the labels indicate the transportation means used by the
individual. The spatio-textual trajectory is visually displayed in Figure 3.1 as
a spatial trajectory partitioned into a sequence of colored sub-trajectories, each
indicating the transportation mode in the corresponding time period. In the

Table 3.1: The sequence of units of the spatio-textual trajectory

([7:00 7:30) run (p0 p1))
([7:30 8:00) bike (p1 p2))
([8:00 10:00) metro (p2 p3))
([10:00 10:10) walk (p3 p4)
([10:10 10:40] run (p4 p5))

rest of this chapter, unless specified otherwise, we use the term trajectories to
refer to the unit-based representation of spatio-textual trajectories while a sub-
trajectory is a sub-sequence of trajectory units. Back to our running example,
note that the movement of the Geolife individuals can be compactly represented
by spatio-textual trajectories.
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Figure 3.1: Colored trajectory : a simple graphical representation of a spatio-
textual trajectory. The polyline displays a spatial trajectory, while the different
symbology, e.g., color, highlights the time-varying categorical attribute, in this
case the transportation mode

3.2.2 Sequenced Queries

We now turn our attention to the problem of interrogating a large dataset
of spatio-textual trajectories through queries specifying non-trivial conditions
on the textual, spatial and temporal components. We start with a discussion
related to the following query over the Geolife dataset:

Q3.1: Find the individuals living in region R1 that in the morning run
to reach a station and then take some public transportation means to reach
the workplace located in region R2 after around one hour, between 9:00 and 10:00.

The query Q3.1 specifies two kinds of conditions: the first is on the textual
dimension (i.e., the user runs then takes a public transportation means) and the
second on the spatial-temporal dimension (i.e., morning, containment in region
R1 and in region R2). Abstractly, this query belongs to a set of more general
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queries that we call sequenced queries. Formally, we define a sequenced query as
the sequence:

q = q1, .., qn (3.1)

of simple queries with qi = (Ii, Li, Ri) specifying an interval Ii, a set of k labels
Li = {lj, .., lk} and a rectangular region Ri. A trajectory tr satisfies the simple
query qi if the corresponding individual is located in region Ri at some instant
during the interval Ii performing one of the activities in Li. Rephrased in more
formal terms, if it exists t ∈ Ii such that tr(t) = (l, p) with l ∈ Li and p ∈ Ri.

Example 3.1. The simple query asking for the individuals running in the early
morning in region R1 can be formulated as follows:

([7:00 8:00] {run} R1))

Figure 3.2: The rectangles R1 and R2 represent the spatial conditions of the
sequenced query Q3.1. The trajectory satisfies the query

This simple query is satisfied by the example trajectory in Figure 3.2 because the
individual is running in R1 at some time during [7:00 8:00].
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For the sake of completeness, the notation used for the queries includes the
symbol ’ ’, used as placeholder for either the temporal or the textual conditions to
mean ’any value’. Armed with this semantics, we say that the trajectory satisfies
the sequenced query q = q1, .., qn if there exist n instants t1, .., tn with ti < ti+1

such that for every instant ti, tr(ti) satisfies the simple query qi. The simple
queries are thus to be solved in with respect to a given ordering, defined by the
sequence in the query syntax.

Example 3.2. Back to the running example, Figure 3.2 shows two rectangles
representing the spatial constraints informally specified in query Q3.1. The full
query for Q3.1 consists of two simple queries expressed as follows:

([7:00 8:00] {run} R1) ([9:00 10:00] {bus, train, metro} R2)

It can be seen that the trajectory in Figure 3.2 satisfies the query because it
intersects the rectangles in the right order, and moreover when inside R1 the
individual is running, next when inside R2, he is using a public transportation.

Consider now a set of spatio-textual trajectories and a sequenced query. In
order to retrieve the trajectories satisfying the query, a naive approach is to split
the request into two pipelined sub-queries. The first sub-query is formulated over
the textual trajectories to retrieve those matching the textual conditions, and
the second over the spatial trajectories to retrieve those matching the spatial
predicates in the periods in which the textual conditions are satisfied. This naive
processing is shown to be extremely inefficient [21]. In the light of this experience,
a challenging problem is to devise an appropriate index for the efficient processing
of sequenced queries. This motivates the proposal of the IRWI technique. Before
proceeding, we briefly overview related approaches in literature.

3.2.3 Related Approaches

Major streams of related research on query processing include pattern-based
query languages over trajectories and spatial keywords-based queries, discussed
in the next.

Pattern-based query languages over trajectories. Queries taking the form
of sequential expressions over trajectories are typically supported by the so-called
pattern-based languages. Pattern-based languages can be broadly classified into
three classes: the languages that are only capable of expressing sequences of
spatio-temporal predicates, e.g., [33, 49, 37]; the languages expressing queries
as sequences of symbolic expressions, in the simplest case taking the form of
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regular expressions, e.g., [31]; and the hybrid query languages combining spatio-
temporal and symbolic expressions. Our model of sequenced query falls in the
latter category. There exists a substantial difference, however, with respect to
the state of the art, i.e., [58, 41], in that, in our model, the textual component
describes a generic behavior or activity, thus it does not necessarily represent a
spatial object, such as a region or a road, as in the aforementioned approaches.
In this sense our notion of spatio-textual trajectory is more general and flexible.

Spatial keywords-based query processing. This class includes two cate-
gories of techniques, targeting the retrieval of static spatio-textual objects, e.g.,
[69, 56, 35, 38, 16, 17], and the retrieval of trajectories including both spatio-
temporal and textual information, e.g., [34, 66], respectively.

The first category of techniques employs both textual and spatial criteria for
the retrieval of, e.g., POIs [15]. The prevalent approach is to use a spatial index
together with a textual index, the former typically based on R-tree [69, 35, 38, 17],
grid or space filling curve [56, 16], the latter on inverted files and bitmaps. A major
technique of this class is the IR-tree index. The IR-tree is essentially an R-tree,
in which every internal node contains a pointer to an inverted file listing the
spatio-textual objects contained in the sub-tree of the node [17]. However, these
techniques are only applied to static objects and not to trajectories. The second
category of techniques is more recent. A representative index is presented in [34].
This is an index that associates each keyword with an octree that partitions the
space and time. In this case, however, the queries are simple range queries and
not sequenced queries, as in our case.

In general, none of the above techniques is applied to trajectories while sim-
ply adapting one of the mechanisms in use for the processing of static spatio-
textual objects does not ensure an adequate efficiency. Complementary to this,
we note that trajectory indexing techniques are not designed to efficiently handle
sequenced queries. All these observations motivate the study of a more efficient
query processing strategy.

3.3 Accessing Spatio-Textual Trajectories: the

IRWI Index

In this Section we present two techniques for the indexing of spatio-textual tra-
jectories. We start with discussing a baseline technique, followed with a detailed
presentation of our solution. To ease the presentation, we use as a running ex-
ample the toy dataset of 4 trajectories represented in Figure 3.3. For the sake of
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readability, the figure only displays the projection on the space of the trajectories,
visualized as colored trajectories.

Figure 3.3: Running example: four colored trajectories projected on the 2D space
(time is omitted). Each segment is associated with a different label, i.e., color.
R1 and R2 are two regions of space.

3.3.1 Baseline Index

Consider a trajectory u1, .., un of length n. The idea is to use two separate data
structures, specifically an inverted list for the indexing of the textual component
of the units and a 3-dimensional R-tree for indexing the spatio-temporal part. A
sequenced query is then processed sequentially solving each simple query of the
sequence in the given order and, for each simple query, evaluating separately the
textual and spatio-temporal conditions.

The inverted list is structured as follows. Each label is associated with a
posting list. In particular, the posting list for label l is a set of unit identifiers,
each describing the position of one unit containing l. The unit identifier is the
pair (tid, num) indicating the trajectory identifier and the position of the unit
inside the trajectory, respectively. The three-dimensional R-tree stores in the
leaf nodes an entry (tid, num, I, seg) for each of the units specifying the unit
identifier, the time interval and the segment.
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Figure 3.4 shows the posting lists of the inverted file created for the trajectories
of the example as well as the 2D representation of the R-tree for such trajectories.

Figure 3.4: Baseline technique: inverted list and R-tree for the running example

The algorithm for processing the sequenced query q =< q1, .., qn > comprises four
steps:

• Step 1: For each query qi = (Ii, Li, Ri) fetch from the inverted file the
posting list of every label l ∈ Li. This will result in the set Ai of unit
identifiers

• Step 2: For each query qi =(Ti, Li, Ri) extract from the R-tree the set Bi

of unit identifiers for which the bounding box of the segment in the unit
intersects the space-time box corresponding to Ii and Ri

• Step 3: For each query qi =(Ti, Li, Ri) compute the intersection Ci =
Ai

⋂
Bi. This will result into a new set Ci identifying the units satisfy-

ing both the textual and spatio-temporal conditions.

• Step 4: Given the sets C1, .., Cn, determine for every candidate trajec-
tory the time periods in which such trajectories satisfy the simple queries
q1, .., qn. Next select only those trajectories that satisfy the simple queries
in the appropriate order.

This technique presents two major shortcomings. Firstly, the unit content is split
into two separate index data structures, therefore the textual and spatio-temporal
conditions are to be evaluated separately. This would be similar to attempting to
process a range query over a set of 2D points by providing separate binary index-
structures over each coordinate. Such approach can generate significant overhead
of false positives, which was one of the main motivations for the researchers to
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investigate different 2D index structures [5, 32]. Secondly, every simple query
of the sequenced query is evaluated independently from the other queries of the
sequence. That hampers the pruning of the search space, moreover the R-tree
has to be traversed every time a simple query is to be evaluated, that is, for a
sequenced query of length n, the R-tree has to be visited n times.

We speculate that a better performance can be obtained through a more
integrated solution. That motivates the IRWI index presented next.

3.3.2 The IRWI Index

The key features of the IRWI index can be summarized as follows:

• The units u1, .., un are stored in the leaf nodes of a 3D R-tree while the
internal nodes of the 3D R-tree summarize both the spatio-temporal and
the textual information on the descending leaf nodes. In particular the
labels in the leaf nodes are indexed using an inverted list. Thus the index
consists of a unique, hybrid data structure

• Techniques are put in place to facilitate the early pruning of the irrelevant
branches during the traversal of the tree. In particular, for every label, the
identifiers of the trajectories containing such a label are explicitly stored
in the data structure, using a compressed representation. The ultimate
purpose is to support the concurrent processing of sequenced queries (as
opposed to the sequential processing)

• The construction of the index is driven by two criteria: spatial proximity
of line segments and textual homogeneity of labels. These criteria can be
blended together through the specification of a spatio-textual cost function.

The full data structure is kept on disk. Every node of the tree is stored in a
disk page of a system-defined size. Similarly, the inverted list is stored in a set of
contiguous pages.

The index data structure is detailed below while the construction of the index
and the search operation will be illustrated in the next sections.

The data structure. Figure 3.5 shows the IRWI-tree instantiated on the run-
ning example. The nodes have the following structure:

• The leaf nodes are vectors e =< e1, .., em > of leaf entries containing the
spatio-textual units. Each entry consists of the pair: ei=(uidi, uniti) where
uidi is the unit identifier, i.e., (tid, num), and uniti the spatio-textual unit,
i.e., (I, l, seg). The number of entries in a leaf node varies in the range
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Figure 3.5: The IRWI tree: every non-leaf node contains a pointer to an inverted
list reporting, for each label and sub-tree, the set of trajectories Ids and the
number of units containing the label in the leaf nodes of the sub-tree. The leaf
entries consist of the tuples: (tr, num, I, l, seg), indicating the unit identifier
(i.e., tr, num), the time interval, the label and the segment, respectively

[min1,max1], where min1, max1 are two system defined parameters with
min1 ∈ (0, max1/2].

• The internal nodes contain a summary of the spatio-textual units stored in
the descendant leaf nodes. In particular, a node n = (< k1, .., km >, ref ),
consists of a vector of non-leaf entries along with the pointer ref to an
inverted file for the labels of the units located in the leaf nodes descending
from n. Each label l is associated with a posting list, where every posting
specifies, besides a non-leaf entry, the set of trajectory identifiers and the
total number of units containing the label l in such a sub-tree. The set
of trajectory identifiers is especially critical to reduce the search space
during the processing of a query as shown next. One of the labels is the
system-defined symbol (’ ’) standing for ’any value’. The corresponding
posting list indicates for every entry the number of units in the leaf nodes.
The number of entries in a non leaf node varies in [min2,max2], where
min2, max2 are system defined with min2 ∈ (0, max2/2]

We note that the idea of augmenting the internal nodes of a particular tree
with entries that are themselves part of an index along a “other homogeneous
dimension” has been introduced in the so-called Range trees [6]. However, our
work differs in the sense that: (a) the spatial and temporal dimensions are indexed
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in a single structure based on R-tree; (b) the “other dimension” is textual and
thus not homogeneous with the R-tree, hence a different structure is used to index
the textual dimension.

Summarizing trajectory Ids. Trajectory identifiers play an important role.
Their handling, however, is not trivial. To illustrate, consider a query containing
n distinct labels l1, .., ln. Necessary condition for a trajectory to satisfy the query
is that it contains all of those labels. For every label li, we can retrieve the sets
of trajectories containing such label from the inverted file associated with the
root node. The trajectories satisfying the query are necessarily included in the
intersection of all those sets. Consequently, the entries that do not contain any
of the trajectories in the intersection set can be pruned at early stage and the
search space be reduced. The problem with this approach, that potentially can
be very effective, is that, with large datasets, the storage of trajectory identifiers
can span multiple disk pages. Fetching the posting lists thus becomes costly, and
that can compromise the effectiveness of the pruning strategy. To mitigate the
problem, the sets of trajectory Ids are recorded using a compressed representa-
tion. Specifically, the range of natural numbers encoding the trajectories Ids are
partitioned in a small number of intervals, each clustering a subset of trajectories
Ids. In this way, we can store the set of intervals in place of the full set of values
and keep the data on a single disk page. The intervals are encoded using the
variable byte encoding technique [39].

Algorithm 1 Ids summarization

1: Input: I =< I1, .., In >, λ, each Ii=[si, ei]
2: Output: set of intervals Ids
3: i← 0, gaps ← ∅
4: while i < n do
5: /* compute the gap between two consecutive intervals */
6: g ← si+1 − ei − 1
7: Insert(gaps, (i, g))
8: i← i+ 1
9: end while
10: /* compute λ -1 indices that have the largest gaps */
11: Indexlarggaps ←Max(gaps, λ− 1)
12: /* partition the input I based on the indices positions that have largest gaps*/
13: Ids← Partition(I, Indexlarggaps)

The operation takes as an input an ordered set of intervals partitioning a
range of values and returns a coarser partition consisting of λ intervals - with
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λ a system-defined parameter - that minimizes the total size of the intervals.
For example, given the set of intervals: {[2, 4 ][5, 7][20, 25][26, 27]} and λ = 2
the operation returns {[2, 7][20, 27]}. The interval summarization is performed
during the construction of the index based on the chosen value of λ.

Algorithm 1 details the operation of trajectory summarization. Given a se-
quence of n intervals and a summarization parameter λ, the summarization pro-
cess consists of the following steps: (1) for every two consecutive intervals, we
compute the gap. This results in a set of n−1 gaps; (2) among the n−1 gaps, we
find the indexes of the largest λ-1 gaps; (3) finally, we partition the input inter-
vals over the computed maximal gaps. The complexity of the Ids summarization
technique is linear with respect to the number n of intervals.

3.4 IRWI Construction

The building process of the IRWI index is similar to that of the R-tree but
with a different grouping strategy. The idea is to supplement the geometric
criterion, which drives the insertion of an object in a sub-tree of an R-tree, with
another criterion that tries to keep the units sharing the same label as close as
possible. The motivation is that the grouping of units containing the same label
(i.e., homogeneous) allows a reduction in the number of disk accesses required
to retrieve the units satisfying the textual conditions of the input query. The
two criteria, i.e., spatial and textual, can however conflict because homogeneous
labels can in reality be spread in space and time. An example can better illustrate
the problem.

Example 3.3. Figure 3.6 illustrates 4 spatio-textual units that are differently
grouped. The grouping in Figure 3.6 (a) is based on spatial proximity, that
is the units that are spatially close to each other are also grouped together.
The grouping in Figure 3.6 (b) is based on spatio-textual proximity, namely are
grouped together the units with homogeneous labels that are close to each other.
Now consider the following query that retrieves all of the individuals that pass
through (i.e., intersect) a region R by bike:

( , bike, R )

Depending on the grouping strategy, the number of I/O operations is different.
In the first case (Figure 3.6 (a)) for processing the query the disk is accessed 3
times (i.e., for accessing the root, and the nodes K1 and K2); in the other case
(Figure 3.6 (b)) the query only requires 2 accesses to disk (i.e., for accessing
the root and K2). Thus a trade-off between spatial and textual cost is needed
and that motivates the investigation of the problem of generating a hybrid cost
function.
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(a) Grouping based on spatial cost (b) Grouping based on spatio-textual
cost

Figure 3.6: Dataset of 4 spatio-textual units with two different grouping strate-
gies. R is a region of space

3.4.1 Spatio-Textual Cost Function

We begin describing the cost function for the insertion of a unit, next we generalize
the function to node splitting.

Cost function for the insertion of a unit. We define the normalized geo-
metric cost CG, the textual cost CT and finally the spatio-textual cost function
CST . Let e = (tid, num, I, l, seg) be the leaf entry to insert and n, k the current
internal node and the entry in such a node, respectively.

• The normalized geometric cost function CG(e, k) computes the cost of
adding the segment e.seg and the interval e.I of the input leaf entry to the
space-time minimum bounding box of the entry k. Such function is given
by the ratio of the region enlargement and the maximum enlargement that
can be achieved in the node, i.e.:

CG(e, k) =
(Area(k.mbb′)− Area(k.mbb))

MaxEnl(e, n)

MaxEnl(e,n) is the maximum enlargement that can result from the inser-
tion of e in one of the entries k1, .., kj of the current node; mbb and mbb’
are the current and the enlarged minimum bounding box, respectively. In
case there is no enlargement, the function returns 1. The cost varies in [0,1].
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• The textual cost function CT (e, k) is given by the percentage of units in the
subtree pointed by k which do not contain the label e.l, i.e.,

CT (e, k) = 1− count(k, e.l)

totalLabels(k)

with count(k, e.l) the number of occurrences of the label e.l in the subtree
pointed by k and totalLabels(k) the number of labels in the input entry k.
It can be noticed that the cost is 0 if the entry contains only units with a
label equal to e.l.

• Cost function. The spatio-textual cost function introduces the parameter
β to balance the contribution of the geometric and textual cost functions:

CST (e, k) = β × CG(e, k) + (1− β)× CT (e, k)

β ∈ (0, 1] is the weight of the spatio-temporal component. Note that with
β = 1, we obtain the cost function of R-tree.

Generalization of the text cost function for node splitting. If the
insertion of a unit exceeds the capacity of the leaf node, a new leaf node is
created and the leaf entries are split, while a new entry is added to the parent
tree. The operation of node splitting is analogous to the one defined in the R-tree
[32], except for the cost function. Thus, we limit the analysis to the text cost.
The node splitting technique is the quadratic splitting [32]. Therefore the process
consists of two steps: the ’pick seeds’ step determines the pair of entries that are
to be added for first in the two nodes. The best pair of seed entries are those
that, if inserted in the same node, would maximize the cost. In the second step,
the remaining entries are distributed in the two nodes. Let ei, ej be a candidate
pair of entries (where ei, ej can represent either leaf or non-leaf entries) and SLij
the set of shared labels in the two entries. The generalized text cost function
CT̂ (ei, ej) is defined as follow:

1− max
lk∈SLij

count(ei, lk) + count(ej, lk)

totalLabels(ei) + totalLabels(ej)

where the function totalLabels() returns the number of labels in the input entry
(1 if the input entry is a leaf entry). Note that if the two entries do not share
any label the cost is maximal (i.e., 1). It means that the labels in the respective
subtrees are completely diverse and thus it is not worth keeping them together.
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Algorithm 2 SelectLeaf

1: Input: the leaf entry e=(tid, num, I, l, seg)
2: Output: a pair of a leaf node N and the path from the root node to N
3: Nc ← root node, Path ←<>
4: while Nc is not a leaf node do
5: Push(Path,Nc)
6: /* returns the entry of Nc with minimum cost */
7: kmin ← min

ki∈Nc

CST (e, ki)

8: Nc ← kmin.ref
9: end while
10: return(Nc, Path)

3.4.2 Operations

In the following, we present the operations of insertion, removal and update of the
entry e=(tid, num, I, l, seg) into IRWI, and the corresponding time complexity.
We introduce the notations in Table 3.2. We note that the cost of the operations

Table 3.2: List of Notations

Notations Explanations
N Number of trajectory units
L Number of distinct labels
TI/O Time needed to read a disk page
k Maximum length of inverted lists,

min1 Minimum # entries in leaf node
min2 Minimum # entries in non-leaf node
max1 Maximum # entries in leaf node
max2 Minimum # entries in non-leaf node

is defined with respect to N and L whilst the other parameters are treated as
constants.

Insert. Algorithm 3 illustrates the operation that inserts a leaf entry. Similarly
to R-tree, the insertion starts by selecting the appropriate leaf node in which to
insert the new leaf entry. This step is performed by Algorithm 2: we first traverse
the IRWI tree from root to leaf nodes, selecting at each level the sub-tree that
yields the minimal cost. Next, we get the best leaf node along with its ancestors.
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The input entry is then inserted into the selected leaf node, Next the bounding
box, inverted file, and summarization of ids of every ancestor node are updated.

Algorithm 3 Insert

1: Input: the irwi index IRWI, the leaf entry e=(tid, num, I, l, seg)
2: (Nleaf , Path)← IRWI.SelectLeaf(e)
3: InsertEntry(Nleaf , e)
4: if Nleaf needs to be split then
5: {N1, N2} ← Split(Nleaf )
6: if Nleaf is root node then
7: /*Creates an empty internal node*/
8: R← InitializeNode()
9: /*Entry(N) returns a tuple of bounding box, inverted file and pointer

to N*/
10: InsertEntry(R,Entry(N1))
11: InsertEntry(R,Entry(N2))
12: else
13: Nleaf = N1

14: AdjustBoundingBox(Path)
15: AdjustInverIds(Path)
16: InsertEntry(Parent(Nleaf ), Entry(N2)) . If necessary, split

intermediate nodes, adjust bounding box, inverted file and Ids.
17: end if
18: else
19: AdjustBoundingBox(Path)
20: AdjustInverIds(Path)
21: end if

The time complexity of the operation varies across scenarios. We start by
computing the cost for a simple insertion that does not involve any node splitting
as a function of N and L. Later on, we discuss the worst case scenario where all
the ancestors of the selected leaf node overflow and therefore need to be split.

The cost of the simplest insertion is dominated by the selection of the appro-
priate leaf node, which entails: (1) reading every non-leaf node since the root of
the tree; (2) for every non-leaf node, read the inverted list of the input entry’s
label and compute the best entry. The total time of the second subroutine is

T1 = TI/O(1 + k) + Tc(max2)

where Tc is the cost of computing hybrid distance between one node entry and
the input entry. As the maximum height of the tree is given by logmin2

(N/min1),
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the highest cost of the insertion operation that does not involve any splitting of
a node is:

O(T1 ∗ logmin2
(N/min1)) = O(logN)

Consider now the situation requesting the splitting of some intermediate nodes.
The node splitting operation entails: (1) reading the full inverted lists in order
to compute the hybrid cost, the cost of this subroutine is linear to the number of
distinct labels O(L); (2) splitting the node with the quadratic technique, having
cost O(max22∗L) = O(L). Thus, the splitting cost of one node is O(L). However,
the worst insertion case occurs when the leaf node and all its ancestors need to
be split and the height of the tree is maximal. This results in logmin2

(N/min1)
splitting operations. Therefore, the worst case insertion cost is equal to O(L ∗
logN).

Delete. Similarly to the R-tree, the removal of a unit from the index starts by
retrieving the leaf node that contains this unit. Once the leaf node is found, the
corresponding entry is deleted and the appropriate inverted files and bounding
boxes are updated accordingly. If after the removal, there is an underflow of
the corresponding leaf node, the remaining entries of such node are reinserted in
the IRWI tree and the node itself is deleted. The worst deletion case is when
the whole tree needs to be scanned in order to find the unit to delete and the
remaining entries are reinserted with the worst insertion cost, yielding the worst
deletion cost O(N) + O(L ∗ logN).

Update. Updating a unit in the index requires two steps. First, the corre-
sponding entry from IRWI is removed, next the new unit is inserted. Thus, the
worst update cost is equal to O(N) + O(L ∗ logN).

3.5 Concurrent Query Processing

We now turn to consider how the IRWI data structure is accessed during the
processing of a sequenced query q = q1, .., qn. We remind that a sequenced query
retrieves the set of trajectories satisfying the simple queries in the appropriate
order. Formally, the result of a query is:

{tr|∃ t1 < .. < tn, tr(t1) ∈ Eval(q1) ∧ .. ∧ tr(tn) ∈ Eval(qn)}

where Eval(qi) yields the trajectories satisfying the single query qi = (Ii, Li, Ri).
The key feature of the query processing strategy is that the simple queries

are not evaluated sequentially, one after the other, but rather in parallel, at the
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same stage. As a result the tree is traversed only once. Moreover, the subtrees
that are not relevant for the query can be pruned at an earlier stage.

Algorithm 4 SequencedQueryProcessing (q)

1: Input: the query q = q1, .., qn with each qi a simple query
2: Output: res={tri}, set of trajectories that satisfy the query
3: ∀i ∈ [1, n] timeWindow[i]← ∅, ids[i] ← ∅, nodes[i] ← {RootNode}, entries[i]
← ∅

4: clevel ← 0
5: /* main cycle: for every non-leaf level...*/
6: while clevel < height of the tree do
7: /* step: select candidate entries */
8: for 1 ≤ i ≤ n do
9: entries [i] ← matchingEntries(nodes[i], qi)
10: timeWindow[i] ← minTimeInterval(entries [i])
11: Ids[i] ← set of trajectories Ids pointed by entries[i]
12: end for

/* step: sets refinement */
13: trim(timeWindow) . Refine the candidate time periods of each simple

query
14: sharedIds ←

⋂
1≤i≤n

Ids[i]

15: /* step: filter entries */
16: for 1 ≤ i ≤ n do
17: filterByTime(entries[i], TimeWindow[i])
18: filterByIds(entries[i], sharedIds)
19: nodes [i] ← getNodes(entries[i])
20: if (nodes [i] is empty ) then
21: return
22: end if
23: end for
24: clevel ← clevel + 1
25: end while
26: /* grouping of units by trajectory and qi, */
27: trunits[i] ← groupByTraj(nodes[i], qi), ∀i ∈ [1, n],
28: res ← checkOrdering(Trunits)

The main steps of the process are as follows. The algorithm traverses the
tree starting from the root node. At each level of the tree, the candidate entries
for every simple query qi are first determined. A candidate entry k is an entry
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which satisfies qi = (Ii, Li, Ri), namely: the space-time box defined by Ri and
Ii overlaps k.mbb; and the set of labels contained in the descendant leaf nodes
intersects Li. Next the algorithm filters out those candidate entries that cannot
contain trajectories satisfying all of the simple queries. The nodes referenced by
the remaining entries are those traversed in the next step. Hence, the algorithm
proceeds iteratively evaluating the query q at every non-leaf level of the tree.
As the leaf nodes are reached, the candidate units satisfying qi are grouped by
trajectory id. The resulting trajectories are filtered out to extract only those
satisfying the query q in the correct order.

3.5.1 The Algorithm in Detail

The process is detailed in Algorithm 4. The array nodes stores for each qi the
candidate nodes in the current level (variable clevel), namely the nodes that
might point to units satisfying q1, .., qn. The candidate nodes are specific for each
level of the tree. This array is initialized with the singleton containing the root
node. At line 7, the algorithm starts scanning the tree, level by level, evaluating
all of the simple queries in parallel. The progressive refinement of the search
space is achieved in four main steps as follows.

• The first step is to compute the candidate entries. For each query qi =
(Ii, Li, Ri), matchingEntries accesses the inverted list associated with the
labels in Li to find the entries pointing to the trajectory units containing
such labels. Next, the subset of entries whose mbb does not overlap the
bounding box formed by (Ii, Ri) are filtered out. The remaining entries
are recorded in the variable entries[i]. For each of the sets entries[i],.., en-
tries[n], the algorithm determines the minimum time interval, that is the
time window containing all the units satisfying query qi (variable timeWin-
dow[i]). Moreover the sets of trajectories identifiers pointed by the entries
in entries[i] are retrieved from the inverted list and their union set stored
in the variable Ids[i]. Ids[i] identifies thus a superset of the trajectories
satisfying query qi.

• In the second step, the time windows and the superset of trajectories are
refined to account for the fact that the simple queries are all to be satisfied
in the right order. As concerns the time ordering, assume that at the current
level, the query q1 can be solved in the interval [s1,e1] starting at time s1 and
ending at time e1, while the query q2 in the interval [s2,e2]. If q1 precedes q2
in the ordering and s2 < s1, the candidate units of q2 falling in the interval
[s2,s1] cannot be part of the final result. The algorithm thus checks whether
consecutive time windows, i.e., timeWindow[i] and timeWindow[i+1], are



48 Chapter 3

sound with respect to the temporal ordering. Moreover, if that is possible,
the time windows are contracted. In the example the interval [s1,e1] is
trimmed to [s1,min(e1,e2)] and [s2,e2] to [max(s1,s2),e2].

On the other side, the refined superset of trajectories containing units sat-
isfying every simple query results from the intersection of Ids[1],...,Ids[n].
This operation can drastically reduce the number of candidate entries.

• In the third step the non-relevant entries are filtered out. For each set in
{entries[i]}i∈[1,n] the algorithm detects and prunes those entries of the set
that either do not intersect the corresponding time window, or do not point
to any trajectory belonging to the intersection

⋂
i∈[1,n]Ids[i].

Finally, as the leaf nodes of the tree are reached, the trajectory identifiers and
the units satisfying every query qi are returned. A final check is thus performed
to extract the trajectories which contain properly ordered units.

Figure 3.7: Spatial projection of bounding boxes of the IRWI entries represented
in figure 3.5. R1, R2 are two spatial regions

3.5.2 The IRWI Index at Work

We continue using the running example in Figure 3.3 to illustrate the process
step-by-step. The generated IRWI index is represented in Figure 3.5 and the
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spatial projection of the appropriate bounding boxes is represented in Figure 3.7.
We recall the query:

q1 = ([7 : 00 8 : 00]{walk}R1) q2 = ([9 : 00 10 : 00]{bus, train,metro}R2)

Notation: a candidate entry for the two queries is represented by tuple (entry,
int, trs) where entry is the entry id, int the time interval of the entry, and trs
the set of trajectories containing the labels associated with the entry. Initially,
the candidate entries for the two queries q1, q2 are:

Eq1={(Root,IRoot,{1,2,3,4})}
Eq2={(Root,IRoot,{1,2,3,4})}

The steps of the different levels are described next:

• Level 0. The entry k2 of the root node contains units labelled ’walk’.
Moreover its spatial minimum bounding box overlaps R1. The entry k1
contains units labelled ’metro’( a public transport) and the spatial bounding
box overlaps R2

Eq1={(k2,Ik2 ,{1,2,4})}
Eq2={(k1,Ik1 ,{1,3,4})}

Note that {1, 2, 4}∩{1, 3, 4} 6= ∅ which means that the child nodes pointed
by k2 and k1 are the candidate nodes in the next step.

• Level 1. The entries k5 and k6 in the node pointed by k2 contain units
labelled ’walk’, moreover in both cases the spatial bounding boxes intersect
R1. The entry k3 in the node pointed by k1 contains units labelled ’metro’
and its spatial bounding box intersects R2. The candidate entries at this
level are:

Eq1={(k5,Ik5 ,{1,2}),(k6,Ik6 ,{4})}
Eq2={(k3,Ik3 ,{1})}

Note that now we have {1, 2} ∩ {1} 6= ∅, {4} ∩ {1} = ∅. The entry k6
is thus filtered out, while only the child nodes pointed by k5 and k3 are
candidates nodes for the next step:

Eq1={(k5,Ik5 ,{1,2})}
Eq2={(k3,Ik3 ,{1})}

• Level 2: leaf level. Filtering the leaves we obtain only two units satisfying
the query: unit 1 of trajectory 1 pointed by k5 satisfying q1, unit 3 of
trajectory 1 pointed by k3 satisfying q2. The result is as follows:
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Trq1={(1,{u1})}
Trq2={(1,{u3})}

Units are grouped by trajectories and the temporal ordering is checked.
Since u3 occurs before u1 the trajectory 1 satisfies the pattern. The resulting
set of trajectories identifiers is thus {1}

3.6 Experimental Evaluation

In this section we contrast our system with two indexing techniques, both relying
on R-tree or variants, and close to IRWI. The first technique is based on IR-
tree [38]. The second technique is IF-R* [69]. Indeed, both these techniques
are proposed for the indexing of static spatio-textual data (not for trajectories),
so we have implemented the techniques with a 3-dimensional R-tree to include
the temporal dimension. For the experiments we use three datasets presenting
different features in terms of size, number of labels, distribution of labels. One
of the datasets is the GeoLife subset. The other two datasets contain synthetic
trajectories generated by the BerlinMod generator [23]. Two synthetic datasets
are used called Syn10000 and Syn75000, respectively. The experimental setting
is detailed in the following.

Software and hardware environment. IRWI is implemented using the Sec-
ondo environment [28](i.e., an extensible database providing a rich set of data
structures and operations in the form of algebras). The experiments have been
carried out on a PC equipped with Intel i7-3632QM, 2.20GHz processor with 8
GBytes of main memory, disk page size 4 KB, running Ubuntu 14.04.

3.6.1 Datasets

The GeoLife dataset contains a small set of long trajectories and very few
labels indicating the transportation means. Syn10000 and Syn75000 are of
different size, both use a few thousands of labels indicating street names, but the
average number of labels per trajectory unit is significantly higher in Syn75000.
The features of the datasets are reported in Table 3.3. In all the three cases,
the spatio-textual trajectories are built on distinct sets of spatial and textual
trajectories. In GeoLife the trajectories are in raw format, i.e., sequence of
points and annotated intervals respectively. In Syn10000 and Syn75000 the
trajectories are represented in terms of moving points (spatial trajectories) and
symbolic trajectories [31], respectively.
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Table 3.3: The three datasets used for the experiments

Dataset #Trajectories #Units #Unique labels
Geolife 4484 4813552 11

Syn10000 10000 3828228 1896
Syn75000 75000 28749582 2288

3.6.2 Impact of System Defined Parameters

Figure 3.8: Impact of β and λ on CPU time (blue) and I/O(red)

Recall that we have two system defined parameters: β and α. We now start
with considering the impact of the former one. We recall that β is the weight of
the spatial component (vs. the textual component) in the cost function, ranging
in the interval (0,1]. For the study, we create an IRWI -tree for each value of β
ranging from 0.1 to 1. Next, for each instance of the tree we run 5 queries and
take the average values of the measurements. The queries have length 1 and level
of selectivity ≈ 0.1%. The two datasets Geolife and Syn10000 are used for this
experiment. The results are reported in Figure 3.8. It can be seen that the search
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is more efficient than in pure R-tree (β = 1). Consider that this result is obtained
with query of length 1. Thus the gain gets more evident with longer queries. We
can also see that whenever the labels are spread in space, as in Geolife, the
performance is not significantly affected by values of β < 1. That means that
the gain obtained from the grouping of homogeneous units is lost because the
regions containing those labels get much larger. Let us turn to the λ parameter.
As reported in Figure 3.8, the summarization of the trajectories identifiers has a
significant impact. In fact the highest CPU time and I/O is obtained with λ = 1
(i.e., there is only one group defined by the minimum and maximum trajectory
identifier). With these datasets, reasonable values for λ range between 20 and
40.

3.6.3 Comparison with IR-tree and IF-R*

The IR-tree and IF-R* indexing techniques. The data structure based
on IR-tree is similar to the one we use. In particular, every node of the R-
tree is augmented with an inverted list containing the keywords of the objects
indexed in the corresponding subtree [17]1. It should be noted, however, that this
technique does not provide any hybrid cost function, neither does it support the
summarization of trajectory Ids. Therefore, although the sequenced queries are
processed concurrently, the early pruning of trajectories cannot be performed.
The second index is the IF-R* index. The index data structure consists of an
inverted file associating each label of the domain of concern with an R*-tree [69].
Thus the query evaluation starts from the textual condition and only if that is
satisfied the spatio-temporal condition is evaluated. We use the index for the
sequential evaluation of every simple query of the input sequenced query. If such
query contains n distinct labels, n R*-trees are accessed. The indexing techniques
are implemented using the Secondo environment.

Performance metrics. Two metrics are used for the evaluation of the query
processing efficiency: CPU time and I/O as number of disk accesses. The number
of disk accesses is estimated using a counter that is incremented by one every time
a node of the index is retrieved, and by the number of uploaded disk pages, every
time the posting list associated with a label is read from the inverted file.

Queries creation of length m and selectivity s. We generate a set of queries
of length m and selectivity s. The process consists of 5 steps. First, we select
a set of trajectories randomly from the dataset. The number of trajectories is

1The leaf nodes in our IR-tree implementation do not include pointers to inverted lists,
moreover terms are not assigned a weight, as in [17]
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related to the required query selectivity s. Second, we split every trajectory tr
into m sub-trajectories of equal length. Third, we create m sets of trajectory
units where every set i contains a random unit from the sub-trajectory i of every
trajectory tr. Fourth, we generate a simple query from each set of units, such
that the temporal range of the query is the union of temporal ranges of the units
within the set, and the spatial range is the union of spatial ranges. For the label
condition, we randomly choose a number of labels from the units of this set.
Fifth, if the temporal and spatial ranges are found to be large, they are split.
Finally, after running the queries, we discard those whose selectivity value is very
far from the targeted value s.

Query processing efficiency. We create three instances for each index (IRWI,
IR-tree and IF-R*), one for each of the datasets. The parameters of the IRWI -
tree are set to β = 0.9 and λ = 25. Queries are chosen of selectivity (0.1%).
The query length ranges from 1 to 6. For every length query, we create a set
of 5 queries. Queries are chosen so as to contain from 1 to 10 labels, and both
small and big regions. We run the queries and report the average CPU time and
I/O in the graphs of Figure 3.9. It can be seen that in all of the cases the CPU

Figure 3.9: Comparing the three indexing techniques: CPU time and I/O op-
erations with sequenced queries of different length (x-axis) ranging from 1 to
6

time and the number of I/O operations increase with the length of the sequenced
query. For short sequenced queries, containing up to 2 simple queries, IF-R*
and IRWI present similar results. Intuitively, short queries contain few labels,
thus the selectivity of the whole query is generally close to that of the single
sub-queries. However, as the length of the queries increases, we can observe
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that IRWI outperforms both IF-R* and IR-tree. Notably, for 6-length queries,
the CPU time consumed by the IRWI with the Geolife dataset is 50% the time
consumed by IF-R* and 33% the time consumed by IR-tree, while, with synthetic
data, the CPU time is 35% the time consumed by IF-R* and 20% that of IR-
tree. We can also observe that the use of the hybrid cost function along with the
summarized representation of the trajectories Ids leads to a significant reduction
in the number of I/O operations. That is especially evident whenever queries
contain selective labels, as in the case of the synthetic data.

Index construction time cost and storage overhead. Table 3.4 reports
the index construction time cost and storage overhead for the different solutions.
Not suprisingly, IRWI presents the highest time cost. That is essentially due to
the introduction of the spatio-textual cost function. We recall that such a function
is computed everytime a new unit (i.e., segment) is to be inserted. In terms of

Table 3.4: Index construction time cost (in hours) and storage overhead (MB)

Geolife Syn10000 Syn75000
size time size time size time

IF-R* 694 3.8 528 0.6 3700 8.7
IR-tree 851 2.5 660 2.1 4500 16.9
IRWI 850 6.1 570 2.7 4000 24.4

storage overhead, IRWI requires more space than IF-R* (from 10% to 25%). This
additional space is used by IRWI to maintain for every label in the internal nodes
the summarized representation of the sets of trajectories containing such a label.

3.7 Summary

The main contribution of the thesis is the IRWI indexing framework. IRWI
supports a novel type of queries, called sequenced queries, defined over spatio-
textual trajectories. IRWI consists of a hybrid, spatial and textual, index data
structure, enriched with a number of features that facilitate the early pruning
of trajectories during the concurrent evaluation of the sub-queries q1, .., qn. As a
result, the IRWI tree can be traversed only once. The experiments, conducted
on both synthetic and real datasets, show a gain in performance with respect
to state-of-the art techniques that increases significantly with the length of the
query sequence. This gain is paid, however, in terms of time complexity of the
index creation. Increasing the efficiency of this operation is a major goal of future
research.
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A Clustering Technique for
Spatial Trajectories Annotation

4.1 Overview

This chapter is about the extraction of textual annotations from spatial trajecto-
ries. Spatial trajectories contain valuable knowledge on the mobility behavior of
individuals. If such a knowledge can be extracted and expressed in textual form,
e.g., through a label, then it can be compactly represented through a spatio-
textual trajectory. This would close the loop.

Textual annotations can be generated in different ways, for example they can
be manually added to sub-trajectories, or acquired from some external source
or associated with mobility patterns automatically extracted from the spatial
trajectories. The work presented in this chapter fits into the last case. Specifically
the problem to solve is to detect the stay regions of a moving object, where a
stay region does not necessarily designate a precise geographical entity, such as
a point of interest or a forest, but where an object is significantly present for
a period of time, in spite of periods of absence. The problem cannot be solved
using existing techniques for the detection of stop-and-move patterns. A novel
clustering algorithm called SeqScan is thus proposed. For validating SeqScan on
a real problem, the technique has been applied to the study of the migratory
behavior of wild animals in collaboration with a group of biologists.

The rest of the chapter is organized as follows: Section 4.2 presents the mo-
tivations; Section 4.3 the Stay Region model and the SeqScan algorithm; Section
4.4 illustrates the validation efforts conducted in the field of animal ecology.
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4.2 Motivations

4.2.1 Case Study and Requirements

A popular pattern of individual mobility is the stop-and-move pattern. This
pattern describes the movement as a sequence of transitions from one stop to
another, where a stop indicates a temporary suspension of the movement at the
chosen level of abstraction. A stop implies that some important activity may have
been carried out by the moving object at some location for some time. Examples
of these activities include stopping for lunch in a restaurant during a trip, animal
foraging and mating.

Discovering stops in spatial trajectories is a complex task. The main complex-
ity comes from the diversity of stop definitions, which are application dependent
and may exhibit diverse spatial, shape, size and temporal characteristics. For
example, a stop may consist of a large number of points scattered around a POI
for a small time period (circular shape) like in a touristic trip, or, differently, the
stop may consist of points scattered in an arbitrarily wide area for large periods
of time as in the case study illustrated next.

The case study in animal ecology. The case study regards the analysis
of the movement of a number of roe deer equipped with a low-sampling-rate
GPS collar and tracked for a period covering a few seasons. The overall goal
is to extract the migratory behavior of the individuals. Actually, the animals
of this species can either migrate or be stationary, a behavior known as partial
migration [14]. Moreover, whenever an animal migrates, the migration takes
place with modalities and times that - although respecting certain general
patterns, e.g., seasonality - can vary from animal to animal. This means that
every animal has its own migration behavior. At very coarse level, the behavior
can be seen as a stop-and-move pattern [52], i.e., the animal stays in a region
for some time and then moves to some other region. In reality the behavior
is more complex. The animals spend most of their time inside a home-range.
The concept of home-range is key in animal ecology. A popular definition of
home-range is that of “area traversed by the individual in its normal activities of
food gathering, mating and caring for young” [10]. Occasionally the animals can
make excursions outside the home-range and possibly stay for short periods in
a different area before returning to the home-range. A migration is a transition
from one home-range to another home-range. During the migration the animal
can stop in small areas for a short time (stopover). An example of migration
pattern, which combines all these concepts, is reported in Figure 4.1. The
migration behavior does not necessarily have a periodicity (e.g., animals may
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Figure 4.1: Example of animal migration pattern.

not migrate every year). Moreover the temporal and spatial extent of the
regions in which the animals stay, as well as the duration of the moves can vary
significantly [12]. In addition the location sampling frequency is low - a point
every 4 hours or more - therefore movement attributes such as speed, velocity,
heading are definitely inaccurate and cannot be used to discriminate whether
the animal is stationary or migrates.

Requirements. Abstracting away from the case study, the problem can
be framed as follows, i.e., to extract the sub-trajectories representing stops under
the following assumptions: (i) A stop is a region dense of points. Moreover, the
number of stops in a trajectory is not known. (ii) A stop can have an arbitrary
spatial shape and temporal extent. (iii) The moving object can experience
periods of absence from the stop region. (iv) The stops are to be temporally
disjoint, i.e., the temporal extent of a stop does not overlap with the temporal
extent of another stop. (v) Mobility attributes, such as speed, velocity, heading,
are not reliable. (vi) There can be an arbitrary number of points in the trajectory
that do not fall in any stop.

4.2.2 State-of-the art Techniques

A popular technique for the detection of stops is presented by Zheng et al. [65].
The approach is centered on the notion of stay point defined as a set of consecutive
GPS points of the trajectory, close to each other (based on distance threshold) and
in which the user stays for a minimum time (duration threshold). The temporal
scale is a large scale (e.g., the stay lasts minutes, hours), moreover the semantics
of the stay points is given by the geographical context. This solution does not
fit well in scenarios in which the moving object can stay in a region for months
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or years, and exhibit a complex behavior, such as moving back and forth from a
region whose spatial and temporal boundaries are uncertain. Other techniques
exist, however all of them rely on restrictive assumptions. For example in [4],
stops are associated with the sub-trajectories where either there is absence of
signal or the velocity is zero for a given temporal interval (e.g., the car is parked).
In CB-SMoT [44] the stops are those sub-trajectories in which the speed is lower
than the average speed along the trajectory. Another criterion used in DB-SMoT
is the change of direction [48], specifically the angular value of the change in
direction must be greater than a given threshold. If movement attributes are
unreliable, all these techniques are useless.

A different paradigm is trajectory segmentation [9, 60, 1, 64, 2]. Trajectory
segmentation is extensively applied to extract stop-and-move patterns such as
in [1, 60]. The idea of segmentation is to partition the trajectory in segments of
maximal length inside which the movement characteristics are monotone, i.e., the
same characteristics hold in every subsegment of the segment [9]. Monotone char-
acteristics include speed, velocity, heading, curvature, distance. One could define,
for example, a stop as a segment in which the object’s speed is below a threshold
value. An extension of the study to segmentation based on non-monotone criteria
has been recently presented [3]. Unfortunately, all these methods are sensible to
noise, namely are not able to discriminate whether a point belongs to a segment
or is an outlier, unless using trivial heuristics, such as bounding the number of
noise points.

In this work, we present a novel approach to the stop discovery problem
that combines the effectiveness of density-based clustering with the partitioning
capability of trajectory segmentation without introducing any supplementary as-
sumption on movement characteristics. The key idea is to only use density and
presence as non-monotone criteria for the partitioning of a trajectory in a set of
sub-trajectories of maximal length and temporally non-overlapping.

4.3 The Stay Region Model and the SeqScan

Algorithm

We propose an approach grounded on the novel concept of stay region. In the
next we elaborate on the stay region model and present the clustering technique
for the discovery of stay regions.
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4.3.1 Stay Region: a Conceptual View

A stay region denotes a stop where the moving object spends significant time.
The time spent in the stop region can be arbitrarily long (compatible with the
duration of the trajectory). In addition, a stay region does not designate a precise
geographical entity (e.g., forest, city), rather, the region has fuzzy spatial and
temporal boundaries. While residing in a stay region, the object can temporarily
leave this region to perform excursions. In addition, objects can move from one
stay region to another stay region. The number of moves/stay regions/excursions
is not known. The intuition is that the object leaves a stay region for another
stay region when the new region becomes ’more attractive’ than the previous
one. The concept of stay region is built on that of density-based cluster [24],
from which it differs, however, in many aspects especially related to the use of
time. For this reason, before presenting the stay region model, we review the
fundamental concepts of DBSCAN.

4.3.2 Background: the DBSCAN Cluster Model

DBSCAN (density-based spatial clustering of applications with noise) is a clus-
tering algorithm defined by Ester et al. in [24] that can detect clusters of arbi-
trary shape in presence of noise. Given a set of points in a d-dimensional data
space, DBSCAN groups the points that are closely packed together (points with
many near neighbors), marking as noise the points that lie in low-density regions
(whose nearest neighbors are too far away). More formally, consider a database
P of points in space and the input parameters ε ∈ R (i.e., the distance threshold),
and K ∈ N (i.e., the minimum number of points that a cluster contains). Let d()
be a metric distance function in the reference space, e.g., the Euclidean distance.
The fundamental concepts of the DBSCAN cluster model are as follows [24]:

(i) The ε-neighborhood of p ∈ P , denoted Nε(p), is the subset of points that
are ’close’ to p, i.e., Nε(p) = {pi ∈ P, d(p, pi) ≤ ε}.

(ii) Point p is a core point if its ε-neighborhood contains at least K points, i.e.,
|Nε(p)| ≥ K.

(iii) A point that is not a core point but belongs to the neighborhood of a core
point is a border point

(iv) Noise point is a point that is neither core nor border point

(v) Point p is directly density-reachable from q if q is a core point and p ∈ Nε(q)
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(vi) Two points p and q are density reachable if there is a chain of points p1, .., pn,
p1 = p, pn = q such that pi+1 is directly reachable from pi

(vii) Points p and q are density connected if there exists a core point o such that
both p and q are density-reachable from o

Figure 4.2: DBSCAN cluster over a set of 10 point with parameter K=4. The red
and blue colors indicate the core and the border points, respectively, the black
color the noise points

A cluster is finally defined as a maximal set of density-connected points, where
maximal means that every point p that is reachable from a core point q belongs
to the cluster containing q. For example Figure 4.2 shows a cluster within a set
of 10 points ( K= 4. Point A and the other red points are core points, because
their ε-neighborhood contain at least 4 points). Because they are all reachable
from each other, they form a single cluster. Point B is not a core point, but is
reachable from A (via other core points) and thus belongs to the cluster as well.
Point C is a noise point being neither a core point nor density-reachable.
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4.3.3 The Stay Region Model and Problem Formulation

We now introduce the stay region model in more formal terms. We begin by
introducing some basic notation and assumptions.

A trajectory T is a sequence of spatio-temporal points T = [p1, .., pn] with
pi = (li, ti) where li, ti is the sampled location in space and time respectively with
ti < ti+1 and n the length of the trajectory. The trajectory has a begin point
pstart, an end point pend, a temporal extent ext = [tstart, tend], and a duration
dur = |tstart − tend|. The duration is measured in, e.g., days or in some other
unit. No assumption is made on the sampling rate. However the distance in
space covered by the object in the time interval [ti, ti+1] is normally limited (in
relation to the mobility pattern under consideration).

A sub-trajectory S = [p1i , .., p
m
j ] ⊆ T of length m is a sequence of temporally

ordered points of T with index 1, ..,m. A sub-trajectory may contain gaps. A gap
is the open interval (ti, tj) indicating a ’hole’ in the sequence, i.e., two points that
are consecutive in S are not consecutive in T , i.e., pxi , p

x+1
j ∈ S → j 6= i+ 1. For

example, given T = [p1, .., p9] the sub-trajectory [p3, p5, p8] contains two gaps,
(t3, t5) and (t5, t8), respectively. The temporal extent of the sub-trajectory is
[t3, t8]. Next, we introduce the notions of dense region, presence and stay region.

Figure 4.3: Spatio-temporal representation of the example trajectory. The points
are projected on space. A subset of points forms a dense region with respect to
ε,K = 4. Red points are core points while blue points are border points

Definition 4.1 (Dense region). A dense region S ⊆ T is a sub-trajectory S =
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[q1, .., qm] such that the set of locations [l1, .., lm] is a DBSCAN cluster with respect
to ε and K. The points that do not belong to any dense region in T are qualified
as noise. �

Example 4.1. Consider the trajectory T = [p1, .., p9] illustrated in the space-time
cube of Figure 4.3. The points projected on the plane are numbered following
the temporal order. For the sake of readability, the pairs of points that are at
distance less or equal ε are connected by a line. The value of K is set to 3. It
can be noticed that the sequence S = [p1, p4, p6, p7, p8, p9] is a dense region.The
points p4, p6, p7, p8 are core points while p1, p9 are border points. The region S
contains two gaps, represented by the open intervals (t1, t4) and (t4, t6).

A dense region may contain gaps, where a gap indicates a period of absence
from the region. We call Time Segment of a dense region the set of periods in
which the object is present in such a region. A graphical representation of the
Time Segment associated with the dense region in Example 4.1 is shown in Figure
4.4. This Time Segment consists of two instants and one period (the instant is a
degenerated period where the two extremes coincide), i.e., [t1, t1]∪ [t4, t4]∪ [t6, t9].

Figure 4.4: The Time Segment of the dense region in Example 4.1. The dotted
lines indicate gaps. The circles correspond to instants.

We now introduce the notion of presence in an incremental fashion. Let us
start considering the case in which pi, pi+1 ∈ T are two consecutive points both
included in the dense region S. A sensible question is whether the intermediate
points falling in the interval [ti, ti+1] belong to S or not. We know that the
position is uncertain. Yet, we have assumed that the object’s move between two
subsequent samples is relatively limited in space. This legitimates the assumption
that if pi, pi+1 ∈ S also the points in the interval I = [ti, ti+1] are contained in
S. Therefore the presence in I is computed as duration of I. Consider now the
case in which only one of the points is in S, namely the object moves somewhere
outside the area. In this case, it is plausible that the object is outside the dense
region for most of the time. In this case, the presence in I is set to 0. By
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extension, we define the presence in S as the sum of the presence in each segment
of S. A formal definition is given below:

Definition 4.2 (Presence). Let S = [q1., .., qm] be a dense region in T =
{p1, .., pn}. Denote with S[i, i+ 1] two consecutive points in S. We define:

• The presence in S[i, i+ 1]:

P (S[i, i+ 1], T ) =

{
|th − th+1|, if ∃h, qi = ph, q

i+1 = ph+1

0, otherwise

• The presence in the dense region S:

P (S, T ) =
∑

i∈[1,n−1]

P (S[i, i+ 1], T )

• We say that the presence in S is persistent with respect to δ ≥ 0 ( presence
threshold) if it holds: P (S, T ) ≥ δ �

The presence can be easily computed from the Time Segment. For example,
given the Time Segment in Figure 4.4 the presence in the dense region is |t9− t6|.
Based on these definitions, we introduce the key notion of stay region and next
the problem to address.

Definition 4.3 (Stay region). A stay region S in the trajectory T is a sub-
trajectory of T such that: (i) S is a dense region with respect to ε and K. (ii)The
object’s presence in S is persistent with respect to δ.

Finally the problem to address can be formulated as follows:

Problem formulation. To extract from a trajectory T the sequence of
stay regions with respect to the three parameters: ε,K, δ such that:

(i) The stay regions are temporally disjoint, i.e., a point in a stay region
cannot fall in the temporal extent of another stay region.

(ii) The stay regions are of maximal length, that is if a point can be added
to region S, then it belongs to S. The points that do not fall in any stay
region are noise.

The result is a set of stay regions and noise points. Every stay region S
contains a first (in time) minimal stay region denoted Ŝ called core stay region.
This concept will be used later on. Moreover noise can be further categorized in
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transitions and excursions. The points temporally falling between the end of one
stay region Si and the beginning of the next one Si+1 are transitions (denoted
Si → Si+1). The noise points falling in the temporal extent of a stay region
Si are the excursions. Stay regions and transitions determine a partition of the
temporal extent of T . As an example, Figure 4.5 shows a trajectory containing
two stay regions, along with the respective transitions and excursions.

Figure 4.5: Sequence of two stay regions S1 and S2 in the trajectory 1, .., 17 with
respect to k = 3, ε, δ = 0. The sets Ŝ1 =[1,3] and Ŝ2= [12,14] are the core stay
regions of S1 and S2 respectively. Core points are presented in red, the border
points in blue, excursions and transitions in green and yellow respectively.

4.3.4 Extracting Stay Regions: the SeqScan Algorithm

To deal with the above problem, one could be attempted to run the DBSCAN
algorithm [24] over the set of points (projected over space) to find the set of
dense regions and then determine those in which the presence is persistent. The
drawback is that the resulting sub-trajectories are not temporally disjoint. Thus
the solution does not work. A different approach is to scan sequentially the
trajectory and progressively aggregate the points creating one stay region at a
time. In this case, the question is how to recognize the end of a stay region.
We recall, in fact, that no supplementary movement characteristic can indicate
whether the object is inside or outside a stay region. To deal with this problem,
we propose the following approach: (i) a stay region is seen as an attraction area,
i.e., an area when the object returns after periods of absence. (ii) A stay region
remains attractive for the object until a new stay region is found. This means
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Figure 4.6: Cluster lifecycle

that the boundaries of a stay region are only known when the next stay region
is detected (or the trajectory terminates). In the next, we refer to a stay region
’in progress’ with the term of cluster (not to be confused with the DBSCAN
cluster). Clusters are dynamic entities with a life cycle. As illustrated in the
state diagram in Figure 4.6 a cluster originates from a dense region when the
object’s presence gets persistent, then the cluster is expanded with new points,
and finally it is closed. The event that indicates the termination of the cluster
expansion is the starting of a new and more recent cluster. At any instant, there
is thus at most one active cluster and possibly one or more closed clusters. The
algorithm is described in the next.

Algorithm. We start by describing the main operations, next we refine the
implementation aspects. Every cluster is created and next expanded until it is
closed. The period in between the activation of one cluster, say C, and the acti-
vation of the subsequent cluster is called time context of C. The notion of time
context is introduced to restrict the portion of the input trajectory contributing
to the generation of the cluster, namely only the points temporally contained in
the time context, can be added to the active cluster. This is to ensure that stay
regions are temporally disjoint. The time context for the active cluster starts
when the previous cluster is closed (or at the beginning of the trajectory) and is
updated every time a new point is read. Prior to detailing the Algorithm 5, we
introduce two basic functions:
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findCluster(S): the function returns the first cluster in the input trajectory S
(i.e., the first in time order). If none is found, the function returns the
empty-set.

expand(activeCluster, timeContext, q): the function attempts to add the point
q to the active cluster, given the time context. If successful, it returns True,
False otherwise.

Initially the function findCluster() is repeatedly called over sub-sequences of in-
cremental length, e.g., T [1, i], T [1, i+ i].. until a cluster is possibly found at time
tc. Such a cluster, say C, thus becomes active. The cluster has a start point
and an end point. The time context of the cluster is initialized to [t1, tc]. During
the phase of cluster expansion, the algorithm continues scanning the trajectory
until a new cluster is found or the trajectory is terminated. At each step, the
algorithm tries to append the current point pc to the active cluster through the
expand() function. There are two cases: (i) If the point can be added, the active
cluster C grows. The end time of the cluster is the timestamp of the current
point. The scan proceeds. (ii) If the point cannot be added to the active cluster,
the algorithm determines whether a cluster exists in the sub-sequence starting
immediately after the end of the active cluster and the time of current point, i.e.,
[tend+1, tc]. If it is so, such cluster becomes the active one while C is added to
the sequence of closed clusters. The points falling in the time context but not
belonging to the closed cluster are added to noise. Finally the time context is
set to [tend+1, tc]. This guarantees that the cluster is temporally disjoint from the
previous one. The cycle thus repeats with the expansion of the new active cluster.
The final set of close clusters are the stay regions being discovered consisting of
a temporal ordered sequence of sub-trajectories.

Algorithmic Details. We have seen that the resulting stay regions are tempo-
rally disjoint. Now we focus on the computation of the single clusters. A straight-
forward implementation of the function findCluster(S) is to run the DBSCAN
algorithm over the set of points in S and then check whether the presence in
any of the dense regions obtained in this way is persistent. The shortcoming of
this approach is that, every time the function is called with an input trajectory
that differs of one or few elements from the trajectory of the previous call, the
dense regions have to be re-computed again. An alternative approach is to record
the status of the dense regions that are progressively found and update such a
status when a new point is added. The approach is described in what follows.
Preliminarily, points and dense regions representations are described.

• Points. When the point pi = (xi, yi, ti) ∈ T is read, the point is assigned
index i, an identifier and a descriptor. The identifier is a pointer to the
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Algorithm 5 Stay Regions Discovery: SeqScan

procedure SeqScan(
In: T = [p1, .., pn], ε,K, δ;
Out: stayRegions, noise)

c← 1 . Index scan
start← 1, end← 0
activeCluster← ∅
stayRegions← {∅}
while c ≤ n do

timeContext← [tstart, tc]
if expand(activeCluster, timeContext, pc) then

end← c
else

nextCluster← findCluster(T [tend+1, tc])
if nextCluster 6= ∅ then

stayRegions← add(activeCluster)
noise← add(T [tstart, tend] \ activeCluster)
start← end+1, end← c
activeCluster← nextCluster

end if
end if
c← c+1

end while
end procedure

actual coordinates. The descriptor is the pair: Desc(pi) = (Neighbours,R)
where Neighbours is the set of points (identifiers) in the ε-neigborhood of
pi and R the possibly empty pointer to the descriptor of the dense region
the points belongs to.

• Dense Regions. Every time a dense region is created it is assigned the
descriptor (Id, Ts) where Id is the dense region identifier (e.g., progres-
sive number) and Ts the Time Segment, defined in the next. The points
belonging to the dense region j are thus the set: {pi|Desc(pi).R.Id = j}.

We say that a point p: (i) is a core point if it belongs to a dense re-
gions, i.e., Desc(p).R 6= Null; (ii) is a border point if it is not a core
point and exists a core point q with a neighborhood containing p, i.e.,
Desc(p).R.Id = null ∧ ∃q, p ∈ Desc(q).Neighbors. For the sake of readability,
we write Nε(q) to indicate Desc(q).Neighbors.
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We recall that the Time Segment of a dense region is defined by the set
of intervals in which the object is present in the region. (i.e., the gaps are
omitted). It is constructed as follows. The points of a dense region are qualified
as entrances and exits where a point pi: (i) is an entrance if the preceding point
in the input trajectory T does not belong to the dense region. (ii) pi is an exit if
the subsequent point in T does not belong to the dense region. A point can be
both an entrance and an exit. Every pair of subsequent nodes (entrance, exit)
specifies one period of presence in S. If entrance and exits coincide the period is
an instant. The whole presence in S is computed by summing up the duration
of each period in the Time Segment.

Detecting whether one of the dense regions is a cluster is straightforward: it
is sufficient to consider the Time Segment specified in each of the dense regions.
More complex is the expansion phase which attempts to add a point q to the active
cluster. This operation is performed by the function expand() in the Algorithm 6.
The function creates a new point descriptor for q (line 4), while the neighborhoods
of the points falling in the time context are updated; next the dense regions
descriptors are updated (lines 5-7). In particular the last operation is as follows:
for every point p in the neighborhood of q (i.e., p ∈ Nε(q)): (i) if q is directly
density reachable from p (i.e., p is a core point in a dense region R) then q is
added to R, i.e., the Time Segment of R, is updated (LinkCorePoint(p,q)). Note
that the neighborhood Nε(q) consists exclusively of points falling in the specified
time context.(ii) If p has become a core point, after the addition of q, but no dense
region can contain it, then a new dense region (descriptor) is created. Conversely
if p is a core point but its neighbor points belong to different dense regions, these
regions are merged into a unique one. Finally the Time Segment is updated
accordingly (LinkNeighbors(p)). It can be shown that the expand() preserves the
properties of density-connectivity and maximality of dense regions (we omit the
demonstration for lack of space). An example illustrating how the function works
is reported in the next.

Example 4.2 (Updating operation). Consider a trajectory of 10 points. The
projection of the points on the plane is shown in Figure 4.7(a). Points are num-
bered from 1 to 10 based on the time order. The density parameters are ε and
N = 4. The points are read in sequence from point 1:

• Point 1-4 are read. None of them is a core point as can be seen from the
neighborhoods in Table 4.1 (first four lines):

• The first dense region is created at step 5 (see Figure 4.8(a)). After reading
point 5, point 1 becomes a core point (the neighborhood includes 3 more
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Algorithm 6 Function expand()

1: function expand(activeCluster, timeContext, q)
2: Global variables : DR, T
3: c← 1
4: createPointDesc(q)
5: for all p ∈ Nε(q) do . Nε(q) ⊆ T [timeContext]
6: linkCorePoint(p, q)
7: linkNeighbors(p)
8: end for
9: return(q ∈ activeCluster)
10: end function
11:

12: procedure linkCorePoint(p, q)
13: if Desc(p).R 6= null then . p is a core point
14: Desc(q).R← Desc(p).R
15: updateT imeSegment(Desc(p).R, {q})
16: end if
17: end procedure
18: procedure linkneighbors(q)
19: if isCorePoint(q) and Desc(q).R = null then
20: if @dr ∈ DR where q ∈ dr then
21: Desc(q).R = CreateNewRegionDesc()
22: updateT imeSegment(Desc(q).R,Nε(q))
23: else
24: for all dr1, dr2 ∈ DR where q ∈ dr1, dr2 do
25: merge(dr1, dr2)
26: end for
27: updateT imeSegment(Desc(q).R,Nε(q) \ q)
28: end if
29: end if
30: end procedure

points) while points 2,3,5 are border points. Because no other dense region
contains this core point, a new dense region descriptor is created named
dr1. The corresponding Time Segment is set to: ts1 = [1, 3] ∪ [5, 5]

• The dense region described by dr1 is expanded (Figure 4.8(b). Point 6 is
read. Nε(6) = {1, 5}. Point 5 becomes a core point (directly connected to
points 1,2,6). Hence point 6 is added to dr1 The time segment of dr1 is
updated to: ts1 = [1, 3] ∪ [5, 6]



70 Chapter 4

Figure 4.7: Set of 10 points projected on space

Figure 4.8: (a) Point 1 is a core point. A new dense region descriptor dr1 is
created. (b) Point 5 becomes a core point after point 6 is added

Figure 4.9: (a) A new dense region dr2 is created; (b) the two regions dr1 and
dr2 are merged because sharing a core point

• A new dense region is created (Figure 4.9(a)). The points from 7 to 9 are
read. We obtain: Nε(7) = {3}, Nε(8) = {7}, Nε(9) = {7, 8}. At this
point, 7 is a core point that however is not connected to dr1, while 3,8,9
are border points. A new dense region dr2 is created with Time Segment:
ts2 = [3, 3] ∪ [7, 9].

• Finally the point 10 is read (Figure 4.9(b)). Since Nε(10) = {3, 7, 8}, point
3 results to be a shared core point between dr1 and dr2. The two regions
are merged. As a result also points 8, 10 become a core point. The time
segment of the result is set to: ts1 ∪ ts2 = [1, 3] ∪ [5, 10].

Complexity of the algorithm. The time complexity of the algorithm is
quadratic with respect to the length of the trajectory. The time complexity
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Nε(1) = {1}
Nε(2) = {1, 2}, Nε(1) = {1, 2}
Nε(3) = {1, 3}, Nε(1) = {2, 3, 1}
Nε(4) = {4}
Nε(5) = {1, 2, 5}, Nε(1) = {2, 3, 5, 1}, Nε(2) = {1, 5, 2}
Nε(6) = {1, 6, 5}, Nε(1) = {2, 3, 5, 1, 6}, Nε(5) = {1, 5, 2, 6}

Table 4.1: Neighborhoods of the first 6 points

is measured with respect to the costly operation computing the distance between
the current point and the points in the Time Context. In the worst case, the
input point pi is confronted with all the preceding points p1, .., pi−1. The total
number of distance operations is thus

∑
i∈[1,n−1] i = n(n−1)

2
, i.e., the time com-

plexity is O(n2), that is the complexity of the DBSCAN algorithm, if no indexing
mechanism is used [50]).

4.3.5 Parameter Analysis

One of the novelty of this model with respect to the state of art is the notion
of presence. We remind that the presence lower bound, i.e., δ, is one of the
parameters of SeqScan and that this parameter defines the temporal granularity
of the stay regions. In this section we study the relationship between presence
and number of clusters.

Presence

Let f : R → N be the function expressing the relation between presence and
number of stay regions (the density parameters k, ε are fixed). We show that
the number of stay regions remains constant for values of δ ranging in properly
defined intervals. The function f can thus be discretized. The proof is reported
in the following. This result is at the basis of the algorithm for the computation
of the function f that will be presented next.

The proof is in two steps: Lemma 4.1 demonstrates that the number of stay
regions does not change if we consider the sequences of core stay regions in place
of the maximal stay regions. We recall that the core stay regions are those that
are detected for first during the scan of the trajectory, and next expanded. This
result is used in Theorem 4.1. to prove that the number of stay regions does not
change for values of presence ranging in a properly defined interval.
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Lemma 4.1. Let Ŝ = Ŝ1, Ŝ2, ... and Ŝ∗ = Ŝ∗1 , Ŝ
∗
2 , .. the two sequences of mini-

mal stay regions in T obtained with δ = p and δ= p∗ respectively (with respect

to density parameter K,ε). These two sequences Ŝ and Ŝ∗ are identical iff the
corresponding stay regions are identical.

Ŝ = Ŝ∗ ⇔ S = S∗

Proof. We prove the implication Ŝ = Ŝ∗ ⇒ S = S∗ (the other way is trivial).
Consider for a generic index i, the equality Si = S∗i . By definition of minimal
stay region, every element of Si is reachable (in the DBSCAN sense) from its

minimal stay region Ŝi. Thus every element is also reachable from Ŝ∗i (as Ŝ∗i =

Ŝi). The two stay regions Si and S∗i are thus identical.

Theorem 4.1. Let S1, .., Sm the sequence of stay regions obtained with δ =p and
p1, .., pm the presence in the core stay regions. It holds that:

∀p∗ ∈ [p, min
∀i∈[1,m]

pi], f(p∗) = f(p)

Proof. Let p∗ ∈ [p, min
∀i∈[1,m]

pi]. We show that Ŝ∗ = Ŝ thus, for the previous

Lemma, S∗ = S. We recall that the SeqScan algorithm scans the trajectory until
a core stay region is found, hence such region is expanded until a new, spatially
separated core region is detected. As the value p∗ is equal or lower than the
presence in the core stay regions, if we run SeqScan with δ = p∗ none of the
core stay region in Ŝ is filtered out. For the same reason, no additional core stay
region can be found. Thus Ŝ∗ = Ŝ that is what we wanted to demonstrate.

Algorithm 7 Computing the function f

function f( In: T = [1, n], ε,K; Out: setOf(range,nstays))
δ ← 0, setOf(range,nstays)← ∅
while δ 6= −1 do

SeqScan(T, ε,K, δ, S = S1, .., Sm, noise)

min← min
∀i∈[1,m]

Presence(Ŝi)

if min = 0 then δ= -1 else
setOf(range,nstays).add(([δ,min], Size(S)))
δ ← min + constant . constant > 0
end if

end while
end function
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Example 4.3. We study the function f for the following trajectory of 17 points
represented in Figure 4.10. We indicate for every pair of points the temporal
distance (t-distance, in time units):

1−12−13−14−25−16−17−28−19−210−111−112−213−114−215−216−117

For example the t-distance between point 1 and point 2 is of 1 time unit,
between point 4 and point 5 is of 2 time unit. Let us set the density parameter
to k=3 (as usual ε is implicit). Steps of the algorithm:

Figure 4.10: Example of the clustering where the function f is represented in the
table

• Run SeqScan with δ=0. Two stay regions are detected, A and D, with
Â=[1,3] and D̂ =[14,16]. The presence in Â is 2 time units, while the

presence in D̂ is 4. Therefore, for the values δ in [0,2], the number of
clusters is 2.

• Run SeqScan with δ= 2 + θ (where θ > 0 is a constant used to handle the
discontinuity). Three minimal stay regions are detected: the first is [4,5] ∪
[7,8] with presence= 4 time units, the second is [9,10]∪[12,13] with presence
=4 time units, the third core stay region is [14,16] with presence=4. Thus,
in the time interval (2,4], three stay regions are detected.
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• Iterating: with δ = 4+ θ there is 1 core stay region with presence=5, while
for δ > 5 the number of core stay regions is 0 that is the terminating
condition.

4.4 Evaluation of SeqScan

A critical aspect of clustering is the validation of the results as well as of the
technique itself. Ideally, the validation can be performed in different manners,
for example through the use of synthetic data acting as ground truth. However,
due to the lack of ground truth data, we have applied the technique on the
case study discussed earlier in the chapter and we have analyzed the results in
collaboration with domain experts. In particular, the validation activity that
has been conducted consists of two phases: 1) Initially SeqScan has been used
with real data reporting the movement of animals (roe deer) that are constantly
monitored by the domain experts. The evaluation is qualitative, and based on
the judgment of domain experts. 2) In the subsequent phase, SeqScan has been
contrasted with an existing clustering-based algorithm recently proposed for the
analysis of the migratory behavior of the same species, i.e., roe deer. We refer
to this activity as quantitative evaluation. The methodology and the results are
reported in the next.

4.4.1 Qualitative Evaluation

We analyze the spatial trajectories of 25 roe deer tracked in the period 2005-
2008. The dataset is provided by the research institute Fondazione E.Mach. The
total number of samples amounts to over 50000 points. The animals live in an
area of about 30km2 on the Alps near the city of Trento (Italy). The history of
these animals, since their capture for the installation of the GPS collar, is known
[12]. The basic statistics of the dataset are reported in Table 4.5. The points
are sampled approximately every 4 hours, to reduce battery consumption. Under
normal conditions, the distances covered in that time period are a few hundreds
of meters, thus the movement is generally limited (in relation to the phenomenon
of migration). A significant number of samples in the dataset are missing, due to
the fact that the satellite signal is lost, for example, when the animals stay inside
a dense forest, therefore the temporal distance between subsequent points varies.
Trajectories are of different length and duration as shown by the high standard
deviation value(σ).

Methodology The SeqScan algorithm is applied at two different stages. In the
first stage, the algorithm is used to identify the large regions and runs over the
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Trajectories Avg σ

∆s 165 meters 47 meters
∆t 5.17 hours 0.93 hours

length 1869 points 503 points
duration 401 days 154 days

Table 4.2: Summary statistics: average spatial distance between two consecutive
points in every trajectory (∆s), average temporal distance between two consecu-
tive points in every trajectory (∆t), length and duration of trajectories.

entire trajectory. This phase is called coarse analysis. In the second phase, the
algorithm is run over the sub-trajectories representing filtered noise, i.e., long gaps
and transitions, to detect the small regions. This analysis is called fine-grained.
The values of the clustering parameters are reported in Table 4.3. Probably
facilitated by the low number of parameters and the small group of animals,
it has been possible to set a common set of values for all of the trajectories.
The values are obtained empirically, on the basis of domain knowledge and data
statistics. We will come back on this aspect later on.

ε K δ

coarse analysis 100 meters 20 objects 25 days
fine-grained analysis 40 meters 5 objects 6 days

Table 4.3: Clustering parameters value

The animal behavior extracted from the algorithm is described both in textual
and map form. The textual form follows the syntax of symbolic trajectories [31].
Specifically, every stay region is given a label l and a time period I. The label l
consists of two short texts, the former indicates the type of the stay region (e.g.,
H stands for home-range, S for stopover and E for excursion). The time period
I is the period of presence in the stay region denoted by the label. The symbolic
trajectory for each animal is thus obtained by concatenating the descriptions:
{I1 label1} {I2, label2}.... The stay regions are displayed on maps as sets of
points enclosed in convex hulls (noise is omitted).

Evaluation and discussion. We show a few representative examples of mi-
gration behavior. In particular we consider three animals, nick-named Michela,
Alessandra, Lara. The sets of sampled points for each of the animals are reported
in Figure 4.12.



76 Chapter 4

(a)

(b)

Figure 4.11: Symbolic trajectories: (a) Michela’s behavior in synthetic form,
i.e. short temporal gaps are omitted. (b) The Time Segment of one of the stay
regions.

• The migration behavior of Michela is illustrated in Figures 4.13(a-b). The
trajectory has about 4606 points over two years. The animal moves from
the home-range H0 to the home-range H1 where it makes an excursion E0,
then moves to home-range H2. The symbolic trajectory at two different
levels of detail (synthetic and detailed) is reported in Figure 4.11

The percentage of noise for Michela is 9.64%. The low percentage indicates
that the points are highly aggregated. This measure is in line with the
fact that the four stay regions are very close to each other; therefore the
transitions do not generate significant noise. It can also be seen that the
temporal extent of the regions is aligned with the typical seasonal behavior.

• Alessandra exhibits a different behavior as illustrated in Figure 4.13 (c).
The trajectory consists of 2642 points. In this case the animal covers longer
distances to move from one region to another and that explains the high
percentage of noise, i.e., 32%.

• The behavior of Lara is displayed in Figure 4.13(d). The trajectory has
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Figure 4.12: Sampled points for the example animals Michela, Alessandra, Lara
(QGIS maps)

1543 points, thus the animal is observed for a shorter time. During this
period, the animal is stationary. This behavior reflects itself in the low
percentage of noise, 1.4%.

From the experiments it turns out that 10 animals out of 25 are stationary
while the others migrate. While this matches previous results in [12], the algo-
rithm helps to thoroughly describing and finding evidence of migratory behavior
in uncertain cases (e.g., the animal Michela). An interesting aspect is that, as

Group of animals # avg(%noise) σ
stationary 10 2.8 1.9
migrators 15 20 9.9

Table 4.4: Average and deviation standard of the noise distribution for the groups
of stationary and migrating animals

seen before, the percentage of noise varies significantly depending on whether the
animal migrates or not, as reported in Table 4.4. This is relevant for two rea-
sons: first, it shows that the algorithm is able to capture the migration behavior
diversity; second, it shows that noise can be a good indicator of the animals’ mi-
gratory attitude. Ideally, this can facilitate large scale analysis over larger groups
of animals. We recall, however, that the animals’ behaviors can be contrasted
(based on noise) because of the choice of a common set of values for the clustering
parameters.

In a few cases we have noticed an interesting divergence between the outcome
of the algorithm and visual analysis. The specific situation is sketched in Figure
4.14: an animal stays in the region A then moves to reach region B. Progressively
however the region B expands until it overlaps A. In this case the algorithm
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(a)

(b)

(c)
(d)

Figure 4.13: (a-b)Migration pattern of Michela: from H0 to H1; and from H1
to H2. (c)Alessandra: the animal covers longer distances. (d)Lara: stationary
animal

considers A and B two different clusters, thus if the clusters are large regions, it
means that the animal migrates. Conversely the visual analysis leads to consider
this set of points as a unique region.

4.4.2 Quantitative Evaluation

A second form of evaluation has been conducted to refine the analysis of the tool.
For this experiment two different datasets were used, reporting the trajectories
of roe-deer (Capreolus capreolus) and red-deer (Cervus elaphus) living in the
Bavarian region. These two species of deer, although part of the same Family
(Cervidae), are characterized by different life-history traits, space use behavior,
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Figure 4.14: Cluster A: blue points; cluster B: yellow points in B. The red points
highlight the expansion of B towards A

and size. Therefore, by using trajectories from different animal species within the
same region, we evaluate the effectiveness of the method on different movement
responses, within similar environmental conditions. Another goal is to contrast
SeqScan with a recent technique developed in the context of animal ecology and
grounded on statistical methods. In particular, we compare the classification of
the migratory behavior, i.e., migrant vs. stationary, obtained by, SeqScan with
that provided by the above mentioned reference technique. In the following, first
we will outline the main features of the reference method, described in [12] and
later developed in [11]. Next, we will describe the datasets. Finally, we present
the experimental results along with discussion and analysis.

The reference method

In this paragraph, we briefly present the steps performed by the reference method
to extract the home ranges from animal trajectories. First, the method of Ward
[59] is used to minimize the within-cluster sum-of-squares, so that each location
is assigned to cluster 1 or 2. Then, with a nearest-neighbor procedure, outlying
points are removed, to eliminate long range excursions outside the animal’s home
range. Then, clusters are ’assigned’ to a season, by computing the temporal in-
terval to 15th of July, and assigning the minimum interval to summer cluster, and
the maximum interval to winter cluster. After these steps, each animal’s trajec-
tory corresponds to a sequence of consecutive points within a certain cluster, or
between two clusters. Until this point, the temporal component is not considered
by the method. This is done a-posteriori, by computing the maximum continuous
time of residence in each cluster and expressing these times as proportion of the
total monitoring time. For example, in case of roe and red deer, the large her-
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bivores considered in this study, a reasonable threshold to discriminate between
migrants and residents was fixed to the value 0.083, which corresponds, on an
annual basis, to a 1 month period. In other words, the method assumes that
a migrant should continuously stay at least one month in both the winter and
summer ranges to be classified as such. In all other cases, the trajectories are clas-
sified as ’resident’. The threshold for the maximum continuous time of residence
can be considered the main parameter of the reference method. The parameter is
defined based on the definition of migration (here seen as a yearly phenomenon),
and life-history considerations on the species of concern. For example, one month
is here considered the minimum relevant time to large herbivores to access critical
resources over a one-year time span.

Datasets

The two datasets contain normalized trajectories obtained from the preprocess-
ing of data downloaded from GPS sensors, so as to be ecologically comparable.
More specifically, every trajectory covers at most one year. Thus for an animal
tracked for, e.g., two years there are two normalized trajectories. Moreover, every
trajectory starts at earliest on February 15 and ends at least on February 15 of
the following year. In addition, every trajectory contains a summer range (i.e.,
the range whose temporal extent contains July) and two winter ranges (i.e., by
exclusion those that are not summer ranges), so to identify the ’return’ movement
typical of seasonal migration. Note that the splitting of multi-annual trajectories
in one-year trajectories is basically due the to the inherent difficulty of dealing
with both the spatial and the temporal dimension of a series of locations at the
same time. We will come back to this point later on. In both datasets, a sig-
nificant number of GPS locations are missing due to lost satellite signal, due for
example to rugged topography or thick forest cover. As a result, the points are
sampled at varying frequencies.

Summary statistics. The two datasets have a different size. The roe deer
dataset consists of 29 normalized trajectories with approximatively 60000 GPS
points; the red-deer dataset has 20 trajectories with about 150000 GPS points.
Table 4.5 reports the summary statistics on the length and duration of the tra-
jectories in the two datasets.

Experimental results and evaluation

We now present and discuss the results obtained by running SeqScan on the tra-
jectories data with the chosen parameters. For every trajectory SeqScan returns:
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Table 4.5: Average and standard deviation of trajectories length and duration

Roe deer Red deer
Avg StDev Avg StDev

length(points) 2078 1176 7205 4038
duration(days) 338 31 337 30

- A set of labeled points. The points are labeled with a cluster identifier. As
effect of the normalization, for each trajectory, there can be only one, two
or, more rarely, three ranges

- A set of labeled noisy points

Figure 4.15: Space-time cube of the roe deer trajectory with Id=5. The coordi-
nates indicate spatial and temporal distance from the first point of the trajectory,
the color gradient indicates the temporal evolution.

We illustrate the outcome of the clustering through an example. In partic-
ular, we examine the trajectory of one animal, i.e., the roe deer with Id=5. To
ease understanding, we show in Figure 4.15 the space-time cube of the trajec-
tory. From the graph, it can be seen that the animal moves between two main
areas whilst stops for a short period in a third area. We can achieve a better
understanding of the movement, from the analysis of the clustering obtained from
SeqScan and reported in Figure 4.16. In particular we can see that there are two
home ranges, A and B. While residing in A, the animal performs an excursion
to the third area, next migrates to B passing across the area where the animal
stopped during the excursion (i.e., the area is somehow memorized). One could
argue that this information can be extracted through a careful visual analysis.
In reality, whenever there is no clear separation between the ranges, the visual
representation of the trajectory is hard to interpret (e.g., see Figure 4.17).
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Figure 4.16: Clustering of the roe deer trajectory with ID=5. Figure shows two
stay regions A and B. Top Figure shows the duration of each stay region and the
excursion points while the animal is in A; bottom Figure shows the migration
from A to B together with the stopover (in the same area of the excursion)

Comparison with the reference technique. We now turn to compare the
outcome of SeqScan with the outcome of the reference technique applied to the
same dataset. We base the comparison on two indicators defined in [11], i.e., :

- Animal’s label. The first indicator simply specifies whether the animal
observed in the time frame of the trajectory is migratory or stationary

- The migration distance. This is the distance between the centroids of the
winter and summer clusters.

The aggregated results of the comparison are reported below while the details
can be found in Table 4.7 and Table 4.6. In summary:

• In the roe deer dataset, 21 are classified as stationary (and 8 as migratory)
by SeqScan. Of these 21, 17 are stationary also for the reference technique.
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Thus the mismatches amount to 4 cases, i.e., trajectories that are classified
as stationary by SeqScan and migratory by the reference technique.

• In the red deer dataset there is 1 mismatch, specifically one animal that is
classified as migratory in SeqScan is classified as stationary by the reference
method.

Of course, because the SeqScan parameters can be finely tuned, mismatching
can be limited (we recall that in [11] the mismatching cases resulting from the
comparison of three techniques to identify migration amounts even to 30%). The
experiment demonstrates, however, that the outcome of SeqScan is sensible (from
an ecological view point) while a suitable set of parameters can be found in a

Figure 4.17: a) The trajectory of the red deer with ID=16; b) the trajectory of
the red deer with ID=6
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Table 4.6: Comparison between SeqScan (left side in every table) and the refer-
ence technique (right side) for roe-deer dataset.

ROE deer

IDSeq Label D1(m) IDRT Label D2(m) D2−D1

D2

1 M 1818 20 M 1995 0.09
2 S 40 S
3 S 50 S
4 M 3310 60 M 4313 0.23
5 M 1882 70 M 2010 0.06
6 M 26848 90 M 26873 0.00
7 M 1221 100 M 1119 0.09
8 S 110 S
9 M 1214 120 M 1198 0.01

10 S 130 M 1242
11 S 150 S
12 S 160 S
13 S 170 M 1189
14 S 171 S
15 S 190 S
16 S 210 S
17 M 3325 13670 M 3442 0.03
18 S 13740 S
19 S 13741 S
20 S 13780 S
21 M 5144 13830 M 4836 0.06
22 S 13840 S
23 S 14021 S
24 S 14030 S
25 S 14110 S
26 M 1243 14111 M 983 0.26
27 S 14150 M 1255
28 S 14180 S
29 S 14310 M 575

reasonably simple way. In this sense, we argue that SeqScan has performances
comparable to the methods in use in animal ecology and thus can be of interest
for the analysis of partial migrations, which is what we wanted to demonstrate.
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Table 4.7: Comparison between SeqScan (left side in every table) and the refer-
ence technique (right side) for the red-deer dataset.

Red deer

IDSeq Label1 D1(m) IDRT Label2 D2(m) D2−D1

D2

1 M 1808 10 M
2 M 7325 20 M 6846 0.07
3 M 3942 30 M 3986 0.011
4 S 40 S
5 M 4728 50 M 4848 0.025
6 M 1616 70 S
7 M 1912 80 M 1917 0.003
8 M 1449 81 M 1682 0.139
9 S 90 S
10 S 100 S
11 S 110 S
12 M 7731 130 M 7496 0.031
13 M 30916 140 M 30583 0.011
14 S 141 S
15 M 7121 151 M 7126 0.001
16 M 3007 160 M 5513 0.455
17 S 170 S
18 S 171 S
19 S 180 S
20 M 1930 190 M 1900 0.016

4.5 Summary

Another major contribution of the thesis is the SeqScan algorithm for the dis-
covery of stay regions from spatial trajectories. The algorithm presents novel
features that seem particularly effective for the study of animal movement. The
technique has been applied for validation purposes on real cases. Other forms of
validation, based on the use of synthetic data, are currently under investigation.
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Scenario

After presenting the spatio-textual trajectory representation and the SeqScan
clustering technique and its application to the analysis of animals’ trajectories,
we try close the loop and show the spatio-textual trajectories at work. In this
chapter we utilize the data resulting from the clustering of the animals’ spa-
tial trajectories to illustrate how the spatio-textual trajectories can be built and
queried in practice. Similarly, we present a few queries over the GeoLife dataset.
The chapter is organized as follows. We start presenting the experimental setting
and next we discuss the examples for the two datasets.
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5.1 Usage setting

We consider trajectory data sources consisting of two parts: a set of textual
trajectories and a set of aligned spatial trajectories. The individual’s movement
is thus characterized by the pair textual-spatial trajectory. We use the Sec-
ondo platform [28] as hosting database and software environment. Starting from
source data, the process of data organization in the database consists of the two
following steps. First, trajectories are uploaded and represented in terms of the
system data types, as spatial and symbolic trajectories. Next, the combined
spatio-textual trajectories are created through an operation that we call temporal
overlay. The temporal overlay of a spatial trajectory S and a symbolic trajectory
Y is performed by intersecting the time periods of the units in S and Y , and then
associating each of the resulting small periods, with the label and the segment
of the units falling in that period. In summary, similarly to the operation of
spatial overlay in GIS, temporal overlay is a composite operation consisting of a
(temporal) intersection and a (temporal) join.

5.1.1 Implementation in Secondo

At implementation level, the process of construction of the spatio-textual trajec-
tories is performed as follows: preliminarily a new abstract data type, called trip,
has been created in Secondo for the representation of spatio-textual trajectories.
The following operators have been developed for the Trip class:

• temporal overlay : this is a constructor that takes as input an object of type
mpoint and an object of type mlabel and returns an object of type trip

• match: this is a boolean operator that takes as input a sequenced query in
the form of text expression and returns true if the trip object satisfies the
query

Finally, for each dataset, the trajectories are imported, and a table is created
with the following simple schema:

TABLENAME(Id: int, Traj: trip)

5.2 Querying the Geolife Dataset

The spatio-textual trajectories derived from the Geolife dataset consist of trajec-
tories that, we recall, are labeled with the transportation modes. Every trajectory
represents a one-day trip. The dataset used for these experiments consists of the
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trips of 69 users covering a period of about three years. We run a few queries over
these trajectories and report the results visually, through the Secondo interface.
Spatio-textual trajectories are stored in the table GeoLife.

Example 5.1. We start with a simple query that does not involve spatial condi-
tions and that thus is entirely symbolic. The request has the following meaning:
retrieve the individuals who walk in the morning, bike in the afternoon, and then
walk again. The request is solved using the following sequenced query:

P1 = ([6 : 00 12 : 00], {”walk”}, ) ( , {”bike”}, ) ([16 : 00 24 : 00], {”walk”}, )

In Secondo the query is formulated as follows:

query Geolife feed filter[.Traj match P1] consume

Figure 5.1 displays one of the resulting trajectories.

Figure 5.1: Example 5.1: one of the resulting spatio-textual trajectories. Bike
and walk are displayed in purple and yellow color, respectively.

Example 5.2. In this example we introduce spatial conditions in the query. The
request is: to retrieve the trips of the individuals reaching a departure airport by
car, taking a plane and finally a taxi at the arrival airport. We refer to the Incheon
International Airport for departure and Beijing International Airport for arrival,
and denote the corresponding regions A1 and A2, respectively. The sequenced
query is:

( , {”car”}, ) ( , {”airplane”}, A1) ( , {”airplane”}, A2) ( , {”taxi”}, )

One of the resulting trajectories is displayed in Figure 5.2.
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(a)

(b)

Figure 5.2: Example 5.2: Figure (a) displays the first part of the trip before
taking off; Figure (b) the second part of the trip after landing. The airport areas
are enclosed in circles.

Example 5.3. We show another example combining spatial and textual condi-
tions. The request is: retrieve the trajectories of the individuals starting their
trip by walking to a bus station, next take the bus and reach Kunming Lake (a
touristic region in China) for a morning boat trip. The sequenced query can be
formulated as follows:

( , {”walk”}, ) ( , {”bus”}, ) ([08 : 00 10 : 00], {”boat”}, Kunming)

One of the resulting trajectories is displayed in Figure 5.3.

Example 5.4. Sequenced queries can help extracting information about human
mobility in cities. Such information may be useful for traffic analysis and trans-
portation planning. In this example, the request is to compute the percentage of
trips occurring between two regions, where the individuals use exclusively public
transportation. For this example we consider two regions: Region1 and Region2,
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Figure 5.3: Example 5.3: one of the resulting trips. The individual walks for a
while (yellow line), then takes a bus (green line) to reach the lake, then walks
again to reach the boat (the blue line indicates the boat trip) and finally makes
the trip back home

significantly far away from each other. The request can be solved performing two
queries: the first is to retrieve the number of individuals that move from Region1
to Region2 and back by bus or train (i.e., public transportation) after walking to
reach the respective departure locations; the second query is simply to retrieve
the number of individuals that move from Region1 to Region2 and back. Finally
the percentage can be easily computed as ratio. The former sequenced query is
as follows:

( , {”walk”}, Region1)( , {”bus”, ”train”}, Region2)( , {”walk”}, Region1)

The resulting number of trips satisfying the query is 2 trips over 12. The remain-
ing 10 trips over 12 employ private transportation, such as cars and taxi services.
One of the trips is displayed in Figure 5.4.
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Figure 5.4: Example 5.4: the trip of an individual commuting between Region1
and Region2, and then returning to Region1. The individual located in Region1
walks (yellow line) for a while to get the bus (green line) next reaches Region2
and then walks again to reach the final destination from which he/she departs
afterwards. Region1 and Region2 are represented by the polygonal areas.

5.3 Querying the Animals’ Dataset

The datasets contains the symbolic trajectories describing the migratory behavior
of the roe deer of the Tento datasets, analyzed in chapter 4.

As explained before, the SeqScan algorithm is applied in two steps. First, we
scan the whole trajectory to extract the large regions, i.e., home ranges. Second,
we run another scan over the sub-trajectories that represent filtered noise, long
gaps and transitions, to detect the small regions. The output is a spatio-textual
trajectory annotated with 3 labels: H, E, and S, where H stands for home range,
S for stopover between two home ranges, and E presents an excursion between
two points within the same home range. Running sequenced queries over the
annotated trajectories may be the source of useful information about the animals
behaviors. In particular, in the following examples, we try to understand the
interaction between the animals and the environment, namely the land type. For
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this purpose, we use the Corine Land Cover (CLC) project, which describes the
land cover of most European countries. Figure 5.5 represents the distribution of
CLC land classes in the Trento area.

Figure 5.5: Land types in the region based on the Corine classification. Every
land type is represented by a different color.

For exemplification purposes, we limit ourselves to consider the following land
types:

• Land class 112: Urban area.

• Land class 231: Pastures.

• Land class 243: Rural area.

• Land class 313: Forest area.

Example 5.5. While the animals stay most of the time within forest, it may
happen that they move to regions of different land type. In this example the re-
quest is to retrieve the trajectories of those animals passing unexpectedly through
urban areas. The simple sequenced query is reported below. A result is shown
in Figure 5.6.

( , {”H”}, Urban)
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Figure 5.6: Example 5.5: Trajectory (red color) of an animal passing through an
urban area (light blue color).

Example 5.6. In this example, we focus on the animal’s migratory behavior.
The request is to extract the trajectories of the animals migrating from one home
range overlapping a forest to another home range overlapping pastures, with a
stopover in between. A result is reported in Figure 5.7.

( , {”H”}, Forest)( , {”S”}, )( , {”H”}, Pastures)

Example 5.7. As we have seen before, animals can make occasional excursions
outside the home range. In this example, the goal is to retrieve the trajectories of
the animals making excursions in forest areas while the home range is a pasture
area. Our query is composed of 3 simple queries, as shown below. A result is
displayed in Figure 5.8.

( , {”H”}, Pastures)( , {”E”}, Forest)( , {”H”}, Pastures)
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Figure 5.7: Example 5.6: Animal making a stopover between two home ranges
of different land types. The red lines are segments within the home range, and
the violet ones are segments within the stop area. Pasture area is in orange and
Forest area is in yellow.
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Figure 5.8: Example 5.7: Animal resident (red lines) in a pasture (orange poly-
gon) and making an excursion (green lines) in a forest area (yellow polygon).
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Conclusions

In this chapter, we briefly summarize the main contributions of this thesis, fol-
lowed by the prospect possible directions for future research.

6.1 Technical Contributions

The wide availability of time-varying data has led to massive amount of spatial
and non-spatial trajectories. Therefore various data models have been proposed
for the representation of different types of trajectories. The research presented in
this thesis has been driven by a main question, whether blending together tradi-
tional spatial trajectories and emerging symbolic trajectories can lead to a more
effective data model, combining the advantages of the two paradigms and thus
potentially attracting a larger number of potential users (e.g. mobile application
developers). The question is complex. Since the first experiments, however, it
has been clear that the absolute inefficiency of naive techniques would have ham-
pered the development of any realistic solution. From that it has been resulted
the decision of focusing on the study of novel access methods integrating space-
time-text and supporting sequenced queries. While spatio-textual indexes have
been extensively investigated for static objects, the combined use of text and
space-time for trajectories indexing is a novel topic. In this sense we believe the
IRWI framework, for the innovative ideas it contains, can contribute to the foun-
dation of a new research stream. This first result inevitably raises new questions
suggesting new solutions and directions.

Working on the efficiency aspects, however, is not enough for answering the
initial question on the usefulness of spatio-textual trajectories. For a data model
to be meaningful, there must be a certain consensus on its ’usefulness’. This
implies experimenting the system with real data and within the context of real
applications. To that extent, the domain of animal ecology is particularly at-
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tractive. This research focused on the extraction of the mobility behavior from
the animals’spatial trajectories and then its encoding is terms of symbolic and
next spatio-textual trajectories. In reality the case study has been particularly
challenging. This work has led to the proposal of a novel spatio-temporal cluster-
ing technique, SeqScan, that has been successfully applied to the analysis of the
mobility behavior of a species of wild animals. Definitely promising, this research
has triggered a new stream of work.

6.2 Future Work and Research Directions

The research conducted in the thesis paves the way to further developments. A
few possible directions are discussed next.

Trajectories with multiple textual dimensions. Currently, spatio-textual
trajectories allow for the representation of a unique textual dimension. Real
scenarios, however, may include multiple textual trajectories. For example, the
movement of a vehicle can be characterized by the transportation means, the
weather conditions, e.g. rainy, sunny weather, road typology, e.g. road type and
so on. This extension impacts the query model, the access method, calling as well
for novel visualization techniques. Another line of research, especially motivated
by the presence of textual component is the investigation of similarity measures
accounting for space, time and text.

IRWI and query processing. Currently, the IRWI index is used to support
the processing of sequenced queries while its performance heavily depends on the
characteristics of two key methods: the summarization of the trajectory Ids, and
the hybrid spatio-textual cost function. These two methods can be improved in
several ways. As concerns the summarization of trajectory Ids, an interesting
direction is to investigate alternative solutions requiring less disk storage and
performing a better filtering of trajectories. As concerns the spatio-textual cost
function, the cost of the insertion into the IRWI tree depends on a system de-
fined parameter β which is a compromise between spatial and textual costs. An
alternative approach is to leverage learning techniques to use β in an adaptive
way. Another line of research concerns the extension of the query processing
techniques to handle different types of queries such as ranking functions (nearest
neighbor, top-k queries).

Stay region model and SeqScan. The process of validation of SeqScan,
which has led to the application of the technique on real data, is not completed
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yet. A main direction for future work concerns the investigation of suitable
internal and external quality indicators for the clustering.
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and C. Vangenot. A conceptual view on trajectories. Data Knowl. Eng.,
65(1):126–146, 2008.

[53] L. Sun and K. W. Axhausen. Understanding urban mobility patterns with a
probabilistic tensor factorization framework. Transportation Research Part
B: Methodological, 91:511–524, 2016.

[54] Y. Tao and D. Papadias. MV3R-Tree: A spatio-temporal access method for
timestamp and interval queries. In Proc. VLDB, 2001.

[55] Y. Theodoridis, M. Vazirgiannis, and T. Sellis. Spatio-temporal indexing for
large multimedia applications. In Proc. IEEE ICMCS, 1996.

[56] S. Vaid, C. B. Jones, H. Joho, and M. Sanderson. Spatio-textual indexing
for geographical search on the web. In Proc. SSTD, 2005.
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