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1 Introduction

Black holes in gauged supergravity theories provide an important testground to address

fundamental questions of gravity, both at the classical and quantum level. Among the

most prominent of these are perhaps the problems of black hole microstates, uniqueness

theorems, or the attractor mechanism. In gauged supergravity, the solutions often (but not

necessarily) have AdS asymptotics, and one can then try to study at least some of these

issues guided by the AdS/CFT correspondence. On the other hand, black hole solutions

to these theories are also relevant for a number of recent developments in fluid mechan-

ics, high energy- and especially in condensed matter physics, since they provide the dual

description of certain strongly coupled condensed matter systems at finite temperature,

cf. [1] for a review. In particular, models similar to the one that we shall consider below,

containing Einstein gravity coupled to U(1) gauge fields and neutral scalars, have been in-

strumental to study transitions from Fermi-liquid to non-Fermi-liquid behaviour, cf. [2, 3]

and references therein.

For these reasons, the construction of analytic black holes in gauged supergravity

as well as the exploration of their physics has been an active field of research recently,

especially in four-dimensional models with N = 2 supersymmetry and Fayet-Iliopoulos

(FI) gaugings, cf. [4–30] for an (incomplete) list of references. Although we are still far

from understanding the underlying general structure1 of such solutions (if there is any),

1By this we mean a possible gauged supergravity analogue of the well-known fact that asymptotically

flat black holes are typically given (in the extremal limit) in terms of harmonic functions on a flat base

space.
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many important partial results have been obtained. These studies have also revealed some

surprises, like for instance the existence of so-called superentropic black holes, which have

noncompact event horizon but nevertheless finite area. These were first discovered in [24],

and their physics was further discussed in [31–33].

Up to now, the construction and discussion of black holes in N = 2, D = 4 Fayet-

Iliopoulos gauged supergravity theories has been mainly limited to models where the vector

multiplet scalars parametrize a symmetric special Kähler manifold.2 Here we shall go one

step further w.r.t. the results that appeared in the literature so far, by considering a

non-symmetric (and even non-homogeneous) deformation of the stu model, defined by the

prepotential (3.1). We will deal with a particular FI gauging of this model, that leads

to a scalar potential with two critical points corresponding to AdS vacua. One of these

extremizes also the superpotential and is thus supersymmetric, while the other vacuum

breaks supersymmetry.

The remainder of the paper is organized as follows: in section 2 we introduce some

basics of the theoretical framework of our investigation, namely N = 2, D = 4 super-

gravity coupled to nV vector multiplets, and its dyonic U(1) Fayet-Iliopoulos gauging.

Then, in section 3 we focus on a specific model, whose three complex scalars parametrize

a non-homogeneous special Kähler manifold. At the level of the prepotential, this is a

one-parameter extension of the well-known stu model [35–37], and thus we call it a non-

homogeneous deformation of the stu model (nh-stu). In particular, respectively in subsec-

tions 3.1 and 3.2, we compute the symplectic embedding of the electric-magnetic duality

algebra, and we present some axion-free geometric data. In section 4 we perform a near-

horizon analysis of the FI-gauged system, in particular axion-free charge configurations,

and for specific choice of the dyonic FI gauging parameters. A new, explicit BPS black

hole solution for the FI-gauged nh-stu model is presented in section 5, and its physical

properties are then discussed in section 6. The concluding section 7 contains some outlook

and considerations for future developments.

2 The setup

We consider N = 2, D = 4 gauged supergravity coupled to nV Abelian vector multiplets

(for notation and general treatment, cf. e.g. [38]). Besides the Vierbein eaµ, the bosonic

field content includes the vectors AΛ
µ enumerated by Λ = 0, . . . , nV (with the naught index

denoting the graviphoton), and the complex scalars zi where i = 1, . . . , nV . These scalars

parametrize a special Kähler manifold, i.e., an nV -dimensional Hodge-Kähler manifold that

is the base of a symplectic bundle, with covariantly holomorphic sections

V =

(
LΛ

MΛ

)
, Dı̄V = ∂ı̄V −

1

2
(∂ı̄K)V = 0 , (2.1)

where K is the Kähler potential and D denotes the Kähler-covariant derivative. V obeys

the symplectic constraint3 i〈V , V̄〉 = 1, and it is related to the holomorphic symplectic

2For some notable exceptions cf. e.g. [34].
3The brackets represent the symplectic inner product 〈A,B〉 = AT ΩB = AΛB

Λ −AΛBΛ.
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vector (XΛ, FΛ)T by

V = eK/2

(
XΛ

FΛ

)
. (2.2)

The matrix NΛΣ determining the coupling between the scalars zi and the vectors AΛ
µ is

defined by the relations4

MΛ = NΛΣL
Σ , Dı̄M̄Λ = NΛΣDı̄L̄

Σ . (2.3)

If a prepotential F (X) exists, it is a homogeneous function of degree two which allows to

determine the lower part of the symplectic sections (2.1) and the matrix N in terms of F

itself, according to

V = eK/2

(
XΛ

∂ΛF

)
, NΛΣ = F̄ΛΣ + 2i

ImFΛΛ′X
Λ′ImFΣΣ′X

Σ′

XΩImFΩΩ′XΩ′
, (2.4)

where FΛΣ = ∂Λ∂ΣF .

The bosonic Lagrangian reads

L =
R

2
− gī ∂µzi∂µz̄ ̄ +

1

4
IΛΣ F

Λ
µν F

Σµν +
1

8
√
−g

εµνρσRΛΣ F
Λ
µν F

Σ
ρσ − Vg , (2.5)

with the special Kähler metric gī = ∂i∂̄K. The scalar potential is

Vg = gīDiLD̄̄L̄ − 3|L|2 , (2.6)

where the superpotential L is determined by the dyonic Fayet-Iliopoulos (FI) gauging,

L = 〈G,V〉 = eK/2(XΛgΛ − FΛg
Λ) , (2.7)

with FI parameters G = (gΛ, gΛ).

Since we are interested in static black holes with radial symmetry, we employ the

Ansatz

ds2 = −e2U(r)dt2 + e−2U(r)(dr2 + e2ψ(r)dΩ2
κ) , (2.8)

where dΩ2
κ = dθ2 +f2

κ(θ) dφ2 is the metric on the two-surfaces Σ = {S2,E2,H2} of constant

scalar curvature R = 2κ, with κ = {1, 0,−1} respectively. Here the function fκ(θ) is

given by

fκ(θ) =


sin θ , κ = 1 ,

θ , κ = 0 ,

sinh θ , κ = −1 .

(2.9)

The scalars are assumed to depend only on the radial coordinate r, zi = zi(r), while the

gauge fields should have an appropriate profile to satisfy

pΛ =
1

vol(Σ)

∫
Σ
FΛ , qΛ =

1

vol(Σ)

∫
Σ
GΛ , (2.10)

4In what follows we use the notation I = ImN and R = ReN .
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with pΛ and qΛ being the magnetic and electric charges associated to the black hole and

GΛ denoting the dual field strength,

GΛ =
δL

δ ?FΛ
. (2.11)

The symplectic invariant central charge is given by

Z = 〈Q,V〉 , (2.12)

where we introduced the vector of magnetic and electric charges, Q = (pΛ, qΛ).

Following the procedure outlined in [12], the previous Ansätze are plugged into the

Lagrangian (2.5) and give rise to an effective one-dimensional action involving the scalar

fields and the warp functions U(r), ψ(r),

S1d =

∫
dr
{
e2ψ

[
U ′2 − ψ′2 + gīz

i ′ z̄ ̄
′
+ e2U−4ψVBH + e−2UVg

]
− 1
}

+

∫
dr

d

dr

[
e2ψ(2ψ′ − U ′)

]
.

(2.13)

Here VBH denotes the so-called black hole potential [39], defined by

VBH = −1

2
QTMQ , (2.14)

where

M =

(
I +R(I)−1R −R(I)−1

−(I)−1R (I)−1

)
. (2.15)

If the charges satisfy the condition

〈G,Q〉 = −κ , (2.16)

the effective action (2.13) can be rewritten as a sum of squares of first order differential

conditions and a boundary term. As in [12], setting to zero each of these terms, a system

of first order equations is obtained,

2e2ψ
(
e−U Im(e−iαV)

)′
+ e2(ψ−U)ΩMG + 4e−U (α′ +Ar)Re(e−iαV) +Q = 0 ,

ψ′ = 2e−U Im(e−iαL) , (2.17)

α′ +Ar = −2e−URe(e−iαL) .

Here Aµ = Im(∂µz
i(∂iK)) is the connection associated to the Kähler transformations and

the phase α can be expressed in terms of the other fields as

e2iα =
Z − ie2(ψ−U)L
Z̄ + ie2(ψ−U)L̄

. (2.18)

It is possible to show [12] that the supersymmetry variations of N = 2 gauged supergravity

reproduce the set of equations (2.17) by requiring the existence of a certain Killing spinor.
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In this way, both the equations of motion and the supersymmetry conditions are satisfied

by solutions of (2.17), and the resulting configuration will be 1/4 BPS.

As is the case for many other known solutions [10, 25, 40, 41], we shall assume vanishing

axions. This is realized by purely imaginary scalars (with λi > 0),

zi = xi − iλi , xi = 0 . (2.19)

The advantage of this choice will become evident in the next section: for some values of

the FI parameters in G, it indeed simplifies the equations of motion (2.17), setting α to

a constant.

3 A non-homogeneous deformation of the stu model

In this paper, we will specialize our treatment on the special Kähler 3-moduli model based

on the holomorphic prepotential5

F =
X1X2X3

X0
− A

3

(
X3
)3

X0
, (3.1)

where A is an arbitrary real constant. For A = −1, the prepotential reads

F =
X1X2X3

X0
+

1

3

(
X3
)3

X0
, (3.2)

which has been constructed in the context of Type IIA string theory compactified on

Calabi-Yau manifolds in [44]. In particular, analyzing string vacua with three complex

moduli (section 3.2 therein), different bases for the toric construction of such a model have

been considered; (3.2) corresponds to the basis F0 of [44], while other toric constructions

determine the same model in different symplectic frames. The prepotential (3.2) can also be

obtained as c = 0 limit of the heterotic prepotential appearing in [45] and the corresponding

one-loop prepotential VGS is given by considering its c = 0 limit.

In absence of gauging, the BPS attractor equations for this model have been discussed

in [45]; a solution for a generic supporting black hole charge configuration was obtained

in this context and, as a consequence, the BPS black hole entropy was determined as a

function of the charges.

A full-fledged, explicit determination of the BPS black hole entropy of the model based

on (3.2) was later given by Shmakova in the investigation of BPS attractor equations for

black holes based on Calabi-Yau cubic prepotentials [46]. We report here the expression of

the ungauged BPS black hole entropy, for later convenience:

SBH

π
=

√
f (Q)

3p0
, (3.3)

5Black holes of type IIA Calabi-Yau compactifications in the presence of perturbative quantum correc-

tions, leading to a prepotential of the form F = dijkX
iXjXk/X0 + ic(X0)2 (for some constant c), were

constructed and studied in [42, 43].

– 5 –
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where

f (Q) := 2

{(
p1p2+

(
p3
)2−p0q3

)[(
p1p2+

(
p3
)2−p0q3

)2
+12

(
p2p3−p0q1

) (
p1p3 − p0q2

)]
+

[(
p1p2 +

(
p3
)2 − p0q3

)2
− 4

(
p2p3 − p0q1

) (
p1p3 − p0q2

)]3/2
}

− 9

[
p0
(
p0q0 + p1q1 + p2q2 + p3q3

)
− 2p1p2p3 − 2

3

(
p3
)3]2

,

(3.4)

and the conditions f (Q) > 0 and p0 > 0 define the BPS-supporting black hole charge

vector Q. It is immediate to check that (3.3) and (3.4) imply the entropy SBH to be

homogeneous of degree two in the charges, as it must be in four dimensions for 0-branes.

The model (3.1) under consideration, where A has to be considered a parameter, be-

longs to the broad class of the so-called very special Kähler manifolds, that can be obtained

by dimensional reduction from the vector multiplets’ scalar geometries coupled to minimal

supergravity in D = 5, known as special real manifolds. All the models originating from

this kind of geometry are described, in the so-called 4D/5D special coordinates’ symplectic

frame (cf. e.g. [47, 48]), by a cubic prepotential of the form

F = dijk
XiXjXk

X0
, (3.5)

where dijk is a real and symmetric tensor and the corresponding special Kähler space is

usually dubbed a d-space [48]. In particular, the model (3.1) is defined by d123 = 1/6 and

d333 = −A/3.

It is worth pointing out that the d-space corresponding to (3.1) is neither symmetric

nor homogeneous6 [41, 49]. In particular, it does not fall within the class of symmetric

models examined in [25], that are characterized by a constant tensor7

d̂lmn =
gilgjmgkn

(dpqrλpλqλr)2
dijk . (3.6)

In fact, it can be easily checked that the prepotential (3.1) implies a non-constant d̂lmn. For

this reason, we will henceforth dub the cubic model (3.1) as a non-homogeneous deforma-

tion of the homogeneous and symmetric stu model (shortly, nh-stu), to which it reduces8

when A = 0.
6After [48] and [49], homogeneous special Kähler d-spaces, either symmetric or non-symmetric, have

been classified in terms of the corresponding d-tensor, which uniquely determines their geometry. No

homogeneous, non-symmetric, special Kähler (non-compact, Riemannian) spaces which are not based on

cubic prepotentials (3.5) are known, although a proof of this fact does not exist, as far as we know.
7For some considerations on the completely contravariant d-tensor in generic d-spaces (and the corre-

sponding definition of the so-called E-tensor for non-symmetric special Kähler spaces), cf. e.g. [50], and

refs. therein.
8Consistently, for A = 0 the expression (3.22) below enhances to an 8-dimensional U -duality group,

given by the SL(2,R)⊗3 group of the stu model [35–37] (cf. e.g. section 8 of [51]).

It is here worth pointing out that, however, at the level of the solution discussed in sections 4 and 5

(characterized by proportionality between λ2 and λ3), A = 0 yields the (axion-free) st2 model, with some

subtleties mentioned at the end of section 5.

– 6 –
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3.1 Electric-magnetic duality algebra

The vector multiplets’ scalar manifold of the nh-stu model is neither symmetric nor ho-

mogeneous; namely, the non-compact Riemannian space endowed with the special Kähler

geometry specified by the cubic holomorphic prepotential (3.1) (with non-vanishing A)

cannot be described as a coset9 G/H, where H is a local, compact isotropy group (linearly

realized on the scalar fields, which generally sit in its representations) and G is a global,

non-compact symmetry group (non-linearly realized by the scalar fields, but linearly re-

alized by the vectors). In theories of Abelian Maxwell fields, the group G describes the

electric-magnetic duality symmetry, and its non-compactness in presence of scalar fields

was firstly discussed by Gaillard and Zumino in [52].

Linearly realized electric-magnetic duality (U -duality10) plays a key role in Einstein-

Maxwell theories coupled to scalar fields in presence of local supersymmetry, and conse-

quently in their regular solutions, such as the dyonic black holes discussed in the present

paper. Even if the scalar manifold is not a coset G/H, a global U -duality symmetry group

G always exists, even if it may be non-reductive or also discrete in generic, (semi-)realistic

models of string compactifications.

A general feature of Einstein-Maxwell theories coupled to non-linear sigma models

of scalar fields in four dimensions is the symplectic structure of the field strength 2-

forms and of their duals, which in turn allows to define the symplectic invariant scalar

product specified in footnote 3. It results in the maximal, generally non-symmetric

embedding (see theorem 1.5 in [52, 56])

G ⊂ Sp(2n,R) (3.7)

R = 2n , (3.8)

where n is the number of vector fields, 2n is the fundamental representation of Sp(2n,R)

and R is the representation of G, not necessarily irreducible.

Thus, it is interesting to determine the (continuous, Lie component of the) U -duality

algebra gnh-stu of the nh-stu model of N = 2, D = 4 supergravity. In this case we have

n = 4, since one graviphoton and three vectors from the vector multiplets are present. We

aim to explicitly find the realization of the maximal, non-symmetric embedding

gnh-stu ⊂ sp(8,R) . (3.9)

This is worth also in view of the fact that Gnh-stu, the Lie group generated by gnh-stu, has

not a transitive action on the non-linear sigma model described by the N = 2 holomorphic

prepotential (3.1).

Since the semiclassical Bekenstein-Hawking entropy in the ungauged theory is generally

invariant under linearly realized global symmetries, gnh-stu can be determined by finding all

9In order for the coset G/H to be non-compact, H must at least be the maximal compact subgroup of

G. When this is the case, and when both G and H are reductive Lie groups, the corresponding coset is

symmetric.
10Here, U -duality is referred to as the ‘continuous’ symmetries of [53, 54]. Their discrete versions are the

U -duality non-perturbative string theory symmetries introduced by Hull and Townsend [55].
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infinitesimal symplectic transformations which leave the BPS black hole entropy SBH (3.3)–

(3.4) invariant.

Let us choose A = −1. From (3.3)–(3.4), the infinitesimal invariance condition reads

δSBH =
1

2SBH
δS2

BH

=
1

2SBH

[(
−2f

p0
+
∂f

∂p0

)
δp0 +

∂f

∂pi
δpi +

∂f

∂q0
δq0 +

∂f

∂qi
δqi

]
= 0 , (3.10)

or equivalently

− 6fδp0 + p0δf = 0, (3.11)

where δf = ∂f
∂QδQ and

δQ =
(
δp0, δpi, δq0, δqi

)T
= SQ, (3.12)

with S belonging to the symplectic Lie algebra. It is an 8× 8 matrix which can be written

in blocks as

sp (8,R) 3 S =

(
A B

C D

)
, AT = −D , BT = B , CT = C , (3.13)

where each block is a 4× 4 matrix. Thus, S depends on ten real parameters.

By solving (3.11) for a BPS-supporting configuration with generic charges Q satisfying

f (Q) > 0 and p0 > 0, the symplectic embedding of the U -duality Lie algebra gnh-stu of the

nh-stu model into sp(8,R) is realized by the following four-dimensional, lower triangular

matrix subalgebra (cf. (3.9); a, b, c ∈ R, φ ∈ R+
0 )

Snh-stu(a, b, c, φ) =



−3φ 0 0 0 0 0 0 0

a −φ 0 0 0 0 0 0

b 0 −φ 0 0 0 0 0

c 0 0 −φ 0 0 0 0

0 0 0 0 3φ −a −b −c
0 0 c b 0 φ 0 0

0 c 0 a 0 0 φ 0

0 b a 2c 0 0 0 φ


∈ gnh-stu ⊂ sp(8,R) . (3.14)

For a generic A, this can be generalized as follows:

Snh-stu(a, b, c, φ;A) =



−3φ 0 0 0 0 0 0 0

a −φ 0 0 0 0 0 0

b 0 −φ 0 0 0 0 0

c 0 0 −φ 0 0 0 0

0 0 0 0 3φ −a −b −c
0 0 c b 0 φ 0 0

0 c 0 a 0 0 φ 0

0 b a −2Ac 0 0 0 φ


∈ gnh-stu ⊂ sp(8,R) . (3.15)

– 8 –
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It can be noticed that (3.15) (which reduces to (3.14) for A = −1) determines a maximal

Abelian subalgebra of sp(8,R), whose four generators commute. Moreover, the gener-

ators corresponding to a, b, c in (3.14) span an axionic Peccei-Quinn translational three-

dimensional algebra, nilpotent of degree four. Indeed, the part of (3.14) generated by a, b, c

can be recast in the following generic, d-parametrized form [57]

S =


0 0 0 0

aj 0 0 0

0 0 0 −ai

0 da,ij 0 0

 ⊂ sp(2n,R) , (3.16)

where (i = 1, . . . , n− 1)

da,ij := dijka
k , da,i := dijka

jak , da := dijka
iajak ,

a1 := 6a , a2 := 6b , a3 := 6c .
(3.17)

S in (3.16) can be easily checked to be nilpotent of degree four,11

S4 = 0⇒ exp (S) = I2n + S +
1

2
S2 +

1

3!
S3, (3.18)

yielding, at group level [58, 59],

exp (S) =


1 0 0 0

aj In−1 0 0

−1
6da −

1
2da,i 1 −ai

1
2da,j da,ij 0 In−1

 ⊂ Sp(2n,R) . (3.19)

Such an Abelian (n− 1)-dimensional global symmetry algebra/group, as discussed in [59]

(see also refs. therein, in particular [60]), characterizes every model of D = 4 supergravity

based on a cubic scalar geometry, even not of special Kähler type (i.e. the scalar geometries

of N = 4, 6 and 8 supergravity theories, dubbed ‘generalized d-geometries’ in [59]): the

representation of axions in D = 4 is always nilpotent of degree four.

Besides the (n− 1)-dimensional axionic Peccei-Quinn translational algebra, the uni-

versal sector of the electric-magnetic duality algebra of every (generalized) d-geometry (also

cf. [61]) is given by the 2n× 2n generalization of the φ-parametrized part of (3.15), where

φ can be thus regarded as the Kaluza-Klein radius/real dilaton of the Kaluza-Klein (KK)

soKK(1, 1),

K(φ) =


−3φ 0 0 0

0 −φIn−1 0 0

0 0 3φ 0

0 0 0 φIn−1

 ∈ soKK(1, 1) ⊂ sp(2n,R) . (3.20)

11Id denotes the d× d identity matrix throughout.

– 9 –
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Therefore, the 2n × 2n matrix realization of the universal sector of the global electric-

magnetic duality symmetry of an Einstein-Maxwell theory whose scalar manifold is en-

dowed with a ‘generalized d-geometry’ can be written at the Lie algebra level as [58, 59]

S(a) +K(φ) =


−3φ 0 0 0

aj −φδji 0 0

0 0 3φ −ai

0 da,ij 0 φδij

 ⊂ sp(2n,R) , (3.21)

and at the Lie group level as [58, 59]

exp(S(a)) exp(K(φ)) =


e−3φ 0 0 0

aj e−φδji 0 0

−1
6da −

1
2da,i e

3φ −ai
1
2da,j da,ij 0 eφδij

 ⊂ Sp(2n,R) . (3.22)

When considering N = 2, D = 4 theories, this result for special Kähler d-geometries was

known after12 [48].

Thus, in this sense, one can conclude that the nh-stu model has the smallest possi-

ble electric-magnetic duality algebra, consistent with its cubic nature (and thus with its

upliftability to N = 1, D = 5 supergravity).

3.2 Axion-free geometry

As stated above, in the present investigation we consider only the axion-free case, thus

parametrising the purely imaginary scalar fields as zi = −iλi, with λi real and positive

(i = 1, 2, 3); we are also choosing the projective coordinates as

X1

X0
= −iλ1 ,

X2

X0
= −iλ2 ,

X3

X0
= −iλ3 . (3.23)

Thus, the symplectic sections (2.1) become (Λ = 0, 1, 2, 3)

LΛ = eK/2
(
1,−iλ1,−iλ2,−iλ3

)T
,

MΛ = eK/2
(
−i
(
λ1λ2λ3 − A

3
(λ3)3

)
,−λ2λ3,−λ1λ3,−λ1λ2 +A(λ3)2

)T
,

(3.24)

while the Kähler potential reads

e−K = 8

(
λ1λ2λ3 − A

3
(λ3)3

)
. (3.25)

12In [59], (3.22) was shown also to pertain to the universal sector of axionic and KK coordinates in the

scalar manifolds of D = 4 theories based on ‘generalized d-geometries’ (for non-homogeneous N = 2 very

special Kähler geometries, the same parametrization provides a general description of the generic element

of the flat symplectic bundle over the vector multiplets’ scalar manifold [59, 60]).
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For vanishing axions, the special Kähler metric takes the form

gī =
1

4
(
λ1λ2λ3 − A

3 (λ3)3
)2


(λ2)2(λ3)2 A
3 (λ3)4 −2

3Aλ
2(λ3)3

A
3 (λ3)4 (λ1)2(λ3)2 −2

3Aλ
1(λ3)3

−2
3Aλ

2(λ3)3 −2
3Aλ

1(λ3)3 (λ1)2(λ2)2 + A2

3 (λ3)4

 .

(3.26)

The symplectic matrix NΛΣ has, in the axion-free case under consideration, vanishing real

part RΛΣ, while IΛΣ is given by

IΛΣ = −1

8
e−K

(
1 0

0 4gī

)
, (3.27)

which is thus consistently negative definite.

4 Dyonic Fayet-Iliopoulos gaugings and near-horizon analysis

To proceed further, we shall assume a specific form for the FI parameters G. The choice

GT = (0, g1, g2, g3, g0, 0, 0, 0)T , (4.1)

together with the vanishing axion condition (2.19), fixes the phase α in (2.18) to the

constant value13 α = ±π/2. This can be checked from the explicit expressions of the

symplectic invariants Z and L,

Z = ieK/2
(
p0

(
λ1λ2λ3 − A

3
λ3

)
− q1λ

1 − q2λ
2 − q3λ

3

)
,

L = eK/2
(
g0 + g1λ2λ3 + g2λ1λ3 + g3(λ1λ2 −A(λ3)2)

)
.

(4.2)

As can be inferred from the BPS equations (2.17), the choice (4.1) requires some charges

to vanish, so that the vector Q takes the form

QT = (p0, 0, 0, 0, 0, q1, q2, q3)T . (4.3)

With the choice (4.1), the scalar potential (2.6) becomes

Vg = −g2g3λ1 − g1g3λ2 −
(
g1g2 −A(g3)2

)
λ3

− g0

λ1λ2λ3 − A
3 (λ3)3

(
g2λ1λ3 + g1λ2λ3 + g3

(
λ1λ2 −A(λ3)2

))
, (4.4)

which matches the known expression for the stu model [10, 37, 47] for A = 0. In what

follows we shall assume that all gauge coupling constants g0, g
i are positive. Then the

potential (4.4) has two critical points, namely one for

λ1 =
g1

g3
λ3 , λ2 =

g2

g3
λ3 , λ3 =

√
g0g3

g1g2 − A
3 (g3)2

, (4.5)

13Another possible choice yielding the same constant value for α is GT = (g0, 0, 0, 0, 0, g1, g2, g3)T , which

would in turn require Q to assume the (magnetic) form QT = (0, p1, p2, p3, q0, 0, 0, 0)T .
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and the other for

λ1 =
g1

g3
λ3 , λ2 = − 1

g1g3

(
g1g2 − 2

3
A(g3)2

)
λ3 , λ3 =

√
g0g3

g1g2 − A
3 (g3)2

. (4.6)

The first has Vg = −3`−2, and the second Vg = −`−2, with ` defined in (6.2), so both

correspond to AdS vacua. One easily shows that (4.5) is also a critical point of the super-

potential (2.7), while (4.6) is not. The vacuum (4.5) is thus supersymmetric, whereas (4.6)

breaks supersymmetry. Moreover, reality and positivity of the scalars λi implies that the

second vacuum exists only in the range

3

2

g1g2

(g3)2
< A < 3

g1g2

(g3)2
, (4.7)

in particular it is not present for zero deformation parameter A.

Owing to the constancy of α, the equations of motion (2.17) boil down to

2e2ψ
(
e−UReV

)′
+ e2(ψ−U)ΩMG +Q = 0 ,

(eψ)′ = 2eψ−UReL .
(4.8)

The near-horizon geometry is required to be AdS2 × Σ, i.e., the metric functions in (2.8)

should take the form

eU =
r

R1
, eψ = r

R2

R1
, (4.9)

while the scalar fields zi(r) = −iλi(r) assume a constant value on the horizon. Under this

assumption, the BPS equations (4.8) simplify to

Q+R2
2ΩMG = −4Im

(
ZV
)
,

Z = i
R2

2

2R1
.

(4.10)

In addition, one has to impose the constraint (2.16).

Following the procedure described in [22],14 the BPS equations in the near-horizon

limit (4.10) provide a set of equations for the variables {R1, R2, λ
i} as functions of the

gaugings g0, g
i and the charges p0, qi.

In particular, since R2 is directly related to the black hole entropy S, this yields an

expression for S in terms of the gaugings and charges. In the model described above, the

attractor equations (4.10) are implicitly solved by

R4
2 dg,i +

1

3

(
κ+

1

2

)
p0qi =

1

36

(
d−1
λ

)ij
qj qi −

1

4

(
p0
)2
dλ,i ,

λi
(

1− κ

2

)
=

κ

p0

(
−R2

2 g
i +

1

6

(
d−1
λ

)ij
qj

)
,

R2
2

R1
=

(
p0e−

K
2

(
κ− 3

4

)
− 2 e

K
2 λjqj

)
,

R6
2 dg +

1

2
R2

2 p
0
(
p0g0 + κgiqi

)
=

1

216

(
d−1
λ

)k (
d−1
λ

)ij
qi qj qk

+
1

64
p0qi qj

((
d−1
λ

)j
λi + 2

(
d−1
λ

)ij)
+

1

8

(
p0
)2 (

λiqi + p0dλ
)
,

(4.11)

14The equations (4.11) are based on [22], with some misprints corrected.

– 12 –



J
H
E
P
0
9
(
2
0
1
5
)
2
0
5

where the contractions of the tensor dijk are defined as in (3.17). Note that the non-

homogeneity enters through (d−1
λ )ij , that depends on the special Kähler metric, since

gij = −2

3
dλ(d−1

λ )ij + 2λiλj ,

cf. eq. (A.6) of [22].

An explicit solution to (4.11) cannot be obtained by applying the analysis developed

in [22] for the case of symmetric special Kähler manifolds, because the model under con-

sideration is neither symmetric nor homogeneous.

5 The full black hole solution

The present section is devoted to the presentation of an exact black hole solution for the

nh-stu model introduced in section 3. In order to simplify the BPS equations (4.8), we

introduce the functions15

H0 =
e−U√

2

(
λ1λ2λ3 − A

3
(λ3)3

)− 1
2

,

H1 = λ2λ3H0 , H2 = λ1λ3H0 , H3 = (λ3)2H0 .

(5.1)

In terms of the latter, the equations (4.8) become

(H0)′ + 2g0(H0)2 = −e−2ψp0 ,

H ′11 H
2
1 +

2

3
Ag2H2

3 −
4

3
Ag3H1H3 = e−2ψq1 ,

H ′22 H
2
2 +

2

3
Ag1H2

3 −
4

3
Ag3H2H3 = e−2ψq2 ,

H ′3 + 2H3(g1H1 + g2H2)− 2g3

(
H1H2 +

A

3
H2

3

)
= e−2ψ H3

H1H2 +AH2
3

(q1H2 + q2H1 − q3H3) ,

ψ′ = g0H
0 + g1H1 + g2H2 + g3

(
H1H2

H3
−AH3

)
.

(5.2)

A remarkable feature of the nh-stu model is that, contrary to e.g. the case considered in [10],

the equations (5.2) cannot be decoupled, due to the nondiagonal terms in the metric (3.26).

Following the strategy of [10], we use the Ansatz

ψ = log
(
a r2 + c

)
,

H0 = e−ψ
(
α0r + β0

)
,

Hi = e−ψ (αir + βi) , i = 1, 2, 3 .

(5.3)

15A common choice for the functions Hi is to make them coincide with the components of the symplectic

sections. For the present situation, we preferred to choose H3 in a different way, in order to simplify the

structure of the equations.
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The solution for the fields is then expressed in terms of the functions H0, Hi by inverting

the relations (5.1). This yields

e2U =
1

2

(
H3

H0

) 1
2
(
H1H2 −

A

3
H2

3

)−1

, (5.4)

and

λ1 = H2

(
H3H

0
)− 1

2 , λ2 = H1

(
H3H

0
)− 1

2 , λ3 =

(
H3

H0

) 1
2

, (5.5)

for the warp factor and the scalars respectively. By means of the Ansatz (5.3), the differ-

ential equations (4.8) boil down to a system of algebraic conditions on the parameters and

the charges characterizing the solution, i.e., {α0, αi, β
0, βi, a, c, p

0, qi}. The set of equations

obtained in this way reduces, after some algebraic manipulations, to

α0 =
a

2g0
, α1 =

g2

g3
α3 , α2 =

g1

g3
α3 , α3 =

a g3

2
(
g1g2 − A

3 (g3)2
) ,

β1 =
g2

g3
β3 , β2 = −1

2
β3

(
g1

g3
−Ag

3

g2

)
− 1

2
β0 g0

g2
,

q1 = 2β2
3

g2

(g3)2

(
g1g2 − A

3

(
g3
)2)

+ g2 ac

2
(
g1g2 − A

3 (g3)2
) ,

q2 =
1

2g2

(
β0g0 + β3

g1g2

g3

)2

+ g1 ac

2
(
g1g2 − A

3 (g3)2
)

+
A

3
β3
g3

g2

(
β3
g1g2

g3
− β0g0 −

A

2
β3g

3

)
,

q3 =
g2

g3
q2 −A

g3

g2
q1 , p0 = − ac

2g0
− 2g0

(
β0
)2
.

(5.6)

The solution for the scalars is obtained by plugging the parameters written in (5.6) into

the expressions (5.5). In this way, the scalars assume the explicit form

λ1 =
a g1

g3

(
λ3
∞
)2
r − g0 β3

(
g1

g3 −A g3

g2

)
− β0 g2

0
g2√

(2g0 β0 + a r)
(

2g0 β3 + a r (λ3
∞)2

) ,

λ2 =
g2

g3
λ3 , λ3 = λ3

∞

√
ar + 2 g0

(λ3
∞)2 β3

ar + 2g0β0
,

(5.7)

where λ3
∞ is the asymptotic value of λ3,

λ3
∞ =

√
g0g3

g1g2 − A
3 (g3)2

. (5.8)
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The warp factor in the metric reads

e2U =
2g0g

3(ar2 + c)2

λ3
∞

(
ar − g0β0 − g0

(λ3
∞)2β3

)√
(ar + 2g0β0)

(
ar + 2g0

(λ3
∞)2β3

) . (5.9)

This solution represents a black hole, with a horizon at the largest zero of e2U , i.e., at

rh =
√
−c/a, where we assumed a > 0 and c < 0. The curvature invariants diverge where

the angular component of the metric e2ψ−2U vanishes. Note that all the scalar fields λi
should be well-defined and positive outside the horizon. Moreover, we still have to impose

the condition (2.16), i.e.,

g0p
0 − giqi = −κ (5.10)

on the solution (5.6). We checked that these requirements are compatible with any of the

three possible choices for κ = 0 ,±1, i.e., the horizon topology can be either spherical, flat

or hyperbolic.

The Dirac quantization condition (5.10) fixes one of the four parameters {a, c, β0, β3}
that determine the solution, for example c . Furthermore, one easily sees that the solution

enjoys the scaling symmetry

(t, r, θ, φ, a, c, β0, β3, κ) 7→ (t/s, sr, θ, φ, a/s, sc, β0, β3, κ) , s ∈ R , (5.11)

that can be used to set a = 1 without loss of generality. Consequently, there are only two

physical parameters left, on which the solution depends.

Notice that the solution (5.6) is characterized by the proportionality between the

scalars λ2 and λ3, as is evident from (5.7). However, it is worth stressing that this fact does

not trivialize our results, since the locus λ2 = g2

g3λ
3 in the scalar manifold does not yield a

consistent two-moduli truncation for the model (3.1). In other words, the Kähler geometry

that can be derived from the truncated model F
(
X1, X2, X3)

∣∣
λ2∝λ3 is not equivalent to

the two-dimensional one characterized by the prepotential

F =
X̃1
(
X3
)2

X0
, with X̃1 = X1 − A

3
X3 , (5.12)

which is homogeneous and symmetric (the so-called st2 model, cf. e.g. [62] and refs. therein).

This difference is evident, for example, in terms of the Kähler metric. In fact one has

g
(3)
ij dλ

idλj |λ2∝λ3 6= g
(2)
MNdλ

MdλN , i, j = 1, 2, 3 , M,N = 1, 2 , (5.13)

where the left-hand side is the line element obtained with the metric (3.26) when the

condition λ2 ∝ λ3 is imposed, while the right-hand side describes the geometry associated

to the prepotential (5.12).

We conclude this section with a comment on the behaviour of the solution for A = 0.

Due to the particular definition of H3 we have chosen (with respect to the more common

one used for example in [10, 12, 25]), setting A = 0 and λ2 = g2

g3λ
3 is not sufficient to match
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exactly the stu black hole solution with two independent parameters, known as st2 solution,

that can be derived from [10]. However, the parameters in (5.3) can be redefined as

α′3 =
α1α2

α3
− A

3
α3 , β′3 =

β1β2

β3
− A

3
β3 , (5.14)

in terms of which the solution (5.6) matches explicitly the known one when A = 0. This

redefinition of the parameters is a way to recover the choice for the functions that is usually

made when solving the BPS equations (2.17), whose analogue for the present case is

H ′3 =
(
λ1λ2 −A(λ3)2

)
H0 , or H ′3 = e−ψ(α′3r + β′3) . (5.15)

6 Physical discussion

In this section, we discuss some properties of our solution, like near-horizon limit, entropy

or area-product formula.

In the asymptotic limit r → ∞, the metric (5.9) becomes AdS4, i.e., at leading order

one has

ds2 → −r
2

`2
dt2 + `2

dr2

r2
+ r2dΩ2

κ , (6.1)

where we defined the asymptotic AdS4 curvature radius ` by

`2 =
λ3
∞

2g0g3
, (6.2)

and rescaled the coordinates according to t → `t, r → r/`. Notice that the asymptotic

value of the cosmological constant is

Λ = − 3

`2
= −6g0g

3

λ3
∞

. (6.3)

On the other hand, when r approaches the horizon rh, the functions U and ψ assume, after

shifting r → r + rh, the form (4.9), with R1 and R2 given by

R2
1 = −λ

3
∞f(rh)

8g0g3c
, R2

2 =
λ3
∞f(rh)

2g0g3
, (6.4)

where

f(rh) ≡
(
rh − g0β

0 − g0

(λ3
∞)2

β3

)√
(rh + 2g0β0)

(
rh +

2g0

(λ3
∞)2

β3

)
.

In this limit, the spacetime becomes AdS2 × Σ, with metric

ds2 = − r
2

R2
1

dt2 +
R2

1

r2
dr2 +R2

2dΩ2
κ . (6.5)

The Bekenstein-Hawking entropy is given by

SBH =
Ah

4
=
R2

2 vol(Σ)

4
. (6.6)
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This expression can be written in terms of the charges p0, qi and the gaugings g0, g
i only.

To this aim, the eqs. (5.6) need to be inverted, in order to use the charges p0, q1, q2 as

parameters. This result sustains the presence of the attractor mechanism also in the case

under consideration, which is a nontrivial statement, due to the non-homogeneity of the

model we have been discussing.

Finally, the product of the areas of all the horizons r = rI , I = 1, . . . , 4 (i.e., all the

roots of e2U ) assumes the remarkably simple form

4∏
I=1

A(rI) = − 36

Λ2

vol(Σ)4g2

g3
p0q1q̃

2
2 , (6.7)

where we defined

q̃2 ≡ q2 −
A

3

(
g3

g2

)2

q1 . (6.8)

Note that (6.7) depends only on the charges and the gauge parameters. Similar formulas

have been proven to be true in a number of examples (see for instance [18, 19, 24, 50, 63–

65]), a fact that calls for an underlying microscopic interpretation.

7 Conclusions

In this paper, we considered a non-homogeneous deformation of the stu model of N = 2,

D = 4 supergravity, and computed the symplectic embedding of the electric-magnetic

duality algebra. We then focused on a particular FI gauging of this model, that leads to

a scalar potential with two AdS critical points, a supersymmetric one, and another that

breaks supersymmetry and that exists only when the deformation parameter lies within a

specific range.

Exploiting the construction of this non-homogeneous deformation in string theory

(mentioned at the beginning of section 3), it would be interesting to investigate the origin

of the FI gauging in this context, also in relation to the A = 0 limit [66].

Furthermore, we wrote down the attractor equations for this model, and constructed

an explicit BPS black hole solution that interpolates between this attractor geometry and

the supersymmetric AdS vacuum at infinity. Various physical properties of this solution

were also discussed. In this context, it would be interesting to compute the mass of the

black hole, and to see how it depends on the deformation parameter A.

A natural question is whether there exist also black holes in this theory that asymp-

totically yield the non-BPS vacuum. Since the first-order flow equations (2.17) that we

used here are related to the existence of a Killing spinor [12], they cannot be used to ob-

tain such non-BPS solutions. A possible way out, that in principle even allows to construct

nonextremal black holes, would be to use the framework of the Hamilton-Jacobi formalism,

leading to first-order equations similar in spirit to those in (2.17).

It would also be interesting to investigate solutions of AdS4 BPS (and non-BPS) ex-

tremal black holes in N = 2, D = 4 FI-gauged supergravity coupled to hypermultiplets

whose quaternionic scalars span non-symmetric (or non-homogeneous) manifolds, along
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the lines of [67–69]. In presence of vector multiplets, a particularly interesting (self-mirror)

case consists in the nh-stu model coupled to four hypermultiplets, whose scalar manifold is

the non-homogeneous c-map image [70] of the non-homogeneous special Kähler manifold

of the nh-stu model itself.

Finally, non-Abelian gaugings of the vector multiplets’ sector (giving rise to the so-

called Einstein-Yang-Mills N = 2, D = 4 supergravity theories) are very little known,

especially in relation to the existence and properties of regular black hole solutions, of the

related attractor mechanism, and of supersymmetry-preserving features. It would be very

interesting to study such issues, e.g. along the lines of [71–74].

We hope to come back to these points in future publications.
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four-dimensional supergravity, JHEP 07 (2002) 010 [hep-th/0203206] [INSPIRE].

[58] S. Bellucci, S. Ferrara, A. Shcherbakov and A. Yeranyan, Attractors and first order formalism

in five dimensions revisited, Phys. Rev. D 83 (2011) 065003 [arXiv:1010.3516] [INSPIRE].

[59] A. Ceresole, S. Ferrara, A. Gnecchi and A. Marrani, d-geometries revisited, JHEP 02 (2013)

059 [arXiv:1210.5983] [INSPIRE].

[60] A. Strominger, Special geometry, Commun. Math. Phys. 133 (1990) 163 [INSPIRE].

[61] S. Bellucci, A. Marrani and R. Roychowdhury, Topics in cubic special geometry, J. Math.

Phys. 52 (2011) 082302 [arXiv:1011.0705] [INSPIRE].

[62] S. Bellucci, A. Marrani, E. Orazi and A. Shcherbakov, Attractors with vanishing central

charge, Phys. Lett. B 655 (2007) 185 [arXiv:0707.2730] [INSPIRE].
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