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CHAPTER  1 
 
 
 

Transition metal complexes  
as triplet emitters 

 
 
 
 
 
 

Abstract 
 
Interaction phenomena between UV-Vis light and molecules, in terms of 
absorption and emission of photons, are here briefly outlined. d6 transition 
metal complexes, especially Re(I), will be discussed in particular, focusing on 
electronic structure and transitions involved. 
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1.1 Photophysics: general considerations 
 
Electromagnetic radiation and matter can interact with each other in 

different ways, mostly depending on the energy of the involved 

photons. In a molecule, the energy of a photon is exploited to promote 

the electronic transitions, with the subsequent transfer of an electron 

from a bonding or non-bonding orbital to an antibonding orbital lying 

at higher energy. In this way, the electronic state of the molecule 

switches from the non-excited ground state to an excited, more 

energetic state. This electronic transition occurs only if the energy, ℎ", 

of the incident photon corresponds to the difference between the 

ground and the excited state (equation 1.1): 

 

# + ℎ" → #
*                           (eq. 1.1) 

 
It is important to note that the absorption of a photon is an ultrafast 

process (10-15 s) compared to any other process, nuclear motion 

included (Franck-Condon principle). Hence, the nuclei are considered 

to be in their ground state position after the generation of the excited 

state. 

 

An excited molecule, due to the higher energy and different electronic 

configuration compared to the ground state, shows different chemical 

and physical properties, such as different reactivity, geometry or 

dipole moment. Therefore, an excited molecule should be regarded as 

an unstable, different species from a non-excited counterpart. 

 

Many relaxation pathways to the ground state can be followed in 

competitive ways: 1) conversion, via heat production (non-radiative 

decay); 2) conversion, with emission of a photon (radiative decay), this 
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process being referred to as photoluminescence (PL); 3) 

transformation into other chemical species (photochemical reaction).[1] 

A simple method to portray the light-molecule interaction relies on a 

state energy diagram (figure 1.1) called “Jabłonski diagram”, that 

schematically describes all the possible photophysical processes, 

photon absorption, internal conversion (IC), fluorescence, intersystem 

crossing (ISC), phosphorescence and vibrational relaxation being the 

most common.  

 

Each state is usually labeled by its spin multiplicity and a number 

according to its relative energy. For example, S0, S1, S2... Sn represent 

singlet states of increasing energy and a total spin quantum number 

equal to zero. T1, T2, T3... Tn represent instead triplet states having total 

spin equal to one. Furthermore, vibrational levels are associated with 

each electronic state, thus actually considering transitions that lead to 

different vibronic states.  

 

Transitions within vibronic states can be due to radiative (straight 

lines) processes, leading to an emission of electromagnetic radiation or 

non-radiative (wavy lines) processes, leading to thermal alterations. 

Both theory and experimental evidence have proven that most of the 

photophysical phenomena originate from the lowest vibrational state 

of the first excited state of a species (Kasha’s rule) therefore, after an 

absorption process, a fast internal conversion followed by vibrational 

relaxation brings the species back to S1.  
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Figure 1.1 Jabłonski diagram. The main electronic transitions and 
corresponding rates are depicted. 
 
A set of selection rules (electronic, vibrational and spin) governs the 

probability of a transition. Those between identical spin multiplicity are 

allowed, therefore singlet-singlet and triplet-triplet processes are the 

most favored and give rise to intense bands in the absorption and 

emission spectra. The emission of a photon involving two singlet 

states, namely S1 � S0 transition (equation 1.2), is called fluorescence. 

  
1A*	→ 1A	+	ℎ"′ 

                          (eq. 1.2) 

 
On the other hand, the emission involving the triplet excited state (T1 

� S0, equation 1.3) is called phosphorescence and is generally spin-

forbidden and, thus, triplet states decay non-radiatively to the ground 

state.  

3A*	→ 1A	+	ℎ"′′ 
                         (eq. 1.3) 
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However, an interaction occurs between wavefunctions with different 

multiplicity via spin-orbit (SO) coupling (i.e. coupling between the 

orbital magnetic moment and the spin magnetic moment). The 

intensity of this coupling varies directly as the 4th power of the atomic 

number Z and the radiative rate constant kr for emitters from triplet 

states can be expressed as follows (equation 1.4):[2]  

 

,- 	≈ (012)
0

42 5 678 40 2

9:;
< 9<

= 	
><
<

9:
<5                         (eq. 1.4) 

 
in which 1fi and 3f1, and 1Ei and 3E1 are the wavefunctions and the 

energies, respectively, of the singlet manifold of excited states Si and 

of the lowest triplet excited state T1,  
1Fi is the oscillator strength of the 

singlet–singlet excitations, and HSO is the spin–orbit coupling operator. 

It follows that the magnitude of the radiative decay rate is governed 

by many factors: the singlet–triplet spin-orbit mixing, the transition 

moments of the mixed singlet transitions, the energy of the excited 

states, and the separation between triplet and singlet. 

 

In some cases, the spin-orbit coupling can be large enough to lead to 

efficient ISC from the lowest singlet excited state (S1) to the lowest 

triplet manifold state (T1). Furthermore, the same effect induces a 

mixing between singlet and triplet excited states, removing the spin-

forbidden nature of the T1 � S0 transition and resulting in 

phosphorescence emission. This effect is particularly evident for 

metals belonging to the 2nd and 3rd row of the transition metals block, 

especially for the d6 metal complexes such as Ru(II), Re(I) and Ir(III). 
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Another consequence of Kasha’s rule is that the aforementioned 

processes involving S1 and T1 are always competitive. The nature of the 

excited species, as well as the environmental and experimental 

conditions (temperature, media, concentration) determine whether 

fluorescence, phosphorescence or non-radiative decay dominate the 

deactivation pathway. The most important parameters to describe 

emitting excited states are the lifetime (t) and the emission quantum 

yield (fem). Since emission is kinetically a first-order process, the 

lifetime of an excited state can be considered as the time needed to 

reduce the concentration of an excited state by 1/e, or as the 

reciprocal of the summation of all the deactivation rate constants 

(equation 1.5): 

 

? = 	
2

A::
= 	

2

ABCDA:EDA:FEDAGH
                            (eq. 1.5) 

 
where kem is the sum of the rate constants of emission, kic	of internal 

conversion, kisc	of intersystem crossing and knr	of non-radiative decays. 

In general, the lifetime of a singlet excited state ranges from tens of 

picoseconds (10-12 s) to several nanoseconds (10-9 s), while lifetimes for 

triplets are usually much longer (microseconds to seconds) due to 

their forbidden nature. The emission quantum yield is the ratio 

between the number of emitted photons and the number of absorbed 

photons, and can also be expressed in terms of kinetic rate constants, 

as in equation 1.6: 

 

4IJ = 	
IJ5KKIL	MNOKOPQ

RSQO-SIL	MNOKOPQ
= 	

AH

AHDAGH
	⟹ 0 < 	4IJ ≤ 1             (eq. 1.6) 
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1.2 Luminescent transition metal complexes 
 
The photophysical properties of transition metal complexes exhibit 

interesting features due to the presence of a heavy metal atom, which 

induces a considerable degree of spin-orbit coupling to such an extent 

that spin-forbidden T1 � S0 electronic transitions are usually allowed. In 

contrast with organic molecules, the efficiency of the ISC in these 

complexes can be close to unity, providing emission only as 

phosphorescence in nature, even at room temperature (RT).  

 

A simplified method to describe the electronic structure of metal 

complexes is illustrated by the crystal field theory.[3] In this approach, 

ligands are treated as negative point charges generating an 

electrostatic field. In an octahedral complex, it results in a splitting of 

the five metal d orbitals (normally degenerate) into two sets because 

of their different spatial orientation which makes them not equivalent. 

One set consists of three equivalent orbitals labeled t2g, while the 

second one of two equivalent orbitals labeled eg (see figure 1.2). The eg 

orbitals point directly towards the ligands and lie higher in energy than 

the t2g orbitals, which point to the space between the ligands. The 

magnitude of the splitting between these two sets, generally denoted 

as D, and depends on the central metal ion and the strength of the 

involved ligands. Moreover, it increases with the principal quantum 

number along a row in the periodic table. It is also dependent on the 

field strength of the ligands, that can be ordered along the so called 

“spectrochemical series”.[ 4] Although the electronic structure of a 

complex must be treated as a single entity, it is convenient to divide 

the electrons into two separate sets, one mainly localized on the metal 

center and another mainly localized on the ligands.  



CHAPTER 1 | Transition metal complexes as triplet emitters 

 8 

 

Figure 1.2 General Molecular Orbital diagram for a metal complex with 
octahedral geometry. The main electronic transitions involved in the 
absorption processes are depicted.		

 
By using the Molecular Orbital (MO) theory, four types of electronic 

transitions are typically observed in an absorption process for 

octahedral metal complexes: 1) metal centered (MC) transitions 

between molecular orbitals localized on the metal; 2) ligand centered 

(LC) transitions, which involve electrons of the p orbitals located on 

the ligands; 3) ligand-to-metal charge transfer (LMCT) transitions, 

where the absorbed photon causes a movement of an electron from a 

ligand-centered orbital to an empty metal-centered orbital; 4) metal-

to-ligand charge transfer (MLCT) transitions, in which the electron 

moves from a metal centered molecular orbital to a p* orbital of the 

ligand. Singlet and triplet states labeled as MC, LC, LMCT and MLCT 

can be theoretically observed, but actually the nature of the metal and 

the ligands influences the relative energy of these states and only 

some of them actively participate to the photophysical deactivation 

processes stimulated by a photon.  
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Figure 1.3 Simplified Molecular Orbital diagram for two of the most important 
octahedral luminescent complexes, [Ir(ppy)3] and [Ru(bpy)3]

2+, showing the 
three main types of electronic transitions occurring at low energies. Ligand 
field splitting energy D is shown on the left side. LMCT transition not shown 
for clarity. 

 
Among coordination complexes, d6 metals show important differences 

in the electronic energy of the MC states, in particular for the lowest 

lying one. This state is not emissive, being strongly coupled to the 

ground state via non-radiative decay and/or ligand dissociation 

reactions. For metal ions belonging to the first row of the periodic 

table, such as Fe2+ (3d orbitals), the ligand field splitting D is so small 

that the lowest excited state for Fe2+-polyimine complexes, like 

[Fe(bpy)3]2+ (bpy = 2,2’-bipyridine), exhibits MC character.[5-6] For d6 

metal complexes with central atoms having small ionization potentials 

and strong field ligands with easily accessible empty p* orbitals, like 

[Ru(bpy)3]2+ or [Ir(ppy)3], the lowest excited state is normally assigned 

to a 3MLCT transition which, in the case of Ru2+ is only partially 

deactivated at RT by the 3MC state, giving rise to poorly emissive 
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complexes.[ 7 ] On the contrary, Mn+, Re+ and even more Ir3+ (5d 

orbitals) exhibit a very large D value and the 3MC level are pushed so 

high in energy compared to the emissive 3MLCT and 3LC levels, that 

usually do not affect the emission properties (figure 1.3). 

 

A careful choice of the employed ligands is crucial to increase the D 

splitting and to avoid parasitic radiationless deactivation channels 

involving the 3MC level. The extent of D splitting is also reflected in the 

emission quantum yields, usually higher for iridium than ruthenium 

complexes for the aforementioned reasons. This behavior is in 

agreement with the so-called energy gap law, which states that the 

rate constant of non-radiative transitions knr increases with decreasing 

of the energy gap (DE) between the emissive state and the ground 

state (equation 1.7): 

 

,P- = 	X	YZ[;\∆9                              (eq. 1.7) 
 
where a and b are constant. In other words, due to the increase of the 

non-radiative rate constant, the lower the energy of the emitted 

photon, the poorer the emission quantum yield of the complex. In the 

MO approximation, oxidation and reduction processes can be 

regarded as metal or ligand centered. For metal complexes endowed 

with strong field ligands, the highest-occupied molecular orbital 

(HOMO) is usually metal centered (in some cases with some 

contribution from the ligands), while the lowest-unoccupied molecular 

orbital (LUMO) is ligand centered. Therefore, from the spectroscopic 

point of view, the MLCT transition can be formally regarded as an 

oxidation of the metal ion and a reduction of the ligands in the excited 

state and the electrochemical properties are strictly related to the 

nature of the lowest excited state.  
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1.3 Dinuclear rhenium(I) complexes  
 
Tricarbonyl rhenium(I) complexes containing chelating diimine ligands, 

with general formula fac-[Re(CO)3(N-N)X]n+, (N–N = 1,10-

phenanthroline, phen, or 2,2’-bipyridine, bpy; X = anionic or neutral 

monodentate ligand, with n = 0 or 1, respectively) have been studied 

for a long time for their characteristic luminescence.[8]  

 

Thirty years have passed since the pioneer investigations in the field,[9] 

but there is still a vast interest towards the photochemical and 

photophysical properties of these complexes, justified by the many 

possible applications, such as photoredox chemistry,[ 10 ] chemi- or 

electrochemiluminescence,[ 11 ] chemical and biological sensing,[ 12 ] 

bioconjugation,[13] and use as phosphorescent dopants for organic 

light emitting devices (OLEDs).[14-15] The presence of a single electron-

acceptor diimine ligand excludes the normally occurring problem of 

the localization of the excited electron for polypyridine Ru(II) 

complexes,[ 16 ] and makes these complexes very interesting for 

fundamental photophysical studies too.[17]  

 

Like other d6 metal complexes, tricarbonyl rhenium diimine complexes 

exhibit metal-to-ligand d(p)(Re)�p*(N–N) charge transfer absorptions 

(MLCT), with relatively high molar absorptivity (ca. 104 cm-1 M-1). Most 

of these species display intense and unstructured emission in solution, 

centered at about 600 nm, that originates from MLCT excited states 

mainly of triplet character. Very high photoluminescence quantum 

yields (PLQY) have been reported for cationic species (up to 0.8),[18] 

but those of neutral species usually do not exceed 0.05.[8-9] This issue 

seriously limited the applications of Re(I) complexes in optoelectronics 

to date.  
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To obtain high quantum yield values the efficiency of the emissive 

processes (related to the radiative constant kr) must be maximized, 

while any other non-radiative deactivation process (related to knr) 

must be limited. Assuming a one-center description of the SO coupling 

operator, the coupling matrix elements increase with increasing d 

orbital participation in the MOs involved in the emission-responsible 

transition.[19] It follows that, limiting our attention to the SO coupling 

elements, equation 1.4 suggests that a feasible way to improve the 

emissive performances can be simply to link two heavy metal atoms to 

a single heterocyclic ligand, to further enhance the metal orbital 

character of the orbitals involved in the emissive process.  

 

Chart 1.1 Structures of the complexes reported in references [20, 21], in which 
two Re(CO)3 units are bound to the same chromophore and the ancillary 
ligands are terminally coordinated.  
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Using fac-Re(CO)3 units, only two different structures can be designed 

to realize this purpose. The anionic ancillary ligands can be 

coordinated end-on, resulting in the metal centers being connected 

through a bis-chelating ligand (such as a 2,2ʹ-bipyrimidine)[ 20 ] or 

through one or two chromophoric bidentate ligands, like a 4,4ʹ-

bipyridine,[21] giving rise to di- or tetranuclear (molecular rectangles) 

derivatives, as in chart 1.1. All of these species, however, have been 

proven to be rather poor emitters. In the other possible structure, the 

chromophore is bound to dinuclear “(CO)3Re(µ-X)2Re(CO)3” 

fragments, containing anionic ancillary bridging ligands (chart 1.2).  

 
 

Chart 1.2 Structures of the complexes reported in references [22, 23] in which 
two Re(CO)3 units are bound to the same chromophore and the ancillary 
ligands are in bridging coordination.  
 
The use as chromophores of linear bridging nitrogen heterocycles (e.g. 

1,4-diazine, 4,4ʹ-bipyridine or more conjugated systems) affords weakly 

emitting molecular rectangles,[22] while more flexible N–N exobidentate 

ligands, such as dipyridylpropane or dipyridylethane, form highly 

emitting dinuclear complexes with PLQY up to 0.48, using pyridyl-

benzoimidazolate as ancillary ligand.[23]  
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Other, although not flexible at all, N–N bidentate ligand is provided by 

1,2-diazines. The orientation of the nitrogen lone pairs in 1,2-diazine 

does not allow chelation on a single metal center, but it is perfectly 

compatible with bridging coordination between two metal centers. 

Moreover, the presence of two nitrogen atoms on the same aromatic 

ring makes diazines more electron poor than bipyridines.  

 

Therefore, our research group has, in the last years, prepared a vast 

series of tricarbonyl rhenium(I) complexes of general formula [Re2(µ-

X)2(CO)6(µ-diaz)] (diaz=1,2-diazine), in which a 1,2-diazine acts as a 

bridging ligand towards a dinuclear “Re2(µ-X)2(CO)6” core (chart 1.3), 

and X is either a halide (Cl, Br, and I),[24-26] a hydride,[27] or an ER- group 

(E = S, R = C6H5; E = O, R = H, CH3, C6H5, C6F5).[28] Upon optical 

excitation in the range 340–450 nm, most of these complexes show 

featureless emission in the range 550–710 nm in solution, arising from 

excited states that can be described as 3MLCT states.[29] 

 
Chart 1.3 A library of 1,2-diazine ligands and anions used, respectively, as 
chromophoric and ancillary ligands, in some of the [Re2(µ-X)2(CO)6(µ-diaz)] 
(diaz=1,2-diazine) complexes synthesized in our laboratories. 
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The energy, the intensity and the lifetime of the emission dramatically 

depends on the nature and the position of the diazine substituents, as 

well as on the nature of the ancillary ligands. For a series of dichloro 

derivatives, it was found[24] that the presence of substituents in the a 

position is detrimental for the emission properties, due to steric 

crowding with the CO ligands, while the effect of the substituents in 

the b positions is mainly related to their electron donor or acceptor 

character. In particular, it was observed that the introduction in the b 

positions of any alkyl group roughly doubled the PLQY and caused a 

blue shift of circa 25 nm, suggesting an additive effect of the 

substitution, both on the energy and on the intensity of the 

emission.[25] PLQY up to 0.53 have been measured in solution for the 

dichloro complexes containing diazines with two alkyl electron-donor 

groups and trimethylsilyl substituents in the two b positions.[25,26] This 

is the highest value ever reported in literature for neutral rhenium 

complexes.  

 

These photophysical properties, pretty outstanding if compared to 

those of neutral mononuclear tricarbonyl Re(I) emitters, can be 

ascribed to a strong reduction of the non-radiative deactivation rate 

constant (knr), which arises from a rigid “Re(µ-X)2Re” skeleton, further 

strengthened by the presence of the bridging ligand. An increase of 

the radiative constant (kr) occurs at the same time in these dinuclear 

complexes, since the linkage of two metal atoms to the same 

chromophore increases the contribution of the d orbitals in the frontier 

molecular orbitals, therefore enhancing the spin–orbit coupling 

between the emissive triplet state and the singlet manifold. However, 

the latter effect appears too small to account for the improved 

photophysical properties observed for the dinuclear species.[29] 
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1.4 Density functional theory 
 
A complete understanding of the structure and of the dynamics of 

electronic excited states is a fundamental goal of current 

spectroscopic, photo-physical/chemical and theoretical research. 

Pairing up experimental excited-state evidence with quantomechanical 

calculations provides a deeper insight into excited-state character, 

dynamics and relaxation pathways, more than experimental 

observations could do alone. Specifically, it is fundamental to deeply 

understand the redistribution of the electron density upon optical 

excitation and the subsequent structural changes of both the excited 

molecule and its surroundings. This aim might be a challenge for 

transition metal complexes for simultaneous different electronic states 

exist in a narrow energy range. Plus, intense spin-orbit coupling effect, 

long-range charge separation, strong interactions with the medium 

and very fast intersystem crossing complicate matters.  

 

Theoretical calculations may use the electronic wavefunction or the 

electron density as the basic variable, leading to ab initio or density 

functional (DFT) or time dependent (TD-DFT) techniques, 

respectively.[ 30 - 31 ] Thus, vertical transitions are calculated, well 

reproducing absorption spectra. In addition to transition energies, 

oscillator strengths and symmetries, that are directly provided by TD-

DFT calculations, a physical insight into the characters of electronic 

transitions and excited states is also needed. Their quantitative nature 

is described by the changes in the electron density distribution relative 

to the ground-state. This leads to usual categories like Ligand Field 

(LF), Metal-to-Ligand Charge-Transfer (MLCT), Ligand-to-Ligand 

Charge-Transfer (LLCT) and so on.  
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This fundamental part of the work has been developed in collaboration 

with Dr. Pierluigi Mercandelli of this University. However, during the 

last year of this thesis he has been seriously ill, hampering the 

complete theoretical characterization of the complexes. For this 

reason, in some chapters, the reported data are preliminary and the 

discussion is quite brief. 
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CHAPTER  2 
 
 
 

Energy solutions for a better future:  
photovoltaics 

 
 
 
 
 

Abstract 
 
The current situation of the photovoltaic energy market is briefly reported. 
Crystalline silicon photovoltaics lead the way to the development on the TW 
scale around the world, but thin film inorganic semiconductors (CIGS, CZTS, 
CdTe, GaAs) and some emerging PV (DSSC-SSD, OPV) are rapidly growing. A 
brief insight on the role of the transition metal complexes in the latter is also 
given. 
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2.1 Of photons and men 
 
Energy is definitely the most important resource for mankind, and 

sunlight is without any doubt the ultimate energy source.[ 1 ] It is 

abundant (174 PW received at the Earth’s upper atmosphere), 

inexhaustible on the human timescale (the sun, as main-sequence G2V 

star, will eventually collapse into red giant and white dwarf not before 

4 billion years) and well distributed over the planet.[2] The rate of 

human energy consumption (17.2 TW in 2014) is about four orders of 

magnitude smaller than the solar energy irradiated on the surface of 

our planet (8.9 x 104 TW, time-and-space-averaged solar flux).  

 

Solar energy is more useful for mankind when converted into the final 

usable forms: heat, electricity, and fuels. Conversion of solar energy 

into heat is straightforward, but conversion of solar energy into 

electricity or fuel poses several problems. [2] The conversion of sunlight 

into electricity and fuels can only be achieved by threshold-based 

processes, strongly limiting the conversion efficiency.  

 

Since we cannot modify the solar spectrum, we need to find materials 

capable of exploiting sunlight through the threshold mechanism with 

the highest possible efficiency. Taking into account the average 

spectral distribution of solar energy, the most favorable threshold is 

about 885 nm (1.4 eV) which, in principle, allows 33 % of energy 

conversion efficiency.[3] The materials used for solar energy conversion 

should also be reasonably cheap and abundant on the earth’s crust, 

with low environmental impact throughout their entire life cycle, and 

also stable for many years under irradiation. Another issue with solar 

energy is the intermittency (day/night cycles) and the intensity 

fluctuations of the radiation.  
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Therefore, in the case of solar energy conversion into electricity, 

storage components are often required as an integral part of the 

system. Any kind of storage option needs appropriate materials. The 

most common option for storing electricity is based on the reversible 

conversion into chemical energy by batteries or by electrochemical 

water splitting coupled with fuel cells. Finally, sunlight is dilute: the 

average solar power striking the earth’s surface annually is about 170 

W/m2.[2] As mentioned above, only a fraction of this power can be 

converted into fuel or electricity. In practice, solar renewable energies 

have average annual power densities ranging between 5–20 W/m2 (PV 

panels) and < 1 W/m2 (biomass).[4]  

 

Power densities of final energy uses in modern societies range 

between 10-70 W/m2 for houses and low-energy intensity 

manufacturing buildings. Supermarkets or office buildings use 20–100 

W/m2, energy intensive industrial activities require 300–900 W/m2 

instead, and finally high-rise buildings may need up to a few thousands 

W/m2.[4-5] These numbers clearly show that it is very easy to power a 

house with the sunlight intercepted by its roof, if covered with 

photovoltaic (PV) modules, but this will hardly be possible for a 

refinery or a skyscraper. Summing up, the amount of energy we can 

actually generate from the average solar power depends on our 

capacity of developing the conversion and storage devices we need 

with the materials we have on our planet. In the present epoch, 

Anthropocene,[6] mankind has apparently become more powerful than 

nature,[ 7 ] nevertheless we must recognize that our will to solve 

problems is hampered by practical limitations in the chemical 

composition of our planet. In the end, the limiting reactants in the 

exploitation of sunlight for social use are not photons, but atoms.[8]  
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2.2 Solar electricity 
 
In the last five years, the photovoltaic systems worldwide have 

undergone substantial development in terms of manufacturing 

distribution (largely shifted from Europe to Asia), global deployment, 

and even new photoactive materials[9] which are very promising but, 

at present, remain at the laboratory research stage.  

 

Figure 2.1 National Renewable Energy Laboratory (NREL) chart of the record 
efficiencies for all the types of solar cell (certified, research scale).  
 

PV technology exhibits a series of remarkable features. It can be 

scaled quite easily up to the GW scale, both on-grid and off-grid, 

without affecting the efficiency and the economic performance (fossil 

fuels or nuclear plants have an optimal operational size; below or 

above that, they under-perform). It represents an up-front, one-time 

investment repaid by decades of electricity produced by a free 

primary source.
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There are basically no moving parts in PV modules, this means 

negligible wear and very low maintenance cost. Also, installation is 

possible on already existing platforms, like roofs or walls, with no 

further land consumption. Last, but not least, PV technology allows to 

provide electricity to off-grid rural or isolated areas and communities, 

improving by far life quality in underdeveloped regions. Over 90% of 

today commercial solar cells are still based on the very same material 

and basic concepts developed in the 50’s at the Bell Laboratories: 

light-induced charge separation at a p–n junction between two wafers 

of p- and n-doped silicon in either single-crystal or polycrystalline form 

(sc-Si and poly-Si, respectively), as shown in figure 2.2.  

 
 
Figure 2.2 Left: band diagram for a generic p-n junction. Right: working 
diagram of a crystalline silicon solar cell. 
 

The global share of Si PV has increased from 80% in 2009 to over 90% 

in 2014, because the main competitors, the so-called “2nd generation 

solar cells”, thin film technologies like cadmium telluride (CdTe), 

copper-gallium-indium selenide (CIGS), and amorphous silicon (a-Si) 

have grown at a much lower rate.[9]  
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Since 2010, the world has added more PV capacity than in the 

previous 40 years. Such a massive expansion has been primarily driven 

by China, as a result of a strategic decision to make huge investments 

in production capacity rather than to lower labor cost (PV production 

is highly automated),[10-11] In fact, China accounts now for over 70% of 

the global Si PV output.[9] 

 

The success of crystalline silicon technologies is based on a series of 

peculiar advantages that, even in the future, will be hardly rivaled by 

new PV concepts. The technology is over 60-years old and well-

established: the lifetime of the modules is in the decade time scale, the 

efficiency of light-to-electricity conversion, in the range 15–22%, is 

comparable or greater than other successful devices that have 

conquered the world, like cars. Key materials (copper, silver, aluminum, 

plastics, silicon) are abundant and non-toxic; their recycling is easy and 

liable to further improvements within the first massive wave of re- 

placements (not expected anyway before another 20 years).[12]  

 

Also, silicon PV production will reach the TW scale within ten years, a 

landmark goal for future dominance not only in the PV, but in the 

entire electricity market. These deployment targets are not unrealistic 

at all. Considering that the 2010 IEA PV roadmap had forecasted a 

cumulative capacity of 210 GW by 2020, a target that has actually 

been reached in 2015. In 2020 the global capacity is now estimated to 

exceed 450 GW.[9] The energy return on investment, EROI, (equations 

2.1 and 2.2) of PV technology has been object of intense debate.[13-14]  
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The most recent global literature assessment concludes that the EROI 

of PV systems on the market (both modules and accessories) is quite 

positive: 8.7 (sc-Si), 11.6 (poly-Si), 14.5 (a-Si), 19.9 (CIGS), 34.2 (CdTe), 

under the assumption of a 30-year system lifetime.[15]  

 

!"#$	 = 	 !'()
!*+

                     (eq. 2.1) 

 

+,)	,+,-./	 = !'() − !*+ 	= 	!'() 1 − 1
!"#$

            (eq. 2.2) 

 
The energy payback time (EPBT) is the period required for an energy 

production system to generate the same amount of energy that was 

used to make it. This parameter is related to EROI by equation 2.3:  

 

!234	 = 	 5*6,)*7,
!"#$

                             (eq. 2.3) 

 
In the same study mentioned above, EPBT turns out to be 4.1 (sc-Si), 

3.1 (poly-Si), 2.3 (a-Si), 1.7 (CIGS) and 1.0 (CdTe) years,[15] remarkable 

values for devices that can operate easily for 30 years. Recently it has 

been assessed that the PV industry is a net energy producer since 

2012 and, by 2020, it will completely pay back all the energy needed 

for its early growth.[16]  

 

Furthermore, the cost of PV installations is fully affordable to medium-

income people in wealthy countries.[2] Concerns that a vast 

deployment of PV panels may substantially downsize agricultural land 

or even affect the earth’s albedo to such an extent to modify the 

global climate are completely unjustified.[17 -18] Instead, a very important 

issue is the availability of materials to enable PV deployment on the 

multi-TW scale.  
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In this regard, silicon photovoltaics turn out to be largely superior to 

inorganic semiconductor thin-film technologies. Silicon is the second 

most abundant and uniformly distributed element on the earth’s crust 

and there is no risk of shortage in any foreseeable future. Even in the 

imaginary hypothesis that c-Si PV technologies provided 100% of the 

world’s electricity supply by 2030, the required silicon production 

growth rate would fall within the historical range recorded over the 

last four decades.[ 19 ] Even silver, which is required for electrical 

contacts and is considered the most critical material in silicon PV 

panels,[20] does not need to exceed the historical production rate in a 

scenario of 80% PV electricity production share by 2030.[19]  

 

By contrast, In, Ga, Se, Te, and Cd exhibit a way smaller crustal 

abundance and, accordingly, they are collected only as byproducts of 

minerals containing mostly other elements (Cu, Zn, and Al).[21] Even 

assuming that thin-film technologies covered 8% of the global 

electricity demand in 2030, In, Te, and Se would need to largely 

exceed the historical production trends; thus requiring a massive, and 

rather unlikely, extraction boost. For In and Te in particular, the 

material requirements for the 8% target would equalize, or even 

overcome, the estimated global reserves.[19] Therefore, only new 

formulations based on more abundant elements,[22] like copper-zinc-tin 

sulfide (CZTS) could make thin-film inorganic materials actual 

competitors to silicon-based technologies in a TW scale PV market. 
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2.2.1 Solar cell parameters 

 

Figure 2.3 General I-V (red) and P-V (blue) curve for any photovoltaic cell, 
module or array. 
 

The efficiency h, or power conversion efficiency PCE, of a solar cell is 

determined as the fraction of incident power which is converted to 

electricity and is defined as (equation 2.4):  

 

8

	

= 	 9#:	;<:	==
2*+

               (eq. 2.4) 

 
where Pin is the power density of the incident light, usually fixed at 100 

mW/cm2 under an air mass (AM) of 1.5G. VOC is the open-circuit photo-

voltage:  

9#: =
+>4
?
	@A($C

$D
+ 1)                 (eq 2.5) 

 
the maximum voltage available from a solar cell, occurring at zero 

current.  
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The open-circuit voltage corresponds to the amount of forward bias 

on the solar cell due to the bias of the solar cell junction with the light-

generated current. The above equation, where kT/q is the thermal 

voltage and n is the ideality factor, shows that VOC depends on the 

dark saturation current I0 of the solar cell and the light-generated 

current IL. The dark saturation current I0 depends on recombination in 

the solar cell. Open-circuit voltage is then a measure of the amount of 

recombination events in the device.  

 

ISC is the short-circuit photocurrent: 

 

$<: = 	?G	(C+ + CH)     (eq. 2.6) 

 

the current passing through the solar cell when the voltage is zero 

(short circuited). G is the generation rate, Ln and Lp are the electron 

and hole diffusion lengths, respectively. To remove the dependence of 

the solar cell area, it is more common to list the short-circuit current 

density JSC (in mA/cm2). The short-circuit current is due to the 

generation and collection of light-generated carriers. For an ideal solar 

cell at most moderate resistive loss mechanisms, the short-circuit 

current and the light-generated current are identical. Therefore, the 

short-circuit current is the largest current which may be drawn from 

the solar cell.  

 

FF is the fill factor:  

 

 == = 	 9#:I	J	5+ 9#:KD.MN 	
9#:IK1

                          (eq. 2.7) 

 

where                           9#:I = ?
+>4

9#:   
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ISC and VOC are the maximum current and voltage from a solar cell. 

However, at both operating points, the power from the solar cell is 

zero. The fill factor FF, is a parameter which, in conjunction with VOC 

and JSC, determines the maximum power from a solar cell. The FF is 

defined as the ratio between the maximum power from the solar cell 

and the product of VOC and JSC. Graphically, the FF is a measure of the 

"squareness" of the solar cell and is also the area of the largest 

rectangle which will fit in the JV curve. A key limitation in the 

equations described above is that they represent a maximum possible 

FF, although in practice the FF will be lower due to the presence of 

parasitic resistive losses. Therefore, the FF is most commonly 

determined from measurement of the IV curve and is defined as the 

maximum power divided by the product of ISC and VOC. 

 

== = 	 9O2	$O2	
9#:	$<:

                        (eq. 2.8) 

 

The ratio of the number of extracted charge carriers to the number of 

absorbed photons in the active layer is named external quantum 

efficiency (EQE) or incident photon to current efficiency (IPCE): 

 

$2:! = 	 ;<:
2*+P

QR
,

                      (eq. 2.9) 

 

where h, c, and e are Planck’s constant, the speed of light and the 

elementary charge, respectively. IPCE is the product of all the 

efficiencies in the energy transfer processes: 

 

$2:! = 	STUV	SW*66	S)R	S)-	SRR                    (eq. 2.10) 
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where habs is the photon absorption efficiency (number of excitons 

generated per number of incident photons), hdiff is the diffusion 

efficiency of the charge carrier (number of excitons diffusing per 

number of exactions generated), htc is the efficiency of the charge-

carrier separation (number of dissociated excitons per number of 

excitons at the interface), htr is the charge transport efficiency and hcc 

is the charge collection efficiency. The product of the last four 

parameters defines the internal quantum efficiency (IQE). Therefore: 

 

!X! =	STUV	$X!         (eq. 2.11) 

 

IQE is a key factor that determines the quality of a PV cell. It provides 

a qualitative assessment of the ability of a solar cell to separate 

excitons into free charges and to collect them at the two electrodes.  
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2.3 Dye-sensitized solar cells (DSSC) 
 
The third wave of PV technologies entering the market should be 

based on DSSC and organic photovoltaics (OPV). Expectations for 

their market debut have been high for years,[23-25]
 

but so far they have 

materialized only to a very small extent. At present, the market share 

of these two technologies is still virtually zero, despite a few flagship 

demonstration projects, which support technical feasibility.[26-27]  

 

Compared to the established technologies discussed in the previous 

section, DSSC and OPV can offer easier building integration, in 

windows and facades, good performances also under non-standard 

illumination and temperature conditions, lower requirements in terms 

of quantity and quality of raw materials. They can be manufactured at 

smaller economic and energetic costs, and their energy payback times 

are estimated to be shorter than conventional thin-film 

technologies.[ 28 - 29 ]
 

Nonetheless, they are still not competitive on 

efficiency and lifetime, which constitutes a formidable barrier for 

widespread market diffusion.  

 

The DSSC is an electrochemical device that relies on the sensitization 

of a wide band gap n-type semiconductor (usually TiO2) by a light-

harvesting molecule or particle to generate electricity from incident 

sunlight.[ 30 ] A key feature of the DSSC concept differing from 

conventional photovoltaics is that light absorption, and electron and 

hole transport are carried out by different components (dye, semi- 

conductor, electrodes, redox mediator), hence the degrees of freedom 

to optimize the device are, in principle, higher.  
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A conventional DSSC device consists of a ca. 10 µm thick mesoporous 

layer of sintered anatase TiO2 nanoparticles (diameter 	20 nm) on a 

glass substrate with a transparent conductive oxide layer, usually FTO 

(Fluorine-doped Indium Tin Oxide). An additional light-scattering layer 

of TiO2 nanoparticles with diameter of 400 nm is also applied in many 

cases.[31] The TiO2 film is then covered with a monolayer of light-

harvesting dye molecules. The high surface area of the mesoporous 

film is critical to device performance because it enables a high 

concentration of dye molecules for efficient light absorption. A 

thermoplastic spacer separating the TiO2 anode from a counter-

electrode (a thin layer of Pt or C on a conductive substrate) 

encapsulates an electrolyte solution that is introduced through holes in 

the counter-electrode itself.  

 

The excitation and charge separation processes in high performance 

DSSCs, depicted in figure 2.4, rely on a series of kinetically controlled 

processes that are reminiscent of the electron-transfer events that 

occur within the photosynthetic apparatus. The first step in the 

scheme is the absorption of a photon by the dye molecule, resulting in 

the population of its own excited state. An appropriate geometry and 

thermodynamic position of this excited state will ideally favor the 

injection of this photo-excited electron into the nanocrystalline TiO2 

semiconductor over radiative and non-radiative decay processes back 

to the ground state. The rate of electron-transfer through the 

semiconducting layer to the collecting glass electrode occurs at a rate 

that is considered ultrafast compared to the reaction with the redox-

active electrolyte species or photo-oxidized dyes. Electrons that are 

collected at the glass electrode pass through an external load to carry 

out useful electrical work.  
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The closure of the circuit is achieved when the electron is shuttled 

back to the photo-oxidized dye by an electrolyte species (usually I-, 

but also Co2+) that is generated at the platinized counter-electrode. A 

strategy to enhance VOC involves the increase of the separation 

between the Fermi level EF  of the TiO2 and the redox couple of the 

electrolyte species. These modifications can, however, lead to other 

drawbacks that compromise performance, particularly JSC. For 

example, increasing the EF may reduce the rate of electronic injection, 

whereas varying the electrolyte composition may adversely affect dye 

regeneration and electrolyte diffusion characteristics. A higher JSC can 

be achieved by the chromophore absorbing the majority of incident 

photons at wavelengths shorter than 	900 nm while maintaining 

efficient rates of injection and regeneration. 

 
 

Figure 2.4 Working principle of a dye-sensitized solar cell.  
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Several types of organic and inorganic dyes are now available, as well 

as solid-state devices, including the redox mediator, as a result of a 

massive research effort throughout 25 years.[32-33] Despite the marked 

increase in the understanding of the DSSCs, numerous challenges 

remain related to cell/module performance and stability that need to 

be addressed before this technology can be deployed on a large scale. 

For example, the 10% benchmark for DSSC performance was first 

reached in 1993,[34] but the current DSSC exemplars display only 

nominally higher values (12%).[35]
 

The latest certified record efficiency 

reported, under AM 1.5 irradiation at 25°C, is 11.9 ± 0.4% (1 cm2 per 

cell).[36] The record sub-module efficiency is 8.8 ± 0.3%, with a surface 

of almost 400 cm2 (26 serial cells).[36] The theoretical Shockley–

Queisser limit for DSSCs is 20% (band gap 1.31 eV),[37] a target still far 

away in light of the slow efficiency progress of this technology.[38]  

 

This incremental improvement in device performance is largely due to 

the fact that the state-of-the-art devices contain essentially the same 

main components as the seminal DSSC device: a mesoporous anatase 

TiO2 layer covered by a molecular sensitizer that is regenerated by an 

electrolyte solution containing a redox couple (usually I3-/I-, or 

Co2+/Co3+) and additives. Although a vast array of strategies have 

been explored to replace the mesoporous TiO2 layer with other 

materials and geometries[39-41] and perhaps, more importantly from a 

commercialization prospect, the corrosive iodide-based electrolyte,[42-

43] the lack of robust molecular sensitizers capable of sensitizing TiO2 

efficiently out towards 900 nm remains a major impediment to 

commercial viability[44-46]. In other words, DSSCs have not reached yet 

a level of maturity that enables actual competition with the established 

CdTe and CIGS technologies.  
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Low yields on large surfaces and stability problems are not only 

related to individual materials and components, but also to the way 

they interact in the cell structure. 

 

2.4 Organic photovoltaics (OPV) 
 
Organic photovoltaic (OPV) systems are based on photoactive p-

conjugated polymers and small molecules; their working principle is 

schematically depicted in figure 2.6.[47-48] In 1992, Sariciftci et al.[49] 

demonstrated that photoexcitation of a mixture of a conjugated 

polymer and fullerene (C60) resulted in an ultrafast, highly efficient 

photoinduced electron transfer. Later on, Yu et al. and Halls et al.[50]  

created the ‘‘bulk hetero-junction’’ (BHJ) concept, which is one of the 

best OPV device architectures so far.  

 
Figure 2.6 Working principle of an OPV system. 

 
The bilayer hetero-junction and the BHJ OPV structures are shown in 

figure 2.7. In the two devices, the photoactive layers are sandwiched 

between an anode with high work function, typically a transparent 

indium tin oxide (ITO) layer, and a relatively low work function metal 
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cathode, such as Al. Compared to the bilayer hetero-junction, in which 

the donor material sticks to the anode and the acceptor material sticks 

to the cathode, the BHJ architecture significantly increases the D/A 

interfacial area, leading to enhanced efficiency of the OPV devices.[51] 

Actually, the BHJ is a blend of continuous and interpenetrating donor 

and acceptor components in a bulk volume. Such a nanoscale network 

exhibits a D/A phase separation in a 5–20 nm length scale, a lesser 

distance than the exciton diffusion length. 

 

Figure 2.7 Schematic representation of an organic photovoltaic cell with a) 
bilayer and b) bulk heterojunction morphology.  

 

Two or even more OPV cells can be stacked on top of each other to 

form a tandem OPV structure, which enables one to resolve two 

limiting factors existing intrinsically among organic semiconductor 

molecules, that is, poor charge carrier mobility and a narrow light 

absorption range. The photoactive materials, including polymeric and 

small molecular semiconductors, play a key role in influencing physical 

processes involved in energy conversion, which in turn determine the 

electrical characteristics of the solar cell. OPVs based on a p-type 

conjugated polymer as a donor and a fullerene derivative, [6,6]-

phenyl-C61 (or C71)-butyric acid methyl ester (PC61BM or PC71BM), as an 

acceptor have been rapidly developing, and showed the highest PCE 

so far.  
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On the other hand, small molecular semiconductors for OPVs have 

attracted considerable attention, owing to their advantages over their 

polymer counterparts, which include well-defined molecular structure, 

definite molecular weight, and high purity without batch-to-batch 

variations.[52] An increasing number of papers on OPVs based on small 

molecules has been published to date, and the PCEs of devices based 

on small molecule donors and fullerene acceptors fabricated by 

vacuum deposition or solution processing are both in excess of 6%.[53-

56 ] As for small molecule acceptors, compared to the fullerene 

derivatives such as PC61BM and PC71BM, the development of non-

fullerene small molecular acceptors has been lagged with relatively low 

performance. The chemical nature of these materials and the simple 

device architecture may result in light weight, solution processable and 

flexible devices.  

 

OPV systems are mostly based on abundant elements and low cost 

materials, can be produced at high manufacturing throughput, and 

allow easy recycling of precious embedded materials, if necessary.[57] 

In principle, these are valuable advantages in terms of application 

prospects and market diffusion. The latest certified record efficiency of 

OPV is 11.0 ± 0.3%. (1 cm2 per cell), whereas a minimodule of 26 cm2 

affords 9.7 ± 0.3%.[36] Further efficiency progress is expected to come 

primarily from the optimization of the microstructure and morphology 

of the active layer to enhance charge mobility, so as to create rational 

and reproducible fabrication protocols.[58-59] However, a major issue of 

OPVs is stability,[60] for it is a colossal challenge to prevent chemical 

and photochemical degradation of organic molecules exposed to 

many years of intense light irradiation and very high temperatures, 

under increasing risk of oxygen and humidity contamination over time. 
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2.5 Aims and objectives of the present work 
 
In this Ph.D. thesis attention was focused on dinuclear Re and Mn 

complexes able to operate as active materials in optoelectronic 

applications, such as dye-sensitized solar cells, organic photovoltaics 

devices (Re), and electrocatalytic reduction of CO2 or hydrogen 

generation (Mn). Indeed, considering the state-of-the-art of the 

knowledge about the dinuclear rhenium complexes containing 1,2-

diazine ligands developed in our research group, starting from the 

pioneering studies on the halide derivatives[61] and their application as 

dopants in OLED devices[62] and as dyes for bio-imaging[63],we have 

tried here to extend and tune the properties of these complexes, 

potentially widening their application in various sub-fields of 

optoelectronics. Therefore, starting from complexes with general 

formula [M2(μ-X)(μ-Y)(CO)6(μ-R-diazine)] (M = Re, Mn), being X and Y 

two anionic bridging ligands, we have carried out tailored syntheses 

with joint experimental and theoretical studies to gain a deeper insight 

into the electronic processes involved in these classes of compounds. 

The spectroscopic and/or catalytic properties of the new complexes 

have been modulated by varying the substituents on the diazine 

ligand, as well as the ancillary ligands, thus modulating the LUMO and 

HOMO energy level, respectively.  

This thesis is basically divided in four main sections:  

1) New class of Re complexes with low energy-gap (chapter 7) 

and/or long-lived excited states as triplet photosensitizer for 

triplet-triplet annihilation (TTA) upconversion (chapter 4).  

2) New class of hydrido-carboxylato Re complexes and 

applications in DSSC solar cells (chapter 5). 

3) New low-band gap metallo-copolymers based on Re complexes 

as donors in bulk-heterojunction solar cells (chapter 6). 
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4) New polynuclear Mn complexes containing diazine ligands 

(chapter 8). 

It is clear that this thesis is the result of a highly multidisciplinary and 

collaborative research work. We have collaborated with various 

research groups both in Italy and Europe: 

 

The electrochemical characterization has been carried out in 

collaboration with Prof. Patrizia Mussini (Dipartimento di Chimica, 

Università degli Studi di Milano, Milano, Italy). The theoretical 

calculation and the molecules’ design, together with the solid state 

analysis of the complexes, have been performed by Dr. Pierluigi 

Mercandelli of the same department.  

 

The test concerning the TTA upconversion (chapter 4) has been 

performed in collaboration with Prof. Paola Ceroni (Dipartimento di 

Chimica, Alma Mater Studiorum - Università di Bologna, Bologna, 

Italy). A preliminary photophysical characterization was previously 

carried out by Dr. Matteo Mauro and Prof. Luisa De Cola (Institut de 

Science et d'Ingénierie Supramoléculaires (ISIS), Strasbourg, France).  

 

Two different research groups have been involved in the fabrication of 

DSSC devices (chapter 5): preliminary tests were performed by Dr. 

Francesca De Rossi and Prof. Thomas M. Brown (Center for Hybrid and 

Organic Solar Energy - CHOSE, Rome, Italy), while the optimization of 

the cells and a second series of tests has been carried out in 

collaboration with Dr. Kazuteru Nonomura and Prof. Anders Hagfeldt 

(Laboratory of Photomolecular Science (LSPM), École Polytechnique 

Fédérale de Lausanne (EPFL), Lausanne, Switzerland).  
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Dr. Stefania Zappia and Dr. Silvia Destri have been involved in the 

synthesis and the characterization of the metallo-copolymers (chapter 

6) (Istituto per lo Studio delle Macromolecole, Consiglio Nazionale 

delle Ricerche (ISMAC-CNR), Milan, Italy). 
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CHAPTER  3 
 
 
 

Experimental techniques 
 
 
 
 
 
 

Abstract 
 
The experimental methods used throughout this thesis work are described. 
These techniques involve steady-state and time-resolved absorption and 
emission spectroscopy, electrochemical analyses such as cyclic voltammetry 
and electrochemical impedance spectroscopy. Plus, a concise description of 
the fabrication and characterization of different types of solar cells (DSSC, 
SSD, OPV) is reported. The conditions for other common characterization 
techniques (NMR, IR, mass spectrometry, etc.) are given in the experimental 
sections of the corresponding chapters. 
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3.1 Steady-state absorption and emission 
spectroscopy 

 
The absorbance A(l) of a solution of a chromophore, in which no 

aggregation phenomena occur, is defined as the efficiency of light 

absorption at a fixed wavelength (l). In sufficiently diluted solutions, 

and in absence of aggregation phenomena, the absorbance follows the 

Lambert-Beer law, expressed in equation 3.1: 

 

! " = log'(
)*
)
= +,-                        (eq. 3.1) 

 

I0 is the intensity of the incident radiation passing through a reference 

cell, while I represents the intensity of the incident radiation passing 

through the sample cell; e is the molar absorption coefficient (in L mol-1 

cm-1), l is the absorption path length (in cm) and c is the concentration 

of the absorbing species (in mol L-1). In figure 3.1 a general scheme of a 

single-beam spectrophotometer is shown.[1] A compartment contains 

the cuvette, filled first with the reference (usually the solvent), and 

then with the  sample to be analyzed.  

 
Figure 3.1 Scheme of a single-beam spectrophotometer. 
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The absorbance is automatically calculated subtracting the blank from 

the sample. In this thesis, all the absorption spectra were measured on 

an Agilent 8453 UV-Vis spectrophotometer. The samples were 

measured in fused quartz cuvettes (10 mm optical path, Hellma), 

adapted for freeze-pump-thaw technique in the case of oxygen-free 

measurements, as shown in figure 3.2. 

 

Figure 3.2 Home-made vacuum cuvette: a) PTFE stopper, b) high vacuum line 
joint c) round compartment for freeze-pump-thaw procedure d) quartz 
cuvette. 
 
Emission spectra are normally recorded at a fixed excitation 

wavelength using a spectrofluorimeter. In this thesis, steady-state 

emission spectra were recorded on an Edinburgh FLS980 

spectrofluorometer equipped with a 450 W ozone-free xenon arc 

lamp, double grating excitation and emission monochromators (2 x 

300 mm focal length) and a Hamamatsu R928P photomultiplier tube.  

 

Figure 3.3a describes a general setup for measuring emission spectra. 

The excitation light, generated by a xenon lamp, passes through two 

monochromators: part of the light is deviated by a beam splitter to a 

a 
b 

c 

d 
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reference channel, while the rest of the light passes through the 

sample. The luminescence, measured at a 90° angle relative to the 

excitation light, passes through other two monochromators before 

reaching the detector. Emission and excitation spectra were corrected 

for source intensity (lamp and grating) and emission spectral response 

(detector and grating) by standard correction curves.  

 
Figure 3.3a General scheme of a spectrofluorometer.                 

 

Figure 3.3b FLS980 spectrofluorometer architecture: a) steady state xenon 
lamp, b) microsecond flashlamp µF2, c) excitation monochromator, d) 
picosecond pulsed diode lasers/pulsed LEDs, e) sample chamber, f) emission 
monochromator, g) steady state PMT, h) time-correlated single photon 
counting PMT 
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3.2 Time-resolved emission spectroscopy 
 
Single photon counting (SPC, figure 3.4) is a technique based on the 

ability to detect and count individual photons to measure properly the 

luminescence decay of a given chromophore. The profile of the decay 

over time is determined by measuring the time gap between the 

excitation of the sample and the subsequent photon emission 

detected by the photomultiplier.  

 

During the measurement, an electrical pulse is created and directed to 

the “start” input of the time-to-amplitude (TAC) converter. The 

electrical response to the sample luminescence is used as the “stop” 

signal for the TAC. The start pulse initiates the charging of a capacitor 

while the stop pulse terminates it. The time between these two pulses, 

directly proportional to the generated voltage, is then calculated. 

Several repetitions of this measurements result in a histogram of 

events whose profile corresponds to the luminescence decay curve. 

 

Time-resolved measurements were performed using the time-

correlated single-photon counting (TCSPC) option on the FLS980. The 

excitation sources were mounted directly on the sample chamber and 

the emission is collected by a multichannel plate MCP-PMT 

Hamamatsu H10720-01 single-photon-counting detector. The photons 

collected at the detector were correlated by a time-to-amplitude 

converter (TAC) to the excitation pulse. The data analysis was 

performed using the commercially available F980 software (Edinburgh 

Instruments). The goodness of the data fitting was assessed by 

minimizing the reduced chi-squared function (c2).  
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Figure 3.4 Single-photon counting (SPC) setup. 

 
 

3.3 Absolute photoluminescence quantum yield 
 
The integrating sphere method has been extensively used for 

measuring optical properties of surfaces, films and light sources. The 

light coming from the sample, placed at the center of the sphere, is 

reflected many times by the surface of the integrating sphere before 

hitting the detector, thus giving a good measure of the total emitted 

radiant power (figure 3.5).  

 

The spherical geometry of the chamber makes this method completely 

insensitive to scattering and allows to use any geometry for the 

sample.[2] Recently, the integrating system technique has been applied 

to the measurement of quantum yield from films and solutions.  
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In this thesis, all the PLQYs on both solution and solid state samples, 

were collected by wavelength scanning with a Hamamatsu C11347-11 

Quantaurus-QY Absolute PL quantum yield spectrophotometer, 

equipped with a L11562 xenon light source (150 W), monochromator, 

C7473 photonic multi-channel analyzer, spectralon integrating 

sphere, and employing the commercially available U6039-05 PLQY 

measurement software (Hamamatsu Photonics Ltd., Shizuoka, Japan). 

 

 

Figure 3.5 Schematic representation of an integrating sphere setup for 
photoluminescence quantum yield (PLQY) measurement. 
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3.4 Cyclic voltammetry 
 
An increasing number of inorganic chemists use cyclic voltammetry 

(CV) to evaluate the effect of ligands on the oxidation/reduction 

potential of the central metal ion in complexes and multinuclear 

clusters. This type of information plays a major role in many 

approaches to optoelectronic applications. In CV (figure 3.6), the 

potential is applied between the working electrode and the reference 

electrode and it is scanned linearly from an initial value Ei to a 

predetermined limit, El1, known as the switching potential where the 

direction of the scan is reversed; the instrument then cycles between 

El1 and some other preselected value, El2. The current is measured 

between the working electrode and the counter electrode and is 

plotted as a function of the applied potential.  

 

 
Figure 3.6 a) applied potential program, El1 and El2 are switching potentials 
b) typical cyclic voltammogram for a reversible process.  
 
The current depends on two steps in the overall process, that is, the 

movement of electro-active material to the surface of the working 

electrode and the electron transfer reaction.  
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The electron transfer rate constant for a reduction process is a 

function of potential and can be described by equation 3.2: 

 

./ = 	.12
3456

78
9 − 91

;
	                (eq. 3.2)  

 
k0 is the standard heterogeneous electron-transfer rate constant. The 

number of electrons transferred per molecule is n, F is the Faraday 

constant; R the universal gas constant; T is the Kelvin temperature; and 

E0’ the formal reduction potential. The term a is known as the transfer 

coefficient. It arises from the fact that only a fraction of the energy 

that is put into the system lowers the activation energy barrier. Its 

value ranges from zero to unity (often ~ 0.5) depending on the shape 

of the free energy surfaces for the reactants and products.  

 

An advantage of the cyclic voltammetry experiment is that a 

significant concentration of product has been generated near the 

electrode during the forward scan. When the scan direction is 

reversed, the analyte is brought back to the original starting material 

and the current for the reverse process is recorded. The electron 

transfer rate constant for the reverse process is similarly controlled by 

the applied potential:  

 

./ = 	.12
(=34)56

78
9 − 91

;
               (eq. 3.3) 

It is common practice to report the average of the forward and return 

peak potentials as the formal potential for the redox couple. This is an 

approximation that is most accurate when the electron transfer 

process is reversible and the diffusion coefficients for the oxidized and 

reduced forms are the same. If the reaction is reversible, the separation 

in the peak potentials, DEp will be close to 58/n mV.  
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This relationship can be used to evaluate n. Redox couples whose 

peaks shift further apart with increasing scan rate are categorized as 

irreversible systems. A subset of this class are those reactions that 

yield products that cannot be recycled electrochemically to give back 

the original reactants (for example, those involving extensive bond 

breaking and/or loss of substituents to solution). These are "chemically 

irreversible" reactions, and many yield no return peak at all. In these 

cases the separation in the peak potentials, DEp is greater than 58/n 

mV and usually increases with the increase of the scan rate. 

The cyclic voltammetry study of the complexes was performed at scan 

rates typically ranging 0.02 to 10 V s-1, in HPLC-grade acetonitrile 

(CH3CN, ACN) or dichloromethane (CH2Cl2, DCM) solutions at 2.5x10-4–

1x10-3 M concentration in each substrate, deaerated by N2 bubbling, 

using tetrabutylammonium hexafluorophosphate TBAPF6 (Aldrich) 0.1 

M as supporting electrolyte, at 298 K. The ohmic drop was 

compensated by the positive feedback technique.[3] All measurements 

were carried out using an AUTOLAB PGSTAT potentiostat 

(EcoChemie, The Netherlands) run by GPES software. The working 

electrode was a glassy carbon (Metrohm, A = 0.031 mm2) electrode 

cleaned by diamond powder (Alfa Aesar, ø < 1 µm) on a wet cloth 

(STRUERS DP-NAP); the counter electrode was a Pt wire; the 

reference electrode was a saturated calomel electrode (SCE), having in 

the working medium a potential of  –0.385 V vs. the Fc+|Fc couple (the 

intersolvental redox potential reference currently recommended by 

IUPAC).[4-5]  
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3.5 Electrochemical impedance spectroscopy 
 
Electrochemical impedance theory is a well-developed branch of 

alternate current (AC) theory describing the response of a circuit to an 

alternating current or voltage as a function of frequency. In recent 

years, electrochemical impedance spectroscopy (EIS) has found 

widespread applications in the characterization of materials. It is 

routinely used in the characterization of coatings, batteries, fuel cells, 

and corrosion phenomena, and it is now popular also in the 

investigation of diffusion of ions across membranes and in the study of 

semiconductor interfaces.[6]  

 

In direct current (DC) theory (a special case of AC theory where the 

frequency equals 0 Hz) resistance is defined by Ohm's Law:  

 

? = @A          (eq. 3.5) 

 
Using Ohm's law, one can apply a DC potential (E) to a circuit, 

measure the resulting current (I), and compute the resistance (R) - or 

determine any term of the equation if the other two are known. A 

resistor is the only element that impedes the flow of electrons in a DC 

circuit. In AC theory, where the frequency is non-zero, the analogous 

equation is:  

? = @B          (eq. 3.6) 

 
As in equation 3.5, E and I are here defined as potential and current, 

respectively, whereas Z is defined as impedance, the AC equivalent of 

resistance. In addition to resistors, capacitors and inductors impede 

the flow of electrons in AC circuits.  
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In an electrochemical cell, slow electrode kinetics, slow chemical 

reactions, and diffusion can all hamper electron flow, and can be 

considered analogous to the resistors, capacitors, and inductors that 

impede the flow of electrons in an AC circuit.  

 

The fundamental approach of all impedance methods is to apply a 

small amplitude sinusoidal excitation signal to the system under 

investigation and measure the response (current or voltage or any 

other signal of interest). Figure 3.7 shows a typical plot of a voltage 

sinewave (E) applied across a given circuit and the resultant AC 

current waveform (I). Note that the two traces not only are different in 

amplitude, but are also shifted in time. 

 
Figure 3.7 AC waveforms for an applied potential and a resulting current are 
shown. 
 

A low amplitude sinewave ∆E	 sin(ωt) of a particular frequency w, is 

superimposed on the DC polarization voltage E0. This results in a 

current response of a sinewave superimposed on the DC current ∆I	

sin(ωt+φ). The current response is shifted with respect to the applied 

potential. The Taylor series expansion for the current is given by 

equation 3.7:  

 

∆M = NO

NP P*,O*
∆? + '

R

NSO

NPS P*,O*
∆?R + ⋯						          (eq. 3.7) 



CHAPTER 3 | Experimental techniques 

 63 

If the magnitude of the perturbing signal DE is small, then the response 

can be considered linear in first approximation. The higher order terms 

in the Taylor series can be regarded as negligible. The impedance of 

the system can then be calculated using Ohm’s law as:  

 

B U = 	 P(V)
)(V)

                             (eq. 3.8) 

 
This ratio is called impedance of the system and is a complex quantity 

with a magnitude and a phase shift depending on the frequency of the 

signal. Therefore, by varying the frequency of the applied signal one 

can get the impedance of the system as a function of frequency. Given 

its nature of a complex quantity, impedance can be represented in 

Cartesian as well as polar coordinates. In polar coordinates the 

impedance of the data is represented by:  

 

B U = |B U |XYV             (eq. 3.9) 

 
where |Z(w)| is the magnitude of the impedance and j is the phase 

shift. In Cartesian coordinates the impedance is given by:  

 

B U = B′(U) − MB′′(U)                      (eq. 3.10) 

 
where Z'(w) is the real part of the impedance, Z"(w) is the imaginary 

part, and i =	 −1. The phase angle is defined by: 

 

\]^_ = `;; V

`;(V)
                    (eq. 3.11) 

 
To determine the best equivalent circuit for a given electrochemical 

system, measures are carried out over a range of frequencies, and the 
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system impedance is then calculated by analyzing the response signal 

at each frequency.  

 

To describe completely the behavior of an electrochemical system, 

both the values of in-phase and out-of-phase impedance components 

at a number of frequencies across the range of interest are needed. 

One can calculate these values by applying equation 3.6 to the real 

and imaginary components of the excitation and response waveforms 

(equation 3.12): 

 

Babacd =
P;eP;;O

);e);;O
        (eq. 3.12) 

  

The plot of the real part of impedance against the imaginary part gives 

a Nyquist plot, as shown in figure 3.8, useful for a quick overview of 

the data and allowing qualitative interpretations.  It must be noted that 

the real axis must be equal to the imaginary axis not to distort the 

shape of the curve, of great importance in making qualitative 

interpretations of the data.  

 

Although the Nyquist format emphasizes series circuit elements, if 

high and low impedance networks are in series, information about the 

low impedance circuit are hidden, since larger impedance controls plot 

scaling. The absolute value of impedance and the phase shifts are 

plotted as a function of frequency in two different plots, giving a Bode 

plot, also shown in figure 3.8.  
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Figure 3.8 typical a) Nyquist (complex plane) plot and b) Bode magnitude 
and phase plot for impedance measurements. 

In this thesis, electrochemical impedance spectroscopy (10 mV steps in 

the 10-1-10-6Hz range) has been carried out only on already assembled 

DSSC cells, using a BioLogic SP-300 potentiostat with Zview software, 

at open circuit, both in the dark and under illumination. Spectra were 

analyzed with Zview equivalent circuit modeling software, including 

the distributed element DX11 (transmission line model).[ 7 ] All the 

measurements were performed one day after cell preparation. 

 

3.6 Device preparation and characterization 
 

3.6.1 DSSC and SSD 
 
In chapter 5, some rhenium complexes will be exploited as active 

layers in Dye-Sensitized Solar Cells (DSSCs). The first series of DSSC 

was prepared at the Center for Hybrid and Organic Solar Energy 

(CHOSE, Lazio, IT) while the second series was prepared at the 

Laboratory of Photomolecular Science (LSPM, EPFL, Lausanne, CH). 

The solution processed and the solid state devices were made using 

2.20

2.40

2.60

2.80

3.00

3.20

3.40

3.60

-3.00 -2.00 -1.00 0.00 1.00 2.00 3.00 4.00 5.00 6.00

Log Freq (Hz)

Lo
g 

M
od

ul
us

  (
O

hm
)

-70.00

-60.00

-50.00

-40.00

-30.00

-20.00

-10.00

0.00

10.00

P
ha

se
 (D

eg
re

e)

-2.00E+02

3.00E+02

8.00E+02

1.30E+03

1.80E+03

2.30E+03

0.00E+00 5.00E+02 1.00E+03 1.50E+03 2.00E+03 2.50E+03 3.00E+03 3.50E+03

Real (Ohm)

-Im
ag

 (O
hm

)

a) 

b) 



CHAPTER 3 | Experimental techniques 

 66 

respectively, 18 NR-T and 30 NR-D titanium oxide (TiO2) paste 

obtained from Dyesol. HSE, a commercial iodine-based electrolyte was 

also provided by Dyesol, while lithium iodide (LiI), lithium 

bis(trifluoromethane)sulfonimide (LiTFSI), iodine, tert-butyl pyridine 

(TBP), and guanidinium thiocyanate (GuSCN) were purchased from 

Aldrich, and 2,2',7,7'-tetrakis-(N,N-di-4-methoxyphenylamino)-9,9'-

spirobifluorene (Spiro-OMeTAD) was obtained from Solaronix. 

[Co(bpy)3(B(CN)4)2] and [Co(bpy)3(B(CN)4)3] were synthesized at 

EPFL. The homemade substrates for liquid-containing cells have a size 

of approximately 1.4 cm x 1.6 cm, with an active area of 0.159 cm2 and 

are depicted in figure 3.9. The device structure consists of a 

transparent fluorine doped tin oxide (FTO) layer as the bottom 

electrode, supported on a NSG TEC C10 glass substrate. After being 

cleaned and having undergone UV-O3 treatment for 15 minutes, the 

FTO glass plates were immersed in a 40 mM aqueous TiCl4 solution at 

70 °C for 35 min and then washed with water and ethanol. Two 

screen-printed layer of nanocrystalline TiO2 particles were used as the 

photoelectrode. The transparent mesoporous layer (tl), made of 18 nm 

sized TiO2 particles (Dyesol DSL18NR-T) was printed on the FTO 

conducting glass, and the plates were then heated at 150 °C for 7 min. 

To render high PCE, a ~5-µm scattering layer (sl, 400 nm diameter, 

Catalysts & Chemicals Ind. Co. Ltd. (CCIC), HPW-400) was deposited 

on the transparent layer. A total film thickness of 7(tl) + 5(sl) µm was 

used. Sintering was carried out following a 4-step temperature ramp 

from 175 to 500 °C, with a residence time of 30 min. The sintered glass 

plates were immersed again in a 20 mM aqueous TiCl4 solution at 70 

°C for 35 min and washed with water and ethanol. The films were 

heated again at 500 °C for 30 min using a heat blower followed by 

cooling to 90 °C and dipping into a 0.3 mM toluene solution of the 

dyes overnight at room temperature.  
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To prepare the counter electrode, Pt catalyst was deposited on 

cleaned TEC 15 FTO glass by coating with a drop of H2PtCl6 solution (5 

mM in 2-PrOH solution) with subsequent rapid thermal treatment at 

400 °C for 15 min. Carbon counter electrodes followed the same 

procedure with a graphite/acetone solution.  

 

For the assembly of DSSCs containing liquid electrolyte, the dye-

containing TiO2 electrode and the counter electrode were assembled 

into a sandwich-type cell and sealed with a hot-melt gasket of 25 µm 

thickness made of the ionomer Surlyn 1702 (Dupont). The redox 

electrolyte was driven into cells through two holes previously drilled in 

the counter electrode. The iodine-based type of electrolyte used for 

rhenium-based dyes, consists of 0.7 M LiI, 0.025 M I2 and 0.2 M TBP in 

ACN. The cobalt-based type of electrolyte contained instead 1 M 

LiTFSI, 0.33 M [Co(bpy)3(B(CN)4)2], 0.06 M [Co(bpy)3(B(CN)4)3] and 

0.2 M TBP in ACN.  Finally, the hole was sealed using Surlyn and a 

cover glass (0.1 mm thickness).  

 

 

 

Figure 3.9 Scheme of a DSSC: a) active TiO2/adsorbed dye layer b) NSG10 
FTO glass c) electric contacts d) 25 mm spacer/sealer e) TEC 15 FTO glass f) 
holes for electrolyte injection. 
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Solid state devices (SSD) were prepared following a similar procedure. 

An FTO glass plate of 1.4 cm x 2.3 cm, depicted in figure 3.10, was laser 

etched to create non-conductive zone for separation of the contacts, 

then was cleaned and UV/O3 treated before undergoing flame spray 

pyrolysis. A solution containing 0.6 mL of titanium isopropoxide 

acetylacetonate [Ti(OiPr)2(acac)2], 0.4 mL of acetylacetone and 9 mL 

of ethanol was then sprayed (gas carrier: O2, 0.8 bar) on the glass 

plates at 450°C, creating a non-porous transparent TiO2 layer.  

 

 

Figure 3.10 Scheme of an SSD: a) active TiO2/adsorbed dye layer b) Spiro-
OMeTAD layer c) gold electric contacts.  
 

The transparent mesoporous layer, in this case made of 30 nm sized 

TiO2 particles (Dyesol DSL30NR-D) was printed with a different mesh 

on the FTO conducting glass, followed by no scattering layer. Sintering 

was carried out as described above. The titania films were then dipped 

into a 0.3 mM toluene solution of the dyes overnight at room 

temperature, then dried, and transferred into a glove box. A solution of 

the hole transporting material (HTM), Spiro-OMeTAD, was spin coated 

onto the adsorbed dye. The final thickness of the whole cell resulted to 

be around 2 µm. The counter electrode, metallic gold, was deposed via 

physical vapor deposition, without sealing the cell before 

measurements. 
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c 
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3.6.2 Characterization of DSSC and SSD  
 
All measurements were carried out in air directly after the fabrication 

of the cells. A black shadow mask with a fixed aperture was used on 

DSSCs and SSDs, so that the active area was set to 0.16 cm2. Current-

voltage characteristics were recorded by applying an external 

potential bias to the cell while recording the generated photocurrent 

with a digital source meter (Keithley model 2400) connected to a pc. 

The light source was a 450 W xenon lamp (Oriel) equipped with a 

Schott K113 Tempax sunlight filter (Präzisions Glas & Optik GmbH) to 

match the emission spectrum of the lamp with the AM 1.5 G standard. 

Before each measurement, the exact light intensity was determined 

using a calibrated Si reference diode equipped with an infrared cutoff 

filter (Schott KG-3). The incident photon to collected electron 

conversion efficiency (IPCE) measurement was plotted as function of 

wavelength by using the light from a 300-W xenon lamp (ILC 

Technology), which was focused through a Gemini-180 double 

monochromator (Jobin Yvon) onto the photovoltaic cell under test. A 

computer-controlled monochromator was incremented through the 

spectral range (300–800 nm) to generate a photocurrent action 

spectrum with a sampling interval of 10 nm and a current sampling 

time of 4 s to reduce scattered light from the edge of the glass 

electrodes of the dyed TiO2 layer. 
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CHAPTER  4 
 
 
 

Long-lived rhenium(I) complexes 
containing 4-phenylpyridazine ligands 

 
 

 
 
 

Abstract 
 
The preparation of a series of complexes containing functionalized                
4-phenylpyridazines is presented along with their spectroscopic, 
electrochemical and photophysical properties, and rationalized on the basis of 
preliminary DFT calculations. Long-lived excited states with mixed 3LC – 
3MLCT character have been identified in one of these species, suggesting a 
possible use as triplet photosensitizer for triplet-triplet annihilation (TTA) 
based upconversion. Some related preliminary results are here reported.  
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4.1 Introduction  

 
As previously described in chapter 1, carbonyl complexes of rhenium(I) 

containing chelating diimine ligands have been extensively 

investigated over the last decades[ 1 ] because of their distinctive 

photochemical and photophysical properties. For such complexes, 

both wavelength and lifetime of the emission can be widely tuned by 

varying the ancillary ligands or the substituents on the diimine 

ligands,[1] and very high photoluminescence quantum yields (PLQY) 

have been obtained in the case of dinuclear complexes,[2-4] allowing 

widespread applications in electroluminescent devices[5] or as bio-

imaging probes.[ 6 ] Those results, however, were all obtained by 

endowing the bridging 1,2-diazine with alkyl, electron donating 

substituents in its b position.  

 

On these basis, we were prompted to investigate the modulation of 

the photophysical properties induced by an aryl, rather than an alkyl, 

substituent in the b position of the bridging 1,2-diazine. Five new 

complexes containing 4-phenylpyridazines bearing different 

substituents in the para position of the phenyl ring (see chart 4.1) have 

been prepared, their spectroscopic, electrochemical and photophysical 

properties have been investigated, and rationalized on the basis of 

preliminary computations at DFT level. Long lived excited states with 

mixed 3LC - 3MLCT character have been identified in one of these 

species, suggesting a possible use as triplet photosensitizer for triplet-

triplet annihilation (TTA) based photon upconversion. Indeed, beside 

few recent papers, almost no Re(I) tricarbonyl complexes have been 

used as triplet photosensitizers in TTA upconversion to date.[7] 
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Photon upconversion is a process in which light of long wavelength is 

frequency converted to photons of higher energy. This is a two-

quantum process involving triplet excited states which annihilate to 

produce a singlet state with energy doubled compared to the triplet 

states, leading to anti-Stokes delayed fluorescence. Therefore, the 

sensitized triplet–triplet annihilation mechanism involves the transfer 

of energy between a sensitizer (donor) molecule, usually a transition 

metal complex, and an acceptor/annihilator, based on a highly 

conjugated hydrocarbon chromophore.  

 

Indeed, transition metal-based sensitizers present 3MLCT excited 

states quasi-isoenergetic with the non-emissive 3(p-p*) excited states 

of the acceptor. In this way, one state is thermally accessible from the 

other, even at room temperature, and the energy transfer process 

between these two triplets can occur.  

 

Figure 4.1 Jabłonski diagram for TTA photon upconversion depicting the main 
electronic transitions. 
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The Jabłonski diagram in figure 4.1 summarizes the processes involved 

in photon upconversion via sensitized triplet-triplet annihilation. 

Following selective excitation, via low energy radiation, the energy is 

transferred to the acceptor via triplet-triplet energy transfer (TTET), 

thus regenerating the ground state sensitizer. This process repeats and 

another long-lived excited triplet acceptor is formed, and then they 

annihilate to produce the emissive singlet state.  

 

4.2 Results and discussion 

 
4.2.1 Synthesis of the complexes  

 
Five different derivatives have been prepared featuring differently 

substituted 4-phenylpyridazine ligands, complexes 1–5, whose 

chemical structures are depicted in chart 4.1.  

 

Chart 4.1 Molecular structures of the investigated complexes 1-5. 

The ligands were not commercially available and were synthesized by 

a literature procedure[8] involving an inverse-type [4+2] Diels-Alder 

cycloaddition reaction between the electron-poor 1,2,4,5-tetrazine and 

the proper functionalized alkyne (see scheme 4.1).  

N N

(OC)3Re Re(CO)3
Cl
Cl

N N

(OC)3Re Re(CO)3
Cl
Cl

N N

(OC)3Re Re(CO)3
Cl
Cl

N N

(OC)3Re Re(CO)3
Cl
Cl

N N

(OC)3Re Re(CO)3
Cl
Cl

F OCH3 CH3 CH2OH

1 2 3 4 5
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Scheme 4.1 Synthetic pathway to the diazine ligands and the corresponding 
dinuclear Re(I) complexes. 

 
The so prepared diazine ligands were reacted with two equivalents of 

[Re(CO)5Cl] affording the corresponding complexes in good yields 

(60%-80%). The new complexes 1-5 have been characterized by 

elemental analysis and various spectroscopic techniques. The IR 

spectra in the ν(CO) region show the four band pattern typical of this 

class of [Re2(µ-X)2(CO)6(µ-1,2-diazine)] complexes[9] at wavenumbers 

almost identical in the series, as shown in table 4.1, and similar to those 

of the parent complex, named 0, bearing an unsubstituted 

pyridazine.[3] As expected, the 1H NMR spectra show three resonances 

corresponding to the protons on the diazine ring, with the signals of 

the two ortho protons H3 and H6 slightly shifted towards opposite 

directions (H3 is de-shielded, while H6 is shielded, both by ca. 0.1 

ppm), compared to the pyridazine derivative 0, as also shown in table 

4.1. The phenyl substituents are expected to be not coplanar with the 

diazine ring, due to steric hindrance between hydrogen atoms. 

However, the rotational barrier has been computed (see below) and 

found to be very low, thus accounting for the presence of only one 

N

N N
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1:  R1 = H, R2 = phenyl
2:  R1 = H, R2 = 4-fluoro-phenyl
3:  R1 = H, R2 = 4-methoxy-phenyl
4:  R1 = H, R2 = 4-methyl-phenyl
5:  R1 = H, R2 = 4-phenyl-methanol

0: R1 = H, R2 = H
1: R1 = H, R2 = phenyl
2: R1 = H, R2 = 4-fluoro-phenyl
3: R1 = H, R2 = 4-methoxy-phenyl
4: R1 = H, R2 = 4-methyl-phenyl
5: R1 = H, R2 = 4-phenyl-methanol
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resonance for the two ortho and the two meta protons of the phenyl 

substituents, in line with the fast rotation that averages the different 

environments. The variation of the substituent in the para position of 

the phenyl ring in the 1-5 series appears to affect the ortho resonance 

only (table 4.1). 

 

Table 4.1 Chemical shift for the hydrogens on the pyridazine ring and the 
phenyl ring in complexes 0-5 and ν(CO) IR bands. 

[a also para Ph]  

 

Preliminary computed properties have been performed on complex 1, 

containing the unsubstituted phenyl ring. Figure 4.1 depicts the 

dependence of the relative energy (Er), the MLCT absorption 

maximum (λabs), and the HOMO–LUMO gap (DE) on the dihedral angle 

w 	between the plane of the phenyl ring and that of the pyridazine ring. 

A stable conformation can be found for w = 34°; however, the 

computed rotational barrier is quite low. Moving on from the coplanar 

conformation (w = 0�, Er = 6 kJ mol–1) to the orthogonal one (w = 90°, 

Er = 14 kJ mol–1) the delocalization of LUMO and LUMO+1 on the phenyl 

ring decreases down to zero.  

Complex H3 H5 H6 ortho Ph meta Ph 
IR ν(CO) 

[cm-1] 

0 (CD2Cl2) 9.85 8.08 9.85   
2051, 2034, 
1948, 1916 

1 (CDCl3) 9.98 8.16 9.77 7.84 7.73a 
2049, 2033, 
1946, 1917 

2 (CD2Cl2) 9.95 8.13 9.76 7.87 7.44 
2046, 2034, 

1947, 1918 

2 (CDCl3) 9.91 8.06 9.74 7.82 7.42 
2046, 2034, 

1947, 1918 

3 (CDCl3) 9.93 8.07 9.64 7.84 7.21 
2049 2033, 
1947, 1915 

  4 (CDCl3) 9.97 8.13 9.72 7.75 7.53 
2049, 2033, 
1946, 1917 

5 ( CDCl3) 9.98 8.15 9.75 7.84 7.72 
2049 2033, 
1946, 1916 
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As a consequence, the MLCT absorption maximum is blue shifted by 

23 nm, and the HOMO–LUMO gap raised by 0.18 eV. This finding can 

be attributed to the limited conjugation between the phenyl moiety 

and the pyridazine ring, due to geometric constraints that hamper 

coplanarity and to the different relative energy of the p* orbitals 

involved.  

 

Figure 4.1 Dependence of a) the relative energy b) the HOMO-LUMO gap c) 
the absorption maximum on the dihedral angle w between the phenyl and the 
pyridazine ring in complex 1.  

In agreement with the scarce conjugation between phenyl and 

pyridazine, it can be hypothesized that a modest variation of the 

HOMO–LUMO gap, and therefore of the absorption maximum, should 

be observed upon the introduction of different substituents at the para 

position of the phenyl ring. 

a b 

c 
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4.2.2 Electrochemical characterization  
 
Table 4.2 shows the results of the cyclic voltammetry (CV) analyses of 

complexes 1–5 in acetonitrile solution including for comparison 

previously published data concerning the parent complex 0.[3] Cyclic 

voltammograms are reported in figure 4.2. 

 

Table 4.2 Selected CV features for the complexes 0-5 recorded on GC 
electrode at 0.2 Vs-1 in dry acetonitrile + 0.1 M TBAPF6 with ohmic drop 
compensation. 

 
 
The first reduction peaks are quite similar for all the complexes, in 

terms of both shape and potential. Peaks are all monoelectronic and 

reversible, both from the chemical (symmetrical return peak and 

products stable in acetonitrile solution) and the electrochemical point 

of view (ca. 57 mV half-peak width, with facile transfer of a single 

electron). This indicates the very fast formation of a stable radical 

anion, in which the negative charge can be regarded as localized on 

the diazine ligand, in agreement with what previously reported for 

other related complexes.[3,9] 

 

 

Complex R Ep,c  [V] Ep,a [V] ELUMO [eV] EHOMO [eV] Eg [eV] 

0 H   -1.345 1.315 -3.46 -6.12 2.66 

1 Ph   -1.255 1.243 -3.37 -6.04 2.50 

2 4-F-Ph -1.253 1.237 -3.37 -6.04 2.49 

3 4-OMe-Ph -1.313 1.230 -3.43 -6.03 2.54 

4 4-CH3-Ph -1.286 1.235 -3.40 -6.04 2.52 

5 4-CH2OH-Ph -1.269 1.234 -3.53 -6.03 2.50 
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Figure 4.2 Normalized CV curves of the investigated complexes 1-5 recorded 
on a GC electrode at 0.2 V s-1 in dry acetonitrile + 0.1 M TBAPF6 with ohmic 
drop compensation. 
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Previous work has also shown that the oxidation of [Re2(µ-Cl)2(CO)6(µ-

1,2-diazine)] complexes is a metal-centered Re(I)�Re(II) oxidation, 

and involves a simultaneous two-electron transfer, according to the 

iL/c parameter, doubled if compared to the reduction peak. This is also 

the case for complexes 1-5. The oxidation appears to be both 

chemically and electrochemically irreversible but, in the upper range of 

the explored scan rates, return peaks emerge (behavior of complex 2 

depicted in figure 4.3) and, to a minor extent, for complex 3.  

 

 
 
Figure 4.3 Anodic scan only for complex 2. Scan rate 0.02 V s-1 to 2 V s-1. 
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4.2.3 Photophysical characterization  
 
The photophysical properties of complexes 0-5 in CH2Cl2 are reported 

in table 2.3. The lower energy broad absorption band can be assigned 

to a d(p)Re�p*(diazine) transition with metal-to-ligand charge transfer 

(1MLCT) character.[3,9] The presence of the phenyl substituent on the 

pyridazine ring affords a small bathochromic shift and an increase of 

the molar absorption coefficient compared to complex 0 (ε = 0.79´104 

M-1 cm-1 at λabs 375 nm), owing to the increasing probability of this 

transition, with the possibility to partially delocalize the charge. This 

assignment is also supported by the typical strong solvent 

dependence of the charge-transfer absorption band. Indeed, as 

already reported for the parent complex 0,[3] a blue shift of more than 

30 nm is observed upon increasing solvent polarity from toluene to 

acetonitrile. For instance, in complex 1 the absorption maximum shifts 

from 396 nm in toluene to 355 nm in ACN. The solvent effect for all the 

complexes is shown in table 4.4.  

 

In agreement with the electrochemical analysis and the preliminary 

computational data, with the only exception of complex 3, a negligible 

modulation effect has been observed on the absorption maximum 

upon changing the nature of the substituent in the para position of the 

phenyl ring. This finding can be attributed to geometric constraints 

which limit the conjugation between the phenyl moiety and the 

pyridazine ring. A different behavior is observed for complex 3, which 

displays the highest bathochromic shift, about 20 nm, with a 

significant increase of the molar absorption coefficient (ε = 2.3´104 M-1 

cm-1 at λabs 397 nm). Moreover, a lower modulation effect of the solvent 

polarity on the absorption maximum has been observed.  
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All these features are in agreement with the presence of a ligand 

centered (LC) p-conjugated state. Indeed, preliminary computations at 

DFT level have shown a significant delocalization of the three lowest 

lying t2g orbitals on the phenyl ring of the methoxo derivative, which 

induces a higher degree of coplanarization between the diazine and 

the phenyl ring, lowering the LUMO levels.  

 
Table 4.3 Photophysical data for complexes 1-5 in diluted CH2Cl2 solution 
(1x10-5 M). 

Complex 
λabs 

(nm) 

ε 

(104 M-1 cm-1) 

λem 

(nm) 

τ a  

(µs) 
Φ a 

τ b  

(µs) 
Φ b 

kr  

(105 s-1) 

knr  

(105 s-1) 

λem c 

(nm) 

τ c 

(µs) 

0 375 0.79 613 0.35 0.036 0.43 0.044 0.93 22.2 512 25 (100%) 

1 381 0.89 617 0.53 0.04 1.10 0.078 0.71 8.4 538 
66 (58%) 
170 (42%) 

2 385 1.2 621 0.49 0.04 0.91 0.076 0.83 10.1 534 
51.6 (45%)  
125 (55%) 

3 397 2.12 607 0.76 0.032 4.51 0.18 0.40 1.8 
525, 
560 

185 (63%) 
685 (37%) 

4 384 1.81 610 0.69 0.05 1.89 0.12 0.63 4.6 535 
111 (42%) 
313 (58%) 

5 382 1.32 619 0.55 0.027 1.14 0.077 0.67 8.2 537 
90 (37%) 
263 (63%) 

[a air-equilibrated CH2Cl2, 
b deaerated CH2Cl2, 

c 2-MeTHF glassy matrix at 77K] 

 

Upon optical excitation, all the samples show a rather intense, broad 

and featureless emission at room temperature that falls in the orange 

region of the visible spectrum. The absorption and photoluminescence 

spectra of all the complexes are reported in figure 4.4, and the 

corresponding data are collected in Table 4.3. The quenching of the 

emission and the corresponding reduction of the emission lifetime 

observed in air-equilibrated solution clearly indicate that the radiative 

transition arises from an excited state having a triplet character. 
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Table 4.4 Solvent effect for complexes 1-5 in diluted toluene, CH2Cl2, CHCl3, 
ACN solution (1x10-5 M). 
 

COMPLEX 
λabs (nm) 

TOL 
λem (nm) 

TOL 
λabs (nm) 

CHCl3 
λem (nm) 

CHCl3 
λabs (nm) 

CH2Cl2 
λem (nm) 

CH2Cl2 
λabs (nm) 

ACN 
λem (nm) 

ACN 
1 396 599 392 615 381 617 355 642 

2 394 602 392 617 385 621 361 647 

3 399 597 404 605 397 603 380 625 

4 391 591 398 609 384 610 360 637 

5 392 594 397 617 382 619 360 640 

 

 
Figure 4.4 Absorption and emission spectra of complexes 1-5 in CH2Cl2 
solution. 
 

As already observed in the absorption spectra, with the only exception 

of complex 3, the position of the emission maximum is not affected by 

the nature of the para substituents and it results slightly red-shifted 

compared to the emission maximum of the parent complex 0.  
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All complexes display photoluminescence quantum yields higher than 

0, mainly due to the significant reduction of the non-radiative rate 

constant knr (see table 4.3). On the contrary, the values of   fem/tem = kr 

´ hisc, where the latter term represents the efficiency of the intersystem 

crossing process, are in the range 0.63–0.83´105 s-1, in line with the 

values measured for the other analogous dinuclear rhenium 

complexes.[3] Again, a different behavior is observed for complex 3, 

whose emission maximum results slightly blue-shifted compared to 

complex 0. Moreover, complex 3 displays a very long emission lifetime 

and increased photoluminescence quantum yield, which affords a drop 

of the kr ´ hisc value to 0.4´105 s-1. All these features suggest the 

presence of an admixed 3LC - 3MLCT nature of the excited state. The 

small shift in emission energy observed upon variation of the solvent 

polarity observed for complex 3, the structured emission spectrum 

acquired at low temperature in glassy matrix (see figure 4.5), observed 

for 3 only, and the long-lived excited-state lifetime, further support this 

assignment. 

 

Figure 4.5 Emission spectra of complex 3 in toluene solution at room 
temperature (black line) and in 2-MeTHF glassy matrix at 77 K (red line). 
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4.2.4 Energy upconversion 
 
The investigated Re(I) dinuclear complexes are good candidates to act 

as triplet sensitizers to populate the lower-lying triplet excited states 

of aromatic molecules because of the efficient intersystem crossing 

between the lowest 1MLCT singlet and the long-lived phosphorescent 
3MLCT excited state of the complex, which is beneficial for the TTET, a 

crucial step for TTA upconversion (table 4.3). In particular, complex 3 

displays the longest lifetime of the 3MLCT state in deaerated 

conditions, thus standing out as the best option. This experiment has 

been carried out in collaboration with Prof. Paola Ceroni at the 

University of Bologna. 9,10-Diphenylanthracene (DPA) was chosen as 

acceptor since it was extensively used in the presence of [Ru(bpy)3]2+ 

complexes.[ 10 ] Upon excitation at 532 nm in deaerated 

dichloromethane solution (1.5´10-4 M) in presence of DPA (0.63´10-4 

M), the phosphorescence of 3 was highly quenched (ca. 75%), and a 

delayed fluorescence of DPA peaking at 400 nm was observed with 

lifetime in the µs time-scale. This process is based on sensitized triplet-

triplet annihilation of DPA chromophores, as described by the 

following equations: 

3(S0)	+	hn	→	*3(S1)        (1) 

*3(S1)	→	*3(T1)        (2) 

*3(T1)	+	DPA(S0)	→	3(S0)	+	*DPA(T1)     (3) 

*DPA(T1)	+	*DPA(T1)	→	*DPA(S1)	+	DPA(S0)    (4) 

*DPA(S1)	→	DPA(S0)	+	hn’       (5) 
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This mechanism is consistent with the energy level diagram shown in 

figure 4.6. It takes advantage of the very high efficiency of process (2) 

for Re(I) complexes[9] and of the presence of DPA chromophores 

displaying staggered S1 and T1 excited states. 

 
Figure 4.6 Schematic energy level diagram showing the absorption (dashed 
grey line), emission (solid black line), and non-radiative processes (wavy lines) 
occurring in a deaerated solution containing complex 3 and 9,10-
diphenylanthracene (DPA) at room temperature.  

 
Upon increasing the excitation laser power, the lifetime of the delayed 

DPA fluorescence decreases and the fluorescence intensity increases 

according to a quadratic law (see figure 4.7), as expected for a 

process involving triplet-triplet annihilation of DPA. The quantum yield 

of the upconversion process (fUC) is a function of the excitation source 

power and the DPA concentration and can be expressed by the 

following equation: 

	
ΦUC	=	2	´	ηisc	´	ηen.tr.	´	ηTTA	´	Φfl				 	 	     (eq. 4.1)	
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where hisc is the efficiency of the intersystem crossing process for 3 

(process 2), hen.tr. is the energy transfer efficiency (process 3), hTTA is the 

triplet-triplet annihilation efficiency (process 4) and ffl is the 

fluorescence quantum yield of DPA (process 5). 

 

Figure 4.7 Fluorescence intensity of DPA at 430 nm as a function of the 
excitation power at 532 nm for a solution containing 3 (1.5 x 10-4 M) and DPA 
(0.63 x 10-4 M). 
 
In order to quantify the efficiency of the TTET process, the quenching 

of the triplet excited state of complex 3 was evaluated: the 

bimolecular quenching constant kq was estimated as 7´108 M-1 s-1, close 

to the values reported for the mononuclear Re complexes (108 M-1            

s-1),[7] implying an efficient TTET. However, the overall efficiency of the 

upconversion process was 0.1%, much weaker than the values 

measured for the mononuclear complexes. This feature could be 

probably due to the weak absorption of complex 3 at the laser 

excitation wavelength and the shorter lifetime of the triplet excited 

state.  
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4.3 Conclusions 

 
Five new complexes containing 4-phenylpyridazine ligands have been 

prepared and characterized. Along with the low degree of conjugation 

between the two aromatic rings, strong absorption in the visible region 

(ε = 2.3´104 M-1 cm-1 at 397 nm) and long-lived triplet excited states 

(4.5 µs) have been observed for complex 3, containing a para-

methoxo-4-phenylpyridazine ligand. These properties, in contrast with 

those usually reported for mononuclear rhenium complexes, and also 

with some other dinuclear complexes we previously reported, have 

been attributed to presence of an intra-ligand triplet excited state 

(3IL), as proved also by the emission spectrum at 77 K. Although with 

low efficiency, partially due to the experimental setup, this is the first 

time a dinuclear rhenium complex is used as triplet sensitizer for 

triplet-triplet annihilation upconversion. These preliminary results 

prompt us to further investigate this application field by preparing 

other rhenium complexes containing diazine ligands with highly 

conjugated system showing strong absorption in the visible region.   
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4.4 Experimental  

 
General methods 
 

All the reagents were purchased from Aldrich and used as received. All 

the reactions were performed under inert N2 atmosphere. All the 

solvents were deoxygenated and dried by standard methods prior to 

use: 1,4-dioxane was distilled on Na(s)/benzophenone, toluene on Na(s), 

and CH2Cl2 on P2O5. Commercial deuterated solvents were used as 

received. Column chromatography was performed using Alfa Aesar 

silica gel 60 (0.032–0.063 mm). 1,2,4,5-tetrazine and the 

corresponding substituted diazines were synthesized according to 

literature procedures.[8] The completeness of the reaction was 

monitored by UV-Vis spectroscopy by observing the decrease of the 

characteristic tetrazine absorption band at 515 nm. The substituted 

diazines were not directly purified and used as obtained, once the non-

reactivity of [Re(CO)5Cl] towards the excess of alkyne was verified.  1H 

NMR spectra were recorded on a Bruker DRX-400 MHz instrument by 

using the residual signals δ = 7.28 ppm from CDCl3 or δ = 5.32 ppm 

from CD2Cl2 as internal references. IR spectra in solution were acquired 

on a Bruker Vector 22 FT spectrophotometer.  

N N

H3

R

(OC)3Re Re(CO)3
Y

X

H5

H6
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Electrochemical measurements 

see chapter 3. 

 

Spectroscopy 

See chapter 3. Delayed fluorescence lifetimes were measured by a 

Hamamatsu R928 phototube connected to a Tektronix TDS380 (400 

MHz) oscilloscope upon excitation with a Continuum Surelite I-10 

Nd:YAG laser source (λexc = 532 nm). The intensity of the laser source 

was measured by a laser point power meter model Plus, equipped with 

a 10 UV-A detector head. 

 

Synthesis of 4-phenylpyridazine. 83 µL (0.735 mmol) of 

phenylacetylene are dissolved in 2.5 mL of anhydrous 1,4-dioxane 

containing 0.613 mmol of 1,2,4,5-tetrazine. The reaction mixture is 

refluxed for 14 hours then left at RT in the dark for 3 weeks. The 

solution is then dried. The product obtained is not purified and directly 

used for the next synthesis, estimating a quantitative conversion of the 

tetrazine.  

Synthesis of [Re2(µ-Cl)2(CO)6(µ-4-phenylpyridazine)] (1). Half of the 

solid 4-phenylpyridazine from the previous reaction (0.306 mmol) is 

dissolved in 3.5 mL of freshly distilled toluene. 222 mg (0.614 mmol) of 

Re(CO)5Cl are added to the reaction mixture. The reaction is put under 

reflux for 3 hours, then cooled to RT. The so-formed precipitate is 

filtered through a sintered glass funnel. The crude product is dissolved 

in CH2Cl2 and re-precipitated with n-hexane. The supernatant solution 

is removed, the remaining powder washed with n-hexane (3 mL x 5) 

and dried under vacuum. The solid product is purified through column 

chromatography (CH2Cl2/n-hexane 7:3) affording 185 mg (0.22 mmol) 
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of the desired product (yield 72%). IR (CH2Cl2) ν(CO): 2049 (m), 2033 

(s), 1946 (s), 1917 (s) cm-1, 1H NMR: (CDCl3, 300K, 400 MHz) δH (ppm) 

9.98 (dd, J = 2.5, 1.0 Hz, 1H, H3); 9.77 (dd, J = 6.2, 1.0 Hz, 1H, H6); 8.16 

(dd, J = 6.1, 2.4 Hz, 1H, H5); 7.84 (m, 2H, Hortho); 7.73 (m, 3H, Hmeta/para) 

Synthesis of 4-(4-fluorophenyl)pyridazine. 63 µL (0.545 mmol) of 1-

ethynyl-4-fluorobenzene are dissolved in 4 mL of anhydrous 1,4-

dioxane containing 0.242 mmol of 1,2,4,5-tetrazine. The reaction 

mixture is put under reflux for 48 hours, then cooled to RT and dried 

under vacuum. The crude product is directly used for the next 

synthesis, estimating a quantitative conversion of the tetrazine.  

Synthesis of [Re2(µ-Cl)2(CO)6(µ-4-(4-fluorophenyl)pyridazine)] (2). The 

solid residue from the previous reaction (0.242 mmol) is dissolved in 5 

mL of freshly distilled toluene. 175 mg (0.484 mmol) of Re(CO)5Cl are 

added to the reaction mixture. The mixture is put under reflux for 3 

hours, then cooled to RT and evaporated to dryness. The crude 

product is purified through column chromatography (CH2Cl2/n-hexane 

8:2) affording 140 mg (0.179 mmol) of the desired product (yield 74%). 

IR (CH2Cl2) ν(CO): 2046 (m), 2034 (s), 1947 (s), 1918 (s) cm-1, 1H NMR: 

(CD2Cl2, 300K, 400 MHz) δH (ppm) 9.95 (dd, J = 2.5, 1.0 Hz, 1H, H3); 9.76 

(dd, J = 6.1, 1.0 Hz, 1H, H6); 8.13 (dd, J = 6.1, 2.5 Hz, 1H, H5); 7.87 (m, 2H, 

Hortho); 7.44 (m, 2H, Hmeta), 19F NMR: (CDCl3, 300K, 400 MHz) δF (ppm) = 

-103.8 (m, 1F) 

Synthesis of 4-(4-methoxyphenyl)pyridazine. 32 µL (0.24 mmol) of 4-

ethynylanisole are dissolved in 2 mL of anhydrous 1,4-dioxane 

containing 0.20 mmol of 1,2,4,5-tetrazine. The reaction mixture is left 

refluxing for 24 hours. The crude product is directly used for the next 

synthesis, estimating a quantitative conversion of the tetrazine. 
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Synthesis of [Re2(µ-Cl)2(CO)6(µ-4-(4-methoxyphenyl)pyridazine)] (3). 1 

mL of the solution from the previous reaction (0.10 mmol) is 

evaporated to dryness and dissolved in 5 mL of freshly distilled 

toluene. 73 mg (0.2 mmol) of Re(CO)5Cl are added to the reaction 

mixture. The reaction is put under reflux for 3 hours, then cooled to RT 

and dried under vacuum. The crude product is purified through 

column chromatography (CH2Cl2/n-hexane 7:3) affording 59 mg 

(0.075 mmol) of the desired product (yield 75 %). IR (CH2Cl2) ν(CO): 

2049 (m), 2033 (s), 1945 (s), 1917 (s) cm-1, 1H NMR: (CDCl3, 300K, 400 

MHz) δH (ppm) 9.93 (dd, J = 2.5, 1.0 Hz, 1H, H3); 9.64 (dd, J = 6.2, 1.0 Hz, 

1H, H6); 8.07 (dd, J = 6.1, 2.4 Hz, 1H, H5); 7.84 (m, 2H, Hortho); 7.21 (m, 2H, 

Hmeta); 3.97 (m, 3H, OMe) 

 

Synthesis of 4-(p-tolyl)pyridazine. 70 µL (0.545 mmol) of 4-ethynyl-

toluene are dissolved in 4 mL of anhydrous 1,4-dioxane containing 

0.242 mmol of 1,2,4,5-tetrazine. The reaction mixture is put under 

reflux for 48 hours, then cooled to RT and dried under vacuum. The 

crude product is directly used for the next synthesis, estimating a 

quantitative conversion of the tetrazine. 

Synthesis of [Re2(µ-Cl)2(CO)6(µ-4-(p-tolyl)pyridazine)] (4). The solid 

residue from the previous reaction (0.242 mmol) is dissolved in 5 mL 

of freshly distilled toluene. 175 mg (0.484 mmol) of Re(CO)5Cl are 

added to the reaction mixture. The mixture is put under reflux for 3 

hours, then cooled to RT and evaporated to dryness. The crude 

product is precipitated from CH2Cl2/n-hexane, collected and purified 

through column chromatography (CH2Cl2/n-hexane 8:2) affording 111 

mg (0.142 mmol) of the desired product (yield 59%). IR (CH2Cl2) ν(CO): 

2049 (m), 2033 (s), 1946 (s), 1917 (s) cm-1, 1H NMR: (CD2Cl2, 300K, 400 
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MHz) δH (ppm) 9.97 (dd, J = 2.5, 1.0 Hz, 1H, H3); 9.72 (dd, J = 6.1, 1.0 Hz, 

1H, H6); 8.13 (dd, J = 6.1, 2.5 Hz, 1H, H5); 7.75 (m, 2H, Hortho); 7.53 (m, 2H, 

Hmeta); 2.53 (s, 3H, CH3) 

Synthesis of (4-(pyridazinyl)phenyl)methanol. 70 µL (0.545 mmol) of 

4-ethynyl-benzyl alcohol are dissolved in 4 mL of anhydrous 1,4-

dioxane containing 0.242 mmol of 1,2,4,5-tetrazine. The reaction 

mixture is put under reflux for 48 hours, then cooled to RT and dried 

under vacuum. The crude product is directly used for the next 

synthesis, estimating a quantitative conversion of the tetrazine. 

Synthesis of [Re2(µ-Cl)2(CO)6(µ-4-(pyridazinyl)phenyl)methanol] (5). 

The solid residue from the previous reaction (0.242 mmol) is dissolved 

in 5 mL of freshly distilled toluene. 175 mg (0.484 mmol) of Re(CO)5Cl 

are added to the reaction mixture. The mixture is put under reflux for 3 

hours, then cooled to RT and evaporated to dryness. The crude 

product is precipitated from CH2Cl2/EtOAc, collected and purified 

through column chromatography (CH2Cl2/EtOAc 8:2) affording 100 

mg (0.142 mmol) of the desired product (yield 52%). IR (CH2Cl2) ν(CO): 

2049 (m), 2033 (s), 1946 (s), 1916 (s) cm-1, 1H NMR: (CD2Cl2, 300K, 400 

MHz) δH (ppm) 9.98 (dd, J = 2.5, 1.0 Hz, 1H, H3); 9.75 (dd, J = 6.2, 1.0 Hz, 

1H, H6); 8.16 (dd, J = 6.1, 2.4 Hz, 1H, H5); 7.84 (m, 2H, Hortho); 7.53 (m, 2H, 

Hmeta); 4.88 (m, 2H, CH2) 
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Hydrido-carbonyl  
rhenium(I) complexes  

as photosensitizers for DSSC 
 
 

 
Abstract 
 
We investigated the use of some dinuclear rhenium complexes as sensitizers 
for DSSC. An original synthetic strategy has been set up to prepare the most 
promising dyes indicated by TD-DFT computations, endowed with good light 
harvesting moieties. The best DSSC results have been obtained using an 
hydrido-carboxylate derivative containing an organic dye as carboxylate 
ligand, with an overall efficiency of 3.5%. Noteworthy, the presence of a 
hydrido ligand did not show any detrimental effect on the stability of the 
sensitizers under the operating conditions.  
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5.1  Introduction 
 
Dye Sensitized Solar Cells (DSSC)[ 1 ] are hybrid nanostructured 

organic/inorganic cells that have attracted huge attention so far within 

both academy and industry, due to the use of abundant, cheap 

materials and simple, low cost fabrication processes, that can be 

applied to both rigid (glass) and flexible (plastics, metals) substrates[2] 

and easily scaled up.[3]  

 

As already described in chapter 2, a DSSC, in its simplest assembly, is 

an electrochemical cell with two electrodes with an electrolyte filling in 

the space between them. The highest efficiency reported for small 

area DSSC based on ruthenium dye and iodide/triiodide electrolyte is 

12.1%[4]  with long-term stability,[5]  while an efficiency as high as 13% 

was achieved using a molecularly engineered porphyrin dye in 

combination with a cobalt-based electrolyte.[6] 

 

The most commonly used dyes in DSSC are complexes of ruthenium 

containing organic ligands functionalized with carboxylic substituents 

as anchoring groups to the TiO2.[7] These poly-pyridine complexes are 

characterized by intense and broad absorptions due to metal-to-ligand 

charge transfer (MLCT) transitions, long excited state lifetimes, and 

long-term chemical stability.[8] Alternative dyes based on different 

metal complexes such as iron,[9] copper[10] and platinum[11] have been 

investigated to date, mainly containing bipyridine ligands.[12] On the 

other hand, the use of rhenium complexes has not been yet exploited 

in an operating DSSC, and only some preliminary studies concerning 

the electron transfer from Re-polypyridyl complexes to nanocrystalline 

TiO2
[13] are reported.  
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As discussed in chapter 1, a new series of dinuclear rhenium 

complexes, displaying spectroscopic and photophysical properties 

strongly dependent on the nature and the position of the diazine 

substituents, as well as the type of the ancillary ligands, has been 

recently developed.[ 14] Furthermore, we recently reported that the 

strongly emissive metal-to-ligand charge-transfer (3MLCT) state can 

be efficiently quenched, in a molecular dyad containing {[Re2(µ-

Cl)2(CO)6(µ-pyridazine)]} moiety as the chromophore subunit, via 

oxidative electron transfer by a fullerene scaffold, covalently linked to 

the chromophore by a carbocyclic molecular bridge.[15] The charge-

separated (CS) species Re2+ C60
- is formed from the thermally-

equilibrated 3MLCT excited state of the dirhenium subunit by electron 

transfer to the fullerene acceptor unit, with a time constant of about 

110 ps.  

Encouraged by our recent results, we report here on the design and 

the preparation of five dinuclear rhenium complexes and we 

investigate their potential application as dyes in DSSC. The 

electrochemical, computational and spectroscopic characterization of 

all the complexes is also discussed in detail, in order to understand 

how changes in the molecular structure, in terms of nature of the 

ancillary ligands, can control the HOMO−LUMO gap, thus resulting in 

low-band-gap complexes, which are of interest for efficient light 

harvesting in solar cells. Computational studies showed that 

complexes containing one hydrido and one benzoate bridging ligands 

proved the more promising as dyes, with narrower gap and, 

subsequently, wider absorption in the visible range. Therefore, a new 

synthetic strategy has been set to obtain new hydrido-carboxylate 

derivatives, and their electrochemical and spectroscopical properties 

have been measured and compared with a previously reported 
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analogue containing two bridging chloride anions (1). Solar cells with 

each complex have been prepared and their performance evaluated, in 

relation to the molecular structure of the dyes and the nature of the 

ancillary ligands. 

With reference to chart 5.1, together with the use of unfunctionalized 

benzoate anion (complex 2) we also considered the 4-diphenylamino-

benzoate anion (TPA-COO- for complex 3) and the carboxylate anion 

of D35, a commonly used organic dye (complexes 4 and 5). During 

2012 and 2013, the (E)-3-(5-(4-(bis(2',4'-dibutoxy-[1,1'-biphenyl]-4-

yl)amino)phenyl)thiophen-2-yl)-2-cyanoacrylic acid a.k.a. DN-F04 dye 

(from now on, D35, see chart 5.1), has been established worldwide as a 

reference organic dye for DSSCs; excellent device stability has been 

obtained both under light and after at least 1000 h storage in darkness 

at temperatures of 85°C.[ 16 ] The interest in organic molecules 

characterized by a D-p-A electronic structure as dyes in DSSCs has 

been growing fast over the past decade. It was initiated for reasons 

such as unlimited feedstock, improved prerequisites for scalability, 

recycling issues and economy on a large scale. The absorption 

spectrum of D35 makes it interesting also for indoor applications due 

to a good match with fluorescent light and an attractive orange color.  

 

In collaboration with the Laboratory of Photomolecular Science 

(LSPM) of the École Polytechnique Fédérale de Lausanne (EPFL) we 

have linked D35 as bridging ligand to our dinuclear rhenium complexes 

to extend the light harvesting capacity and to allow their usage also 

with cobalt-based electrolytes. These new dyads have been 

characterized by means of spectroscopic and electrochemical 

techniques, and their solar cell performance was compared with either 

D35 and other hydrido-carboxylate complexes. 
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5.2 Results and discussion 
 

5.2.1 Computational study 
 
DFT and TD-DFT computations have been previously used to 

investigate in detail the frontier orbitals and the electronic transitions 

of many [Re2(µ-X)(µ-Y)(CO)6(µ-diazine)] complexes.[14] However, none 

has ever included a carboxylic group on the bridging diazine ligand 

before. Therefore, the first aim of the present study was to understand 

the effect of a COOH substituent on the diazine ligand. The b position 

was chosen since, as previously reported,[ 17 ] the presence of 

substituents in the a position has detrimental effects on the stability of 

the complex due to the steric hindrance with the equatorial carbonyl 

ligands. To enlighten the effects of the COOH substituent on the 

molecular energy levels, we investigated and compared the [Re2(µ-

Cl)2(CO)6(µ-pydz-4-COOH)] complex (1) with the parent [Re2(µ-

Cl)2(CO)6(µ-pydz)] complex.[17]  

 
Figure 5.1 Surface plots of some relevant molecular orbitals of complex 1 
[Re2(µ-Cl)2(CO)6(µ-pydz-4-COOH)]: HOMO+3 (left) and LUMO (right). 

New J. Chem. This journal is©The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2016

by a commercial N719 dye (Dynamo AB). Finally, either a commer-
cial electrolyte (Dyesol’s EL-HSE High Stability Electrolyte) or the
EL14 electrolyte, containing smaller amounts of the redox couple
I!/I3!, was injected by vacuum back-filling. All devices were
assembled in air and no secondary encapsulants were utilized.
Photovoltaic performance of the cells was measured using a
computer-controlled Keithley 2420 source meter, under a solar
simulator (SolarTest 1200 KHS Class B) at 1000 W m!2, AM 1.5.
The incident power was measured using a Skye SKS 1110 sensor;
before measurement, a black 0.7 " 0.7 cm2 adhesive mask was
applied over each cell to avoid overestimations by light collection
from areas surrounding the active area of the cell. Incident
photon-to-current efficiency (IPCE) measurements were carried
out using a set-up consisting of a 150 W xenon lamp (Newport
Model 70612) coupled with a monochromator (Cornerstone 130)
and a Keithley 2420 source meter.

Results and discussion
Computational study

DFT and TD-DFT computations have been previously used to
investigate in detail the frontier orbitals and the electronic
transitions of many [Re2(m-X)(m-Y)(CO)6(m-diazine)] complexes.1–4

None of them contained a carboxylic group on the bridging diazine
ligand, therefore the first aim of the present study was to under-
stand the effects caused by the presence of a COOH substituent
on the diazine. The b position was chosen, since, as previously
reported,1 the presence of substituents in the a position has
detrimental effects on the stability of the complex, due to the
steric hindrance with the equatorial carbonyl ligands.

To enlighten the effects of the COOH substituent on the
molecular energy levels, we have investigated the [Re2(m-Cl)2(CO)6-
(m-pydz-4-COOH)] complex (1) and compared its data with those of
the progenitor [Re2(m-Cl)2(CO)6(m-pydz)] complex.1

In agreement with the results previously reported for some
other members of this family of complexes,1,4b DFT calcula-
tions on 1 show that the six highest occupied molecular orbitals

correspond to the ‘‘t2g’’ set of the two rhenium atoms in a
pseudo-octahedral environment (three of them are combi-
nation of non-bonding d orbitals and the remaining three are
Re-(m-Cl) p* orbitals) while the two lowest unoccupied molecu-
lar orbitals are the lowest-lying p* orbitals of the diazine. These
orbitals lie at much lower energy than in the parent compound
containing unsubstituted pyridazine (!0.47 eV, Table 1), in
accordance with the electron-withdrawing nature of the carboxylic
group. In agreement with the nature of the frontier orbitals, the
HOMO level is poorly affected (!0.07 eV).

The orbitals involved in the strongest MLCT electronic
transition computed for 1 (see Table 1) are represented in
Fig. 1. This transition is red-shifted with respect to the corres-
ponding transition computed for the pyridazine derivative, due
to the stabilization of the LUMO. In addition, Fig. 1 clearly
shows that the LUMO in 1 is delocalized over the carboxylic
substituent, used to anchor the sensitizer to the nanocrystalline
TiO2, possibly allowing a fast charge-injection process into the
surface. We have then investigated the possibility to further
shift to longer wavelengths the absorption band, in order to
increase the light harvesting ability of the dye.

Taking into account the possibility to tune the energy-gap
for these species not only modifying the substituents on the
diazine (i.e. shifting the LUMOs) but also changing the nature
of the ancillary ligands (i.e. shifting the HOMOs), we have

Fig. 1 Isodensity surface plots of some relevant molecular orbitals of
[Re2(m-Cl)2(CO)6(m-pydz-4-COOH)] (1): HOMO!3 (left) and LUMO (right).

Table 1 Computed orbital energies (EHOMO and ELUMO), energy gap (DE), most intense MLCT excitation energies (l) and oscillator strengths (f, in
parentheses) for the compounds 1–3 here presented and for a series of related rhenium complexes (each molecule is labeled with its symmetry group)

Compound EHOMO [eV] ELUMO [eV] DE [eV] l [nm, eV] ( f ) Transitiona

Cs-[Re2Cl2(CO)6(pydz-4-COOH)] (1) !6.91 !3.99 2.92 428, 2.90 (0.178) H!3 - L
C1-[Re2H(OOCPh)(CO)6(pydz-4-COOH)] (2) !6.53 !3.78 2.75 526, 2.36 (0.118) H!1 - L
C1-[Re2H(OOC-TPA)(CO)6(pydz-4-COOH)] (3) !5.48 !3.71 1.77 530, 2.34 (0.079) H!3 - L

344, 3.60 (0.672)b H - L+2
C2v-[Re2Cl2(CO)6(pydz)] !6.84 !3.52 3.32 385, 3.22 (0.136) H!3 - L
C2v-[Re2(OPh)2(CO)6(pydz)] !6.31 !3.36 2.95 387, 3.20 (0.130) H!9 - L
C2-[Re2(SPh)2(CO)6(pydz)] !6.27 !3.22 3.05 415, 2.98 (0.059) H!5 - L
C2-[Re2(OOCPh)2(CO)6(pydz)] !6.50 !3.19 3.32 446, 2.78 (0.091) H!2 - L

411, 3.01 (0.090) H!4 - L
Cs-[Re2HCl(CO)6(pydz)] !6.69 !3.45 3.24 406, 3.06 (0.113) H!3 - L
Cs-[Re2H(OPh)(CO)6(pydz)] !6.39 !3.38 3.00 397, 3.12 (0.096) H!6 - L
Cs-[Re2H(SPh)(CO)6(pydz)] !6.27 !3.29 2.97 386, 3.21 (0.128) H!1 - L+1
Cs-[Re2H(OOCPh)(CO)6(pydz)] !6.44 !3.31 3.13 469, 2.64 (0.117) H!1 - L
TPA-COOH !5.48 !1.04 4.44 327, 3.79 (0.473)b H - L

a A description of the electronic transition in terms of one-electron excitation between the pair of ground-state orbitals mainly involved
(H = HOMO, L = LUMO). b p–p* transition.
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In agreement with the results previously reported for analogous 

complexes,[14,17] DFT calculations on 1 showed that the six HOMOs 

correspond to the ‘‘t2g’’ set of the two rhenium atoms in a pseudo-

octahedral environment (three of them are combination of non-

bonding d orbitals and the remaining three are Re-(µ-Cl) p* orbitals), 

whereas the two lowest unoccupied molecular orbitals are the lowest-

lying p* orbitals of the diazine. These orbitals lie at much lower energy 

than in the parent compound containing unsubstituted pyridazine 

(0.47 eV), in accordance with the electron-withdrawing nature of the 

carboxylic group. In agreement with the nature of the frontier orbitals, 

the HOMO level is poorly affected (0.07 eV). The orbitals involved in 

the strongest MLCT electronic transition computed for 1 are 

represented in figure 5.1. This transition is red-shifted compared to the 

corresponding transition computed for the pyridazine derivative, due 

to the stabilization of the LUMO. In addition, figure 5.1 clearly shows 

that the LUMO in 1 is delocalized over the carboxylic substituent, used 

to anchor the sensitizer to the nanocrystalline TiO2, possibly allowing a 

fast charge-injection process into the surface.  

We have then investigated the possibility to further shift the 

absorption band to longer wavelengths, to increase the light 

harvesting capability of the dye. Taking into account the possibility to 

tune the energy gap for these species not only by modifying the 

substituents on the diazine (i.e. shifting the LUMOs) but also changing 

the nature of the ancillary ligands (i.e. shifting the HOMOs), we have 

systematically computed the energies of the frontier molecular orbitals 

and the electronic transition energies for two series of complexes 

containing different ancillary ligands and an unsubstituted pyridazine: 

[Re2(µ-X)(CO)6(µ-pydz)] and [Re2(µ-H)(µ-X)(CO)6(µ-pydz)] (X = Cl, 

OPh, SPh, OOCPh).  



CHAPTER 5 | Hydrido-carbonyl rhenium(I) complexes                             
as photosensitizers for DSSC 

 102 
 

N
ew

J.
C
he

m
.

Th
is
jo
ur
na

li
s ©

Th
e
Ro

ya
lS

oc
ie
ty

of
C
he

m
ist
ry

an
d
th
e
C
en

tre
N
at
io
na

ld
e
la
Re

ch
er
ch

e
Sc
ie
nt
ifi
qu

e
20

16

by
a

co
m

m
er

ci
al

N
71

9
dy

e
(D

yn
am

o
AB

).
Fi

na
lly

,e
ith

er
a

co
m

m
er

-
ci

al
el

ec
tr

ol
yt

e
(D

ye
so

l’s
EL

-H
SE

H
ig

h
St

ab
ili

ty
El

ec
tr

ol
yt

e)
or

th
e

EL
14

el
ec

tr
ol

yt
e,

co
nt

ai
ni

ng
sm

al
le

ra
m

ou
nt

so
ft

he
re

do
x

co
up

le
I!

/I3!
,

w
as

in
je

ct
ed

by
va

cu
um

ba
ck

-fi
lli

ng
.

Al
l

de
vi

ce
s

w
er

e
as

se
m

bl
ed

in
ai

r
an

d
no

se
co

nd
ar

y
en

ca
ps

ul
an

ts
w

er
e

ut
ili

ze
d.

Ph
ot

ov
ol

ta
ic

pe
rf

or
m

an
ce

of
th

e
ce

lls
w

as
m

ea
su

re
d

us
in

g
a

co
m

pu
te

r-c
on

tr
ol

le
d

K
ei

th
le

y
24

20
so

ur
ce

m
et

er
,u

nd
er

a
so

la
r

si
m

ul
at

or
(S

ol
ar

Te
st

12
00

K
H

S
C

la
ss

B)
at

10
00

W
m
!

2 ,A
M

1.
5.

Th
e

in
ci

de
nt

po
w

er
w

as
m

ea
su

re
d

us
in

g
a

Sk
ye

SK
S

11
10

se
ns

or
;

be
fo

re
m

ea
su

re
m

en
t,

a
bl

ac
k

0.
7
"

0.
7

cm
2

ad
he

si
ve

m
as

k
w

as
ap

pl
ie

d
ov

er
ea

ch
ce

ll
to

av
oi

d
ov

er
es

tim
at

io
ns

by
lig

ht
co

lle
ct

io
n

fr
om

ar
ea

s
su

rr
ou

nd
in

g
th

e
ac

tiv
e

ar
ea

of
th

e
ce

ll.
In

ci
de

nt
ph

ot
on

-to
-c

ur
re

nt
effi

ci
en

cy
(IP

CE
)

m
ea

su
re

m
en

ts
w

er
e

ca
rr

ie
d

ou
t

us
in

g
a

se
t-u

p
co

ns
is

tin
g

of
a

15
0

W
xe

no
n

la
m

p
(N

ew
po

rt
M

od
el

70
61

2)
co

up
le

d
w

ith
a

m
on

oc
hr

om
at

or
(C

or
ne

rs
to

ne
13

0)
an

d
a

K
ei

th
le

y
24

20
so

ur
ce

m
et

er
.

R
es

ul
ts

an
d

di
sc

us
si

on
C

om
pu

ta
ti

on
al

st
ud

y

D
FT

an
d

TD
-D

FT
co

m
pu

ta
tio

ns
ha

ve
be

en
pr

ev
io

us
ly

us
ed

to
in

ve
st

ig
at

e
in

de
ta

il
th

e
fr

on
tie

r
or

bi
ta

ls
an

d
th

e
el

ec
tr

on
ic

tr
an

si
tio

ns
of

m
an

y
[R

e 2
(m

-X
)(m

-Y
)(C

O
) 6

(m
-d

ia
zi

ne
)]

co
m

pl
ex

es
.1–

4

N
on

e
of

th
em

co
nt

ai
ne

d
a

ca
rb

ox
yl

ic
gr

ou
p

on
th

e
br

id
gi

ng
di

az
in

e
lig

an
d,

th
er

ef
or

e
th

e
fir

st
ai

m
of

th
e

pr
es

en
t

st
ud

y
w

as
to

un
de

r-
st

an
d

th
e

ef
fe

ct
s

ca
us

ed
by

th
e

pr
es

en
ce

of
a

C
O

O
H

su
bs

tit
ue

nt
on

th
e

di
az

in
e.

Th
e
b

po
si

tio
n

w
as

ch
os

en
,s

in
ce

,a
s

pr
ev

io
us

ly
re

po
rt

ed
,1

th
e

pr
es

en
ce

of
su

bs
tit

ue
nt

s
in

th
e
a

po
si

tio
n

ha
s

de
tr

im
en

ta
le

ff
ec

ts
on

th
e

st
ab

ili
ty

of
th

e
co

m
pl

ex
,d

ue
to

th
e

st
er

ic
hi

nd
ra

nc
e

w
ith

th
e

eq
ua

to
ri

al
ca

rb
on

yl
lig

an
ds

.
To

en
lig

ht
en

th
e

eff
ec

ts
of

th
e

C
O

O
H

su
bs

tit
ue

nt
on

th
e

m
ol

ec
ul

ar
en

er
gy

le
ve

ls
,w

e
ha

ve
in

ve
st

ig
at

ed
th

e
[R

e 2
(m

-C
l) 2

(C
O

) 6
-

(m
-p

yd
z-

4-
CO

O
H

)]
co

m
pl

ex
(1

)a
nd

co
m

pa
re

d
its

da
ta

w
ith

th
os

e
of

th
e

pr
og

en
ito

r
[R

e 2
(m

-C
l) 2

(C
O

) 6
(m

-p
yd

z)
]c

om
pl

ex
.1

In
ag

re
em

en
t

w
ith

th
e

re
su

lts
pr

ev
io

us
ly

re
po

rt
ed

fo
r

so
m

e
ot

he
r

m
em

be
rs

of
th

is
fa

m
ily

of
co

m
pl

ex
es

,1,
4b

D
FT

ca
lc

ul
a-

tio
ns

on
1

sh
ow

th
at

th
e

si
x

hi
gh

es
to

cc
up

ie
d

m
ol

ec
ul

ar
or

bi
ta

ls

co
rr

es
po

nd
to

th
e

‘‘t
2g

’’
se

t
of

th
e

tw
o

rh
en

iu
m

at
om

s
in

a
ps

eu
do

-o
ct

ah
ed

ra
l

en
vi

ro
nm

en
t

(th
re

e
of

th
em

ar
e

co
m

bi
-

na
tio

n
of

no
n-

bo
nd

in
g

d
or

bi
ta

ls
an

d
th

e
re

m
ai

ni
ng

th
re

e
ar

e
Re

-(m
-C

l)
p*

or
bi

ta
ls

)w
hi

le
th

e
tw

o
lo

w
es

tu
no

cc
up

ie
d

m
ol

ec
u-

la
ro

rb
ita

ls
ar

e
th

e
lo

w
es

t-l
yi

ng
p*

or
bi

ta
ls

of
th

e
di

az
in

e.
Th

es
e

or
bi

ta
ls

lie
at

m
uc

h
lo

w
er

en
er

gy
th

an
in

th
e

pa
re

nt
co

m
po

un
d

co
nt

ai
ni

ng
un

su
bs

tit
ut

ed
py

ri
da

zi
ne

(!
0.

47
eV

,
Ta

bl
e

1)
,

in
ac

co
rd

an
ce

w
ith

th
e

el
ec

tr
on

-w
ith

dr
aw

in
g

na
tu

re
of

th
e

ca
rb

ox
yl

ic
gr

ou
p.

In
ag

re
em

en
tw

ith
th

e
na

tu
re

of
th

e
fr

on
tie

ro
rb

ita
ls

,t
he

H
O

M
O

le
ve

li
s

po
or

ly
aff

ec
te

d
(!

0.
07

eV
).

Th
e

or
bi

ta
ls

in
vo

lv
ed

in
th

e
st

ro
ng

es
t

M
LC

T
el

ec
tr

on
ic

tr
an

si
tio

n
co

m
pu

te
d

fo
r

1
(s

ee
Ta

bl
e

1)
ar

e
re

pr
es

en
te

d
in

Fi
g.

1.
Th

is
tr

an
si

tio
n

is
re

d-
sh

ift
ed

w
ith

re
sp

ec
t

to
th

e
co

rr
es

-
po

nd
in

g
tr

an
si

tio
n

co
m

pu
te

d
fo

rt
he

py
ri

da
zi

ne
de

ri
va

tiv
e,

du
e

to
th

e
st

ab
ili

za
tio

n
of

th
e

LU
M

O
.

In
ad

di
tio

n,
Fi

g.
1

cl
ea

rl
y

sh
ow

s
th

at
th

e
LU

M
O

in
1

is
de

lo
ca

liz
ed

ov
er

th
e

ca
rb

ox
yl

ic
su

bs
tit

ue
nt

,u
se

d
to

an
ch

or
th

e
se

ns
iti

ze
rt

o
th

e
na

no
cr

ys
ta

lli
ne

Ti
O

2,
po

ss
ib

ly
al

lo
w

in
g

a
fa

st
ch

ar
ge

-in
je

ct
io

n
pr

oc
es

s
in

to
th

e
su

rf
ac

e.
W

e
ha

ve
th

en
in

ve
st

ig
at

ed
th

e
po

ss
ib

ili
ty

to
fu

rt
he

r
sh

ift
to

lo
ng

er
w

av
el

en
gt

hs
th

e
ab

so
rp

tio
n

ba
nd

,
in

or
de

r
to

in
cr

ea
se

th
e

lig
ht

ha
rv

es
tin

g
ab

ili
ty

of
th

e
dy

e.
Ta

ki
ng

in
to

ac
co

un
t

th
e

po
ss

ib
ili

ty
to

tu
ne

th
e

en
er

gy
-g

ap
fo

r
th

es
e

sp
ec

ie
s

no
t

on
ly

m
od

ify
in

g
th

e
su

bs
tit

ue
nt

s
on

th
e

di
az

in
e

(i.
e.

sh
ift

in
g

th
e

LU
M

O
s)

bu
t

al
so

ch
an

gi
ng

th
e

na
tu

re
of

th
e

an
ci

lla
ry

lig
an

ds
(i.

e.
sh

ift
in

g
th

e
H

O
M

O
s)

,
w

e
ha

ve

Fi
g.

1
Is

od
en

si
ty

su
rf

ac
e

pl
ot

s
of

so
m

e
re

le
va

nt
m

ol
ec

ul
ar

or
bi

ta
ls

of
[R

e 2
(m

-C
l) 2

(C
O

) 6
(m

-p
yd

z-
4-

C
O

O
H

)]
(1

):
H

O
M

O
!

3
(le

ft
)a

nd
LU

M
O

(r
ig

ht
).

Ta
bl

e
1

C
om

pu
te

d
o

rb
ita

l
en

er
gi

es
(E

H
O

M
O

an
d

E L
U

M
O

),
en

er
gy

ga
p

(D
E)

,
m

os
t

in
te

ns
e

M
LC

T
ex

ci
ta

tio
n

en
er

gi
es

(l
)

an
d

os
ci

lla
to

r
st

re
ng

th
s

(f,
in

pa
re

nt
he

se
s)

fo
r

th
e

co
m

po
un

ds
1–

3
he

re
pr

es
en

te
d

an
d

fo
r

a
se

rie
s

of
re

la
te

d
rh

en
iu

m
co

m
pl

ex
es

(e
ac

h
m

ol
ec

ul
e

is
la

be
le

d
w

ith
its

sy
m

m
et

ry
gr

ou
p)

C
om

po
un

d
E H

O
M

O
[e

V]
E L

U
M

O
[e

V]
D

E
[e

V]
l

[n
m

,e
V]

(f
)

Tr
an

si
tio

na

C
s-[

Re
2C

l 2
(C

O
) 6

(p
yd

z-
4-

C
O

O
H

)]
(1

)
!

6.
91

!
3.

99
2.

92
42

8,
2.

90
(0

.1
78

)
H
!

3
-

L
C

1-
[R

e 2
H

(O
O

C
Ph

)(C
O

) 6
(p

yd
z-

4-
C

O
O

H
)]

(2
)

!
6.

53
!

3.
78

2.
75

52
6,

2.
36

(0
.1

18
)

H
!

1
-

L
C

1-
[R

e 2
H

(O
O

C
-T

PA
)(C

O
) 6

(p
yd

z-
4-

C
O

O
H

)]
(3

)
!

5.
48

!
3.

71
1.

77
53

0,
2.

34
(0

.0
79

)
H
!

3
-

L
34

4,
3.

60
(0

.6
72

)b
H

-
L+

2
C

2v
-[R

e 2
C

l 2
(C

O
) 6

(p
yd

z)
]

!
6.

84
!

3.
52

3.
32

38
5,

3.
22

(0
.1

36
)

H
!

3
-

L
C

2v
-[R

e 2
(O

Ph
) 2

(C
O

) 6
(p

yd
z)

]
!

6.
31

!
3.

36
2.

95
38

7,
3.

20
(0

.1
30

)
H
!

9
-

L
C

2-
[R

e 2
(S

Ph
) 2

(C
O

) 6
(p

yd
z)

]
!

6.
27

!
3.

22
3.

05
41

5,
2.

98
(0

.0
59

)
H
!

5
-

L
C

2-
[R

e 2
(O

O
C

Ph
) 2

(C
O

) 6
(p

yd
z)

]
!

6.
50

!
3.

19
3.

32
44

6,
2.

78
(0

.0
91

)
H
!

2
-

L
41

1,
3.

01
(0

.0
90

)
H
!

4
-

L
C

s-[
Re

2H
C

l(C
O

) 6
(p

yd
z)

]
!

6.
69

!
3.

45
3.

24
40

6,
3.

06
(0

.1
13

)
H
!

3
-

L
C

s-[
Re

2H
(O

Ph
)(C

O
) 6

(p
yd

z)
]

!
6.

39
!

3.
38

3.
00

39
7,

3.
12

(0
.0

96
)

H
!

6
-

L
C

s-[
Re

2H
(S

Ph
)(C

O
) 6

(p
yd

z)
]

!
6.

27
!

3.
29

2.
97

38
6,

3.
21

(0
.1

28
)

H
!

1
-

L+
1

C
s-[

Re
2H

(O
O

C
Ph

)(C
O

) 6
(p

yd
z)

]
!

6.
44

!
3.

31
3.

13
46

9,
2.

64
(0

.1
17

)
H
!

1
-

L
TP

A-
C

O
O

H
!

5.
48

!
1.

04
4.

44
32

7,
3.

79
(0

.4
73

)b
H

-
L

a
A

de
sc

ri
pt

io
n

of
th

e
el

ec
tr

on
ic

tr
an

si
tio

n
in

te
rm

s
of

on
e-

el
ec

tr
on

ex
ci

ta
tio

n
be

tw
ee

n
th

e
pa

ir
of

gr
ou

nd
-s

ta
te

or
bi

ta
ls

m
ai

nl
y

in
vo

lv
ed

(H
=

H
O

M
O

,L
=

LU
M

O
).

b
p–

p*
tr

an
si

tio
n.

Pa
pe

r
N

JC

Published on 25 January 2016. Downloaded by Universita Studi di Milano on 03/02/2016 15:59:25. 

V
ie

w
 A

rt
ic

le
 O

nl
in

e

T
a
b

le
 5

.1
 C

o
m

p
u

te
d

 o
rb

it
a
l 

e
n

e
rg

ie
s 

(E
H

O
M

O
 a

n
d

 E
L

U
M

O
),

 e
n

e
rg

y
 g

a
p

 (
D

E
),

 m
o

st
 i

n
te

n
se

 M
L

C
T

 e
x
ci

ta
ti

o
n

 
e
n

e
rg

ie
s 

(λ
) 

a
n

d
 o

sc
ill

a
to

r 
st

re
n

g
th

s 
(f

, 
in

 p
a
re

n
th

e
se

s)
 f

o
r 

th
e

 c
o

m
p

o
u

n
d

s 
1 –

3
 h

e
re

 p
re

se
n

te
d

 a
n

d
 f

o
r 

a
 

se
ri

e
s 

o
f 

re
la

te
d

 r
h

e
n

iu
m

 c
o

m
p

le
x
e
s 

(e
a

ch
 m

o
le

c
u

le
 is

 la
b

e
le

d
 w

it
h

 it
s 

sy
m

m
e

tr
y
 g

ro
u

p
) 

 

 



CHAPTER 5 | Hydrido-carbonyl rhenium(I) complexes                             
as photosensitizers for DSSC 

 103 

It is important to compute both the energy gap and the strongest 

MLCT electronic transition energy because in these species the 

HOMO-LUMO transition is either symmetry forbidden or shows a very 

low oscillator strength. Therefore, no clear correlation between the 

energy gap (as measured for instance from electrochemical data) and 

the maximum of the absorption spectra can be found.[14] Moreover, the 

t2g set of orbitals of the two rhenium atoms (involved in the MLCT 

transition) are not necessarily the six HOMOs for these species, since 

the presence of aromatic moieties in the ancillary ligands (OPh, SPh 

and OOCPh) determines the intercalation of some p orbitals between 

them. The data reported show that a more red-shifted absorption can 

be attained by using the hydrido derivative containing a µ-benzoate 

bridging ligand. 

On account of these considerations, we focused our attention on 

complex 2, in which the pyridazine-4-carboxylic acid ligand is 

combined with one hydrido and one benzoate ligand, and on the 

analogous derivative containing the 4-diphenylamino-benzoate anion 

(3) and the D35 carboxylate anion (4-5), due to the recognized ability 

of the triarylamine moiety to promote charge separation after UV 

excitation.[18]  

Figure 5.2 shows the electronic density difference maps for the two 

most intense electronic transitions computed for 3. In the MLCT 

transition the electronic transfer from the “Re2(µ-H)(µ-X)” moiety to 

the pyridazine ligand (and its carboxylic substituent) is clearly 

recognizable. Apparently, the diphenylamino substituent is not directly 

involved in this transition, but it drastically changes the energy of the 

HOMO (not a rhenium-centered orbital anymore). Its presence gives 

rise to an additional p–p* transition that can be ascribed to a charge 
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transfer from the diphenylamino moiety to the benzoate bridging 

ligand, very similar to the corresponding transition computed for the 

free ligand, although their energies are quite different as a 

consequence of their different charge distribution. The same feature is 

observed for complexes 4 and 5. 

 

Figure 5.2 Electronic density difference maps for the two most intense 
electronic transitions computed for the rhenium complex [Re2H(OOC- 
TPA)(CO)6(pydz-4-COOH)] (3): the MLCT at 530 nm (left) and the p–p* at 
344 nm (right). Light blue indicates a decrease in electron density, blue 
indicates an increase.  
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systematically computed the energies of the frontier molecular
orbitals and the electronic transition energies for two series
of complexes containing different ancillary ligands and an
unsubstituted pyridazine: [Re2(m-X)2(CO)6(m-pydz)] and [Re2(m-H)-
(m-X)(CO)6(m-pydz)] (X = Cl, OPh, SPh, OOCPh). It is important to
compute both the energy gap and the strongest MLCT electronic
transition energy because in these species the HOMO - LUMO
transition is either symmetry forbidden or shows a very low
oscillator strength. Therefore no clear correlation between the
energy gap (as measured for instance from electrochemical data)
and the maximum of the absorption spectra can be found. More-
over, the ‘‘t2g’’ set of orbitals of the two rhenium atoms (involved in
the MLCT transition) are not necessarily the six HOMOs for these
species, since the presence of aromatic moieties in the ancillary
ligands (OPh, SPh and OOCPh) determines the intercalation of
some p orbitals between them. The data reported in Table 1 show
that a more red-shifted absorption can be attained by using the
hydrido derivative containing a m-benzoato bridging ligand.

On this ground, we focused our attention on complex 2,
in which the pyridazine-4-carboxylic acid ligand is combined
with one hydrido and one benzoato ligand, and on the analo-
gous derivative containing the 4-diphenylamino-benzoate
anion (compound 3), due to the recognized ability28 of the
triarylamine moiety to promote charge separation after UV
excitation. Fig. 2 shows the electronic density difference maps
for the two most intense electronic transitions computed for 3.
In the MLCT transition it is clearly recognizable the electronic
transfer from the Re2(m-H)(m-X) moiety to the pyridazine ligand
(and its carboxylic substituent). Apparently the diphenylamino
substituent is not directly involved in this transition, however it
drastically changes the energy of the HOMO (not a rhenium
centred orbital anymore). Its presence gives rise to an additional
p–p* transition, that can be described as a charge transfer from
the diphenylamino moiety to the benzoato bridging ligand,
and is very similar to the corresponding transition computed

for the free ligand, even if their energies are quite different, as a
consequence of their different charge distribution.

Synthesis of the designed molecules

A new synthetic strategy was designed for obtaining the hydrido-
carboxylato derivatives 2 and 3 (whereas the dichloride complex 1
was prepared according to a literature procedure, involving the
high temperature reaction of ReCl(CO)5 with 0.5 equivalents of
pyridazine-4-carboxylic acid).1,24

The three step procedure shown in Scheme 1 was followed,
which is based on the peculiar reactivity of the tetrahedral
hydrido-carbonyl cluster [Re4(m3-H)4(CO)12] with bridging donor
ligands.2 Indeed this tetrahedral cluster, which possesses four
electrons less than that required by the effective atomic number
rule (56 instead of 60 valence electrons, v.e.s),29 easily reacts with
any (even weakly) donor species L.30 By using pyridazine as a
donor ligand, the main reaction products are the tetrametallic
derivatives [Re4(m-H)4(CO)12(m-pydz)2], with a square geometry of
the Re(m-H)Re skeleton and two pyridazine molecules bridging
on opposite edges of the squares, in trans or cis positions with
respect to the plane of the cluster.2 The reaction produces also
the dinuclear unsaturated complex [Re2(m-H)2(CO)6(m-pydz)],
which possesses 32 v.e.s, instead of the 34 v.e.s required by
the effective atomic number rule.2 Such dinuclear species is not
formed in high yields in this reaction. In contrast dinuclear
species of this kind are the only reaction products using
3,6-disubstitued pyridazine ligands, indicating the occurrence
of a [2+2] fragmentation pathway of the parent tetranuclear
cluster, without any spectroscopically recognizable intermediate.
This is probably due to steric hindrance, which prevents the
formation of the square planar species by destabilizing some
key intermediate of the addition reaction. Analogously the
selective formation of a dinuclear product is observed by
reacting [Re4(m3-H)4(CO)12] with 2,5-diphenyl-1,3,4-oxadiazole
(ppd), which contains two aromatic substituents in the a position
of the oxadiazole ring.23 The labile ppd ligand can be easily
replaced by a diazine molecule, and this provides a general
route to [Re2(m-H)2(CO)6(m-diazine)] complexes.

Therefore, at first the complex [Re2(m-H)2(CO)6(m-ppd)] (4)
was prepared in high yields by reacting [Re4(m3-H)4(CO)12] with
2 equiv. of ppd, at room temperature in dichloromethane
solution.23 Then the mixed hydrido-carboxylato complex [Re2(m-H)-
(m-OOCPh)(CO)6(m-ppd)] (5, Scheme 1) was obtained by reaction 1,
which exploits the reactivity of the hydride ligands of 4 towards
the acidic proton of the carboxylic acid.

[Re2(m-H)2(CO)6(ppd)] + PhCOOH

- [Re2(m-H) (OOCPh)(CO)6(ppd)] + H2 (1)

Finally, substitution of the oxadiazole by the pyridazine-4-
carboxylic acid afforded the desired product 2. It is important
to note that the introduction of the diazine ligand must be
the last step of the synthesis, since both [Re4(m3-H)4(CO)12]
and [Re2(m-H)2(CO)6(m-ppd)] (4) could react with the carboxylic
substituent of the diazine ring, affording undesired byproducts.

Fig. 2 Electronic density difference maps for the two most intense
electronic transitions computed for the rhenium complex [Re2H(OOC-
TPA)(CO)6(pydz-4-COOH)] (3): the MLCT at 530 nm (left) and the p–p* at
344 nm (right). Light blue indicates a decrease in electron density, blue
indicates an increase.
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5.2.2 Synthesis of the dyes 
 
The dichloride complex 1 was prepared according to a literature 

procedure involving a high temperature reaction of Re(CO)5Cl with 0.5 

equivalents of pyridazine-4-carboxylic acid.[19] In order to obtain the 

new hydrido-carboxylato derivatives a whole new synthetic strategy 

was designed and carried out successfully. This procedure involves 

three steps, (shown in scheme 5.1) and is based on the peculiar 

reactivity of the tetrahedral hydrido-carbonyl cluster [Re4(µ3-

H)4(CO)12] with bridging donor ligands. Indeed this tetrahedral cluster 

possesses four electrons less than required by the effective atomic 

number rule (56 instead of 60 valence electrons, v.e.s),[20] and reacts 

very easily with any donor species L.[21] 

By using pyridazine as donor ligand, the main reaction products are 

the tetrametallic derivatives [Re4(µ-H)4(CO)12(µ-pydz)2], with a square 

geometry of the Re(µ-H)Re skeleton with two pyridazine molecules 

bridging on the opposite edges of the square, in E or Z position.[22] 

This reaction also produces the dinuclear unsaturated complex [Re2(µ-

H)2(CO)6(µ-pydz)], which possesses 32 v.e.s, instead of the 34 v.e.s 

required by the effective atomic number rule.[22] Such dinuclear 

species is not formed in high yields in this reaction.  

In contrast, dinuclear species of this type are the only reaction 

products using 3,6-disubstitued pyridazine ligands, thus indicating the 

occurrence of a [2+2] fragmentation pathway of the parent 

tetranuclear cluster without any spectroscopically recognizable 

intermediate. This is probably due to steric hindrance, which prevents 

the formation of the square-planar species by destabilizing some key 

intermediate of the addition reaction. [14] 
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Analogously, the selective formation of a dinuclear product is 

observed by reacting [Re4(µ3-H)4(CO)12] with 2,5-diphenyl-1,3,4-

oxadiazole (ppd), a sterically hindered heterocycle containing two 

aromatic substituents in the  a position of the oxadiazole ring.[23] The 

labile ppd ligand can be then easily replaced by a diazine molecule, 

thus providing a general route to [Re2(µ-H)2(CO)6(µ-diazine)] 

complexes. Therefore, at first the complex [Re2(µ-H)
2
(CO)

6
(µ-ppd)]  

was prepared in high yields by reacting [Re4(µ3-H)4(CO)12] with 2 

equiv. of ppd at room temperature in CH2Cl2 solution.[23] Then the 

mixed hydrido-carboxylato complexes [Re2(µ-H)(µ-OOCR)(CO)6(µ-

ppd)] (scheme 5.1) were obtained by reaction 5.1, which exploits the 

reactivity of the hydride ligands towards the acidic protons of 

carboxylic acids. Through a simple reaction one of the two hydrides is 

removed as H2 and the carboxylate anion take its place, bridging the 

two metal centers.[ 24 ] Three different carboxylic acids were used 

synthesize the complexes and, in particular, benzoic acid for complex 

2, the 4(diphenylamino)benzoic acid (TPA-COOH) for complex 3, and 

the carboxylic acid of the D35 dye for complexes 4 and 5. 

 

	[#$% & − ( % )* +(--.)] + 	#)**( → 	 [#$%(& − ()(& − **)#) )* +(--.)] + 	(% ↑ 

(eq. 5.1)  

Finally, substitution of the oxadiazole with functionalized diazine 

ligands, (namely the pyridazinyl-carboxylic acid for complexes 2-4 and 

the pyridazinyl-4-butanoic acid for complex 5) afforded the desired 

products.  
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Noteworthy, the introduction of the diazine ligand must necessarily be 

the last step of the synthesis since both the precursors [Re4(µ3-

H)4(CO)12]  and [Re2(µ-H)
2
(CO)

6
(µ-ppd)] could thoroughly react with 

the carboxylic substituent of the diazine ring, thus generating 

undesired by-products.  

 
 
 

Scheme 5.1 Synthetic pathways to the preparation of rhenium hydrido 
carboxylate complexes 2, 3, 4 and 5. 
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5.2.3 Electrochemical characterization 
 
Cyclic voltammetry analysis was performed on all the derivatives 1-

COOMe, 2-COOMe, 3-COOMe, 4-COOMe and 5-COOMe, containing 

the methyl ester of the corresponding diazine ligand in order to avoid 

the reduction of the acidic proton to gaseous H2. The substitution of 

the carboxylic acid with the methyl ester derivative could afford a 

moderate shift of the reduction potentials of complexes 1-COOMe-      

4-COOMe towards more negative values, due to the lower electron-

withdrawing character of the methyl ester compared to the carboxylic 

group. In complex 5-COOMe, due to the presence of the insulating 

aliphatic chain between the diazine ring and the carboxylic group, this 

shift is not observed and the obtained value of the reduction potential 

can be translated straight away to the non-methylated counterpart.  

The cyclic voltammetry behavior in acetonitrile at 298 K is reported in 

figure 5.3. The peak potentials, together with the related HOMO and 

LUMO energy values, are collected in table 5.2. In the cathodic region 

complexes 1-4 show one monoelectronic reduction peak at about -0.9 

V (vs. Fc+|Fc), which is centered on the diazine ligand and whose 

chemical reversibility is confirmed by the presence of its anodic 

counterpart. Moreover, the position of this peak is unaffected by the 

scan rate, in agreement with the electrochemical reversibility of the 

reductive process. The peak potential is slightly modulated by the 

different nature of the ancillary ligand.  

Comparing these data with analogous complexes of this family 

containing an unsubstituted pyridazine ligand,[14,17] a shift in the 

positive direction of the reduction potential can be observed (for 

instance, the reduction potential is -1.34 V for the parent complex 

[Re2(µ-Cl)2(CO)6(µ-pyridazine)]), consistent with the presence of the 
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electron-withdrawing substituent on the aromatic ring. On the 

contrary, the reduction peak for 5 is observed at -1.47 V, i.e. at the 

same reduction potential of complex [Re2(µ-Cl)2(CO)6(µ-4-n-

hexylpydz)] (-1.46 V)[14] containing an electron-rich pyridazine ligand. 

Also in this case the reduction is chemically and electrochemically 

reversible. 

 

All these features are in agreement with the localization of the 

reduction process on the diazine ring, as indicated also by the 

description of the LUMO provided by the DFT computations, which is 

stabilized and partially delocalized by the carboxylic group in b 

position.  

 

In the anodic region significant differences have been observed for the 

five complexes. 1-COOMe exhibits an oxidation potential at 1.34 V (vs. 

Fc+|Fc), which corresponds to a metal-centered bi-electronic oxidation 

and appears to be irreversible.[14] However, it becomes partially 

reversible at higher scan rate, as demonstrated by the presence of the 

return peak.[14] This clearly points to an electrochemically quasi-

reversible electron transfer step and a subsequent chemical step. The 

resulting electrochemical HOMO–LUMO gap was 2.25 eV and the 

HOMO and the LUMO energy levels of 1 are calculated to 6.14 eV and 

3.88 eV, respectively. Interesting differences appear in the anodic 

behavior of complexes 2-COOMe - 5-COOMe. As already observed in 

the derivatives containing alcoholate or phenolate anions as ancillary 

ligands,[25] a close sequence of two monoelectronic oxidation peaks is 

observed, instead of a bi-electronic peak. 
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Figure 5.3 Normalized CV features of the methyl-ester derivatives of dyes 1-5 
on GC electrodes, in ACN + 0.1 M TBAPF6 solution, at 0.2 V s-1 with ohmic 
drop compensation.  

These two oxidation processes are clearly localized on the metal core 

(as confirmed also by computational analysis)[25] and strongly indicate 

that the oxidation process is markedly different in the case of the 

oxygen-bridged derivatives with respect to the dichloride ones, also 

when only one oxygenated ancillary ligand is present.  
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This might be related to the closer “Re(µ-X)2Re” scaffold and to the 

harder nature of the bridging ligands in the case of the derivatives 

containing oxygen donors. This feature could afford a less efficient 

stabilization of the cationic products compared to softer anions, such 

as halides.  

The first oxidation peak for 2-COOMe is observed at +1.11 V (vs. 

Fc+|Fc), and it appears to be chemically irreversible. It is followed by a 

second peak at 1.32 V which is reversible in the whole scan rate range 

explored. This lower oxidation potential indicates a higher HOMO level, 

in agreement with the DFT calculations, and the resulting 

electrochemical energy gap is reduced to 2.00 eV.  

On the other hand, for complexes 3-COOMe - 5-COOMe, beside the 

two oxidation peaks centered on the metal core (at 1.07 V and at 1.32 

V), another chemically reversible oxidation peak at +0.66 V is 

detected. This peak is clearly attributed to the formation of a radical 

cation on the triarylamine (TPA) moiety, as indicated by the 

comparison with the electrochemical behavior of the free 4-

diphenylamino-benzoic acid (Ep,a = 0.70 V). This confirms the lack of 

communication between the pyridazine ring and the triarylamine 

moiety, which is verified also in the UV-Vis absorption data (the same 

behavior has been observed in the complex containing, as an ancillary 

ligand, the carboxylate derivative of cyclopentadithiophene).[24]  

In spite of the lack of electronic communication, the presence of the 

TPA moiety affects (even if slightly) the position of the reduction of 

the pyridazine ring in 3-COOMe and 4-COOMe resulting in more 

negative potential values than 2-COOMe. The slight destabilization of 

the LUMO level is also confirmed by computational data.  
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The introduction of the TPA moiety in 3-5 leads to a strong reduction 

of the electrochemical energy gap which, however, does not parallel 

the spectroscopic (absorption) gap. This is consistent with the fact 

that the electronic absorption arises from a 1MLCT transition which in 

3-5 does not involve the HOMO level, centered on the TPA moiety. In 

contrast, for dyes 1 and 2, the electrochemical and spectroscopical 

energy gaps do parallel each other, although the spectroscopical gaps 

are always higher than the electrochemical, since the electronic 

transition responsible for the 1MLCT absorption band is not a pure 

HOMO–LUMO transition.  

Table 5.2 First reduction and oxidation peak potentials (Ep,c and Ep,a) and 
electrochemical (DEe) and spectroscopic (DES)

a energy gaps of the 
complexes. Potentials are referred to the Fc+|Fc coupleb in the operating 
medium (ACN, 0.1 M TBAPF6). Scan rate 0.2 V s-1.  

COMPLEX  Ep,c  [V] Ep,a  [V] ΔEe [eV] ΔEs [eV] ELUMO [eV] EHOMO [eV] 

1-COOMe -0.91 1.34 2.26 2.98 -3.88 -6.14 

2-COOMe -0.89 1.11, 1.32 2.01 2.56 -3.90 -5.91 

3-COOMe -0.97 0.66, 1.07, 1.32 1.64 2.56 -3.81 -5.45 

4-COOMe -0.94 0.41, 0.74, 1.10 1.36 2.52 -3.85 -5.21 

5-COOMe -1.42 0.42, 0.75, 1.10 1.84 2.55 -3.37 -5.21 

[a The spectroscopic (DES) energy gap is the energy associated with the 
electronic transition determined from the maximum of the 1MLCT absorption 
band, b Fc+|Fc potential is 0.385 V vs. SCE in ACN solution] 
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5.2.4 Photophysical characterization 
 
UV-Vis absorption maxima and molar absorptivities are reported in 

table 5.3, both in solution and adsorbed on TiO2. Figure 5.4 shows the 

spectra in toluene solution, where all the complexes exhibit a broad 

and featureless absorption band extending in a conspicuous part of 

the visible spectrum between 350 nm and 600 nm.  

 

Figure 5.4 UV-Vis absorption spectra of complexes 1-5 in toluene solution.  

The predicted red-shift of the absorption maximum (see 

computational study section 5.2.1) for all the hydrido-carboxylate 

complexes, compared to complex 1, is observed. Furthermore, a very 

modest red-shift in the absorption maximum for the D35-based 

complexes 4 and 5, compared to the bare TPA-based complex 3, is 

detected.  



CHAPTER 5 | Hydrido-carbonyl rhenium(I) complexes                             
as photosensitizers for DSSC 

 114 

This feature indicates that this band is ascribable to the metal-to-

ligand dp(Re)	 p*(diazine) charge transfer transition (1MLCT), in 

agreement with DFT computations. This broad MLCT band arises from 

the convolution of multiple transitions, as testified by the more or less 

pronounced shoulders observed at longer wavelengths. This 

assignment is also supported by the weak intensity of these bands and 

by the observed solvatochromic behavior. Complexes 4 and 5 show an 

impressive tenfold increase of ε compared to 3, thus greatly improving 

the light harvesting. This is due to a partial superposition between the 

MLCT band and the absorption band of the D35 ligand, which displays 

an absorption band at 500 nm in CH2Cl2 solution with a high molar 

extinction coefficient (31,330 M-1 cm-1).[26] 

Table 5.3 UV-Vis MLCT absorption data of the dyes in solution and on TiO2 
film.  

COMPLEX λmax
a /nm ε /M-1 cm-1  λmax

b
 /nm λmax

c
 /nm 

1 416 6,5E+03 375 405 

2 487 6,7E+03 430 440 

3 483 5.2E+03 425 443 

4 493 3.1E+04 486 493 

5 486 3.5E+04 487 487 

[a toluene solution (2x10-5 M), b EtOH solution (2x10-5 M), c TiO2 film] 
 

All the complexes containing a triarylamine, namely 3, 4 and 5, also 

display another high energy absorption band at around 335-350 nm, 

whose position is totally independent from the polarity of the solvent. 

In agreement with the electrochemical and computational data, this 

band is attributed to the p-p* transition involving the triarylamine 

moiety. Noticeably, in the D35–containing complexes 4 and 5 this band 

is moderately blue-shifted, as due to the presence of electron donor 

groups on the triarylamine moiety of D35. 
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5.2.5 Devices 
 
Photovoltaic measurements have been carried out to evaluate the 

potential of the new rhenium complexes as dyes in DSSC devices. 

Unoptimized solar cells have been realized, in collaboration with the 

Center for Hybrid and Organic Solar Energy (CHOSE, Polo Solare 

Organico Regione Lazio, Rome)”, to test the actual operating 

efficiency of complexes 1-3. The main photovoltaic performance 

parameters of the solar cells under AM 1.5 G at 1 Sun (1000 W m2) 

illumination are presented in table 5.4 and the current–voltage (J–V) 

curves are reported in figure 5.5.  

 

Two different electrolytes were used, both based on the 

iodide/triiodide redox couple. The first (HSE, Dyesol) is commercially 

available, while the second (labeled El14) was developed in-house by 

reducing the concentration of iodine (and thus, of iodide), which 

strongly absorbs below 450 nm, and competes with the rhenium 

complexes absorption. Interestingly, an increase in the photogenerated 

currents was observed (see the aforementioned figures) for all the 

rhenium-based dyes when El14 was used instead of HSE. This was also 

confirmed by the incident photon-to-current conversion efficiency 

(IPCE) plots for the DSSCs sensitized by 1, 2 and 3, in presence of the 

two different electrolytes (figure 5.6). 

 

The best performing cell, sensitized with complex 3, gave an overall 

power conversion efficiency of 1% (with short-circuit photocurrent 

density JSC = 2.9 mA cm2, open-circuit photovoltage VOC = 0.51 mV and 

fill factor FF = 0.70). These values are far from those obtained under 

similar conditions by cells assembled using the conventional ruthenium 

N719 dye. 
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Figure 5.5 Current–voltage curves for unoptimized devices sensitized by 
rhenium-based dyes 1-3 under 1 Sun illumination, AM 1.5.  
 

These dyes absorb in a very narrow spectral range compared to N719 

and, in addition, below 450 nm they compete with iodide/triiodide-

based electrolytes in the absorption of light. However, the maximum of 

the absorption spectrum is not the only factor which determines the 

overall characteristics of the cell. In fact, despite the red-shift observed 

in the absorption spectrum, mainly due to the raise of the HOMO level, 

complex 2 displays the worst performances. This result is probably due 

to the particularly low LUMO level (see table 5.2) which, as in the case 

of complex 1, hampers the electron injection into the TiO2 conduction 

band (3.9 eV). 
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Figure 5.6 IPCE spectra for unoptimized devices sensitized by rhenium-based 
dyes 1-3 compared with those sensitized by N719. 

 
Table 5.4 Photovoltaic parameters for 1-3 compared to N719 using 
commercial HSE electrolyte (Dyesol) and homemade El14 electrolyte. 

 

The replacement of the simple benzoate anion with the carboxylate 

derivative of the triarylamine has a double role. First, the hole 

transport unit, now localized on the TPA moiety, is placed far away 

from TiO2 and can better interact with the electrolyte. Moreover, the 

higher steric hindrance of the TPA unit, way bigger than the simple 

CELL JSC (mA/cm2) VOC (V) FF η (%)

N719 HSE
N719 EL-14

-13.6
-12.0

0.735
0.778

63.2
31.5

6.3
3.0

1 HSE
1 EL-14

-1.8
-2.3

0.534
0.545

69.9
62.1

0.67
0.77

2 HSE
2 EL-14

-1.2
-1.7

0.464
0.488

67.9
60.7

0.38
0.5

3 HSE
3 EL-14

-2.9
-3.3

0.510
0.512

70.5
57.9

1.0
0.97
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benzoate anion, reduces the recombination of the electrons with the 

redox species on the surface of TiO2. Such insulating effect is in 

agreement with the slightly higher VOC value obtained for complex 3. 

Finally, the LUMO level of the complex was slightly raised, thus 

allowing easier injection on the TiO2.  

Following these preliminary results, an extensive optimization of the 

cell components was carried out to obtain the best possible 

performance from the new rhenium complexes as dyes in DSSC 

devices, in collaboration with Prof. Anders Hagfeldt and the LSPM 

group at EPFL, Lausanne. Sets of cells were prepared and measured, 

changing one parameter at a time, in order to find the best operating 

conditions for each investigated parameter. Complex 3, already tested 

in an unoptimized device, has been also re-tested after the engineering 

of optimized cells.  

In particular, different semiconductor oxides (TiO2, SnO2) have been 

tried (in single or stacked-layer architectures), along with their relative 

thickness. The dyes have been adsorbed on the semiconductors in 

different media to find out the best solvent and adsorption time. At 

the same time, various counter electrode glasses with different sheet 

resistance have been tested with our complexes. The composition of 

the electrolytes has been also intensively investigated and the 

components of both iodine based and cobalt based electrolytes have 

been varied to obtain the best current-voltage compromise. It should 

be noted that D35 works in different conditions compared to most 

organometallic dyes. For this reason, we have investigated the 

behavior of each D35-based dye, 4 and 5, in two different types of 

electrolyte, one based on the iodide/triiodide redox shuttle, the other 

employing Co2+/3+ metal complexes.  



CHAPTER 5 | Hydrido-carbonyl rhenium(I) complexes                             
as photosensitizers for DSSC 

 119 

Each electrolyte was coupled with a suitable counter-electrode: 

platinum for iodine, carbon for cobalt. Both electrolytes have been 

developed in-house: the first (labeled IE) is devoid of any additive 

other than the redox couple, while the second (labeled CE) contains, in 

addition to the redox couple, LiTFSI and tert-butyl-pyridine (TBP). We 

used reference cells with pure D35 as photosensitizer for this 

comparison. Unoptimized solid state devices (SSD) have been also 

prepared to investigate if these complexes may hold potential for this 

kind of devices, but the generally low efficiencies detected prevented 

us from further investigations. A careful engineering of the cells had 

afforded a new maximum performance of 1.8% for complex 3, nearly 

doubling the previous value obtained for such dye.  

Table 5.5 Photovoltaic parameters for optimized and solid state cells 
sensitized by 3-5 compared to D35 using homemade iodine (IE) and cobalt 
(CE) based electrolytes. 

 

 

 

CELL JSC (mA/cm2) VOC (V) FF η (%)

3 IE/Platinum
(non-optimized cell)

-2.9 0.51 70.5 1.00

3 IE/Platinum
3 CE/Carbon

3 SSD

-4.50
-1.41
-0.51

0.51
0.47
0.52

78
72
57

1.80
0.47
0.15

4 IE/Platinum
4 CE/Carbon

4 SSD

-7.88
-9.07
-0.41

0.52
0.54
0.46

51
64
53

2.04
3.00
0.34

5 IE/Platinum
5 CE/Carbon

5 SSD

-8.74
-7.56
-1.06

0.54
0.65
0.48

67
71
63

3.15
3.50
0.32

D35 CE/Carbon -11 0.88 72 7
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Figure 5.7 Current–voltage curves for optimized devices sensitized by 
rhenium-based dyes 3-5 under 1 Sun illumination, AM 1.5. 

 
A substantial increase in the photogenerated currents can be observed 

(see table 5.5) for the rhenium-based dyes containing D35 as light-

absorbing moiety and it is confirmed by the incident photon-to-

current conversion efficiency (IPCE) plots. The monochromatic IPCE 

spectra, reported in figure 5.8, show that the highest IPCE is obtained 

from the solar cell sensitized with 5 that, however, is not as red as 4. 

The new complexes 4 and 5, as expected, showed significant 

improvement in terms of photocurrent and efficiency (see figure 5.7). 

Due to the introduction of D35, the new dyes appear to work better in 

CE/C conditions, while complex 3, with a simple triarylamine, remains 

more efficient in IE/Pt condition. The open current voltage (VOC) was 

found similar for all the complexes, mainly ascribable to the presence 

of Li+ in the electrolyte, but the current density (JSC) was doubled for 

complexes 4 and 5.  
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Complex 4 performed only slightly better than 3 in IE conditions 

affording 2% efficiency, despite being affected by the worst fill factor 

(FF) among all the cells (only 57%), while, under CE conditions a value 

of 3% in efficiency was recorded. The best performing cells were 

sensitized with complex 5, giving an overall power conversion 

efficiency of 3.15% (IE) and 3.5% (CE). The less electron-withdrawing 

diazine afforded a gain both in JSC and VOC, leading to a 3.5% efficiency 

confirming how the replacement of the direct carboxylic moiety with 

the 4-butanoic acid derivative slightly raises the LUMO level of the 

complex allowing a better injection to the TiO2. These values, however, 

remain well below those obtained under similar conditions by cells 

assembled using the conventional D35 dye, reaching 7% (CE).  

 
 
Figure 5.8 IPCE spectra for optimized devices sensitized by rhenium-based 
dyes 3-5.  
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Even if these dyes absorb in a larger spectral range compared to D35, 

the maximum of the absorption spectrum is not the only factor which 

determines the overall characteristics of the cell. Electrochemical 

impedance spectroscopy (EIS) has been carried out on transparent 

layer-only version of the cells. From the plots in figure 5.9, reporting 

the data acquired in IE conditions, it can be seen that the charge 

transfer resistance, regarded as a measure of the charge collection 

efficiency, is highest for complex 4. The expected voltage shift from 

the conduction band movement due to the massive presence of Li+ in 

the electrolyte is significant, once again, only for complex 4. The 

electron lifetimes, and the transport efficiency are also best for 

complex 4, although the overall efficiency of the cell is lower than that 

observed for complex 5. This suggests that the efficiency is also 

affected by regeneration efficiency and injection efficiency, for which 

fs/ps measurements are necessary. 

  

 
Figure 5.9 Resistance vs potential (left) and electron lifetimes vs capacitance 
(right) plots for devices sensitized by complexes 3-5 in IE/Pt conditions.  
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In the case of the cobalt based electrolyte, EIS shows a similar 

tendency (figure 5.10). The conduction band of 4 is once again the 

lowest among all the complexes, while 5 owns a slightly higher one 

compared to 3, as expected after the introduction of a non-conjugated 

chain. The lifetimes are, in the case of the cobalt electrolytes, relatively 

similar between the three different dyes, but also in this case complex 

4 shows the longest one.  

 

Figure 5.10 Resistance vs potential (left) and electron lifetimes vs capacitance 
(right) plots for devices sensitized by complexes 3-5 in CE/C conditions.  
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5.3 Conclusions 
 

Dirhenium complexes designed as potential sensitizers in DSSCs have 

been prepared, characterized and tested in operating solar cells. Light-

to-current conversion has been observed for all the investigated 

complexes, although with moderate efficiency. The best results have 

been obtained for the hydrido-carboxylato complex 5, with maximum 

power conversion efficiency of about 3.5%. This feature results by 

combining molecular design with optimization of the cell. In particular, 

the introduction of the triarylamine-based D35 as carboxylate ligand 

further suppresses the recombination of the injected electron with the 

oxidized state of the complex, thus improving the charge separation 

on TiO2. This wider light harvesting and bulkier triarylamine moiety also 

reduces the back-reaction of the injected electron with the electrolyte. 

At the same time, the most serious problem concerning the electron 

injection into TiO2, certainly represented by the excessive stabilization 

of the p* orbitals of the diazine in complexes 1-4, has been overcome 

by the use of a more electron-rich diazine ligand, contained in complex 

5, which provides a higher LUMO level. In addition to that, other metal 

oxide photoelectrodes than TiO2, such as SnO2, and different 

electrolytes, such as those based on cobalt complexes, have been tried 

in order to optimize the cell performances. This work further confirms 

the stability of hydrido complexes in the considered media and under 

the operating conditions of solar cells. Notably, the three-step 

synthetic procedure here developed has a wider scope than the 

preparation of the compounds here described and opens the way to a 

large number of dinuclear complexes of this family, tailored to specific 

applications. 
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5.4 Experimental 
 
General methods 
 

All the reactions were performed under a nitrogen atmosphere unless 

specified otherwise. The reagents were purchased from Aldrich, Fluka 

and Lancaster and used as received.  D35 was purchased by Dyenamo 

and washed with H2O then dried under vacuum before use. All the 

solvents were deoxygenated and dried by standard methods before 

use, toluene was distilled on Na(s) and CH2Cl2 on P2O5, both under N2 

atmosphere. Commercial deuterated solvents have been used as 

received. Column chromatography was performed using Alfa Aesar 

silica gel 60 (0.032–0.063 mm). [Re4(µ3-H)4(CO)12](C6H6)2,[27] [Re2(µ-

H)2(CO)6(µ-ppd)] (ppd = 2,5-diphenyl-1,3,4-oxadiazole)[23] and [Re2(µ-

Cl)2(CO)6(µ-pydz-4-COOH)] (1) (pydz-4-COOH = pyridazine-4-

carboxylic acid)[19] were synthesized according to literature 

procedures. IR spectra in solution were acquired on a Bruker Vector 22 

FT spectrophotometer. MS spectra were carried out on a Finnigant 

LCQt Advantage MAX ion trap instrument using methanol as the 

solvent (ESI-MS). FAB spectra were carried out on a mass 

spectrometer VG Autospec M246 using nitrobenzyl alcohol as the 

matrix.  

Electrochemical measurements 

see chapter 3. 

 

Spectroscopy 

see chapter 3. 
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Synthesis of [Re2(µ-H)(µ-OOCPh)(CO)6(µ-ppd)]. A sample of benzoic 

acid (6.4 mg, 0.052 mmol) was added to a solution of [Re2(µ-

H)2(CO)6(µ-ppd)] (40 mg, 0.052 mmol) previously dissolved in 15 mL 

of anhydrous toluene. The reaction mixture was stirred overnight, and 

the completeness of the reaction was monitored by IR spectroscopy. 

Then the solution was evaporated to dryness under vacuum, and the 

solid was dissolved in CH2Cl2. The addition of n-hexane caused the 

precipitation of the product, which was purified through column 

chromatography (eluent EtOAc/n-hexane 9:1), then dried under 

vacuum, yielding 30 mg (0.034 mmol) of white powder (isolated yield 

65%). IR (CH2Cl2) ν(CO): 2041 (m), 2022 (vs), 1935 (vs), 1914 (s) cm-1, 1H 

NMR (CD2Cl2, 300K, 400 MHz) δH (ppm) 8.15 (d, J =7.3 Hz, 4H, Hortho 

ppd), 8.03 (d, J = 7.1 Hz, 2H, Hortho benz), 7.87 (t, J = 7.6 Hz, 2H, Hpara ppd), 

7.77 (t, J = 7.8 Hz, 4H, Hmeta ppd), 7.51 (t, J = 7.3 Hz, 1H, Hpara benz), 7.41 (t, J 

=7.6 Hz, 2H, Hmeta benz), -7.08 (s, 1H, hydride). Elemental anal. calcd. for 

C27H16N2O9Re2: C 36.65, H 1.82, N 3.17. Found: C 36.70, H 1.96, N 3.14 

Synthesis of [Re2(µ-H)(µ-OOCPh)(CO)6(µ-pydz-4-COOH)] (2). A 

sample of [Re2(µ-H)(µ-OOCPh)(CO)6(µ-ppd)] (5, 30 mg, 0.034 mmol) 

dissolved in freshly distilled THF solution (5 mL) was treated with 4-

pyridazine-carboxylic acid (6.3 mg, 0.050 mmol). The temperature 

was set at 333 K for 2 h. The color of the solution became 

progressively deep red and the progress of the reaction was 

monitored by IR spectroscopy. Then the solution was evaporated to 

dryness under vacuum, the crude product dissolved in CH2Cl2, the 

addition of n-hexane affords the precipitation of a red powder. The 

solution was removed and the remaining powder was washed with n-

hexane (5 x 3 mL), then dried under vacuum. The solid was dissolved 

again in CH2Cl2 and the complex was collected as microcrystalline 

powder after precipitation with n-hexane (13 mg, 0.165 mmol, isolated 
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yield 56%). IR (CH2Cl2) ν(CO): 2039 (m), 2018 (s), 1935 (s), 1918 (s) cm-1, 

1H NMR (d8-THF, 300K, 400 MHz) δH (ppm) 9.75 (m, 1H, H3 4-COOH-pydz), 

9.51 (d, J = 5.8 Hz, 1H, H6 4-COOH-pydz), 8.34 (dd, J = 5.8, 1.9 Hz, 1H, H5 4-COOH-

pydz), 7.94 (d, J =7.3 Hz, 2H, Hortho benz), 7.50 (t, J = 7.3 Hz, 1H, Hpara benz), 

7.38 (t, J =7.9 Hz, 2H, Hmeta benz), -6.71 (s, 1H, hydride). Elemental anal. calcd. 

for C18H10N2O10Re2: C 27.48, H 1.28, N 3.56. Found: C 27.42, H 1.30, N 

3.55 

Synthesis of 4-(diphenylamino)benzoic acid (TPA-COOH). In a dried 

flask, a sample of 4-(diphenylamino)benzaldehyde (500 mg, 1.8 mmol) 

was dissolved in 60 mL of acetone. Separately, 40 mL of aqueous 

solution of KMnO4 (0.157 M, 3.5 equiv.) was prepared, filtered, and then 

added dropwise to the solution containing the aldehyde. The reaction 

mixture was left at room temperature for 72 h, then filtered on a celite 

pad to remove MnO2. The filtered solution was collected in an open 

vessel and left at room temperature until excess KMnO4
 decomposes 

and the solution becomes yellow and cloudy. Then it was filtered again 

on another celite pad. The yellow solution was treated with 2.5 mL of 

HCl/H2O 1:1, a pale yellow precipitate appears, then stirred for 30 

minutes in an ice bath, and filtered again. The resulting solution was 

dried under vacuum affording 270 mg (0.93 mmol) of pure 

microcrystalline product (isolated yield 50%). 1H NMR (CD2Cl2, 300 K, 

400 MHz) δH (ppm) 7.91 (d, J =8.9 Hz, 2H, Hortho benz), 7.35 (t, J = 7.9 Hz, 

4H, Hortho phenyl), 7.17 (m, 6H, Hmeta benz+phenyl), 7.01 (d, J = 8.8 Hz, 2H, Hpara 

phenyl) 

Synthesis of [Re2(µ-H)(µ-4-OOC-TPA)(CO)6(µ-ppd)]. A sample of 

[Re2(µ-H)2(CO)6(µ-ppd)] (4.42 mg, 0.055 mmol) was dissolved in 

freshly distilled toluene (20 mL) and treated with a slight excess of    

4-(diphenylamino)benzoic acid (19 mg, 0.066 mmol). The reaction 
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mixture was refluxed overnight, then the solution was evaporated to 

dryness under vacuum. The white residue was dissolved in CH2Cl2 and 

precipitated with n-hexane, affording a white powder that was further 

purified through column chromatography (eluent toluene/EtOAc 9:1), 

affording the desired product as white powder (32 mg, 0.034 mmol, 

isolated yield 55%). IR (CH2Cl2) ν(CO): 2041 (m), 2022 (vs), 1936 (vs), 

1915 (s) cm-1, 1H NMR (CD2Cl2, 300 K, 400 MHz) δH (ppm) 8.16 (d, J = 

7.4 Hz, 4H, Hortho ppd), 7.89 (t, J = 7.6 Hz, 2H, Hpara ppd), 7.84 (d, J = 8.8 Hz, 

2H, TPA), 7.77 (t, J = 7.8 Hz, 4H, Hmeta ppd), 7.32 (t, J = 7.9 Hz, 4H, TPA), 7.14 

(m, 6H, TPA), 6.95 (d, J = 8.8 Hz, 2H, TPA), -7.09 (s, 1H, hydride). Elemental 

anal. calcd. for C39H25N3O9Re2: C 44.52, H 2.40, N 3.99. Found: C 44.93, 

H 2.45, N 3.96 

Synthesis of [Re2(µ-H)(µ-4-OOC-TPA)(CO)6(µ-pydz-4-COOH)] (3). A 

sample of [Re2(µ-H)(µ-4-OOC-TPA)(CO)6(µ-ppd)] (12 mg, 0.011 mmol) 

dissolved in freshly distilled THF (5 mL) was treated at room 

temperature with 4-pyridazine-carboxylic acid (1.7 mg, 0.014 mmol). 

The solution was refluxed for 3 h. The solution was evaporated to 

dryness under vacuum and the crude product was dissolved in CH2Cl2 

and precipitated with n-hexane. The supernatant solution was 

removed and the remaining powder was washed with n-hexane (5 x 3 

mL), then dried under vacuum, affording the desired product (9 mg, 

0.009 mmol, isolated yield 83%). IR (CH2Cl2) ν(CO): 2038 (m), 2018 (s), 

1936 (s), 1917 (s) cm-1, 1H NMR (d8-THF, 300 K, 400 MHz) δH (ppm) 9.70 

(s, 1H, H3 4-COOH-pydz), 9.45 (d, J = 5.8 Hz, 1H, H6 4-COOH-pydz), 8.33 (dd, J = 

5.8, 2.0 Hz, 1H, H5 4-COOH-pydz), 7.74 (d, J = 8.8 Hz, 2H, TPA), 7.31 (m, 4H, 

TPA), 7.12 (m, 6H, TPA), 6.91 (d, J = 8.9 Hz, 2H, TPA), -6.70 (s, 1H, hydride). 

FAB-MS: m/z 955, elemental anal. calcd. for C30H19N3O10Re2: C 37.77, H 

2.01, N 4.41. Found: C 37.56, H 2.01, N 4.37  
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Synthesis of methyl ester of pydz-4-COOH/pydz-4-BuCOOH and 

complexes (1-5)-COOMe. A sample of pyridazine-4-carboxylic acid 

(100 mg, 0.805 mmol) (for 1-4) or pyridazine-4-butanoic acid (134 mg, 

0.805 mmol) for 5) was dissolved in MeOH (2 mL) and was treated 

with H2SO4 (40 mL, 96% w/w) at room temperature. The reaction 

mixture was heated at reflux temperature and was stirred overnight. 

Then, the solution was cooled at room temperature and the reaction 

was quenched by the addition of saturated solution of Na2CO3 until pH 

8. The product was extracted with Et2O and the organic fractions were 

collected, washed with brine, dried with Na2SO4 and evaporated to 

dryness to leave a pale yellow solid (isolated yield 30%). 1H NMR (d6-

DMSO, 300 K, 400 MHz) δH pydz-4-COOMe (ppm) 9.58 (s, 1H, Hortho), 9.51 (d, 

J = 5.2 Hz, 1H, Hortho), 8.09 (dd, J = 5.2, 2.2 Hz, 1H, Hmeta), 3.94 (s, 3H, 

CH3); δH pydz-4-COOMe (ppm) 9.50 (d, J = 4.7 Hz, 1H, Hortho), 9.41 (s, 1H, Hortho), 

8.21 (d, J = 3.8 Hz, 1H, Hmeta), 3.74 (s, 3H, CH3), 3.07 (m, 2H, CH2), 2.49 

(m, 4H, CH2), 2.13 (m, 2H, CH2). These pyridazines were used to 

synthesize the corresponding derivatives 1-COOMe, 2-COOMe, 3-

COOMe, 4-COOMe and 5-COOMe according to the previous 

procedures.  
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Synthesis of [Re2(µ-H)(µ-D35)(CO)6(µ-ppd)]. 40 mg (0.046 mmol) of 

solid D35 are added to a solution of 32 mg (0.042 mmol) of [Re2(µ-

H)2(CO)6(µ-ppd)] previously dissolved in 5 mL of anhydrous toluene. 

The reaction mixture is left stirring under reflux overnight, then the 

solution evaporated to dryness under vacuum. The solid obtained is 

purified through column chromatography (eluent CH2Cl2/n-hexane 

75:25), then dried under vacuum, yielding 30 mg (0.018 mmol) of 

brick-red powder (yield 44%). IR (CH2Cl2) ν(CO): 2042 (s), 2024 (vs), 

1937 (vs), 1917 (s) cm-1, 1H NMR: (CD2Cl2, 300K, 400 MHz) δH (ppm) 8.18 

(d, J = 7.5 Hz, 4H, Hortho ppd), 7.90 (m, 2H, Hpara ppd), 7.79 (m, 4H, Hmeta ppd), 

8.16 (s, 1H, H1), 7.75 (d, J =4.2 Hz, 1H, H2), 7.60 (d, J = 8.88 Hz, 2H, H5), 

7.52 (d, J = 8.47 Hz, 4H, H6), 7.37 (d, J = 4.2 Hz, 2H, H3), 7.29 (d, J = 9.3 

Hz, 2H, H10), 7.21 (d, J = 8.47 Hz, 4H, H7), 7.17 (d, J = 8.88 Hz, 2H, H4), 

6.59 (s, 2H, H8), 6.58 (m, 2H, H9), 4.02 (t, J = 6.98 Hz, 4H, CH2), 4.01 (t, J 

= 6.98 Hz, 4H, CH2), 1.79 (m, 8H, CH2) 1.57 (m, 4H, CH2), 1.50 (m, 4H, 

CH2), 1.03 (m, 6H, CH3), 0.97 (m, 6H, CH3), -7.14 (s, 1H, hydride) 

Synthesis of [Re2(µ-H)(µ-D35)(CO)6(µ-pydz-4-COOH)] (4). 15 mg 

(0.009 mmol) of [Re2(µ-H)(µ-D35)(CO)6(µ-ppd)] are dissolved in 5 mL 

of freshly distilled and degassed THF, 1.5 mg (0.01 mmol) of 4-

pyridazine-carboxylic acid are added to the reaction mixture. The 

reaction is set at 85°C for 2 hours. The solution is evaporated to 

dryness under vacuum, the crude product dissolved in CH2Cl2 and re-

precipitated with n-hexane. The supernatant solution is removed and 

the remaining powder is washed with hexane (5 x 3 mL), then dried 

under vacuum affording 11 mg (0.072 mmol) of the desired product 

(yield 80%). IR (CH2Cl2) ν(CO): 2040 (m), 2020 (s), 1938 (s), 1920 (m) 

cm-1, 1H NMR: (CD2Cl2, 300K, 400 MHz) δH (ppm) 9.75 (s, 1H, H3 4-COOH-

pydz), 9.51 (d, J = 5.6 Hz, 1H, H6 4-COOH-pydz), 8.39 (dd, J = 4.7, 2.9 Hz, 1H, H5 
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4-COOH-pydz), 8.13 (s, 1H, H1), 7.73 (m, 1H, H2), 7.62 (m, 2H, H5), 7.51 (m, 4H, 

H6), 7.36 (m, 2H, H3), 7.27 (m, 2H, H10), 7.22 (m, 4H, H7), 7.18 (m, 2H, H4), 

6.59 (s, 2H, H8), 6.57 (m, 2H, H9), 4.02 (t, J = 6.98 Hz, 4H, CH2), 4.01 (t, J 

= 6.98 Hz, 4H, CH2), 1.79 (m, 8H, CH2) 1.53 (m, 4H, CH2), 1.49 (m, 4H, 

CH2), 1.03 (t, J = 7.4 Hz, 6H, CH3), 0.97 (t, J = 7.4 Hz, 6H, CH3), -6.75 (s, 

1H, hydride) 

 

Synthesis of [Re2(µ-H)(µ-D35)(CO)6(µ-4-pyridazinyl-butanoic acid)] 

(5). 15 mg (0.009 mmol) of [Re2(µ-H)(µ-D35)(CO)6(µ-ppd)] are 

dissolved in 5 mL of freshly distilled and degassed THF, 2 mg (0.012 

mmol) of 4-pyridazinyl-butanoic acid are added to the reaction 

mixture. The reaction is put under reflux for 2 hours. The solution is 

evaporated to dryness under vacuum, the crude product dissolved in 

CH2Cl2, and re-precipitated with n-hexane. The supernatant solution is 

removed and the remaining powder is washed with hexane (5 x 3 mL) 

five times, then dried under vacuum affording 11 mg (0.007 mmol) of 

red powder (yield 78%). IR (CH2Cl2) ν(CO): 2042 (m), 2024 (s), 1943 

(s), 1921 (m) cm-1, 1H NMR: (CD2Cl2, 300K, 400 MHz) δH (ppm) 9.22 (d, J 

= 5.9 Hz, 2H, H6 4-BuCOOH-pydz), 9.21 (d, J = 5.9 Hz, 2H, H3 4-BuCOOH-pydz), 8.12 

(s, 1H, H1), 7.78 (d, J = 2.0 Hz, 1H, H5 4-BuCOOH-pydz), 7.74 (d, J =4.1 Hz, 1H, 

H2), 7.60 (d, J = 8.88 Hz, 2H, H5), 7.52 (d, J = 8.6 Hz, 4H, H6), 7.36 (d, J 

= 4.1 Hz, 2H, H3), 7.28 (m, 2H, H10), 7.21 (d, J = 8.8 Hz, 4H, H7), 7.17 (d, J = 

7.4 Hz, 2H, H4), 6.59 (s, 2H, H8), 6.58 (d, J = 6.8 Hz, 2H, H9), 4.02 (t, J = 

6.98 Hz, 4H, CH2), 4.01 (t, J = 6.98 Hz, 4H, CH2), 1.79 (m, 8H, CH2) 1.56 

(m, 4H, CH2), 1.47 (m, 4H, CH2), 1.03 (m, 6H, CH3), 0.97 (m, 6H, CH3), -

6.65 (s, 1H, hydride) 
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Computational details  

Ground state geometries were optimized by means of density 

functional calculations. The parameter-free hybrid functional PBE0[28-

29]  was employed along with the standard valence double-z polarized 

basis set 6-31G (d,p) for C, H, Cl, N, O and S. For Re, the Stuttgart–

Dresden effective core potentials were employed along with the 

corresponding valence triple-z basis set. Preliminary calculations were 

done without imposing any symmetry. The nature of all the stationary 

points was checked by computing vibrational frequencies and all the 

geometries were found to be true minima. In order to simulate the 

absorption electronic spectrum down to 300 nm the lowest 20 singlet 

excitation energies were computed by means of time-dependent 

density functional calculations. Calculations were also done in the 

presence of solvent (toluene, used in the photophysical 

characterizations) described by the conductor-like polarizable 

continuum model (CPCM). All the calculations were done with 

Gaussian 09.[30] 

 

DSSC and SSD preparation  

see chapter 2. 

 

DSSC and SSD characterization  

see chapter 2. 
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CHAPTER  6 
 
 
 

Low-band gap rhenium(I) based 
metal-copolymers for organic 

photovoltaics  
 

 
 
 
Abstract 
 
Low-band gap copolymers containing bis-diimine aromatic ligands (1,2-
diazine) as new electron-withdrawing monomers have been here designed 
and synthesized. The corresponding metal-copolymers, containing dinuclear 
rhenium complexes, have been also prepared. Spectroscopic and 
electrochemical characterization of the both monomers and the polymers 
have been performed along with NMR and MALDI-TOF characterization, that 
revealed different enchainment between comonomers in polymeric backbone 
depending on the nature of electron-withdrawing unit.  
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6.1 Introduction 

 
As already discussed in chapter 2, organic photovoltaics hold the 

promise for a cost-effective, lightweight solar energy conversion 

platform benefiting from simple solution processing. Over recent years 

organic solar cells have been perfected at the laboratory level with a 

record PCE of 11.0%[1] for polymer solution processed devices and a 

large area module PCE of 5.5%[2] which may, in the near future, 

challenge amorphous Si PV technology.  

 

In this framework, in collaboration with Dr. Silvia Destri at the CNR 

ISMAC research institute, we have developed donor low-band gap 

copolymers by combining carbazole with different electron-poor units. 

Our main effort inside this project was devoted towards the 

development of low-band gap metal-copolymers containing nitrogen 

aromatic ligands (1,2-diazine) to exploit metal coordination for 

lowering the LUMO level and increase absorption in the visible region 

(see chart 6.1). Metal coordination is also expected to enhance photo-

induced charge separation, charge mobility and thermal stability. 

Characterization of the materials from a molecular point of view (NMR, 

SEC, MALDI-TOF) has been performed, together with optical 

characterization (UV-Vis, photoluminescence) both in solution and as 

spin coated films. Cyclic voltammetric analysis of the monomers has 

been also performed. The fabrication of simple OPV devices for a 

preliminary optoelectronic characterization (J-V curves) of the 

synthesized materials is currently in progress in collaboration with 

Prof. Thomas Brown at the Center for Hybrid and Organic Solar 

Energy (CHOSE) in Rome. 
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6.2 Results and discussion 

 

6.2.1 Synthesis of the monomeric units 
 
Three electron-poor monomers have been chosen as co-monomers, in 

the polymerization reaction,[3 ] all constituted by electron-deficient 

dibromoheteroarenes. The molecular structures are depicted in chart 

6.1 and, besides M1 which is commercially available, M2 and M3 were 

synthesized via pericyclic reaction of a brominated precursor of 

dibenzyliden-hydrazine or of 1,2-bis(thiophen-3-ylmethylene)hydrazine 

respectively (see schemes 6.1 and 6.2).  

 
 

 
Chart 6.1 Structures of the electron-poor monomeric units employed. 
 

Since the overall isolated yield of the pericyclic reaction for the 

synthesis of the 5,7-dibromothieno[3,4-d]pyridazine (M3) is quite low, 

different synthetic pathways, involving the bromination reaction of the 

thieno[3,4-d]pyridazine, have been investigated. However, 

unfortunately, treatment of the thieno[3,4-d]pyridazine with either Br2 

or NBS, to yield direct bromination was unsuccessful. Due to the low 

selectivity of this reaction, the main products results showed 

functionalization at different positions on both the thiophene and the 

diazine ring (see scheme 6.3). 
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Scheme 6.1 Synthetic pathway to monomeric units M2, M4 and complex C4. 
 

 
 

Scheme 6.2 Synthetic pathway to monomeric units M3, M5 and complex C5. 
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The bromination reaction was also performed on the corresponding 

dinuclear rhenium complex. It was expected that the increased steric 

hindrance around the ortho position of the diazine ring provided by 

the carbonyl ligands could prevent the formation of the side products. 

However, also in this case the desired brominated complex was not 

obtained, resulting in the complete decomposition of the compound. 

 

Scheme 6.3 Bromination trials on thieno[3,4-d]pyridazine and corresponding 
dinuclear rhenium complex. 
 

Starting from the dibromo derivatives M2 and M3, the corresponding 

thiophene functionalized diazine ligands M4 and M5, were prepared 

following the Stille coupling reaction in the presence of two 

equivalents of 2-tributyl-stannyl thiophene in toluene solution. 

Attempts to obtain the dibromo derivatives, treating M4 and M5 with 

n-bromosuccinimide (NBS) in CH2Cl2 at room temperature, according 

to the previously mentioned methodology, were not successful. Indeed 

the bromine atoms resulted mainly bound at the ortho position of the 

diazine ring, beside the a positions of the two lateral thiophene ring. 
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Therefore, M4 and M5 were not suitable for polymerization reaction via 

Stille or Suzuki coupling, but direct arylation could be exploited. 

Anyway, they were used for the synthesis of the corresponding 

dinuclear rhenium complexes, namely C4 and C5 (see schemes 6.1 and 

6.2), obtained by reaction of these functionalized diazine ligand with 

two equivalents of [Re(CO)5Cl] in toluene at reflux.  

 

6.2.2 Polymer synthesis 
 
The three new polymers P1-P3 were synthesized according to scheme 

6.4, the overall polymerization conditions being reported in table 6.1. A 

typical Suzuki polycondensation (SPC) of 2,7-bis(4’,4’,5’,5’-

tetramethyl-1’,3’,2’-dioxaborolan-2’-yl)-N-9’’-heptadecanylcarbazole[ 4 ] 

(Cbz) and the desired dibrominated co-monomers M1-M3 was 

performed in toluene at high temperature  over 70 hours, the final 

addition of 5-methylthiophene-2-boronic acid pinacol ester quenching 

the growth of the polymeric chains. The carbazole unit was 

functionalized with two octyl chains in order to increase the solubility 

in organic halogenated solvents and the filmability of the resulting 

polymers. The reaction products were filtrated through a celite pad, in 

order to remove metal catalyst traces that could affect the 

spectroscopic features of the polymers. The crude product was 

recovered with CHCl3 and subsequently precipitated in a MeOH/H2O 

5:1 mixture, then sequentially extracted in Soxhlet with MeOH, acetone 

and CHCl3, to minimize the molar mass dispersity. Each fraction was 

characterized with size exclusion chromatography (SEC) to define the 

Molecular Mass Distribution (MMD) using a relative calibration built up 

with commercially available narrow MMD polystyrene (PS) standards, 

using CHCl3 as mobile phase for P1 and THF for P2 and P3. 
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Three catalysts, [Pd2(dba)3], [P(o-tol)3] and [Pd(PPh3)4], were selected 

according to their air stability and activity, as reported in the literature. 

Using [Pd2(dba)3]/[P(o-tol)3], P1 and P2 resulted in enormously higher 

molecular weights than P3, even if each monomer showed similar 

purity and was polymerized under the same conditions.  

 

Table 6.1 Experimental conditions of the Suzuki polycondensation carried out 
with M1-M3. 

 

 
Homocoupling reactions in Suzuki polycondensation, which involves 

oligomeric chains having boronic ester end groups, are well known in 

the literature.[5] If occurring, they afford the incorporation of structural 

defects in the main chain of the polymer that cannot be further 

removed. This deviation from the perfect alternating enchainment can 

modify the optoelectronic properties of the resulting material and, 

SAMPLE Catalyst 
K2CO3  

(eq) 
T 

(°C) 
Yield 
(%) 

P1 
Pd2(dba)3 1% 
P(p-tol)3 4% 

2 90 68 

P2-BATCH 1 
Pd2(dba)3 1% 
P(p-tol)3 4% 

2 90 12 

P2-BATCH2 
Pd2(dba)3 1% 
P(o-tol)3 4% 

10 90 51 

P2-BATCH3 
Pd2(dba)3 1% 
P(o-tol)3 4% 

10 100 69 

P2-BATCH4 
Pd2(dba)3 1% 
P(o-tol)3 4% 

10 110 75 

P3-BATCH1 
Pd2(dba)3 1% 
P(o-tol)3 4% 

10 90 39 

P3-BATCH2 Pd(PPh3)4 1% 4 90 24 

P3-BATCH3 Pd(PPh3)4 1% 4 100 49 

P3-BATCH4 Pd(PPh3)4 1% 4 110 68 
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hence, their photovoltaic performances. For this reason, it is important 

to control all the polycondensation conditions in order to reduce or, 

better, to fully eliminate these side-reactions, thus obtaining 

homocoupling-free materials.[6] 

 

1H NMR analysis allowed the amount of Cbz homocoupling to be 

assessed under different SPC conditions, showing that in the synthesis 

of P1 with [Pd2(dba)3]/[P(o-tol)3], only 1% of homocoupling occurred, 

increasing to more than 60% in the case of P3. No homocoupling 

reaction is observed in the synthesis of P2. To further decrease the 

Cbz-Cbz homocoupling in P3 the polymerization should be carried out 

at 110°C, as proved by 1H NMR spectra. The higher temperature 

increases also the yields of both pyridazine-based polymers. We 

attributed the Cbz-Cbz coupling to the presence of two growing 

chains on the same catalytic site in [Pd2(dba)3]/[P(o-tol)3], while a 

possible complexation of the diazine nitrogen atoms to the Pd catalyst 

could slow down the polymerization rate allowing side reactions to 

take place. Therefore, other Suzuki coupling polymerization conditions 

were tried for P3, in order to improve the molecular weight and to 

reduce the presence of the homocoupling reaction. In particular, this 

amount was partially reduced to about 40% if the SPC reaction was 

performed using the mononuclear [Pd(PPh3)4] as catalyst. Matrix-

assisted Laser Desorption/Ionization (MALDI) was performed on 

selected samples to confirm these data. MALDI characterization 

confirmed the presence of Cbz-Cbz enchainment defects in P3 sample 

obtained at 100°C, their reduction at 110°C and the total lack in P2 

sample. Moreover, this technique allowed to determine the nature of 

the ending groups of the different chains contained in the mixture (see 

figure 6.2). 
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Figure 6.2 MALDI spectra of copolymers P3 (top) and P2 (bottom) together 
with the structures of the polymer chains having different end groups.       
Cbz-Cbz linkages are highlighted by a red circle. 
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Except P1, not containing the diazine ligand, P2 and P3 were further 

converted into the corresponding metallo-polymers MP2 and MP3, by 

refluxing in the presence of an excess of [Re(CO)5Cl]. The resulting 

metallo-polymers MP2 and MP3 were isolated in high yields (about 

70%) by precipitation with n-hexane from the saturated 

dichloromethane solution. 

 

6.2.3 Spectroscopic characterization  
 
The UV-Vis absorption properties of the polymers P1-P3 and of the 

corresponding metallo-polymers MP2-MP3, in CH2Cl2 solution are 

summarized in table 6.2.  

Table 6.2 Summary of optical data including the maximum absorption peaks 
for the different transition bands in the three polymers and in the two metal-
polymers in CH2Cl2 solution at room temperature.  

 

For polymers P1 and P3, two main absorption bands are observed. A 

low energy band, centered at about 460 nm, mainly described as a 

HOMO–LUMO transition featuring a CT like character (i.e. from p-

delocalized system to p*-localized orbitals on the benzothiadiazole or 

on the thienopyridazine unit). The electron-poor moieties are indeed at 

the origin of the partial charge transfer character in the dominant 

transitions of the polymers, and they are responsible for the typical 

“camel back” shape of the polymer’s absorption spectra.  

POLYMER λπ-π* [nm] (ε x 104) λCT [nm] (ε x 104) λMLCT [nm] (ε x 104) 

P1 340 (2.43) 460 (2.38) - 

P2 366, 370 (1.16) - - 

P3 332 (1.02) 461 (1.05) - 

MP2 385 (2.44) - 424 (2.35) 

MP3 360 (1.59) 554 (0.80) 388 (1.18) 
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It is interesting to note that for polymer P2 this “camel back” shape is 

not observed (see figure 6.1). A high energy band, centered at about 

340 nm and assigned to p–p* transitions delocalized all over the 

oligomer backbone, is also observed for P1 and P3.  

 

On the contrary, the spectrum of P2 shows only one absorption band, 

which is red-shifted compared to the high energy absorption band of 

P1 and P3. Since both the 1H NMR spectrum and MALDI analysis of P2 

indicate the presence of the diazine moiety in the backbone and the 

lack of Cbz-Cbz homocoupling, this band can be considered as the 

superposition of two absorption bands, one ascribed to the p–p* 

transition delocalized all over the oligomer backbone, and the other 

one arising from the n-p* transition involving the phtalazine moiety.  

 

Figure 6.1 UV-Vis absorption spectra of P1-P3 in CH2Cl2 solution at room 
temperature. 
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The spectra of both P2 and P3 are significantly perturbed upon metal 

coordination, although in different ways. In MP3 a significant 

bathochromic shift of the CT band (from 460 in P3 to 554 nm, see 

figure 6.2) is observed, due to the stabilization of the LUMO level upon 

coordination to metal centers.  

 

Figure 6.2 UV-Vis absorption spectra of P3 and MP3 in CH2Cl2 solution at 
room temperature. 
 

Moreover, the presence of the “Re(µ-Cl)2Re” moiety introduces a 

further electronic transition, namely the 1MLCT transition from the 

dp(Re) orbitals of the metal centers to the p* orbital of the thieno[3,4-

d]pyridazine. However, the corresponding absorption band is not 

observed in MP3, overlapped by the leading edge of the p-p* transition 

of the conjugated polymer backbone, which is slightly red-shifted 

compared to the metal-free polymer.  
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On the contrary, in MP2 due to the lack of the CT band the MLCT band 

is well observed as a broad shoulder of the p-p* transition of the 

conjugated backbone (see figure 6.3), which results slightly red-shifted 

due to the coordination to the metal, as in the case of MP3. 

  

Figure 6.3 UV-Vis absorption spectra of P2 and MP2 in CH2Cl2 solution at 
room temperature. 
 

The same features are observed also in the UV-Vis absorption spectra 

of the model monomers M4 and M5 and the related complexes C4 and 

C5, as shown in figure 6.4 and included in table 6.3.  
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Figure 6.4 UV-Vis absorption spectra of M4 and C4 (top) and of M5 and C5 
(bottom) in CH2Cl2 solution at room temperature. 
 
 
Table 6.3 Summary of optical data including the maximum absorption peaks 
for the different transition bands in the two model diazine ligands and in the 
corresponding rhenium complexes in CH2Cl2 solution at room temperature. 
 

MODEL λπ-π* [nm] (ε x 104) λCT [nm] (ε x 104) λMLCT [nm] (ε x 104) 

M4 336 (0.86) - - 

M5 314 (0.69) 437 (0.95) - 

C4 383 (1.59) - 406 (1.49) 

C5 323 (1.24) 521 (0.63) 375 (1.40) 
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Remarkably, in the spectrum of M4 only one absorption band at 336 

nm is observed, resulting from the superposition of the two p-p* e n-p* 

transitions, involving the thiophene subunit and the phtalazine moiety, 

respectively. On the contrary, M5 shows the typical “camel back” 

shape with the well recognizable charge-transfer band at 437 nm. 

Upon coordination to the metal, in the UV spectra of both C4 and C5, 

the MLCT band is clearly observable at 406 and 375 nm, respectively, 

here lacking the leading absorption edge of the polymer backbone. 

Moreover, for C5 the CT band results red-shifted of about 90 nm, while 

a slight red shift is observed for the p-p* transition band (now 

observed at 323 nm). On the other hand, for complex C4 the p-p* 

transition band results significantly red-shifted (of about 50 nm), and 

only a widened band appears due to the close presence of the MLCT 

absorption band.  

From these results, we can conclude that the band gap of the metal-

free conjugated polymer P3, having CT character, can be significantly 

reduced by introducing the rhenium(I) moieties into the polymer 

backbone, making this metal-copolymer a promising photosensitizer 

for photovoltaic cells.  

 

Upon optical excitation all the polymers P1-P3, the corresponding 

metallo-polymers MP2 and MP3, and the monomers M4, M5 and C5, 

are luminescent in the visible range of the electromagnetic spectrum. 

The photophysical data are reported in tables 6.4 and 6.5, respectively. 

It is interesting to note that emission of P2 is strongly blue-shifted with 

respect to the emission of P1 and P3, in agreement with the absence of 

the CT excited state. The same feature is observed for M4, whose 

emission maximum is almost 50 nm blue-shifted compared to the 

emission maximum of M5.  
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The coordination to the metal center strongly quenched the emission 

intensity, and caused a bathochromic shift of the emission maximum 

of more than 100 nm, both in the polymers and in the corresponding 

model C5. This emission could be attributed to the radiative decay of 

the 3MLCT excited state, in comparison with closely related complexes. 

Indeed MP2 displayed the lowest emission quantum yield and the 

corresponding model C4 is not emissive at all, as the analogous 

complex [Re2(µ-Cl)2(CO)6(µ-phtz)] containing the phtalazine ligand.[7] 

This feature is in agreement with the reduction of the HOMO-LUMO 

gap afforded by the coordination of the metal.  

 

Table 6.4 Photophysical properties obtained for polymers P1-P3 and the 
corresponding metallo-polymers MP2 and MP3, in air-equilibrated CH2Cl2 
solution (1x10-5 M) at room temperature. 
 

 

 
 

 
 
 
 
 
Table 6.5 Photophysical properties obtained for molecular models M4 and M5 
and the corresponding complexes C4 and C5, in air-equilibrated diluted 
samples at room temperature.  
                 

MODEL λEM [nm] τ [ns] PLQYa PLQYb 
M4 505 0.95, 6.15 0.8 8.8 
C4 - - - - 
M5 560 2.42, 7.71 20.0 29.6 
C5 664 1.49 4.7 5.2 

 
[a air-equilibrated diluted CH2Cl2 solution (1x10-5 M), b solid state film] 
 
 
 
 

POLYMER λEM [nm] PLQY 

P1 568 34.2 
P2 450 11.0 

P3 572 10.1 

MP2 614 3.0 

MP3 670 5.8 
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6.2.4 Electrochemical characterization 
 
Energy levels are crucial for the selection of appropriate materials 

acting as acceptors in BHJ solar cells. The HOMO and LUMO energy 

levels of the molecular models and their corresponding complexes 

were evaluated by cyclic voltammetry (CV) carried out in solution on 

glassy carbon electrode at a scan rate of 0.2 Vs-1, with a platinum wire 

counter electrode and a SCE reference electrode in a 0.1 M solution of 

TBAPF6 in nitrogen-saturated acetonitrile. The corresponding peak 

potentials (calibrated against the Fc+|Fc couple) and the HOMO and 

LUMO energy values (in eV) were calculated by using equations (1) 

and (2), respectively and are reported in table 6.6. 

 

EHOMO = -e (Eox + 4.4)                       (1) 

ELUMO = -e (Ered + 4.4)                       (2) 

 

where Eox and Ered are the oxidation and reduction potentials, 

respectively, versus SCE.[8] The electrochemical characterizations of 

the polymers and the metallo-polymers are still ongoing.  

 

As shown in figure 6.5, the model ligands M4 and M5, and the 

complexes C4 and C5 exhibit a reversible monoelectronic reduction 

wave, which is located on the pyridazine ligand, as indicated by the 

modulation of the peak potential by the nature of the fused ring. In 

particular, M4 displays a lower reduction potential than the bare 

phtalazine ligand (-2.46 V vs -2.06 V),[7] in agreement with the 

aromatic delocalization between the benzene ring and the two lateral 

thiophene rings.  
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Table 6.6 First reduction and oxidation peak potentials (Ep,c and Ep,a), the 
HOMO e LUMO levels and electrochemical (DEe) and spectroscopic (DEs) 
energy gaps of the ligands and the complexes. Potentials are referred to the 
Fc+|Fc couple in the operating medium (MeCN + 0.1 M TBAPF6). Scan rate 0.2 
V s−1. 
 

 

 

 

 

 

 

 

As expected, this delocalization is more extended in M5 which is 

endowed by a terthiophene moiety, thus lowering the reduction 

potential at -1.65 V. The coordination to the metal centers affords a 

further shift of the reduction potential to more positive values, as 

already observed in analogous complexes.[9] Therefore C4 and C5 

display a reversible reduction peak at -1.35 V and -1.03 V respectively. 

In the anodic part of the CV scan, two irreversible oxidation peaks are 

observed for M4 and M5. The first is monoelectronic and it is 

tentatively attributed to the oxidation of the a position of the 

thiophene rings. The modulation of the peak potential upon changing 

the size of the central aromatic ring supports this hypothesis. Actually, 

the more conjugated terthiophene moiety in M5 displays a lower 

oxidation potential than that observed for the thiophene rings in M4. 

Moreover, this oxidation is affected by the presence of the electron-

poor condensed diazinic ring, which hampers the oxidation reaction. 

Indeed, the first oxidation peak of M5 is at +0.77 V, instead of +0.5 V 

as in the bare terthiophene. 

 

MODEL 
Ered 

[V] 
Eox 

[V] 
λabs 

[nm] 
ELUMO 
[eV] 

EHOMO 
[eV] 

DEe 
[eV] 

DEo 

[eV] 

M4 -2.06 1.15 336 -2.74 -5.95 3.21 3.69 

C4 -1.35 1.35 406 -3.45 -6.15 2.70 2.84 

M5 -1.65 0.76 437 -3.15 -5.56 2.41 2.84 

C5 -1.03 1.09 521 -3.77 -5.89 2.12 2.38 
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Figure 6.5 Normalized CV curves of the model ligands M4 and M5 and of the 
corresponding complexes C4 and C5 on GC electrodes, in ACN + 0.1 M 
TBAPF6 solution, at 0.2 V s-1 with ohmic drop compensation. 
 

The coordination to the metal centers further shifts the oxidation 

potential at higher values and, in C4 and C5, it is no more visible since 

it lays upon the other oxidation peaks. Moreover, the presence of the 

positive charge shifts at higher potentials also the oxidation of the 

metal centers, observed at +1.53 and +1.32 V for C4 and C5, 

respectively. 
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6.3 Conclusions 

 

In strict collaboration with the ISMAC-CNR research institute, focus 

has been put on synthesizing new condensed diazine ligands, 

designed with the aid of TD-DFT calculations, also containing 

conjugated thiophene systems. Three D-A metal-copolymers based on 

carbazole and dinuclear rhenium(I) complexes, bearing diazine rings 

condensed to delocalized p systems, have been synthesized, as well as 

some mock-up molecular complexes with extended thiophene system. 

The new diazines M2 (5,8-dibromophtalazine) and M3 (5,7-

dibromothienopyridazine) were both synthesized via pericyclic 

rearrangement of a precursor dibenzyliden- or dithiophenylmethylen-

hydrazine, respectively. Alternatively, the introduction of two lateral 

thiophenes via Stille coupling afforded the p-extended diazines M4 and 

M5. Their synthesis was followed by Suzuki polycondensation with 

carbazole to generate the desired D-A copolymers P2 and P3. Both 

NMR and MALDI analyses revealed that the extent of the Cbz-Cbz 

homocoupling is strictly correlated to the nature of the catalytic 

system used (monometallic instead of bimetallic catalyst). The 

reaction with [Re(CO)5Cl] has been carried out as last step, generating 

the metal-copolymers MP2 and MP3 and the mock-up complexes C4 

and C5. A complete investigation of the structural, thermal, 

photophysical and electrochemical properties was carried out. The 

synthesized copolymers and metal-copolymers (together with a non-

diazinic carbazole-thiadiazole copolymer named P1) are currently 

under investigation as light harvesters and donors in D:PC61BM (D=P1, 

P2, P3, MP2, MP3) active layers in direct architecture OPV devices. 
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6.4 Experimental 

 
General methods 
 

All the reagents were purchased from Aldrich and Alfa Aesar and used 

as received. All the reactions were performed under an inert N2 

atmosphere. All the solvents have been deoxygenated and dried by 

standard methods before use, toluene was distilled on Na(s), CH2Cl2 on 

P2O5, both under N2 atmosphere. Commercial deuterated solvents 

were used as received. Column chromatography was performed using 

Alfa Aesar silica gel 60 (0.032–0.063 mm). 1H NMR spectra were 

recorded on a Bruker DRX-400 MHz instrument by using the residual 

signals δ = 7.28 ppm from CDCl3 or δ = 5.32 ppm from CD2Cl2 as 

internal references. IR spectra in solution were acquired on a Bruker 

Vector 22 FT spectrophotometer. Size Exclusion Chromatography 

(SEC) measurements were carried out by using an integrated 

GPCV2000 SEC system from Waters equipped with the two on-line 

detectors: 1) a differential viscometer (DV); 2) a differential 

refractometer (DRI) as concentration detector.  The columns were two 

Polymer Laboratories (2PLGel Mixed C + 100Å) while CHCl3 was used 

as eluent at 0.6 mL min-1, universal calibration of the SEC-DV 

chromatographic system was constructed using some polystyrene 

(PS) standards with narrow MMD. Matrix assisted laser 

desorption/ionization time of flight mass spectrometry (MALDI-TOF 

MS) was used in reflectron mode to record spectra by means of a 

4800 Proteomic Analyzer (Applied Biosystems) MALDI-TOF/TOF 

instrument equipped with a Nd:YAG laser at a wavelength of 355 nm 

with <500 ps pulse and 200 Hz firing rate.  
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The accelerating voltage was 15 kV. External calibration was 

performed using an Applied Biosystems calibration mixture consisting 

of polypeptides with different molecular weight values. The irradiance 

was maintained slightly above the threshold, to obtain a mass 

resolution of about 6000-8000 fwhm. Mass accuracy was about 50 

ppm. All measurements were performed by using trans-2-[3-(4-tert-

butylphenyl)-2-methyl-2-propenylidene]malononitrile (DCTB) as the 

matrix. 

 

Electrochemical measurements 

see chapter 3. 

 

Spectroscopy  

see chapter 3. 

 

Synthesis of 1,2-bis(-2,5-dibromobenzylidene)hydrazine. 2.00 g of 

dibromobenzaldehyde (7.35 mmol) were dissolved in 40 mL of MeOH, 

and 180 µL of hydrazine monohydrate (3.67 mmol) were added to the 

solution. The reaction mixture was refluxed for 2 hours, leading to the 

formation of a suspension. The product was filtered and dried, yielding 

1.75 g (3.34 mmol) of whitish powder (isolated yield 91%). 1H NMR 

(CD2Cl2, 300K, 400 MHz) δH (ppm) 8.96 (s, 2H, CH), 8.39 (s, 2H, H6 

phenyl), 7.57 (d, J = 8.5 Hz, 2H, H3 phenyl), 7.51 (d, J = 8.5 Hz, 2H, H4 phenyl) 

 

Synthesis of 5,8-dibromophtalazine (M2). 1.75 g (3.34 mmol) of 1,2-

bis(-2,5-dibromobenzylidene)hydrazine, 6.7 g (50 mmol) of AlCl3 and 

6.7 g (25 mmol) of AlBr3 were mixed together and heated up to 195°C 

for 3 hours. Then, the reaction was quenched with H2O and left stirring 

for 1 hour. The colorless solution was filtered, and the grey solid 
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residue washed again with HCl 6M several times. The acidic solutions 

were gathered and made basic with KOH. The product was extracted 

from the aqueous solution with copious amounts of ethyl acetate 

(EtOAc), the organic layer made anhydrous with MgSO4 and the 

solvent evaporated. The crude product was purified through 

chromatography (eluent EtOAc), then dried under vacuum, yielding 

215 mg (0.77 mmol) of solid product (isolated yield 23%). 1H NMR 

(CD2Cl2, 300K, 400 MHz) δH (ppm) 9.82 (s, 2H, H1,4 phtal), 8.05 (s, 2H, H6,7 

phtal) 

 

Synthesis of 5,8-dithiophenylphtalazine (M4). 100 mg (0.347 mmol) of 

5,8-dibromophtalazine, and 10 mg (0.0087 mmol) of Pd(PPh3)4 were 

dissolved in 10 mL of toluene, N2 was bubbled in the solution for 15 

min. 240 µL (0.764 mmol) of tributyl-stannylthiophene were added 

dropwise to the reaction mixture. The solution was refluxed overnight 

at 110°C. After being quenched with H2O the organic layer was 

separated, made anhydrous with MgSO4 and filtered through celite 

pad. The crude product was purified through chromatography (eluent 

CH2Cl2/hexane/MeOH 8:2:1), then dried under vacuum, yielding 85 mg 

(0.284 mmol) of solid product (isolated yield 82%). 1H NMR (CD2Cl2, 

300K, 400 MHz) δH (ppm) 9.92 (s, 2H, H1,4 phtal), 8.02 (s, 2H, H6,7 phtal), 

7.63 (d, J =5.2 Hz, 2H, H2 thioph) 7.43 (d, J = 3.6 Hz, 2H, H4 thioph), 7.32 (dd, 

J= 5.1, 3.6 Hz, 2H, H3 thioph) 

 

Synthesis of [Re2(µ-Cl)2(CO)6(µ-5,8-dithiophenylpthalazine)] (C4). One 

eq. of 5,8-dithiophenylpthalazine (30 mg, 0.102 mmol) was dissolved in 

freshly distilled toluene (8 mL) and treated with two eq. of Re(CO)5Cl 

(74 mg, 0.204 mmol). The reaction mixture was refluxed for 3 hours, 

then the solution was evaporated to dryness under vacuum. The solid 
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residue was purified through column chromatography (eluent 

CH2Cl2/hexane 8:2), affording the desired product (68 mg, 0.076 

mmol, isolated yield 75%). IR (CH2Cl2) ν(CO): 2047 (m), 2033 (vs), 1942 

(s), 1915 (s) cm-1, 1H NMR (CD2Cl2, 300K, 400 MHz) δH (ppm) 10.51 (s, 

2H, H1,4 phtal), 8.39 (s, 2H, H6,7 phtal), 7.80 (dd, J = 5.2, 1.2 Hz, 2H, H2 thioph) 

7.54 (dd, J = 3.7, 1.2 Hz, 2H, H4 thioph), 7.42 (dd, J = 5.1, 3.6 Hz, 2H, H3 thioph) 

 

Synthesis of 1,2-bis((2,5-dibromothiophen-3-yl)methylene)hydrazine. A 

sample of di 2,5-dibromo-3-thiophenecarboxaldehyde (3.58 g, 13.2 

mmol) was dissolved in 50 mL of MeOH. Hydrazine monohydrate (300 

µL, 6.6 mmol) was added to the solution. The reaction mixture was 

refluxed for 2 hours, leading to the formation of a yellow suspension. 

The product was filtered and dried, yielding 3.2 g (5.8 mmol) of yellow 

powder (isolated yield 88%). 1H NMR (CD2Cl2, 300K, 400 MHz) δH 

(ppm) 8.55 (s, 2H, CH), 7.56 (s, 2H, H3 thioph) 

 

Synthesis of 5,7-dibromothieno-3,4-pyridazine (M3). 1.7 g (3 mmol) of 

1,2-bis((2,5-dibromothiophen-3-yl)methylene)hydrazine, 5.5 g (42 

mmol) of AlCl3 and 5.6 g (21 mmol) of AlBr3 were mixed together and 

heated up to 195°C for 3 hours. After 3 hours the reaction was 

quenched with H2O and left stirring for 1 hour. The yellow solution was 

filtered, and the black solid residue washed again with HCl 6M several 

times. The acidic solutions were gathered and made basic with KOH, 

turning colorless. The product was extracted from the aqueous 

solution with copious amounts of ethyl acetate (EtOAc), the organic 

layer made anhydrous with MgSO4 and the solvent evaporated. The 

crude product was purified through chromatography (eluent EtOAc), 

then dried under vacuum, yielding 170 mg (0.60 mmol) of yellow 
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powder (isolated yield 20%). 1H NMR (CD2Cl2, 300K, 400 MHz) δH 

(ppm) 9.12 (s, 2H, H1,4 pydz) 

 

Synthesis of 5,7-dithiophenylthieno-3,4-pyridazine (M5). 100 mg (0.34 

mmol) of 5,7-dibromothieno-3,4-pyridazine, 97 mg (0.75 mmol) of 

thiophenyl-boronic acid, 10 mg (0.0087 mmol) of Pd(PPh3)4 were 

dissolved in 6 mL of dimethoxyethane and the solution was degassed 

by bubbling N2 for 15 min. A sample of K2CO3 (282 mg, 2.04 mmol) 

was simultaneously dissolved in H2O and also bubbled with N2. The 

aqueous solution was then added to the organic solution and the 

resulting reaction mixture was refluxed overnight at 85°C. The reaction 

was quenched with H2O and the organic product extracted with 

CH2Cl2, then made anhydrous with MgSO4 and filtered through celite 

pad. The crude product was purified through chromatography (eluent 

EtOAc/MeOH 9:1), then dried under vacuum, yielding 84 mg (0.28 

mmol) of orange powder (isolated yield 83%). 1H NMR (CD2Cl2, 300K, 

400 MHz) δH (ppm) 9.55 (s, 2H, H1,4 thienopydz), 7.59 (dd, J = 5.2, 1.1 Hz, 2H, 

H2 thioph) 7.52 (dd, J = 3.7, 1.1 Hz, 2H, H4 thioph), 7.26 (dd, J =5.2, 3.7 Hz, 2H, 

H3 thioph) 

 

Synthesis of [Re2(µ-Cl)2(CO)6(µ-5,7-dithiophenylthieno-3,4-

pyridazine)] (C5). A sample of Re(CO)5Cl (42 mg, 0.116 mmol) was 

dissolved in freshly distilled toluene (7 mL) and treated with 5,7-

dithiophenylthieno-3,4-pyridazine (18 mg, 0.058 mmol). The reaction 

mixture was refluxed for 4 hours, then the solution was evaporated to 

dryness under vacuum. The solid residue was purified through column 

chromatography (eluent CH2Cl2/hexane 8:2), affording the desired 

product as red powder (38 mg, 0.042 mmol, isolated yield 72%). IR 

(CH2Cl2) ν(CO): 2046 (m), 2032 (vs), 1941 (s), 1915 (s) cm-1, 1H NMR 
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(CD2Cl2, 300K, 400 MHz) δH (ppm) 10.02 (s, 2H, H1,4 thienopydz), 7.79 (d, J = 

5.2 Hz, 2H, H2 thioph), 7.64 (d, J = 3.8 Hz, 2H, H4 thioph), 7.37 (dd, J = 5.1, 3.6 

Hz, 2H, H3 thioph) 

 

Suzuki polycondensation (Synthesis of P1, P2 and P3). The two 

monomers (1 eq each) and K2CO3 were introduced into a Schlenk tube 

and deaerated with three vacuum/N2 cycles. The correct ratio of 

freshly distilled toluene and of degassed MilliQ water was then added 

to the reaction mixture. A drop of Aliquat336 phase transfer catalyst 

was added to ease the mixing of the two phases. Separately, the 

catalyst was degassed, dissolved into anhydrous toluene, and then 

added to the reaction mixture. The reaction mixture was heated at 

90°C for 70 h. The addition of 10 equivalents of 5-methylthiophene-2-

boronic acid-pinacol ester as end-capper quenched the 

polycondensation, and the mixture was kept stirring overnight. Finally, 

the reaction mixture was cooled to RT and filtered through a pad of 

celite to completely remove any trace of catalyst. The crude was 

poured into MeOH and recovered through filtration on PTFE filter (0.4 

µm). A Soxhlet extraction (MeOH, acetone, and CH2Cl2) finally yielded 

the desired polymers.  

 

SAMPLE Mp [g mol-1] Mn [g mol-1] Mw [g mol-1] Mw/Mn Rpt. units 

P1a 47,929 8,498 49,294 5.8 89 

P1b 40,091 16,704 81,497 4.9 74 

P2b 7,053 5,084 88,113 17.3 13 

P3b 5,452 2,710 42,544 15.7 10 

 
[a SEC eluent: CHCl3 only, b SEC eluent: CHCl3 + 0.5% CH3COOH. Acetic acid was used 
to reduce the interaction between the diazine N atoms in P2 and P3 and the column’s 
stationary phase] 
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P1. 1H NMR (CDCl3, 300K, 400 MHz) δH 

(ppm) 8.42 (s, 1H, HD), 8.35 (m, 2H, HC,C’), 

8.20 (s, 1H, HD’), 8.03 (s, 2H, HB,B’), 7.91 (s, 2H, 

HA,A’), 4.81 (s, 1H, HE), 2.51 (m, 2H, HF), 2.07 

(m, 2H, HF), 1.19 (m, 24H, HG-K), 0.80 (m, 6H, 

HL) according to ACS Macro Lett. 2015, 4, 21 

 

 

P2. 1H NMR (CDCl3, 300K, 400 MHz) δH 

(ppm) 9.88 (s, 2H, HE,E’), 8.43 (m, 2H, HD,D’), 

8.21 (s, 2H, HC,C’), 7.83 (s, 1H, HB), 7.67 (s, 1H, 

HB), 7.53 (m, 2H, HA,A’), 4.70 (s, 1H, HF), 2.36 

(m, 2H, HG), 2.01 (m, 2H, HG), 1.18 (m, 24H, HH-

L), 0.80 (m, 6H, HM) 

 

 

P3. 1H NMR (CDCl3, 300K, 400 MHz) δH 

(ppm) 9.63 (m, 2H, HD,D’), 8.35 (m, 2H, HC,C’), 

7.98 (m, 1H, HB), 7.80 (m, 1H, HB), 7.69 (m, 2H, 

HA,A’), 4.76 (s, 1H, HE), 2.43 (m, 2H, HF), 2.10 

(m, 2H, HF), 1.14 (m, 24H, HG-L), 0.79 (m, 6H, 

HM) 

 

Synthesis of MP2. 40 mg (0.071 mmol) of P2 and 60 mg (0.16 mmol) 

of Re(CO)5Cl were dissolved in 8 mL of freshly distilled toluene. The 

reaction mixture was put under reflux for 3 hours at 120 °C, a dark 

yellow precipitate slowly forming. The solution was evaporated to 

dryness. The crude material was dissolved in CH2Cl2, the addition of n-

hexane caused the precipitation of the product, that was subsequently 

washed with n-hexane (3 x 5 mL), affording the desired 
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metallopolymer as ochre powder. IR (CH2Cl2) ν(CO): 2046 (m), 2032 

(vs), 1941 (s), 1915 (s) cm-1, 1H NMR (CD2Cl2, 300K, 400 MHz) δH (ppm) 

10.43 (d, J = 23.4 Hz, 2H, HE), 8.54 (m, 4H, HC,D), 8.03 (s, 1H, HB), 7.86 (s, 

1H, HB), 7.61 (m, 2H, HA), 4.83 (s, 1H, HF), 2.43 (m, 2H, CH2), 2.16 (m, 2H, 

CH2), 1.21 (m, 24H, CH2), 0.85 (m, 6H, CH3) 

 

Synthesis of MP3. 42 mg (0.077 mmol) of P3 and 60 mg (0.16 mmol) 

of Re(CO)5Cl were dissolved in 7 mL of freshly distilled toluene. The 

reaction mixture was put under reflux for 3 hours at 120 °C, the 

solution slowly turning deep purple. The solvent was evaporated to 

dryness, then the crude material was dissolved in CH2Cl2, the addition 

of n-hexane causing the precipitation of the product. The so obtained 

solid was subsequently washed with n-hexane (3 X 5 mL), affording 

the desired metallopolymer as dark purple powder. IR (CH2Cl2) ν(CO): 

2047 (m), 2032 (vs), 1943 (s), 1912 (s) cm-1. 1H NMR (CD2Cl2, 300K, 400 

MHz) δH (ppm) 10.12 (d, J = 24.4 Hz, 2H, HD), 8.56 (m, 2H, HC), 8.10 (s, 

1H, HB), 7.95 (s, 1H, HB), 7.77 (m, 2H, HA), 4.83 (s, 1H, HE), 2.45 (m, 2H, 

HZ), 2.16 (m, 2H, HZ), 1.17 (m, 24H, HZ), 0.81 (m, 6H, HZ) 
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Abstract 
 
The synthesis of a series of neutral dinuclear rhenium complexes of general 
formula [Re2(μ-XR)2(CO)6(μ-pydz)] (X = O, S, Se and Te; R = Me, Ph) has been 

performed via new, either one-pot or two-step, synthetic routes. Combined 
NMR studies allowed the assessment of both the structures and behavior in 
solution. Preliminary DFT and TD-DFT studies of the geometry and electronic 
structure of the complexes, coupled with extensive photophysical and 
electrochemical characterization, led to a complete structure to property 
correlation. 
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7.1 Introduction  

 
The conversion of solar energy into electrical energy and the storage 

of solar energy into chemical bonds are a very attractive strategy to 

produce and store environmentally-friendly energy. From the 

molecular point of view, for transducing solar energy into chemical 

potentials, the photocatalyst (for fuel production) or the 

photosensitizer (for the conversion into current) should be a multi-

functional system able to perform several distinct acts in series.[1] First 

of all, this molecule must be coloured. This is the case of several metal 

complexes used as photosensitizes in solar cells, which are 

characterized by intense MLCT or LMCT absorption bands.[2] Such 

excited states have triplet character and usually survive for several ns, 

thus avoiding possible charge recombination.[3]  

 

Recently we have reported on some dinuclear rhenium complexes as 

sensitizers for Dye Sensitized Solar Cells (DSSCs), having general 

formula [Re2(µ-X)(µ-Y)(CO)6(µ-pydz-4-COOH)], (with X = halide or 

hydride and Y = halide or carboxylate).[4] Light-to-current conversion 

has been indeed recorded, although with moderate efficiency (see 

chapter 5).  

 

Both computational studies at TD-DFT level and experimental data 

showed that complexes containing one hydrido and one carboxylato 

ancillary ligands, or two thiophenolate ligands display the narrowest 

HOMO-LUMO gap and thus the widest absorption in the visible range, 

making these complexes promising as photosensitizers.  
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These features prompted us to investigate the optical properties of 

complexes containing other chalcogenide anions as ancillary ligands. 

Only a few examples of chalcogen-bridged rhenium complexes are 

available in the literature. Hupp and co-workers reported the synthesis 

of the sulfide bridged dinuclear rhenium complex [Re2(µ-SPh)2(CO)8] 

from thiols and [Re(CO)5(OTf)].[ 5 ] In the same report they also 

mentioned the stepwise synthesis of selenium bridged rhenium dimers 

[Re2(µ-SeR)2(CO)8] from selenol and [Re(CO)5(OTf)]. Alternatively, the 

dinuclear complex [Re2(µ-SR)2(CO)8] was obtained by reacting a diaryl 

disulfide with [Re2(CO)10] under photolytic conditions[6] and, in much 

lower yields, under thermolytic conditions. When a similar reaction was 

carried out in the presence of pyridyl ligands it resulted in the facile 

oxidative addition of the diaryl disulfide to the Re-Re bond, affording 

the dinuclear neutral metallacycles [Re2(µ-SR)2(CO)6(L)2] (L = pyridine 

ligand).[7]  

 

The same one-pot synthesis, involving the oxidative addition of the Se-

Se bond of a Se2R2 diselenide to rhenium carbonyl and affording the 

analogous selenium bridged neutral metallacycles [Re2(µ-SeR)2 

(CO)6(L)2], was recently reported.[8] The replacement of monodentate 

pyridyl ligands with rigid bidentate bi-pyridine ligands generated the 

novel tetranuclear selenium bridged metallacyclophanes [Re2(µ-SeR)2 

(CO)6(µ-L)2].[9]  

 

Some dinuclear pyridazine complexes of rhenium containing 

thiophenolate ligands were previously obtained in our group, but the 

synthetic route was unsatisfactory in many respects, as detailed in 

paragraph 7.2.1.[10] Therefore, we have investigated the possibility to 

exploit the previously reported results to establish a simple and 
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effective general route to dinuclear [Re2(µ-XR)2(CO)6(µ-pydz)] 

complexes containing XR anions as ancillary ligands (X = S, Se, Te; R = 

phenyl, methyl, see chart 7.1). In this regard, the oxidative addition 

reaction of disulfide, diselenide, ditelluride derivatives on [Re2(CO)10] in 

presence of the bridging 1,2-diazine ligand has been investigated and 

here reported.  

 

Since dimethylperoxide is not commercially available and 

diphenylperoxide is quite unstable under the current reaction 

conditions, the corresponding phenolato and methanolato derivatives 

were prepared following the already reported synthetic procedures.[10]  

 

Chart 7.1 Structure of the chalcogenide complexes investigated. 
 

In addition to the one-pot synthesis, a general two-step reaction, 

involving the chalcogen-bridged rhenium cubane-like [Re(µ3-X)(CO)3]4 

complexes as starting materials has been also investigated. The 

synthesis of the cubane derivatives was already reported, involving the 

oxidative addition of X-X bonds to [Re2(CO)10].[ 11 ] The cubane 

complexes are able to react with the bridging diazine to give the 

corresponding dinuclear derivatives.  

 

 

N N

(OC)3Re Re(CO)3
X

X
R

R

1a: X = O,     R = Ph
1b: X = O,     R = Me
2a: X = S,      R = Ph
2b: X = S,      R = Me
3a: X = Se,    R = Ph
3b: X = Se,    R = Me
4a: X = Te,     R = Ph
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All the complexes have been fully characterized, by means of 

preliminary DFT computations and exhaustive electrochemical and 

spectroscopic measurements. The spectroscopic properties of the 

dyes have been correlated to their molecular structure and, in 

particular, to the nature of the ancillary ligands, which can modulate 

the HOMO and LUMO levels and the efficiency of light harvesting. 

 

7.2 Results and discussion 

 

7.2.1 Synthesis of the complexes  
 
The synthesis of the dinuclear rhenium complexes [Re2(µ-XR)2(CO)6(µ-

pydz)], (X = O or S) was previously reported,[10] using several synthetic 

routes. However, they were more demanding than those used for the 

related dihalide [Re2(µ-X)2(CO)6(µ-1,2-diazine)] complexes,[12] because 

of the unavailability of the [Re(CO)5XR] starting materials. In particular 

the dinuclear rhenium complex containing thiophenolate ligands 

[Re2(µ-SPh)2(CO)6(µ-diazine)] was obtained by treating 

[Re(CO)5(OTf)], containing the labile triflate CF3SO3
- anion (-OTf), with 

one equivalent of thiophenol in presence of a base, such as 

bis(dimethylamino)naphthalene (DMAN) or Na2CO3.[10]  

 

As mentioned in the previous paragraph, here we have investigated 

the possibility to find a general synthetic procedure to the synthesis of 

the dinuclear complexes containing either -SR, -SeR or -TeR anions as 

ancillary ligands. The method involved the spontaneous formation of 

the dinuclear complexes [Re2(µ-XR)2(CO)6(µ-diazine)] (X = S, Se, Te 

and R = methyl, phenyl) by self-assembly of five components via the 

so-called orthogonal-bonding approach.  
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This synthetic procedure was previously reported by Manimaran and 

Lu for the synthesis of rhenium-based metallacycles and molecular 

rectangles. [7-8, 13-14]  

 

In this case, the formation of the dinuclear complexes is accomplished 

by the oxidative addition of the dichalcogenide ligand (disulfide, 

diselenide or ditelluride) to rhenium pentacarbonyl, through 

replacement of one CO ligand in each metal center, followed by the 

further substitution of the two axial CO groups (orthogonal to the 

initially replaced carbonyls) by the bridging N-donor pyridazine ligand, 

in mesitylene solution at high temperature. This reaction yielded the 

corresponding dinuclear complex [Re2(µ-XR)2(CO)6(µ-pydz)] (X = S, 

Se, Te; R = phenyl, methyl, see scheme 7.1) in high yields (ca. 85%).  

  

 
Scheme 7.1 One-pot synthetic pathway employed for complexes 2-4a.  
 

This simultaneous approach can be carried out only when the ancillary 

ligands are stable at high temperature and do not react in a parallel 

way with the N-donor ligand under the same conditions. For this 

reason, it cannot be used for the synthesis of the analogous derivatives 

containing chloride or bromide as ancillary ligands.  

N N

(OC)3Re Re(CO)3
X

X
R

R

2a: X = S,      R = Ph
2b: X = S,      R = Me
3a: X = Se,    R = Ph
3b: X = Se,    R = Me
4a: X = Te,     R = Ph
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Indeed, the oxidative addition of Cl2 or Br2 to [Re2(CO)10] occurs at 

room temperature, and affords quantitatively [Re(CO)5Cl], which can 

react with the N-donor ligand in a subsequent step at high 

temperature, according to equation 7.1, representing the common 

synthetic route to the dihalide complexes.[12]  

	
2	 Re CO 'Cl + pydz → 	 [Re0 µ − Cl 0 CO 3(pydz)] + 	4	CO	 

(eq. 7.1) 

 
In addition to the one-pot synthesis, a two-step reaction involving the 

formation of the heterocubane structure [Re4(µ3-XR)4(CO)12] was 

investigated in the case of the telluride derivative. Actually, the 

cubane-like [Re4(µ3-OH)4(CO)12] complex, containing four bridging 

hydroxo ligands, was already used as starting material for the 

synthesis of the dinuclear complex [Re2(µ-OH)2(CO)6(µ-pydz)],[10] in 

the presence of 2 equivalents of pydz, according to equation 7.2. 

 

	[Re8 µ9 − OH 8 CO ;0] + 2	pydz → 	2	[Re0 µ − OH 0 CO 3(pydz)]				
 (eq. 7.2)	

This reaction resembles the previously reported fragmentation of the 

unsaturated tetranuclear cluster [Re4(µ3-H)4(CO)12] with 2 equiv. of 

pydz,[15] but in this case only the [2+2] fragmentation pathway was 

observed, quantitatively affording [Re2(µ-OH)2(CO)6(µ-pydz)].[10]  

The tellurium-bridged molecular cubane [Re4(µ3-TePh)4(CO)12] (4) has 

been obtained following the synthetic procedure reported for the 

synthesis of the analogous sulfur derivative (2)[11] by a one-pot reaction 

via oxidative addition of the diaryl ditelluride to [Re2(CO)10] in 

mesitylene solution.  
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Differently from what observed for the disulfide, this reaction proceeds 

also without the catalytic amount of dimethylformamide, which 

facilitates the removal of terminal carbonyl groups, even if complex 4 

was obtained in low yields (about 32%). The reaction of complexes 2 

and 4 with 2 equivalents of pyridazine in refluxing toluene 

quantitatively afforded complexes 2a and 4a, respectively.  

 
 
 

 
 

 
 

Scheme 7.2 Two-step synthetic procedure for the µ-XR complexes (X = S, Te) 
via heterocubane intermediate.  
 

The nature of the new complexes was unambiguously established by 

spectroscopical characterization. All the dinuclear complexes 

displayed, in the ν(CO) regions of the IR spectra the four-band pattern 

typical of this class of compounds (see table 7.1).[16] 

 

Accordingly, the position of the stretching bands of the carbonyl 

ligands is affected by the dπ electron density on the metal centre, as a 

result of the p-back donation. For the aryl derivatives 1a-4a, the 

position of the highest-frequency A1 mode shifts on varying the 

ancillary ligands, as to the trend 2036 (O-Ph) > 2035 (S-Ph) > 2032 

(Se-Ph) > 2027 (Te-Ph) cm−1.  
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This is in agreement with the Re atoms becoming progressively more 

electron rich as the electronegativity of the X ligands decreases.  

 

Table 7.1 IR carbonyl stretching bands (in CH2Cl2, 298 K) of the complexes 
investigated. 

 

The ν(CO) stretching modes of all the X-Me derivatives 1b-3b shifted to 

lower wavenumbers than the analogous X-Ph derivatives, 1a-3a, in 

agreement with the stronger donating character of the corresponding 

anions. The 1H NMR data support the expected structures. In particular, 

the two resonances of the bridging pyridazine are downfield shifted by 

ca. 0.5-0.6 ppm compared to the free ligand, as observed in related 

complexes.[16]  

 

 

 

 

 

COMPLEX IR ν (CO) [cm–1] 

[Re2(μ-OPh)2(CO)6(μ-pydz)] (1a) 2036 (m) 2021 (s) 
1927 (s) 1903 (s) 

[Re2(μ-OMe)2(CO)6(μ-pydz)] (1b) 2027 (m) 2010 (s) 
1915 (s) 1892 (s) 

[Re2(μ-SPh)2(CO)6(μ-pydz)] (2a) 2035 (m) 2018 (s) 
1936 (s) 1911 (s) 

[Re2(μ-SMe)2(CO)6(μ-pydz)] (2b) 
2029 (m) 2011 (s) 
1928 (s) 1914 (s) 

[Re2(μ-SePh)2(CO)6(μ-pydz)] (3a) 
2032 (m) 2016 (s) 
1938 (s) 1910 (s) 

[Re2(μ-SeMe)2(CO)6(μ-pydz)] (3b) 
2027 (m) 2009 (s) 
1930 (s) 1902 (s) 

[Re2(μ-TePh)2(CO)6(μ-pydz)] (4a) 
2027 (m) 2011 (s) 
1933 (s) 1912 (s) 
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7.2.2 Dynamic processes in solution by 1H NMR 
 
The 1H NMR spectra of the three aryl derivatives 2a, 3a and 4a at 

variable temperature present some substantial differences with each 

other. The spectra of the aryl-telluride derivative 4a at all the 

investigated temperatures clearly show, in the aromatic region, two 

sets of sharp signals, with intensity ratio 1:0.14 (see the traces in figure 

7.2). The two set of signals can be attributed to the two isomers 

depicted in figure 7.1, whose up/up and up/down structures 

correspond to the structures previously determined by X-ray analysis 

for the OC6F5 and the SC6H5 derivatives, respectively.[10] In particular, 

the set of signals with the greater intensities (in the order, from higher 

to lower chemical shifts: Hortho (pydz), Hmeta (pydz), Hpara (Ph), Hortho 

(Ph), Hmeta (Ph), relative ratio 1:1:1:2:2) are consistent with a C2 

symmetry isomer, in which free rotation around the Te-Chypso bonds 

equalizes the ortho and meta positions within each phenyl ring.  

 
Figure 7.1 Major (C2 symmetry - up/up) and minor (C1 symmetry - up/down) 
isomers for aryl-chalcogenide complexes 2a, 3a and 4a. 
 

A 2D 1H NOESY experiment at 243 K (figure 7.2) returned, for the 

major isomer (87.7%), the development of a NOE cross-peak between 

the signal of the ortho protons of the pyridazine ring and the signal of 

the ortho protons on the aryl rings (see figure 7.1), which confirmed 
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unambiguously the attribution of this set of signals to the up/up C2 

isomer.  

 

 
Figure 7.2 1H NOESY at 243 K for ditelluride complex 4a. The asterisks mark 
the pydz signals, and the hash symbols mark the downward phenyl ring of the 
minor up/down isomer. The arrows indicate the cross peak discussed in the 
text. 
 

The other signals with lower integrated intensities are consistent with 

the minor up/down isomer (12.3%). It also shows two pydz signals only 

(marked with an asterisk in figure 7.2), owing to the apparent Cs 

symmetry arising from the free rotation (or simple flipping) around the 

Te-Chypso bonds. A 2D 1H EXSY experiment showed that a slow 

interconversion between the two isomers is active on the NMR time 

scale only at temperatures higher than 300 K.  
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Contrary to 4a, the room temperature spectra of 3a and 2a showed 

reduced number of signals. Most of the peaks of 3a were broad, 

suggesting the occurrence of dynamic processes interconverting the 

isomers. Consequently, the appearance of the spectra was significantly 

temperature-dependent, although a different trend was observed for 

3a compared to 2a.  

 

In the case of the diselenide derivative 3a, a limit spectrum including 

sharp multiplets for each isomer could be observed only at 

temperatures lower than 233 K, showing a larger amount (20.1%, 

integration ratio 1:0.26) of the minor isomer than in the case of the 

tellurium derivative 4a. At higher temperatures the pyridazine 

resonances of the two isomers broadened and coalesced (at 273 K), 

generating two sharp averaged signals at room temperature.  

 

Figure 7.3 1H NMR at variable temperature for the diselenide derivative 3a. 
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Within the same temperature range the aryl signals broadened and 

coalesced in one averaged signal, which remained very broad even at 

300 K, in line with the larger chemical shift difference between the 

three couples of aryl signals, requiring higher exchange rate for their 

averaging. For the aryl-sulfide complex 2a (see figure 7.4), the two 

isomers identified in the case of the homologues 3a and 4a were not 

clearly detectable. Indeed, the minor isomer was hardly detected only 

at a temperature as low as 168 K (see inset above the first trace of the 

stacked plot, which enhances 10x the intensity of the portion of 

spectrum in the range 7.0-7.9 ppm). The separation in two sharp sets 

of signals, observed for 4a and 3a (at least at low temperature for the 

latter), was not detected for 2a, while only a slight broadening of the 

two pydz signals, together with a relevant broadening and separation 

of the aryl signals, were observed below 193 K. This variable 

temperature evolution of the spectra is attributable to the very fast 

interconversion of the two isomers up/up – up/down, occurring at an 

exchange rate regime still too high on the NMR time scale.  The 

amount of the minor isomer (ca. 40%), although affected by a very 

large uncertainty, resulted in line with the increasing trend observed 

moving from Te to Se derivatives.  

 

By comparing the data for the three chalcogenide derivatives, we can 

conclude that the up/up – up/down interconversion process is 

favoured when moving from Te to S, being in a very slow regime on 

the NMR time scale also at 300 K for the Te derivative, and being in an 

intermediate situation for Se derivative (showing already mediated 

signals at room temperature which separate in two distinct set of 

signals on lowering the temperature), and reaching the faster process 

exchange in the S derivative. In all cases, the aryl rings freely rotate 

around the S-Cq bond at any temperature. The trend is explained by 
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taking into account the different sp character of the orbital 

hybridization of the chalcogenide, which passes from pure sp2 

character in the O derivative[10] to a growing sp3 character when 

moving from S to Se and Te, thus constraining the Re-X-Ph angles (X = 

chalcogenide) along the series and increasing the steric crowding with 

the CO ligands.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 7.4 1H NMR at variable temperature for disulfide derivative 2a (sharp 
signals overlapping the phenyl signals marked with an asterisk indicate an 
impurity). Inset: 10x enhancement of 168 K trace, range 7.0-7.9 ppm.  
 

Preliminary DFT calculations supported and confirmed this 

interpretation. In fact, the energy difference between the two isomers 

up/up and up/down increases from S to Se and Te (1.5, 5.9 and 8.0 kJ, 

respectively), and the activation barrier showed the same trend 

(calculated DH# = 37.7, 63.8, 87.9 kJ/mol for S, Se and Te, 

respectively). 
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7.2.3 Electrochemical characterization 

 
Figure 7.5 shows the results of cyclic voltammetry (CV) analyses of 

the complexes in acetonitrile solution, while the most significant CV 

features are reported in table 7.2. 

 

The first reduction peaks are localized for all complexes on their 

common pyridazine ligand, as already observed for related 

complexes,[10,16] and therefore are quite similar both in shape and 

potential value. The reduction is monoelectronic and reversible, both 

from the chemical (symmetrical return peaks, stable products) and the 

electrochemical one (facile transfer of a single electron, which is taken 

into account by the �57 mV half-peak widths together with the almost-

zero Ep versus log ν slopes) point of view, thus indicating very fast 

formation of a stable radical anion.  

 

In our former study,[16] the first oxidation site was found to be localized 

on the metal core and, therefore, it was strongly affected by the nature 

of the ancillary ligands, as confirmed also by the DFT computations.[16] 

However, a very different behaviour in the oxidation process has been 

observed between the dinuclear complexes containing -OR anions and 

those containing the other chalcogenide counterparts.  

 

As previously reported, in the OR derivatives a close sequence of two 

monoelectronic peaks is observed. In the case of the alkyl derivative 

1b, the first oxidation peak tends to be chemically irreversible at low 

scan rates, while the phenolato complex 1a shows a combination of an 

irreversible first peak followed by a reversible second peak over the 

whole scan rate range explored.[10]  
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On the contrary, in the chalcogenide series 2-4 only one oxidative 

peak, chemically and electrochemically reversible, is observed, as in 

the halide derivatives.[12] 

 

 
 
Figure 7.5 Full scan (thin line) and HOMO-LUMO (bold line) CV curves for 1-4a 
complexes. 
 

-3.5	 -2.5	 -1.5	 -0.5	 0.5 1.5

(i/
cv
0,
5)
/A
	m

ol
-1
	c
m
-2
	d
m
3

E	/	V (vs	Fc)

(OPh)2

(OMe)2

(SPh)2

(SMe)2

(SePh)2

(SeMe)2

(TePh)2

(i/
cv

0,
5 )	
/	(
A	
m
ol

-1
	cm

-2
	d
m

3 )
	



CHAPTER 7 | Organochalcogen-bridged rhenium(I) complexes: 
structure to property correlation 

 183 

Table 7.2 First reduction and oxidationa peak potentials (Ep,c and Ep,a), 
electrochemical (DEe) and spectroscopic (DEs)

b energy gaps of the complexes 
1-4a. Potentials are referred to the Fc+|Fc couplec in the operating medium 
(ACN, 0.1 M TBAPF6). Scan rate 0.2 V s−1.  

Complex X 
Ep,c  

[V] 

Ep,a     

[V] 

ELUMO 

[eV] 

EHOMO 

[eV] 

DEe 

[eV] 

DEs 

[eV] 

1a OPh -1.416 1.100 -3.38 -5.90 2.52 3.38 

1b OMe -1.475 0.911 -3.33 -5.71 2.39 3.36 

2a SPh -1.431 0.473 -3.37 -5.27 1.90 3.07 

2b SMe -1.440 0.332 -3.36 -5.13 1.77 3.12 

3a SePh -1.403 0.385 -3.40 -5.18 1.78 2.95 

3b SeMe -1.446 0.250 -3.35 -5.05 1.70 3.05 

4a TePh -1.429 0.212 -3.37 5.01 1.64 2.87 

[a First oxidation peak potential not located on the metal core, b The 
spectroscopic (DEs) energy gaps is the energy associated to the electronic 
transition determined from the maximum of the MLCT absorption band,         
c Fc+|Fc potential is 0.385 V vs. SCE in acetonitrile solution] 
 

The neat �30 mV peak width indicates that this process corresponds 

to a bielectronic oxidation in which a simultaneous two-electron 

transfer occurs, rather than two monoelectronic processes. In 

agreement with the stronger donating power of the X-Me anions (X = 

O, S, Se), the oxidation potential of the alkyl derivatives 1b-3b are 

lower than the corresponding aryl complexes 1a-3a.  

 

An interesting correlation is observed by plotting the peak potential 

values vs. the wavenumbers of the ν(CO) stretching at the highest 

frequency, which are reliable indicators of the electron density on the 

metal atoms (see figure 7.6). The chalcogenide derivatives follow the 

same trend of the halides, whereas the OR derivatives lie on a different 

line. This behaviour could be related to the hard-soft nature of the 

bridging ancillary ligands.  
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In fact, the softer -SR, -SeR and -TeR anions can better stabilize the 

cationic products, favouring the simultaneous loss of two electrons 

instead of two mono-electronic oxidations, as observed in the case of 

the harder -OR donors.  

 

Figure 7.6 Plot of the first oxidation peak (in ACN) versus the wavenumbers 
of the highest energy ν(CO) band (in ACN). 
 

The last columns of table 7.2 show the electrochemical and the 

spectroscopic HOMO-LUMO gaps. It is interesting to note that while 

the electrochemical gap parallels the trend of the first oxidation 

potential, the same behaviour is not observed for the spectroscopic 

parameter, suggesting that the electronic transition associated to the 

absorption maximum is not strictly a HOMO-LUMO transition. Anyway, 

the energy gap for the TePh derivative 4a is the smallest in the series.   

 

 

 



CHAPTER 7 | Organochalcogen-bridged rhenium(I) complexes: 
structure to property correlation 

 185 

7.2.4 Photophysical characterization  
 
The UV-Vis absorption spectra of the three dyes in diluted CH2Cl2 

solution are reported in table 7.3, while figure 7.7 shows the 

corresponding spectra. At room temperature all the complexes exhibit 

an intense absorption band at high energy (about 270 nm), whose 

position is independent of the polarity of the solvent. In addition, a less 

intense broad and featureless absorption band is observed for all the 

complexes, covering a large part of the visible spectrum between 350 

nm and 550-600 nm.  

 

This band can be attributed to metal-ligand-to-ligand charge transfer 

(MLLCT) transitions, and the significant contribution of the ancillary 

ligands to the metal-centered HOMO set (indicated by the DFT 

computations in the related OR and SR derivatives)[10] is supported by 

the strong red-shift of the absorption maximum on moving from the 

OR to the TeR derivatives. This broad band arises from the 

convolution of multiple transitions, as confirmed by the more or less 

pronounced shoulders observed at longer wavelengths. 

 

It is interesting to note that, in contrast with the electrochemical data, 

for the alkyl derivatives 1b-3b the absorption maximum is blue-shifted 

in comparison with the corresponding aryl derivatives 1a-3a. This 

feature strongly underlines that, as already observed for other 

analogous complexes,[16] the electronic transitions responsible for the 

MLCT absorption band are not HOMO-LUMO but would rather involve 

as starting orbitals the metal-centred HOMO–n set and, as final 

orbitals, the two low-lying p* orbitals of the diazine, LUMO and 

LUMO+1.  
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Table 7.3 The low energy absorption band for complexes 1-4a. 

Complex X lmax
a [nm] e [104 M-1 cm-1] lmax

b [nm] 

1a OPh 367 0.69  

1b OMe 369 0.87  

2a SPh 403 0.57 382 

2b SMe 397 1.1  

3a SePh 421 0.69 391 

3b SeMe 406 0.85 382 

4a TePh 433 0.71 396 

[a CH2Cl2 solution (1 ´ 10-5 M), b CH3CN solution (1 ´ 10-5 M)] 

 

The charge transfer character of the low energy band is also 

supported by the observed solvatochromic behavior. Indeed, a 

significant blue-shift of the absorption maximum has been observed in 

a more polar solvent, such as acetonitrile (see table 7.3).  

 
Figure 7.7 UV-Vis absorption spectra of 1-4a complexes in CH2Cl2 solution.  
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Upon optical excitation at 450 nm at room temperature in CH2Cl2, only 

the complexes with OR ancillary ligands (1a and 1b) showed broad and 

featureless emission band in the range 608-708 nm.[10] The emission 

for the other complexes 2-4a is instead completely negligible.  

 

7.3 Conclusions 

 
We have demonstrated the spontaneous association of six 

components into a dinuclear complex containing pyridazine ligands, 

via the tandem addition of a RX-XR bond (X = S, Se, Te and R = Me, 

Ph) across the Re-Re bond. The reaction of [Re2(CO)10] with dialkyl- or 

diaryl-dichalcogenides, in presence of one equivalent of pyridazine 

ligand, affords the corresponding dinuclear complexes [Re2(μ-

XR)2(CO)6(μ-diazine)] containing XR anions as ancillary ligands in high 

yields (ca. 85%). In addition to the one-pot synthesis, we managed to 

define a general two-step reaction involving the synthesis of the 

heterocubane [Re4(μ3-XR)4(CO)12] intermediate, containing the XR 

anions bridging on three metal centers, generated by the reaction of 

[Re2(CO)10] and the dichalcogenide only. In the literature very few 

reports are available for the spontaneous formation of molecular 

cubanes and we have demonstrated that the same synthetic route 

reported for the sulfur-bridged cubanes can be extended to all the 

other chalcogenide anions. This heterocubane can be further reacted 

with any bridging diazine to give the corresponding dinuclear 

complex, following a [2+2] fragmentation pathway without any 

spectroscopically recognizable intermediate. The starting idea that the 

use of potentially bridging ligands might favor the symmetric [2+2] 

fragmentation, already observed for the hydride [H4Re4(CO)12][15] and 

the µ-hydroxo [Re4(µ-OH)4(CO)12][10] clusters, has been further 
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confirmed also for these tetranuclear clusters. The molecular structure 

of the complexes has been elucidated by single crystal XRD analysis, 

and a combination of TD-DFT calculations and low temperature NMR 

studies clarified the presence of different structural isomers with 

different abundance in solution for each chalcogen, as well as the 

fluxional processes between them. A complete electrochemical and 

photophysical investigation showed the progressive narrowing of the 

HOMO-LUMO gap going from O to Te, arising from an increase of the 

HOMO level with a consequent important red-shift of the absorption 

maximum. This is in line with the decreasing electron-withdrawing 

strength of the chalcogenide bridging ligand. From the 

electrochemical point of view S, Se and Te complexes display a bi-

electronic reversible oxidation peak, while O derivatives show two 

mono-electronic irreversible oxidation peaks. No photoluminescence is 

observed upon optical excitation with the only exception of the OPh 

derivative, displaying a moderate luminescence at 608 nm with Φ = 

0.6%. 
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7.4 Experimental  

 

General methods 
 

All the reagents were purchased from Aldrich and used as received. All 

the reactions were performed under an inert N2 atmosphere. All the 

solvents have been deoxygenated and dried by standard methods 

before use, toluene and mesitylene were distilled on Na(s), CH2Cl2 on 

P2O5. Commercial deuterated solvents were used as received. Column 

chromatography was performed using Alfa Aesar silica gel 60 (0.032–

0.063 mm). 1H NMR spectra were recorded on a Bruker DRX-400 MHz 

instrument by using the residual signals δ = 7.28 ppm from CDCl3 or δ = 

5.32 ppm from CD2Cl2 as internal references. Where isomers are 

present, the signals here reported belong to the major isomer for each 

complex. IR spectra in solution were acquired on a Bruker Vector 22 

FT spectrophotometer.  

 

Electrochemical measurements 

see chapter 3. 

 

Spectroscopy  

see chapter 3. 

 

Synthesis of [Re2(µ-SPh)2(CO)6(µ-pydz)] (2a). 130 mg (0.20 mmol) of 

Re2CO10 and 43.5 mg (0.20 mmol) of diphenyldisulfide are dissolved in 

8 mL of anhydrous toluene. 15 µL (0.2 mmol) of pyridazine are added 

to the reaction mixture, which is left stirring under reflux for 10 days, 

slowly turning black. The solution is evaporated to dryness under 
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vacuum. The orange solid remains are dissolved in CH2Cl2 and 

precipitated with n-hexane. The precipitate is washed with n-hexane (3 

x 5 mL), yielding 150 mg (0.178 mmol) of orange powder (yield 89%). 

IR (CH2Cl2) ν(CO): 2034 (m), 2018 (vs), 1937 (s), 1911 (s) cm-1, 1H NMR: 

(CDCl3, 300K, 400 MHz) δH (ppm) 9.94 (m, 2H, Hortho pydz), 7.86 (m, 2H, 

Hmeta pydz), 7.06-7.24 (m, 12H, phenyl) 

One-pot synthesis of [Re2(µ-SMe)2(CO)6(µ-pydz)] (2b). 100 mg (0.153 

mmol) of Re2CO10 are dissolved in 8 mL of anhydrous toluene. 14 µL 

(0.153 mmol) of dimethyldisulfide and 11 µL (0.153 mmol) of pyridazine 

are added to the reaction mixture, which is left stirring under reflux for 

15 days. The solution is evaporated to dryness under vacuum. The solid 

remains are dissolved in CH2Cl2 and precipitated with n-hexane. The 

precipitate is washed with n-hexane (3 x 5 mL) and then purified 

through column chromatography (toluene/EtOAc 9:1) yielding 57 mg 

(0.08 mmol) of product (yield 52%). IR (CH2Cl2) ν(CO): 2029 (m), 2011 

(vs), 1928 (s), 1904 (s) cm-1, 1H NMR: (CDCl3, 300K, 400 MHz) δH (ppm) 

10.01 (m, 2H, Hortho pydz), 7.86 (m, 2H, Hmeta pydz), 2.23 (s, 6H, CH3) 

Synthesis of [Re4(µ3-SMe)4(CO)12] (2). 75 mg (0.115 mmol) of Re2CO10, 

10.2 µL (0.115 mmol) of dimethyldisulfide are dissolved in 6 mL of 

anhydrous toluene. 50 µL of dimethylformamide are then added to the 

reaction mixture, which is left stirring under reflux overnight. The 

solution is evaporated to dryness under vacuum. The dark brown solid 

remains are purified through column chromatography (CH2Cl2/n-

hexane 8:2) yielding 17 mg (0.014 mmol) of product (yield 23%). IR 

(CH2Cl2) ν(CO): 2029 (s), 1942 (s) cm-1, 1H NMR: (CD2Cl2, 300K, 400 

MHz) δH (ppm) 2.08 (m, 12H, CH3) 
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Synthesis of [Re2(µ-SMe)2(CO)6(µ-pydz)] from [Re4(µ3-SMe)4(CO)12] 

(2b). 5 mg (0.014 mmol) of [Re4(µ3-SMe)4(CO)12] are dissolved in 5 mL 

of anhydrous toluene. 2 µL (0.027 mmol) of pyridazine is added to the 

reaction mixture, which is left stirring under reflux for ten days, slowly 

turning red. The solution is evaporated to dryness under vacuum. The 

dark orange solid remains are purified through column 

chromatography (CH2Cl2/n-hexane 8:2) yielding 13 mg (0.018 mmol) of 

microcrystalline powder (yield 77%). IR (CH2Cl2) ν(CO): 2028 (m), 2011 

(vs), 1929 (s), 1903 (s) cm-1, 1H NMR: (CD2Cl2, 300K, 400 MHz) δH (ppm) 

10.03 (m, 2H, Hortho pydz), 7.89 (m, 2H, Hmeta pydz), 7.14 (m, 6H, phenyl), 2.21 (s, 

6H, CH3) 

Synthesis of [Re2(µ-SePh)2(CO)6(µ-pydz)] (3a). 100 mg (0.153 mmol) 

of Re2CO10 and 48 mg (0.153 mmol) of diphenyldiselenide are 

dissolved in 7 mL of anhydrous mesitylene. 11 µL (0.153 mmol) of 

pyridazine are added to the reaction mixture, which is left stirring 

under reflux for 2 days, slowly turning dark brown. The solution is 

evaporated to dryness under vacuum. The dark orange solid remains 

are dissolved in CH2Cl2 and precipitated with n-hexane. The precipitate 

is washed with n-hexane (3 x 5 mL), yielding 116 mg (0.125 mmol) of 

microcrystalline powder (yield 82%). IR (CH2Cl2) ν(CO): 2032 (m), 2016 

(vs), 1938 (s), 1910 (s) cm-1, 1H NMR: (CDCl3, 300K, 400 MHz) δH (ppm) 

9.95 (m, 2H, Hortho pydz), 7.75 (m, 2H, Hmeta pydz), 6.91-7.16 (m, 12H, phenyl) 

Synthesis of [Re2(µ-SeMe)2(CO)6(µ-pydz)] (3b). 100 mg (0.153 mmol) 

of Re2CO10 are dissolved in 7 mL of anhydrous mesitylene. 15 µL (0.153 

mmol) of dimethyldiselenide and 11 µL (0.153 mmol) of pyridazine are 

added to the reaction mixture, which is left stirring under reflux for 2 

days. The solution is evaporated to dryness under vacuum. The solid 

remains are dissolved in CH2Cl2 and precipitated with n-hexane. The 
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precipitate is washed with n-hexane (3 x 5 mL). The resulting powder 

is slowly recrystallized from CH2Cl2/n-hexane yielding 45 mg (0.055 

mmol) of product (yield 36%). IR (CH2Cl2) ν(CO): 2027 (m), 2009 (vs), 

1930 (s), 1902 (s) cm-1, 1H NMR: (CDCl3, 300K, 400 MHz) δH (ppm) 

10.07 (m, 2H, Hortho pydz), 7.80 (m, 2H, Hmeta pydz), 1.74 ppm (s, 6H, CH3) 

One-pot synthesis of [Re2(µ-TePh)2(CO)6(µ-pydz)] (4a). 100 mg (0.153 

mmol) of Re2CO10 and 63 mg (0.153 mmol) of diphenylditelluride are 

dissolved in 8 mL of anhydrous mesitylene. 11 µL (0.153 mmol) of 

pyridazine are added to the reaction mixture, which is left stirring 

under reflux for 1 day, slowly turning black. The solution is evaporated 

to dryness under vacuum. The dark red solid remains are dissolved in 

CH2Cl2 and precipitated with n-hexane. The precipitate is washed with 

n-hexane (3 x 5 mL) and then purified through column 

chromatography (CH2Cl2/n-hexane 8:2) yielding 113 mg (0.11 mmol) of 

microcrystalline powder (yield 72%). IR (CH2Cl2) ν(CO): 2027 (m), 2011 

(vs), 1933 (s), 1912 (s) cm-1, 1H NMR: (CD2Cl2, 300K, 400 MHz) δH (ppm) 

9.95 (m, 2H, Hortho pydz), 7.65 (m, 2H, Hmeta pydz), 7.16 (m, 6H, phenyl), 6.97 (m, 

4H, phenyl) 

Synthesis of [Re4(µ3-TePh)4(CO)12] (4). 125 mg (0.19 mmol) of Re2CO10 

and 78 mg (0.153 mmol) of diphenylditelluride are dissolved in 8 mL of 

anhydrous mesitylene. The reaction mixture is left stirring under reflux 

for 6 days. The solution is evaporated to dryness under vacuum. The 

dark brown solid remains are dissolved in CH2Cl2 and precipitated with 

n-hexane. The precipitate is washed with n-hexane (3 x 5 mL), yielding 

60 mg (0.03 mmol) of product (yield 32%). IR (CH2Cl2) ν(CO): 2025 

(s), 1936 (m) cm-1, 1H NMR: (CD2Cl2, 300K, 400 MHz) δH (ppm) 7.50 (m, 

24H, phenyl) 
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Synthesis of [Re2(µ-TePh)2(CO)6(µ-pydz)] from [Re4(µ3-TePh)4(CO)12] 

(4a).  15 mg (0.008 mmol) of [Re4(µ3-TePh)4(CO)12] are dissolved in 6 

mL of anhydrous toluene. 1 µL (0.008 mmol) of pyridazine is added to 

the reaction mixture, which is left stirring under reflux overnight, slowly 

turning dark red. The solution is evaporated to dryness under vacuum. 

The dark orange solid remains are dissolved in CH2Cl2 and precipitated 

with n-hexane. The precipitate is washed with n-hexane (3 x 5 mL), 

yielding 13 mg (0.006 mmol) of microcrystalline powder (yield 77%). 

IR (CH2Cl2) ν(CO): 2026 (m), 2010 (vs), 1932 (s), 1913 (s) cm-1, 1H NMR: 

(CD2Cl2, 300K, 400 MHz) δH (ppm) 9.96 (m, 2H, Hortho pydz), 7.67 (m, 2H, 

Hmeta pydz), 7.14 (m, 6H, phenyl), 6.97 (m, 4H, phenyl) 
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CHAPTER  8 
 
 
 

Neutral Mn(I) complexes: synthesis, 
electrochemical and spectroscopic 

characterization 
 
 

 
 
Abstract 
 
Ten new neutral dinuclear manganese complexes of general formula [Mn2(µ-

X)2(CO)6(µ-pydz)] have been synthesized, where X = halides, -OMe, -SMe, -SPh 

and –TePh and pydz = 1,2 diazine and 4,5-bipentylpyridazine. The novel 
compounds have been characterized by means of spectroscopic techniques 
(1H NMR, FTIR, and UV-Vis) and their photophysical and electrochemical 
properties discussed in comparison with the analogous dinuclear rhenium 
counterparts. 
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8.1 Introduction  

 
Manganese, as the 3rd most abundant transition metal in the earth’s 

crust, is an appealing alternative to rhenium.[1] Although the chemistry 

of rhenium complexes and their use in different application fields, has 

been extensively investigated, the comparable manganese chemistry is 

still at the beginning. In particular, manganese carbonyl compounds 

have been recently studied for a number of applications,                  

such as electrocatalysts for CO2 reduction[2] and photo-CO releasing 

molecules.[3]  

 

In the framework of polynuclear systems, even if fac-Mn(CO)3-core 

based supramolecular rectangles have been recently reported and 

used as sensor for various organic compounds,[4] to the best of our 

knowledge no other polynuclear carbonyl manganese complexes have 

been reported to date. Therefore, in this research work we investigate 

the synthesis of novel dinuclear manganese complexes, analogous to 

the dinuclear rhenium counterparts, having general formula [Mn2(µ-

X)2(CO)6(µ-pydz)], where X are halides or chalcogenides anions and 

pydz is a 1,2-diazine containing alkyl substituents in the b positions. We 

also compare their electrochemical and spectroscopic properties with 

those already known for the analogous Re(I) complexes and 

preliminary tests on the electrocatalytic production of H2 have been 

performed. 
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8.2 Results and discussion 

 
8.2.1 Synthesis of the complexes 

 

 
 
Chart 8.1 Structures of the investigated Mn(I) dinuclear complexes. 
 

The structures of the ten new manganese complexes are depicted in 

chart 8.1. Two series of complexes, namely 1-3 and 4-6 are 

characterized by the presence of halide ancillary ligands. Complexes 1-

3 contain a bare pyridazine ring, while complexes 4-6 are endowed 

with the electron-rich 4,5-bipentylpyridazine, already employed in the 

Re(I) complexes found to be active towards CO2 electroreduction.[5] 

The last series, namely 7-10, resembles instead the class of complexes 

investigated in chapter 7, bearing two chalcogenide anions as ancillary 

bridging ligands and an unsubstituted pyridazine. 
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The synthetic approaches used for the synthesis of the manganese 

complexes here investigated are depicted in schemes 8.1 and 8.2. 

Manganese is more reactive than rhenium; therefore, milder synthetic 

conditions have been adopted compared with the analogous rhenium 

complexes. Moreover, all the reactions and subsequent purification 

processes have been carried out in the dark, due to the high 

photosensitivity of manganese complexes. 

 

Scheme 8.1 Procedure for the synthesis of halide derivatives 1-6. 
 

The [Mn2(µ-X)2(CO)6(µ-pydz)] (X = Cl, Br) complexes were obtained 

by reacting equimolar amounts of pyridazine (1-2) or 4,5-

bipentylpyridazine (4-5) and Mn(CO)5X in toluene solution at different 

temperature (room temperature in the case of chloride derivatives 1 

and 4, and at 60 to 80 °C in the case of the bromide complexes, 2 and 

5). Iodine derivatives 3 and 6, were instead prepared starting from the 

dinuclear precursor [Mn2(µ-I)2(CO)8], that was synthesized by reacting 

[Mn2CO10] with I2 in a flask sealed under vacuum and kept at 120°C for 

24 hours. This dinuclear precursor, in the presence of one equiv. of 

each pyridazine ligand, gave rise to the corresponding diazinic 

derivatives after 2 hours of reflux in toluene. 
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The chalcogenide-bridged series 7-10 was instead obtained through 

the one-pot synthesis via “orthogonal bonding approach” previously 

discussed for the rhenium dinuclear analogues (see chapter 7). Hence, 

two ligands were coordinate simultaneously and orthogonally (one 

axial and one equatorial) to the manganese dinuclear skeleton, given 

by Mn2CO10 (see scheme 8.2). 

 
Scheme 8.2 Procedure for the synthesis of the chalcogenide derivatives 7-10.  
 
 
As for the dirhenium methoxo complex, methanol was used as source 

of -OMe anions to get complex 7. To avoid evaporation of the reagent 

the reaction was carried out in a sealed solvothermal bomb at 120°C in 

toluene solution. Disulfide complexes 8 and 9 and the ditelluride 

derivative 10 have been obtained following the synthetic procedures 

already reported for the rhenium complexes. Notably, even for the 

heaviest chalcogenide the higher reactivity of manganese allowed to 

work at lower temperature using therefore toluene as solvent instead 

of mesitylene. The number and the intensity of the IR bands in the 

ν(CO) region are consistent with the idealized C2V symmetry of these 

complexes, as in the case of the dirhenium complexes. Five stretching 

bands are expected according to group theory, but the overlapping of 

one B2 mode with one A1 gives rise to a four-band pattern, with s, vs, s, 

s respective intensity. 
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Table 8.1 IR ν	 (CO) stretching bands for the investigated complexes 1-10 in 
CH2Cl2. 

 
 
As already observed for the rhenium complexes, also in these Mn 

analogues the CO stretching bands act as indicators of the electron 

density on the metals, since the position of the bands is affected by 

the strength of the  p-back donation. Accordingly, significant shifts are 

observed on varying the ancillary ligands X within the different series. 

For instance, the position of the highest frequency A1 mode in the 

series of pydz complexes 1-3 varies according to the trends 2054 (Cl) 

> 2050 (Br) > 2041 (I) and 2033 (OMe) > 2014 (TePh) cm−1 in the series 

7-10, in agreement with the Mn atoms becoming progressively more 

electron-rich as the donor power of the ancillary ligand increases. 

Interestingly, variation of the substituents on the diazine ligand did not 

cause significant variation of the position of the ν(CO) bands in the 

halide series.  

 

 

COMPLEX IR ν(CO) [cm-1] 

[Mn2(µ-Cl)2(CO)6(µ-pydz)] (1) 2054 (s) 2036 (vs) 1966 (s) 1935 (s) 

[Mn2(µ-Br)2(CO)6(µ-pydz)] (2) 2050 (s) 2033 (vs) 1964 (s) 1935 (s) 

[Mn2(µ-I)2(CO)6(µ-pydz)] (3) 2041 (s) 2025 (vs) 1959 (s) 1933 (s) 

[Mn2(µ-Cl)2(CO)6(µ-4,5-(C5H11)-pydz)] (4) 2052 (s) 2035 (vs)1962 (s) 1932 (s) 

[Mn2(µ-Br)2(CO)6(µ-4,5-(C5H11)-pydz)] (5) 2048 (s) 2032 (vs) 1960 (s) 1932 (s) 

[Mn2(µ-I)2(CO)6(µ-4,5-(C5H11)-pydz)] (6) 2039 (s) 2024 (vs) 1955 (s) 1930 (s) 

[Mn2(µ-OMe)2(CO)6(µ-pydz)] (7) 2033 (s) 2014 (vs) 1934 (s) 1906 (s) 

[Mn2(µ-SMe)2(CO)6(µ-pydz)] (8) 2026 (s) 2005 (vs) 1940 (s) 1914 (s) 

[Mn2(µ-SPh)2(CO)6(µ-pydz)] (9) 2031 (s) 2012 (vs) 1948 (s) 1923 (s) 

[Mn2(µ-TePh)2(CO)6(µ-pydz)] (10) 2014 (s) 1996 (vs) 1934 (s) 1919 (s) 
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In the 1H NMR spectra, the resonances of the protons on the diazine 

ligands are downfield shifted when coordinated to the metal, 

compared to the free ligands, as it also happens in the case of the 

rhenium dinuclear complexes and in agreement with a reduced 

electron density on the heterocyclic ring. In addition, the position of 

the resonances is affected by the nature of the substituents on the 

diazine ring and, to a lower extent, of the ancillary ligands. As in the 

case of rhenium complexes, a consistent upfield shift is observed when 

introducing the electron rich 4,5-bipentylpyridazine ligand compared 

to the unsubstituted pyridazine (see table 8.2). 

 

Table 8.2 1H NMR resonances (300K, CD2Cl2) for protons on the diazine ring 
upon modulation of the substituents and the ancillary ligands. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

COMPLEX 1Hdiazine ∂ (ppm) 

[Mn2(µ-Cl)2(CO)6(µ-pydz)] (1) α 10.01, β 7.94 

[Mn2(µ-Br)2(CO)6(µ-pydz)] (2) α 10.06, β 7.90 

[Mn2(µ-I)2(CO)6(µ-pydz)] (3) α 10.02, β 7.78 

[Mn2(µ-Cl)2(CO)6(µ-4,5-(C5H11)-pydz)] (4) α 9.64 

[Mn2(µ-Br)2(CO)6(µ-4,5-(C5H11)-pydz)] (5) α 9.68 

[Mn2(µ-I)2(CO)6(µ-4,5-(C5H11)-pydz)] (6) α 9.63 

[Mn2(µ-OMe)2(CO)6(µ-pydz)] (7) α 10.15, β 8.32 

[Mn2(µ-SMe)2(CO)6(µ-pydz)] (8) α 10.04, β 7.68 

[Mn2(µ-SPh)2(CO)6(µ-pydz)] (9) α 10.05, β 7.77 

[Mn2(µ-TePh)2(CO)6(µ-pydz)] (10) α 9.85, β 7.45 
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8.2.2 Spectroscopic characterization 

 
The UV-Visible absorption spectra of the investigated manganese 

complexes, depicted in figure 8.1, exhibit two main absorption features, 

as already reported for the rhenium complexes. The low energy band, 

with maxima in the range 395-475 nm and tails up to 550 nm (ε 

ranging from 5.7 to 8.8´103) is attributed to the metal-to-ligand-

charge-transfer (1MLCT) transitions, also according to the shift of the 

maxima depending on the solvent polarity. As expected for a MLCT 

transition, the position of the maximum is highly dependent on the 

nature of the ancillary ligands, as well as on the nature and position of 

the substituents on the diazine rings.  

 
Figure 8.1 UV-Vis absorption spectra in CH2Cl2 solution of the 1-6 halide 
derivatives. 
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Figure 8.2 UV-Vis absorption spectra in CH2Cl2 solution of the 7-10 
chalcogenide derivatives. 
 

In resemblance to the dirhenium analogues, a red-shift is observed 

moving from chloride (1) to iodide (3) derivatives, in agreement with 

the decrease of the electronegativity of the halide ancillary ligand. We 

can state that upon modulation of the ancillary ligands the HOMO 

energy level is changed. The same intra-series red-shift is observed, to 

a much greater extent, also in the series 7-10 when moving from 

oxygen to tellurium. The least electronegative ligand telluride induces 

a high electron density on the metal sites, therefore resulting in a 

marked red-shifted absorption maximum. On the contrary, a blue shift 

in the absorption maximum is observed upon changing the 

substituents on the diazine ring. Actually, the LUMO levels of the 4-6 

complexes, containing the electron rich 4,5-bipentylpyridazine ligand, 

are slight destabilized with respect to complexes 1-3, containing the 

unsubstituted pyridazine. 
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Figure 8.3 Stability in CH2Cl2 solution (dark) for halides 1, 3 and 6 and 
chalcogenides 7-10.  
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The higher energy bands (λ = 295-320 nm), less sensitive to the 

polarity of the solvent are instead tentatively attributed to singlet p-p*	 

excitations of the pyridazine ligands, in a very similar way to what 

happens on rhenium complexes.  

 

The stability of the manganese complexes was investigated in both 

solid state and solution. As shown in the series of plots in figure 8.3, 

when kept in the dark the dissolved complexes remain stable for 

several days and their absorption spectra show no sign of degradation. 

In the same way, no degradation is observed for the complexes in the 

solid state, whether in the dark or exposed to sunlight. 

 

A completely different behavior is observed upon direct illumination of 

the complexes in solution in various solvents (CH2Cl2, acetone, THF, 

acetonitrile). Photostability tests were carried out by positioning a LED 

lamp (3 W cm-2) at a fixed distance of 6 cm and measuring the 

absorption spectrum at regular time intervals. All the investigated 

complexes 1-10 proved highly photosensitive and degraded completely 

after a few minutes of irradiation. However, upon exposure to indirect 

sunlight, the disulfide and ditelluride derivatives 8-10 exhibited a 

moderate photostability in the considered solvents, whereas the halide 

complexes 1-6 and the methoxo complex 7 proved completely 

unstable.  

  



CHAPTER 8 | Neutral Mn(I) complexes: synthesis, electrochemical   
and spectroscopic characterization 

 208 

8.2.3 Electrochemical Characterization 
 
The intrinsic low stability of the here investigated manganese 

complexes in acetonitrile solution allowed to perform a reliable 

electrochemical characterization only on the sulfide and telluride 

derivatives 8-10.   

 
Figure 8.4 Cyclic voltammetry of dichalcogenide complexes 8-10 in dry ACN, 
TBAPF6 0.1 M, using a GC electrode of 1 mm in diameter. Scan rate 0.2 Vs-1.  
 

The cyclic voltammograms are shown in figure 8.4. A first 

monoelectronic reduction peak, located on the diazine ring, is found at 

ca -1.7 V (vs Fc+|Fc). Differently from the dirhenium analogues, in 

which this peak is always completely reversible, here the reversibility 

depends on the nature of the ancillary ligand.  
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In fact, only the methylsulfide derivative 8 shows a completely 

reversible reduction peak, whereas for the phenylsulfide 9 and the 

phenyltelluride 10 this reduction is partially reversible and gives rise to 

a stable reduced species which can be re-oxidized at lower potential 

(ca. -1.0 V).  

 

Also the oxidation behavior of these manganese complexes is quite 

different from that observed for the analogous rhenium complexes. 

First of all, two partially reversible monoelectronic oxidation peaks, 

instead of a bielectronic oxidation (see chapter 7), are here detected. 

The modulation of the peak potential with the nature of the 

chalcogenide atom strongly indicates that the oxidation is located on 

the metal centers and it is affected by the nature of the ancillary 

ligands. 

 

Figure 8.5 Comparison between the cyclic voltammetry of Mn (blue line) and 
Re (black line) analogous complexes. 
 

The inductive effect of the metal center on the cyclic voltammetric 

behavior is pointed out by the comparison between Mn(I) and a Re(I) 

derivatives, as depicted in figure 8.5.  
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Intriguingly, for the manganese complex both the reduction and the 

oxidation potentials are lower than the analogous rhenium derivatives. 

This feature is in agreement with what already reported for the 

analogous mononuclear complexes[ 6 ] and related to the higher 

electronegativity of Re(I) compared to Mn(I), accounting for the higher 

stability of the metal complexes of the third transition, in low oxidation 

states, compared to the analogous metal complexes of the first as 

manganese. This inductive effect does not modify the HOMO-LUMO 

gap which remains similar, as also confirmed by the same MLCT 

absorption maxima observed for the two families.  

 

8.3 Conclusions 

 
A new family of dinuclear manganese complexes has been synthesized 

using 1,2-diazine as bridging ligand and various anions as ancillary 

ligands. The new complexes were prepared exploiting the same 

synthetic procedures already developed for the syntheses of the 

analogous rhenium complexes. However, taking into account the 

higher reactivity of manganese derivatives, milder synthetic conditions 

and more precautions in the storage of the products have been 

adopted. These complexes have been characterized by means of 

spectroscopic techniques such as IR, NMR and UV-Vis, observing the 

same features of the rhenium-based counterparts. Noteworthy 

differences have been observed in the electrochemical behavior, in 

particular in the oxidation process, where two monoelectronic 

oxidation peaks, instead of a bi-electronic one, have always been 

recorded. Further work is currently in progress in our laboratory to 

explore the applications of these dinuclear manganese complexes, 

especially as catalysts for CO2 electro-reduction and H2 production.  
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8.4 Experimental  

 
General methods 
 

All the reactions and the purification procedures were performed in 

the dark to avoid photo-oxidation and degradation of the considered 

complexes. All the reagents were purchased from Aldrich and used as 

received. All the reactions were performed under an inert N2 

atmosphere. All the solvents have been deoxygenated and dried by 

standard methods before use, toluene and mesitylene were distilled on 

Na(s), CH2Cl2 on P2O5. Commercial deuterated solvents were used as 

received. Column chromatography was performed using Alfa Aesar 

silica gel 60 (0.032–0.063 mm). [Mn(CO)5Cl], [Mn(CO)5Br] and    

[Mn(µ-I)2(CO)8] were synthesized according to literature procedures.[7] 

1H NMR spectra were recorded on a Bruker DRX-400 MHz instrument 

by using the residual signals δ = 7.28 ppm from CDCl3 or δ = 5.32 ppm 

from CD2Cl2 as internal references. Due to the formation of 

paramagnetic species while preparing the NMR tube (also under inert 

atmosphere) and during the measurement (photochemical 

degradation), the peaks are usually very broad, and the resolution is 

very low, therefore we could not attribute any J value. IR spectra in 

solution were acquired on a Bruker Vector 22 FT spectrophotometer.  

 

Electrochemical measurements 

see chapter 3. 

 

Spectroscopy  

see chapter 3. 



CHAPTER 8 | Neutral Mn(I) complexes: synthesis, electrochemical   
and spectroscopic characterization 

 212 

Synthesis of [Mn2(µ-Cl)2(CO)6(µ-pydz)] (1). 60 mg (0.26 mmol) of 

Mn(CO)5Cl are dissolved in 25 mL of anhydrous acetone, previously 

bubbled for 10 mins with N2. 9.6 µL (0.13 mmol) of pyridazine are then 

added to the reaction mixture, which is left stirring at room 

temperature for 5 hours in the dark. The solution is then evaporated to 

dryness under vacuum. The yellow-orange solid remains are purified 

trough column chromatography (eluent CH2Cl2/n-hexane 1:1) and 

collected as amber powder, yielding 40 mg (0.09 mmol) of powder 

(yield 70%). IR (CH2Cl2) ν(CO): 2054 (m), 2036 (vs), 1966 (s), 1935 (s) 

cm-1, 1H NMR: (CD2Cl2, 300K, 400 MHz) δH (ppm) 10.01 (broad, 2H, Hortho 

pydz), 7.94 (broad, 2H, Hmeta pydz) 

Synthesis of [Mn2(µ-Br)2(CO)6(µ-pydz)] (2). 75 mg (0.185 mmol) of 

Mn(CO)5Br are dissolved in 10 mL of anhydrous acetone, previously 

bubbled for 10 mins with N2. 6.7 µL (0.092 mmol) of pyridazine are 

then added to the reaction mixture, which is left stirring at room 

temperature for 3 hours, then heating up to 60°C for 1 hour, always 

keeping the reaction vessel in the dark. The solution is then 

evaporated to dryness under vacuum. The obtained orange crude is 

purified trough column chromatography (eluent CH2Cl2/n-hexane 1:1) 

and collected as light orange powder, yielding 40 mg (0.09 mmol) of 

powder (yield 70%). IR (CH2Cl2) ν(CO): 2050 (m), 2033 (vs), 1964 (s), 

1935 (s) cm-1, 1H NMR: (CD2Cl2, 300K, 400 MHz) δH (ppm) 10.06 (broad, 

2H, Hortho pydz), 7.90 (broad, 2H, Hmeta pydz) 

Synthesis of [Mn2(µ-I)2(CO)6(µ-pydz)] (3). 60 mg (0.102 mmol) of 

Mn2(CO)8I are dissolved in 4 mL of anhydrous toluene, previously 

bubbled for 10 mins with N2. 7.4 µL (0.102 mmol) of pyridazine are then 

added to the reaction mixture, which is left stirring under reflux for 6 

hours in the dark. The solution is then evaporated to dryness under 
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vacuum. The obtained dark orange remains are purified trough column 

chromatography (eluent CH2Cl2/n-hexane 1:1) and collected as brick 

red powder, yielding 40 mg (0.09 mmol) of powder (yield 70%). IR 

(CH2Cl2) ν(CO): 2041 (m), 2025 (vs), 1959 (s), 1933 (s) cm-1, 1H NMR: 

(CD2Cl2, 300K, 400 MHz) δH (ppm) 10.02 (broad, 2H, Hortho pydz), 7.78 

(broad, 2H, Hmeta pydz) 

Synthesis of [Mn2(µ-Cl)2(CO)6(µ-4,5-(C5H11)2-pydz)] (4). 35 mg (0.123 

mmol) of Mn(CO)5Cl are dissolved in 4 mL of anhydrous toluene, 

previously bubbled for 10 mins with N2. 260 µL of a toluene solution 

containing 0.061 mmol of 4,5-bipentylpyridazine are then added to the 

reaction mixture, which is left stirring at room temperature for 4 hours 

in the dark. The solution is then evaporated to dryness under vacuum. 

The obtained dark orange remains are purified trough column 

chromatography (eluent CH2Cl2/n-hexane 1:1) and collected as bright 

yellow powder, yielding 15 mg (0.026 mmol) of powder (yield 43%). IR 

(CH2Cl2) ν(CO): 2052 (m), 2035 (vs), 1962 (s), 1932 (s) cm-1, 1H NMR: 

(CD2Cl2, 300K, 400 MHz) δH (ppm) 9.64 (broad, 2H, Hortho pydz), 2.87 (m, 

4H, CH2), 1.77 (m, 4H, CH2), 1.48 (m, 8H, CH2), 0.98 (m, 6H, CH3) 

Synthesis of [Mn2(µ-Br)2(CO)6(µ-4,5-(C5H11)2-pydz)] (5). 82.5 mg (0.254 

mmol) of Mn(CO)5Br are dissolved in 6 mL of anhydrous toluene, 

previously bubbled for 10 mins with N2. 520 µL of a toluene solution 

containing 0.112 mmol of 4,5-bipentylpyridazine are then added to the 

reaction mixture, which is left stirring at 80°C for 6 hours in the dark. 

The solution is then evaporated to dryness under vacuum. The 

obtained dark orange remains are purified trough column 

chromatography (eluent CH2Cl2/n-hexane 1:1) and collected as amber-

orange powder, yielding 43 mg (0.065 mmol) of powder (yield 53%). 

IR (CH2Cl2) ν(CO): 2048 (m), 2032 (vs), 1960 (s), 1932 (s) cm-1, 1H NMR: 
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(CD2Cl2, 300K, 400 MHz) δH (ppm) 9.68 (broad, 2H, Hortho pydz), 2.86 (m, 

4H, CH2), 1.77 (m, 4H, CH2), 1.48 (m, 8H, CH2), 0.98 (m, 6H, CH3) 

Synthesis of [Mn2(µ-I)2(CO)6(µ-4,5-(C5H11)2-pydz)] (6). 60 mg (0.102 

mmol) of Mn2(CO)8I are dissolved in 6 mL of anhydrous toluene, 

previously bubbled for 10 mins with N2. 475 µL of a toluene solution 

containing 0.102 mmol of 4,5-bipentylpyridazine are then added to the 

reaction mixture, which is left stirring at room temperature for 4 hours 

in the dark. The solution is then evaporated to dryness under vacuum. 

The obtained dark orange remains are purified trough column 

chromatography (eluent CH2Cl2/n-hexane 1:1) and collected as dark 

orange powder, yielding 44 mg (0.059 mmol) of powder (yield 58%). 

IR (CH2Cl2) ν(CO): 2039 (m), 2024 (vs), 1955 (s), 1930 (s) cm-1, 1H NMR: 

(CD2Cl2, 300K, 400 MHz) δH (ppm) 9.63 (broad, 2H, Hortho pydz), 2.86 (m, 

4H, CH2), 1.77 (m, 4H, CH2), 1.48 (m, 8H, CH2), 0.98 (m, 6H, CH3) 

Synthesis of [Mn2(µ-OMe)2(CO)6(µ-pydz)] (7). In a solvothermal bomb 

100 mg (0.256 mmol) of Mn2(CO)10 and 18.5 µL (0.256 mmol) of 

pyridazine are added to 7 mL of anhydrous toluene and 3 mL of 

anhydrous MeOH. The bomb is sealed and heated up to 120°C. After 

20 hours the bomb is opened and the solution transferred to a Schlenk 

flask where the solvent is evaporated to dryness under vacuum. The 

reddish solid remains are purified trough column chromatography 

(eluent CH2Cl2/EtOAc 8:2) and collected as red powder, yielding 18 mg 

(0.09 mmol) of powder (yield 70%). IR (CH2Cl2) ν(CO): 2033 (m), 2014 

(vs), 1934 (s), 1906 (s) cm-1, 1H NMR: (acetone-d6, 300K, 400 MHz) δH 

(ppm) 10.15 (m, 2H, Hortho pydz), 8.32 (m, 2H, Hmeta pydz), 3.81 (m, 6H, CH3) 
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Synthesis of [Re2(µ-SMe)2(CO)6(µ-pydz)] (8). 100 mg (0.256 mmol) of 

Mn2CO10 are dissolved in 8 mL of anhydrous toluene. 23 µL (0.256 

mmol) of dimethyldisulfide and 19 µL (0.256 mmol) of pyridazine are 

added to the reaction mixture, which is left stirring under reflux in the 

dark overnight. The solution is evaporated to dryness under vacuum. 

The solid remains are purified through column chromatography 

(CH2Cl2) yielding 63 mg (0.139 mmol) of the desired product as 

brownish powder (yield 54%). IR (CH2Cl2) ν(CO): 2026 (m), 2005 (vs), 

1940 (s), 1914 (s) cm-1, 1H NMR: (CD2Cl2, 300K, 400 MHz) δH (ppm) 

10.04 (broad, 2H, Hortho pydz), 7.68 (broad, 2H, Hmeta pydz), 1.58 (broad, 6H, 

CH3) 

Synthesis of [Mn2(µ-SPh)2(CO)6(µ-pydz)] (9). 50 mg (0.128 mmol) of 

Mn2CO10 and 28 mg (0.128 mmol) of diphenyldisulphide are dissolved 

in 5 mL of anhydrous toluene. 9 µL (0.128 mmol) of pyridazine are 

added to the reaction mixture, which is left stirring under reflux 

overnight in the dark. The solution is evaporated to dryness under 

vacuum. The dark brown solid remains are purified through column 

chromatography (CH2Cl2) yielding 20 mg (0.035 mmol) of brown 

powder (yield 27%). IR (CH2Cl2) ν(CO): 2031 (m), 2012 (vs), 1948 (s), 

1923 (s) cm-1, 1H NMR: (CD2Cl2, 300K, 400 MHz) δH (ppm) 10.05 (broad, 

2H, Hortho pydz), 7.77 (broad, 2H, Hmeta pydz), 7.20-7.05 (broad, 12H, phenyl) 

Synthesis of [Mn2(µ-TePh)2(CO)6(µ-pydz)] (10). 50 mg (0.128 mmol) of 

Mn2CO10 and 52.5 mg (0.128 mmol) of diphenylditelluride are dissolved 

in 4 mL of anhydrous toluene. 9.3 µL (0.128 mmol) of pyridazine are 

added to the reaction mixture, which is left stirring under reflux for 15 

hours in the dark. The solution is evaporated to dryness under vacuum. 

The dark solid remains are purified through column chromatography 

(CH2Cl2) yielding 40 mg (0.052 mmol) of dark brown powder (yield 
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41%). IR (CH2Cl2) ν(CO): 2014 (m), 1996 (vs), 1934 (s), 1919 (s) cm-1, 1H 

NMR: (CD2Cl2, 300K, 400 MHz) δH (ppm) 9.85 (m, 2H, Hortho pydz), 7.45 

(m, 2H, Hmeta pydz), 7.07-6.95 (m, 12H, phenyl) 
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