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Summary

Danio rerio (zebrafish), like the Roman god Janus, is an

old animal model which is recently emerged and looks

to the future with an increasing scientific success. Un-

like other traditional animal models, zebrafish repre-

sents a versatile way to approach the study of the skele-

ton. Transparency of the larval stage, genetic manipula-

bility and unique anatomical structures (scales) makes

zebrafish a powerful and versatile instrument to investi-

gate the bone tissue in terms of structure and function.

Like Janus, zebrafish offers two different faces, or bet-

ter, two models in one animal: larval and adult stage.

The embryo can be used to isolate new genes involved

in osteogenesis by large-scale mutagenesis screenings.

The behavior of bone cells and genes in osteogenesis

can be investigate by using transgenic lines, vital dyes,

mutants and traditional molecular biology techniques.

The adult zebrafish represents an important resource to

study the pathways related to the bone metabolism and

turnover. In particular, the properties of the caudal fin al-

low to study mechanisms of bone regeneration and

reparation whereas the elasmoid scale represents an

unique tool to investigate the bone metabolism under

physiological or pathological conditions.
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Introduction

Janus (Latin: Ianus) is one of the oldest and most important

deities of the Roman religion, Latin and Italic. It is usually de-

picted with two faces, because the god can look to the future

and the past, but also because, being the god of the door,

can look both inside and outside. Danio rerio (zebrafish), like

Janus, is an old animal model which is recently emerged and

looks to the future with an increasing scientific success. 

Bone is the specialized tissue that forms the skeleton of the

body in the vertebrates. It is composed mainly of calcium

phosphate and calcium carbonate and serves as a storage

area for calcium and ions, protect internal organs, support

muscles attachment for the movements and participates to

the energy metabolism (1). 

All these functions are common for all vertebrates, from human to

fish. The similarity of the skeletal structure and function between

these two far vertebrates has hired zebrafish as animal model to

study osteogenesis and bone metabolism processes (2).

Unlike other traditional animal models, zebrafish represents

a versatile way to approach the study of the skeleton. Some

unique characteristics of this animal model such as trans-

parency of the larval stage, genetic manipulability and

unique anatomical structures (scales) makes zebrafish a

powerful and versatile instrument to investigate different as-

pects of the bone tissue in terms of structure and function.

Like Janus, zebrafish offers two different faces, or better, two

models in one animal: larval and adult stage. In turn, each

model can offer different solutions and applications for basic

science studies, translational medicine, physiopathology

studies and pharmacological studies. 

Zebrafish embryo

The optical transparency of zebrafish embryos allows re-

searchers to keep monitored the internal organs in a way

that is not possible in other vertebrates. In addition, small

size (1mm of length), wide genetic characterization, external

and fast development and low maintenance cost makes ze-

brafish embryo one of the most powerful and emerging ani-

mal tools (3).

Skeletal tissue in embryogenesis

In zebrafish, as in all bony fishes, two different types of ossi-

fication take place: from a cartilaginous scaffold (endochon-

dral ossification) or directly from mesenchymal stem cell pre-

cursors (intramembranous ossification). Both phenomena re-

semble those of the mammalian skeleton (4) (Figure 1).

The development and formation of larval cartilage as well as

the adult skeletal anatomy and ossification processes of

craniofacial and the axial skeleton have been described in

detail (5-7). 

In zebrafish, neurocranium (perichondral) and pharyngeal

arches (endochondral) develop by replacement of cartilage

precursors. While most neurocranial bones ossify relatively

late, many endochondral arch bones begin the ossification
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from 6 to 7 days post-fertilization (dpf). On the other hand, in

the development of intramembranous bone, mesenchymal

stem cells from neural crests aggregate and differentiate into

osteoblasts starting to lay down a mineralized bone matrix.

The first dermal bones develop early and include the opercle

(3 dpf), parasphenoid (4 dpf), and branchiostegal rays (4 to 5

dpf) whereas dermal plates that cover the skull appear later.

Vertebral column is formed by intramembranous ossification

and the vertebral bodies mineralize progressively in a cranio-cau-

dal direction. In zebrafish, vertebral bodies are formed in the ab-

sence of cartilage through the mineralization of the notochord (8).

At the cellular level, osteoblasts and osteoclasts of teleosts

show high similarity with their counterparts in mammals (9).

The transcription factors RUNX2 and Osterix (OSX) are ex-

pressed sequentially in the regulation of mammalian os-

teoblast differentiation and stimulate the transcription of bone

matrix proteins (10). During zebrafish osteoblastogenesis the

zebrafish homologues of mouse Runx2 (runx2a and runx2b)

are typically expressed before osx which drive the expression

of bone matrix proteins such as col1a2 and osteonectin (11).

These data suggest that zebrafish osteoblast differentiation

and function are conserved between fish and humans.

Osteoclastic markers such as matrix metalloproteinase-9

(mmp-9), receptor activator of necrosis factor κ-β (rank),

cathepsin-k (Ctsk) and tartrate-resistant acid phosphatase

(TRAcP) were found expressed in zebrafish embryos before

5 days post fertilization suggesting that a resorbing activity

has a role in the early embryonic development (12).

Bone live staining

The first step to study skeletal development is visualizing

bone and cartilage. The transparency of the zebrafish larva

lends itself to the use of vital dyes since they are non-inva-

sive staining methods. Live animal staining with fluorescent

dye have been developed included calcein, alizarin red and

quercetin. Vital bone dyes can be administrate to the fish wa-

ter and rapidly penetrates into zebrafish embryos binding to

calcified skeletal structures. Other dyes like alcian blue are

used to visualize cartilage matrix but only on fixed samples.

Calcein is a green fluorescent chromophore that specifically

binds to calcium. Because the skeletal system is composed

of calcified matrix, calcein has been used to mark bone

structures and follow their growth during embryo develop-

ment (13). The absence of toxical effects and a strong fluo-

rescent signal makes calcein the best dye used in live ze-

brafish bone staining.

Alizarin red stains bone calcified matrix and often is used to

distinguish cartilage and bone by counterstaining with Alcian

blue (14) (Figure 1). Differently from calcein, which is visible

only as green fluorescence, Alizarin red can be visualized as

red staining in bright light as well as red emission in fluores-

cence light. Alizarin red stains early cranial bones at 3 to 4

days of development and continues for many weeks until the

adult pattern. 

Quercetin is a phytoestrogen present in vegetables and fruits

(onion, apple and grape) used to visualize the bone matrix in

living teleost. Nevertheless, the live treatment with this mole-

cule has been proved having effects on embryo development

(15) and bone physiology (16), therefore it is preferable to

use other dyes.

Alcian blue and green are dyes for the proteoglycan compo-

nents of the extracellular matrix surrounding the chondro-

cytes. It is used to visualize cartilage patterns both in larvae

and in adults. Alcian Blue, after fixation, first stains the chon-

drocytes from 54 hours of development, but the full staining

pattern of early cranial cartilages is evident after 72 hpf (7). 

Bone-specific transgenic lines 

Given the almost complete transparency of the embryos and

the relatively short generation time (2-3 months), the re-

searchers have elaborated methods to visualize specific

cells during development. The genetic manipulability makes

zebrafish well suited for expressing fluorescent proteins

(GFP,mCherry,DsRed,Kaede,YFP) under the control of mini-

mal signaling pathway responsive elements (17) using trans-

genic techniques. Such transgenic fish are particularly useful

when fluorescent proteins are expressed in various skeletal

cells or tissues. In the last years, many labs have generated

different transgenic reporter lines to mark skeletal lineages

(cartilage or bone) at different stages of differentiation (18).

About cartilage, collagen type2 is one of the most abundant

constituent of this tissue. The expression of col2a1 in ze-

brafish has been observed in the developing cartilage, noto-

chord, skin, floor plate, brain, and heart. On the basis of the

expression data, transgenic fish have been developed using

Col2a1 promoter such as Tg(Col2a1aBAC:mCherry)hu5900

(19) and Tg(1.7col2a1a:mCherry-caax) (20). The cartilage-

specific expression of the reporters permits to evidentiate tis-

sue malformation in presence of chemical treatment or diag-

nose specific diseases like osteoarthritis (19). 

About bone tissue, several transgenic lines specific for os-

teoblasts have been reported in literature. The transcription

factor Osterix (Osx) is required for osteoblast differentiation

during embryonic development in teleosts (11).  Reporter lines

Figure 1 - Alizarin red and alcian blue staining of a zebrafish em-

bryo (6dpf).
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heart, kidney, the central nervous system and the motor sys-

tem (32). The identification of mutants is one of the most im-

portant strategies for the study of tissue and organ develop-

ment. From the mutation, by a forward genetic approach, we

can understand the role of the target gene in normal devel-

opment. More than 50 mutants with defective cartilage and

skeletal development were identified from the big screens. In

this type of research, a particular advantage in the use of ze-

brafish comes from the possibility to monitor the skeletal de-

velopment in real time using fluorescent transgenic embryos.

Mutant screens in zebrafish have identified many genes re-

quired for early cartilage development, in particular, 109 mu-

tations that perturb pharyngeal arch development. Among

them, 59 most severely affect the posterior arches, including

the hyoid and five branchial segments that support the gills

(33). Other mutations were associated with craniofacial mal-

formations (34).

About bone tissue, four classes of zebrafish bone mutants

can be identified: (I) generally less or no bone, (II) ectopic

overossification, (III) more perichondral bone, but normal

dermal bone (IV) less perichondral bone, but normal dermal

bone (35).

Recently, another large-scale ENU-based screen have been

performed to find mutants that affect specifically zebrafish

bone development (36). Isolated from this screen, bone cal-

cification slow (bcs) mutant showed delayed axial vertebra

calcification during development without affecting bone for-

mation and maturation. The mutant indicated that different

genes regulate different processes like mineralization timing

and bone composition.

A mutant fish showing a defect in osteoclastogenesis has

been identified. The zebrafish mutant panther possess a mu-

tation in the zebrafish orthologue of the mammalian c-fms

gene encoding the M-CSF receptor (37, 38). c-fms knock-

down mice were affected by osteoclast deficiency and os-

teopetrosis (39). In contrast, zebrafish panther mutant does

not exhibit skeletal anomalies despite the c-fms gene is ex-

pressed in osteoclasts. Nevertheless, a defective number of

osteoclasts was observed during fin regeneration in panther

(38).

The zebrafish mutant stocksteif, defective in cyp26b1 gene,

shows severe over-ossification of the vertebral column. In ze-

brafish and mouse, cyp26b1 was found expressed in os-

teoblasts of the pre-vertebrae sites and regulates the bioavail-

ability of retinoic acid, a crucial molecule for axial osteogene-

sis (40).

The zebrafish mutant nob (no bone) shows complete lack of

skeletal mineralization caused by a mutation in the ectonu-

cleotidase (entpd5) gene, where the encoded protein has a

crucial role in modulating the levels of nucleoside tripsophates

and diphosphates (41).

Another example of osteogenesis-related zebrafish mutant is

dragonfish (dgf). The mutation affects ectonucleoside py-

rophosphatase/phosphodiesterase 1 (Enpp1), a protein that

is crucial for supplying extracellular pyrophosphate. Ze-

brafish enpp1 mutants are characterized by ectopic calcifica-

tions in several soft tissues (skin, cartilage, heart, intracra-

nial space and notochord). Enpp1 gene regulates pathways

involved in phosphate homeostasis and mineralization, re-

gardless of the osteoblast number or differentiation (42).

The use of the mutants is a powerful tool to study the role of the

genes involved in the development of the vertebrate skeleton.

Several mutants isolated from big screens have shown high

correspondence with human patients affected by bone dis-

using osterix/sp7 promoter such as Tg(sp7:EGFP)b1212 (21),

medaka osx-mCherry (22) and Tg(Ola.Sp7:NLS-GFP)zf132

(23) have been made to study the timing of the osteoblast dif-

ferentiation and the regulation pathways of the embryonic os-

teogenesis as well as craniofacial bone mapping (24). 

Osteocalcin, or bone Gla protein, is a small protein secreted

by osteoblasts and found in bone extracellular matrix as hy-

droxyapatite-binding protein or in the blood as circulating

form implicated in the regulation of glucose homeostasis. An

osteocalcin/bglap reporter line, Tg(Ola.osteocalcin:EGFP)

hu4008 has been used to demonstrate that bone regener-

ates via dedifferentiation of osteoblasts in the zebrafish fin

(25). 

Col10a1 expression is detected in both chondrocytes and

osteoblasts in zebrafish, in particular cleithrum, operculum,

and parasphenoid, bones generated by intramembranous

ossification (26). A stable transgenic zebrafish has been de-

veloped using col10a1 promoter that drives fluorescent re-

porter expression in bone structures. In this case, transgenic

fish Tg(Col10a1BAC:mCitrine) provides a powerful tool for

studying molecular pathways that regulate osteoblast-specif-

ic programs not related to a transient chondrocyte develop-

ment (27).

Osteoclast cells have been described in adult fish as

mononucleated and multinucleated and involved in bone re-

modeling and in developing zebrafish as mononucleated

cells only after 20 days post fertilization (28).

Several reporters for osteoclasts in medaka and zebrafish

have been developed to produce in vivo imaging of timing,

function and regulation of the resorbing activity during the

embryo development. Osteoclast-specific promoters like tar-

trate-resistant acid phosphatase (TRAP) and cathepsinK

were choosen to generate the transgenic fish. 

For example, TRAP-GFP transgenic line was used to ob-

serve the emergence of osteoclasts and their role in the

proper development of different organs (29). 

There are also available reporters for osteoclasts using

cathepsinK promoter such as CTSK-DsRed (29) or Ctsk YFP

(12) used to examine maturation and migration of osteo-

clasts in the remodeling processes. To underline the versatil-

ity of the transgenesis techniques in fish bone research, Tg

(ctsk:mEGFP) transgenic line has been used in a triple trans-

genic approach to study the interaction of osteoclasts and

osteoblasts upon heat-shock-induced RankL expression.

RankL-induced osteoclast differentiation caused a degrada-

tion of the mineralized matrix in vertebral bodies and arches

miming in medaka an osteoporotic phenotype (30).

The use of transgenic lines have also been applied for joint

fate studies. The transgenic line, trps1j1271aGt express GFP in

joint regions of wild-type fish and it has been used to eluci-

date the regulatory pathways of the differentiation and orga-

nization of joint cells (31).

Mutants and screenings

Zebrafish was born as model organism for developmental bi-

ology in the late ’60 but only in the ’90 was introduced as

powerful tool for forward genetic. Indeed, two large-scale

“big genetic screens” searching for mutants were carried out

in Boston and Tübingen in the early ’90. Due to particular

characteristics like small size, rapid development and trans-

parency, the zebrafish embryo is particularly suitable for

screening gene mutations that affect the development of
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eases in terms of pathological manifestations. Considering

the extreme similarity between human and fish about mor-

phology and function of the mineralized tissues, it is not sur-

prising that mutations in orthologue genes give rise to a simi-

lar pathological and clinical manifestation in humans and

fish.

For example, generalized arterial calcification of infancy

(GACI) and some cases of pseudoxanthoma elasticum

(PXE) have recently been linked to ENPP1. Human patients

with ENPP1 mutation have shown ectopic mineralization in

several soft tissues and arteries, increasing the risk of car-

diovascular diseases. Zebrafish ENPP1 mutants is charac-

terized by ectopic calcifications in several soft tissues indi-

cating that the role of this gene is conserved (42).

Raine Syndrome (RNS) is an autosomal recessive genetic

disease with generalized osteosclerosis, facial dysmorphism

and intracerebral calcifications. Increased bone density and

cranial hypermineralization suggested that the mutation is

associated to a gene involved in the mineralization process.

In fact, it has been found the target gene (FAM20C) which

encodes a secreted kinase that phosphorylates substrates

involved in the mineralization like osteopontin (43). Zebrafish

homozygous mutant in the gene fam20b shows similar mor-

phological alterations found in human RNS patients (44).

Mutations in CYP26B1 cytochrome P450, family 26, subfami-

ly B, polypeptide 1 are associated with radiohumeral fusions

and other skeletal and craniofacial anomalies. This gene en-

codes a member of the cytochrome P450 superfamily which

functions as a critical regulator of the level of all-trans

retinoic acid. Some clinical cases of craniosynostosis have

shown important phenotypic similarities with zebrafish mu-

tant stocksteif, which possesses an inactivating  mutation in

the same gene (45).

Congenital vertebral malformations (CVM) occur in 1 in 1000

live births and in many cases can cause spinal deformities,

such as scoliosis, and result in disability and distress of af-

fected individuals. Many severe forms of the disease, such as

spondylocostal dystostosis, are recessive monogenic traits

affecting somitogenesis, however the etiologies of the majori-

ty of CVM cases remain undetermined. Here we demonstrate

that morphological defects of the notochord in zebrafish can

generate congenital-type spine defects. We characterize

three recessive zebrafish leviathan/col8a1a mutant alleles

(m531, vu41, vu105) that disrupt collagen type VIII alpha1a

(col8a1a), and cause folding of the embryonic notochord and

consequently adult vertebral column malformations (46).

Adult zebrafish

Zebrafish larva offers several unique solutions to approach

the study of the skeletal system. Small size, transparency

and rapid development makes easy the analysis of the os-

teogenic processes. However, bone turnover, reparation and

remodeling of the adult bone tissue cannot be found during

embryo development because the fish, at this stage, does not

possess mature bone. In addition, regenerating fins and

scales represent unique characteristics of this animal model.

Therefore, the adult zebrafish represents an important re-

source to study the pathways related to the bone metabolism

and turnover. Adult bone shows similar properties to human

counterpart, suggesting that it may be used with success as a

model to study mineralization characteristics of the human

Haversian system, as well as human bone diseases. In fact,

several human adult bone diseases like secondary osteo-

porosis can be reproduced in adult zebrafish in order to gen-

erate simply pathological model systems to dissect the

pathophysiological mechanisms and design new therapy (47).

Skeletal defects and malformations

The exposure to various chemical agents during sexual de-

velopment shows defects in the cranial and axial skeleton in

the adult stage. For example, sublethal administration of

dioxin in early embryogenesis or during sexual determination

assessed the effects later in adulthood where the most fre-

quent manifestation was a scoliosis caused by malformation

of individual vertebrae (48). With this approach, the analysis

of the adult stage results crucial for the knowledge of the

pathogenetic mechanisms in several conditions.

Advanced imaging techniques

Several advanced imaging resources have been used in

small animal models like rodents. In the last years, tomo-

graphic techniques like Time-Gated Optical Projection To-

mography (TGOPT), were used in adult zebrafish to recon-

struct three dimensionally the internal structure without

chemical contrast (49). Regarding the analysis of the skele-

tal system, whole zebrafish can be scanned by μCT, permit-

ting the determination of BMD of total body as well as spe-

cific bone (i.e., a section of the spinal column) from a single

scan. Whole-body μCT scans also permitted a 3D recon-

struction of the zebrafish skeletal system in order to detect

defects or differences in bone structures after particular di-

etary supplementation like strontium (50). X-ray radiogra-

phy have been already introduced in zebrafish studies to

detect abnormalities in skeletal anatomy and bone morphol-

ogy (51).

Bone-related mutants 

Despite the use of the mutants is inevitably linked to the lar-

val stage, the analysis of the adult stage of a specific mutant

may be essential in the characterization of the phenotype.

That is the case of the zebrafish mutant Chihuahua which

was isolated in a forward-genetics screen of adult fish using

X-ray searching for skeletal abnormality (51). Heterozygous

fish shows abnormal bone growth, altered vertebral shape,

defective mineralization and frequent fractures. These char-

acteristics can be found in human patients affected by het-

erozygous osteogenesis imperfecta (OI), a rare genetic dis-

ease caused by a mutation in the gene col1a1. The chi-

huahua is generated by an heterozygous missense mutation

G390D in col1a1a, an homologue of human col1a1. The

Glycine residue changed in the mutation match in the con-

served Gly-X-Y motif, the same residue mutated in the hu-

man patients. Thus, the adult zebrafish mutant chihuahua

can be introduced as model of dominant human osteogene-

sis imperfecta useful to study new therapeutic approaches

such as stem cells transplantation.

The generation of a fish mutant named casper has introduced

a transparent adult zebrafish where the transplantation of

stem/progenitor cells or tumor cells can be easily followed by

in vivo imaging techniques (52). In this mutant the skeleton
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can be visualize without the use of dyes. Casper has been

created by crossing two mutants with defective pigmentation.

The nacre mutant has a complete lack of melanocytes where-

as the spontaneous mutant roy orbison (roy) has a complete

lack of iridophores, uniformly pigmented eyes, sparse

melanocytes, and a translucency of the skin. The double mu-

tant for nacre and roy was named casper for its ghost like

phenotype. The complete absence of melanocytes and iri-

dophores in both embryo and adult stage makes the body of

the fish almost entirely transparent.

Fin fracture and regeneration

Adult teleosts, including zebrafish, possess the ability to re-

generate different organs and tissues following amputation

or injury, including caudal fin (53). The caudal fin is com-

posed by radial bone structures named rays (lepidotrichia),

soft tissues and vessels. The ray is acellular and mineralize

following an intramembranous ossification (54) whereas, at

the base of the fin, the endoskeleton is formed by endochon-

dral ossification (55). The resection of the fin at the level of

the endoskeleton does not involve a regeneration, whereas

amputation of the dermal fin rays results in complete regen-

eration of the original structures in almost 20 days (53). 

Zebrafish caudal fin, also because of its accessibility and

transparency, has been introduced to investigate both repar-

ative and regenerative capacity of the adult bone tissue. 

After fin amputation, mature osteoblasts dedifferentiate and

form part of the blastema. Resident osteoblasts inhibit the

expression of late bone differentiation genes and induce the

expression of genes involved in proliferation and survival of

progenitor cells (56).

Fin regeneration in teleosts is not ideal model to study the

repair system of human bone fractures because it involves

important and multiple tissue removal, rather than local bone

injury.

A caudal fin fracture model has been developed to under-

stand how zebrafish skeletal cells respond in a situation

comparable to a mammalian long-bone fracture. In this case

is not required a regeneration program but rather a repair

process much more similar to a wound healing (57). This

model will help to elucidate the mechanisms involved in adult

bone repair.

The dedifferentiation of adult osteoblasts is not restricted to

fin regeneration but also occurs during fin fractures repair

and skull injuries. In all cases, mature osteoblasts surround-

ing the injury site downregulate the expression of differentia-

tion genes whereas upregulate early genes used in the pre-

osteoblast state and reactivate the cell proliferation (58).

The transparency of the adult caudal fin encourages the use

of technical resources like vital staining, transgenic lines and

antibodies.

Scales

The adult zebrafish is covered with dermal bone structures

named “elasmoid scales” which mechanically protect the

body. The scale is a bone lamella structured in two main

mineralized layers composed by fibrillary collagen and hy-

droxyapatite crystals in different proportion (59). The

episquamal (external) side has high mineralized component

respect to the fibrillary one, whereas the hyposquamal side

is the opposite, with a plywood architecture much more simi-

lar to mammalian lamellar bone (60, 61). 

Anatomically, the scale is characterized by concentric ridges

(circuli) and grooves (radii) which radiate from the central fo-

cus to the edges of the scale (59). 

The scale matrix is synthesized by the scleroblasts which re-

semble to osteoblasts in terms of embryonal origin and func-

tion [104]. Scleroblasts express several osteoblastic markers

and are organized in a monolayer at the surface of both side

of the scale. In particular, the episquamal osteoblast cover-

ing the external side are devoted to the deposition of the

mineralized layer. The hyposquamal osteoblasts, located in

the internal side, are responsible of the deposition of the ply-

wood-like collagen architecture which constitutes the basal

plate. Alkaline phosphatase (ALP) is expressed in sclero-

blast (62) with a strong upregulation during the early phase

of cell differentiation at the mineralization sites (63).

In teleosts as well in mammals, the tartarate-resistant acid

phosphatase (TRAcP) and Cathepsin K activity was associ-

ated to an osteoclast-mediated resorbing activity (9). Indeed,

mononuclear and multinuclear osteoclasts were found on the

episquamal side of scales in association with resorption sites

(62). Multinucleated osteoclasts resorbing the scale matrix

have also been identified by means of electron microscopy in

fish in physiological (64) and pathological conditions (47). 

Scales can be removed with a forceps without causing suf-

fering in fish and a new scale is regenerated in approximate-

ly 14 days. Explanted scale can be used as read out system

for bone metabolism evaluating biochemical and cellular

markers, bone matrix architecture and deposition (65). To do

that, several assays can be performed such as biochemical

assays for enzymatic activity of ALP and TRAP, histochemi-

cal staining with calcein and/or alizarin red (Figure 2), im-

munohistochemical staining with antibodies (ex:. Zn5), gene

expression evaluation by real-time PCR. A live double stain-

ing with alizarin red and calcein (Figure 3) has been recently

developed to measure the mineralization rate of the scale af-

ter treatment with chemical compounds or drugs (47). The

transparency and the size of the scale facilitates manipula-

tion, treatment and observation of the results under a stereo -

microscope.

Since an adult animal possess about 200 scales, the statisti-

cal power of a scale analysis is undoubtedly high.

Figure 2 - Calcein staining of a zebrafish scale. 
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A complete scale, with its associated cells, can be cultured

in vitro for several days and represents an ex-vivo model in

which the behaviour of fish bone cells (scleroblasts and os-

teoclasts) can be tested in vitro on its original surface (66).

This makes them ideal sample to study mineralization and

remodeling mechanisms.
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