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Environmental factors linked 
to depression vulnerability are 
associated with altered cerebellar 
resting-state synchronization
Aldo Córdova-Palomera1,2,3,*, Cristian Tornador4,*, Carles Falcón5,6, Nuria Bargalló2,7,8, 
Paolo Brambilla9,10, Benedicto Crespo-Facorro2,11, Gustavo Deco4,12,* & Lourdes Fañanás1,2,*

Hosting nearly eighty percent of all human neurons, the cerebellum is functionally connected to 
large regions of the brain. Accumulating data suggest that some cerebellar resting-state alterations 
may constitute a key candidate mechanism for depressive psychopathology. While there is some 
evidence linking cerebellar function and depression, two topics remain largely unexplored. First, the 
genetic or environmental roots of this putative association have not been elicited. Secondly, while 
different mathematical representations of resting-state fMRI patterns can embed diverse information 
of relevance for health and disease, many of them have not been studied in detail regarding the 
cerebellum and depression. Here, high-resolution fMRI scans were examined to estimate functional 
connectivity patterns across twenty-six cerebellar regions in a sample of 48 identical twins (24 pairs) 
informative for depression liability. A network-based statistic approach was employed to analyze 
cerebellar functional networks built using three methods: the conventional approach of filtered BOLD 
fMRI time-series, and two analytic components of this oscillatory activity (amplitude envelope and 
instantaneous phase). The findings indicate that some environmental factors may lead to depression 
vulnerability through alterations of the neural oscillatory activity of the cerebellum during resting-state. 
These effects may be observed particularly when exploring the amplitude envelope of fMRI oscillations.

Although the cerebellum embodies only 10% of total brain mass, it hosts almost 70 billion neurons, nearly 80% 
of all neural cells in the human brain1. Through resting-state oscillatory activity, the cerebellum is functionally 
connected to large regions of the cerebral cortex, including not only the motor areas but also the prefrontal 
and parietal cortices2. These observations may partly explain the biological relevance of cerebellar resting-state 
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activity disruptions observed across several psychiatric disorders3–8. Notably, recent research findings have con-
sistently suggested cerebellar resting-state connectivity changes in depression, making it one of the best candidate 
mechanisms to elicit the neural alterations of the depressed brain9–12.

Although cerebellar resting state networks have not been extensively explored in the psychiatric literature 
on mood disorders, accruing evidence from recent studies suggests that they may be disrupted in the presence 
of depression liability. Putative explanatory mechanisms for such observations include the cerebellar func-
tional connections to limbic regions such as the amygdala and the hippocampus, and the cerebellar role in 
cognitive-emotional processing9. Furthermore, novel data suggests that some cerebellar activity disruptions may 
be closely linked to the default mode network changes classically observed in depressive psychopathology10.

Both cerebellar resting-state connectivity and depression liability, when considered independently, are caused 
by the confluence of many genetic and environmental factors13–15. Although disengaging genes and environ-
ment has a prominent value in psychiatric research16, whether the association between cerebellar functional-
ity and depression vulnerability can be explained by genetic or non-genetic factors remains largely unexplored. 
Genetically-informative studies need to be implemented to elicit this topic for two main reasons. First, it has been 
proposed that some alternative phenotypes (i.e., endophenotypes) would have a tougher connection with the 
genetic basis of psychopathology than phenomenologically-derived clinical diagnoses17,18. As some resting-state 
networks including cerebellar regions are likely to serve as endophenotypes in brain research13, it is feasible 
hypothesizing that some genetic factors determining cerebellar resting-state activity may also modify the risk for 
depression. Secondly, the link between the cerebellum and depression liability may perhaps be due to environ-
mental factors. One could thus postulate that some environmental factors alter the cerebellar functionality and 
then lead to depression vulnerability. This would have significant implications as there are several well-identified 
environmental risk factors for depression whose underlying neurobiology has been only partly explained19,20. 
While the presence of resting-state fMRI alterations at cerebral regions –i.e., the default mode network– is broadly 
acknowledged in depressive disorders, the contribution of cerebellar function to those clinical phenotypes has 
recently been gaining attention9. This is a relevant point since data on healthy twins and families shows significant 
quantitative genetic components of whole-brain resting-state fMRI activity at cerebellar regions13,14, but their 
putative modulation of depression vulnerability remains only scarcely explored.

In this context, it is also worth mentioning that some specific genetic and environmental factors can induce 
neurobiological changes that lead to depressive psychopathology. For instance, polymorphic variation in genes 
such as the monoamine oxidase A (MAOA), the serotonin transporter (5-HTT) or the glucocorticoid receptor 
(FKBP5) can interact with early life stress and induce depression-related psychopathology16, mainly by sensitizing 
the hypotalamic-pituitary-adrenal axis. Additionally, several environmental factors are known to predispose to 
depressive disorders. Many of them take place during the infancy, such as growing in a low socio-economic status 
family, and experiencing childhood maltreatment and parental neglect/absence20. Furthermore, different adverse 
life events in adulthood, such as humiliation or the loss of a relative due to death or separation, can considerably 
increase the risk for depression19.

The former alterations in cerebellar resting-state connectivity observed in depressive psychopathology sug-
gest a number of (potential) functional disruptions. Although using diverse neuroimaging techniques to assess 
resting-state patterns, several authors have agreed that there are many differences in cerebellar function between 
depression-prone and healthy individuals9. These different imaging analysis methods allow evaluating putative 
functional alterations from several viewpoints. While each of them might have its own potential relevance in 
clinical settings21, one of the most promising approaches to study resting-state neural activity in vivo is the exam-
ination of spatio-temporal synchrony patterns between regions using network theory22–24. In terms of large-scale 
neuronal networks, the brain disturbances reported in the literature of depression would indicate modifications 
of the information processing performance through the cerebellum.

Typically, the study of resting-state functional brain networks is based upon the extraction of low-frequency 
time series from a set of pre-defined anatomical regions. Robust first-order correlations in temporal activation 
patterns of two anatomically-segregated regions (nodes) are considered a functional connection (edge23,25). 
Highly synchronized (correlated) wave amplitudes of two brain regions during resting-state are thus interpreted 
as a strong edge linking those two regions. While this method has certainly led to remarkable clinical and neu-
robiological findings21, new reports highlight that the neural synchronization patterns observed through neuro-
imaging can occur at different levels, and that each of these levels may have different behavioral significance26,27. 
The potential relevance of the different neural coupling levels observed in resting-state fMRI brain scans has been 
underscored during recent years, since i) they allow increasing temporal resolution of hemodynamic (fMRI) sig-
nals28, ii) they may explain an important extent of the relationship between brain structure and function29 and iii) 
they could partly explain brain deficits in psychopathology30. A previous report on cerebral resting-state activity 
by our group30 described amygdalar deficits in twins with depression liability, highlighting the role of alternative 
neural coupling mechanisms not only to explain cerebral alterations, but also to elicit their genetic and environ-
mental origins. In biological terms, these observations on synchronization phenomena observed in fMRI signals 
would parallel the compelling evidence showing that higher-order brain function may be closely related to neural 
communication established from coherent oscillatory activity of brain regions at specific frequencies31,32. Namely, 
distinct components of neuronal activity waves can encode and transmit information efficiently, although such 
components may not be directly deduced by examining raw fMRI time series.

Considering these elements, the present study was aimed at examining the putative association between cer-
ebellar resting-state fMRI alterations and both the genetic and the environmental factors leading to depression 
liability. High-resolution fMRI brain scans were used to extract cerebellar resting-state time series from a group 
of 48 monozygotic (MZ) twins (24 pairs) informative for depression vulnerability. As co-twins of a MZ pair 
have almost identical DNA sequences, their phenotypic similarities and differences were investigated to gain 
insights on putative familial and environmental influences. Following conventions from classical quantitative 
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genetic analysis, intrapair brain differences in genetically identical individuals (MZ twins) are considered a meas-
ure of environmental factors influencing that neural phenotype13,30. Since the cerebellar fMRI signal constitutes 
a well-defined resting-state network33, and considering that intra-cerebellar resting-state connectivity may be 
especially relevant in neuropsychiatry34, an anatomically-restricted 26-node network comprising different sub-
divisions of the cerebellum was examined. Functional connections (edges) between regions were defined using 
three complementary conceptions of neural synchrony26: i) amplitude correlation –the conventional method–, ii) 
amplitude envelope correlation and iii) phase synchrony.

Results
As a preliminary step, intrapair correlations in global connectivity metrics describing the links between cere-
bellar subdivisions were analyzed. There were large intrapair differences within the MZ pairs across these meas-
ures (Table 1); the largest intrapair correlation coefficient for the different network metrics was 0.38, suggesting 
that the familial factors have only a moderate effect on those phenotypes, and that unique environmental influ-
ences may explain most of the observed variance. None of the correlation coefficients was statistically significant. 
Namely, co-twins from every MZ pair showed largely different cerebellar synchronization patterns. These envi-
ronmental effects on cerebellar synchronization provided further support to the ensuing analyses separating the 
variance into genetic and non-genetic factors.

Next, network-based statistic (NBS) analyses were conducted to examine putative resting-state synchroni-
zation disruptions in the cerebellum of depression-prone subjects, dividing the depression liability into familial 
and unique environmental, and using three different time series analysis methods. When examining either the 
conventional approach (amplitude correlation) or the instantaneous phase, NBS analysis revealed no association 
between cerebellar resting-state activity and depression liability. In contrast, there were statistically significant 
results for the cerebellar resting-state network built from amplitude envelope correlations between the twenty-six 
regions of interest (Fig. 1). As noticed in Fig. 1, there was a seven-edge network that showed statistically signifi-
cant differences in resting-state activation depending on the environmental liability for depression (NBS p-value 
for βW of the sub-network: 0.002; F =​ 10.36). As described, the statistical significance of all the p-values retrieved 
from the NBS software tool is already controlling for the family-wise error rate (Methods: Inter-subject analysis 
of the functional connectivity networks). Although three different NBS analyses were implemented (conventional 
approach, amplitude envelope and instantaneous phase), the significance of the previous finding (p =​ 0.002) 
would persist even after an additional –and perhaps overly conservative– multiple testing adjustment stage (i.e., 
padjusted =​ 0.002 ×​ 3 independent tests =​ 0.006).

Further exploratory analysis revealed that these network edges formed stronger connections between nodes in 
the individuals with high environmental load for depression (the affected co-twins from discordant pairs) than in 
the rest of the study population (Fig. 1). This suggests that an increased environmental liability for psychopathol-
ogy would be related to hyper-synchronized activity across a set of cerebellar ROIs, including portions of the left 
and right crura, parts of the vermis and other subdivisions of both cerebellar hemispheres.

Since the NBS approach does not provide a direct adjust for heteroscedasticity, and in order to obtain further 
insights on the results for this set of edges, a confirmatory procedure was conducted. Namely, a linear regression 
model (Methods: Inter-subject analysis of the functional connectivity networks) was implemented to analyze the 
seven cerebellar edges shown altered by NBS. This analysis suggested that the previous finding is statistically 
robust even after adjusting for the correlated nature of twin data (familial factors: βB =​ 0.11, standard error =​ 0.17, 
t =​ 0.62, p =​ 0.541; unique environment: βW =​ 1.34, standard error =​ 0.29, t =​ 4.71, p <​ 0.0001; adjusted R2 for the 
whole model: 0.45). The results of this step are depicted in the barplot of Fig. 1, which shows that, after controlling 
for gender and age, the affected co-twins from discordant pairs have more than twice the total network edge 

Individual Level

Conventional (amplitude correlation)a Amplitude envelope correlationb Instantaneous phase correlationc

Mean (S.D.) Range Mean (S.D.) Range Mean (S.D.) Range

Total edge weight 53.69 (4.51) 45.75–64.55 31.54 (2.18) 27.71–36.47 21.67 (2.13) 16.52–27.41

Average edge weight (connected)d 0.31 (0.03) 0.25–0.39 0.18 (0.01) 0.16–0.21 0.12 (0.01) 0.1–0.16

Average edge weight (all cells)e 0.16 (0.01) 0.13–0.19 0.09 (0.01) 0.08–0.11 0.06 (0.01) 0.05–0.08

Maximum edge weight 1.12 (0.23) 0.79–2.21 0.81 (0.51) 0.54–3.94 0.57 (0.22) 0.36–1.87

Intrapair Differences

Spearman’s Rho p-value Spearman’s Rho p-value Spearman’s Rho p-value

Total edge weight −​0.14 0.5 0.09 0.66 0.25 0.25

Average edge weight (connected) −​0.17 0.42 0.28 0.19 0.25 0.25

Average edge weight (all cells) −​0.38 0.07 0.15 0.48 −​0.07 0.73

Maximum edge weight −​0.14 0.5 0.09 0.66 0.25 0.25

Table 1.   Edge-based parameters describing the twenty-six-node cerebellar networks. Three different 
approaches were used to build fMRI connectivity networks. First, the amplitude correlation method for 
band-passed low-frequency oscillations24 (a) afterward, the Hilbert-transformed signal allowed extracting 
the amplitude envelope (b) and the instantaneous phase (c) correlation methods28,26. The results indicate edge 
weights considering both the connected network component, removing all zero entries of the matrix (d), and all 
edges accounting for the zeroed matrix entries (e). S.D., standard deviation.
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weight than the rest of the participants. Importantly, this result remained statistically significant after removing 
the six individuals with predominantly anxious psychopathology (familial factors: βB =​ 0.19, standard error =​ 0.2, 
t =​ 0.96, p =​ 0.342; unique environment: βW =​ 1.28, standard error =​ 0.31, t =​ 4.16, p =​ 2*10−4; adjusted R2 for the 
whole model: 0.42).

Discussion
A genetically-informative design was implemented here to evaluate the putative relationship between depression 
liability and different cerebellar resting-state synchronization patterns, as measured by fMRI. Three different 
coupling types (amplitude, amplitude envelope and instantaneous phase correlation) among the distinct ana-
tomical subdivisions of the cerebellum were analyzed in relation to both familial and unique environmental 
factors underlying depression liability. Overall, there were large differences in cerebellar synchronization –at 
all three levels– within MZ twin pairs, likely related to environmental factors. When considering the amplitude 
envelope of the resting-state fMRI activity patterns, the temporal correlations between paired cerebellar ROIs 
showed an association with the environmental factors leading to depression vulnerability. In contrast, depression  
risk –either familial or environmental– was not related to the cerebellar coupling patterns of either the amplitude  
or the instantaneous phase. To the best of our knowledge, this is the first genetically-informative study of 

Figure 1.  Environmental factors associated with depression vulnerability are linked to cerebellar 
synchronization disruptions. (A) The amplitude envelope obtained from the Hilbert-transformed resting-
state signal allowed identifying a functional network in the cerebellum potentially altered due to environmental 
liability for depression. (B) A cerebellar synchronization sub-network comprising seven edges, built from 
oscillatory amplitude envelopes, was shown altered by the NBS approach. (C) There are marked network edge 
differences across individuals depending on environmental risk liability for depression. The leftmost plot 
corresponds to low environmental risk –averaged from five healthy co-twins from discordant pairs–, the plot 
in the middle depicts subjects with average environmental risk –average of five brains from randomly chosen 
concordant and healthy pairs–, and the rightmost plot shows participants with high environmental liability 
–five affected co-twins from discordant pairs–. (D) The barplot shows the mean and standard deviations of 
the total edge weights of the seven-edge network across the different environmental depression liabilities (red: 
low environmental risk; green: regular environmental risk; blue: high environmental risk). The values in the 
bars were retrieved by residualizing regression procedures from all 48 individuals, adjusting by age, gender and 
familial depression liability.
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cerebellar resting-state functional networks in depression-prone individuals examining not only the network 
formed by BOLD wave amplitudes, but also those derived from their analytic components.

The results suggest that some analytic properties of the resting-state fMRI BOLD signal may be associated 
with differential exposure to environmental factors leading to depression vulnerability. More specifically, when 
analyzing the amplitude envelope of the resting-state fMRI patterns, individuals with high environmental risk 
load for depression showed a set of overly synchronized cerebellar regions. This hyper-synchronization pattern 
is analogous to other neural coupling impairments observed across different neuropsychiatric pathologies. For 
example, the complexity of the neural oscillatory activity is decreased in schizophrenia, as indexed by high syn-
chrony between different cerebral regions35–37. Perhaps the boundary expression of neural hyper-synchronization 
leading to a functional impairment is observed in the epileptic brain38,39. Physically, the redundancy in infor-
mation through different sources (i.e., ROIs having very similar oscillatory patterns) is linked to a reduction in 
communicational complexity40.

The fact that the observed effects are mainly associated with environmental factors should be emphasized, 
particularly since there is evidence of important environmentally-induced physiological changes in the cere-
bellum41–44. These non-genetic factors may explain part of the relatively high influence of the environment on 
depression liability (i.e., an heritability estimate around 40%)15. Although the evidences on the environment and 
the cerebellum come mainly from animal research developed in laboratory settings, extensive epidemiological 
literature has demonstrated a significant role for specific environmental factors leading to depression in humans. 
Interestingly, non-genetic factors typically associated with adult depression, such as early stressful experiences, 
have recently been suggested in a literature review as potential modifiers of the cerebellar functionality45.

Some potential limitations deserve mention. First, the present report may not be directly comparable to a 
large extent of the brain network literature, since most studies implement parcellation schemes excluding the 
cerebellum46,47, and high-resolution fMRI scans are needed in order to map all its subdivisions correctly. This 
limitation is not specific to the current report; the choice of parcellation schemes is a key subject with enormous 
consequences for brain connectomics48. Nevertheless, the inclusion of 26 cerebellar ROIs as the very focus of this 
study may have improved the specificity of the findings. Future works may combine finer-grained parcellations 
with higher-resolution neuroimaging scans. Furthermore, the sample size was relatively small. However, having 
found strong associations suggests the presence of relatively robust effects. Finally, limitations regarding the clini-
cal features of the ongoing sample should be addressed in later studies. For instance, six subjects with mostly anx-
ious psychopathology were included. Even though the reported associations persisted after repeating the analyses 
without those subjects, complementary research designs may improve the specificity of the findings by consider-
ing narrower phenotypic categories. Similarly, samples with different severities of transversally-measured symp-
toms could enhance the generalizability of the findings. Due to these points, confirmatory evidence is needed to 
strengthen the conclusions.

Overall, these results indicate that the non-genetic factors leading to depression vulnerability are associated 
with disrupted cerebellar synchronization. They also point out that different resting-state cerebral phenotypes 
–obtained using different time-series analysis techniques– may or not be linked to particular behaviors. When 
examining the neurobiological correlates linking an environmental exposure with depression, it might be appro-
priate using the amplitude envelop of low-frequency resting-state fMRI BOLD oscillations to build biological 
networks from the cerebellum.

Methods
Sample description.  The participants of this study were selected from a larger group of 115 Spanish 
Caucasian adult twin pairs (230 individuals) from the general population, who gave their consent to be contacted 
for research purposes. All the subjects were contacted by telephone and invited to participate in a general study 
of adult cognition and psychopathology. Trained psychologists administered a battery of neurocognitive and 
psychological tests to the twins. Also, they were interviewed for medical records. Exclusion criteria applied were 
a medical history of neurological disturbance, presence of sensory or motor alterations, current substance misuse 
or dependence and age under 18 and over 65 years. Written informed consent was obtained from all participants 
after a detailed description of the study aims and design. The institutional ethics committee (Comissió de Bioètica 
de la Universitat de Barcelona (CBUB); Institutional Review Board registry IRB00003099; Assurance number: 
FWA00004225; http://www.ub.edu/recerca/comissiobioetica.htm) approved the written informed consent and 
the overall study. The methods were carried out following the approved guidelines, which were in accordance 
with the Declaration of Helsinki.

Zygosity of all pairs was evaluated by genotyping 16 highly polymorphic microsatellite loci from DNA samples 
(SSRs; PowerPlex®​ 16 System Promega Corporation). Identity on all the markers can be used to assign monozy-
gosity with greater than 99% accuracy49. In the whole sample (115 duos), 86 twin pairs were MZ.

From the former collection of participants, using the previously obtained data, a subset of 54 individuals (27 
MZ twin pairs) was selected, as they were informative for psychopathological traits and agreed to participate in 
the MRI part of the present study. These 54 participants met the following criteria: i) age at scan between 20 and 
56 years, ii) both twins right-handed, and iii) none of the twins manifested liability for DSM-IV-R psychiatric 
diagnoses other than depression and/or anxiety. No participant had a history of major medical illnesses. Due to 
image artifacts or lack of data for six participants, the final sample (i.e., the subset included in all statistical analy-
ses) consisted of 48 individuals (20 males, mean age: 33.6 years).

Psychometric measures.  A clinical psychologist in a face-to-face interview evaluated the liability for psy-
chopathology in this general population sample. Briefly, the Structural Clinical Interview for DSM-IV Axis I 
Disorders (SCID-I)50 was applied in a face-to-face interview to screen for the presence of any lifetime depres-
sion or related anxiety spectrum disorder. In this sample, six individuals with a history of (mainly) anxious 
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psychopathology were included in the psychopathology-affected group. This apparently wide category of out-
comes was used in recognition of the evidence on comorbidity, shared etiopathology and diagnostic criteria over-
lap between depressive and anxious disorders51–54, as well as considering findings of some similar resting-state 
alterations across both diagnoses55,56. The distribution of lifetime and current diagnoses of psychopathology in 
the participants was as follows: lifetime depression and lifetime anxiety (n =​ 5), lifetime depression (n =​ 4), life-
time anxiety (n =​ 3), actual depression and lifetime depression (n =​ 2), actual anxiety and lifetime anxiety (n =​ 2), 
actual depression (n =​ 1), actual depression and lifetime anxiety (n =​ 1), lifetime depression and actual anxiety 
(n =​ 1), and actual anxiety (n =​ 1). Of note, repeating the statistical analyses removing predominantly anxious 
individuals (lifetime anxiety, actual anxiety and lifetime anxiety, and actual anxiety, totaling n =​ 6) did not alter 
the significance of the results.

The participants were also asked to report if they had received psychological or pharmacological treatment 
or had consulted a mental health professional since they first participated in the study. Only one individual had 
life-time exposure to psychopharmacological treatment for depression. However, excluding this individual from 
the group analyses did not change the significance of the results.

In the whole sample, there were ten healthy, six concordant and eight discordant pairs for lifetime DSM-IV 
diagnoses. Furthermore, current depression status and other psychiatric symptoms were evaluated using the Brief 
Symptom Inventory (BSI57,58). The BSI is a self-administered 46-item screening instrument designed to identify 
the experience of psychopathological symptoms during the last 30 days. It includes six subscales (depression, pho-
bic anxiety, paranoid ideation, obsession-compulsion, somatization and hostility) and is designed for use in both 
clinical and non-clinical samples. Items are rated on a five-point scale of distress, according to self-perception of 
symptom severity. Twins with no lifetime history of DSM-IV diagnosis had fewer self-reported symptoms –lower 
BSI scores– in both the depression subscale and the whole questionnaire (Table 2). Moreover, neurocognitive 
information for this sample was collected by means of the Wechsler Adult Intelligence Scale59,60. The intelligence 
quotient (IQ) of each participant was estimated from five subtests of this battery (block design, digit span, matrix 
reasoning, information and vocabulary). The distribution of IQ scores was similar to those reported in demo-
graphically analogous samples61 (Table 2). As no intra-group differences in IQ scores were found, neurocognitive 
effects on resting-state brain signals62,63 are not likely to confound the statistical analyses in this study.

MRI acquisition and pre-processing.  The brain scans were acquired at the MRI Unit of the Image Platform 
(IDIBAPS, Hospital Clínic de Barcelona), using a TIM TRIO 3 T scanner with an 8-channel head coil (Siemens, 
Erlangen, Germany). The resting-state fMRI images comprised 210 echo-planar (EPI) blood-oxygen-level 
dependent (BOLD) sensitive volumes (TR =​ 2790 ms, TE =​ 30 ms, 45 axial slices parallel to anterior-posterior 
commissure plane acquired in interleaved order, 3.0 mm slice thickness and no gap, FOV =​ 2075 ×​ 1344 mm2, 
voxel size =​ 2,67 ×​ 2,67 ×​ 3 mm3). Moreover, high-resolution 3D structural datasets were acquired for anatom-
ical reference, using a T1-weighted magnetization prepared rapid gradient echo, with the next parameters: 3D 
T1-weighted MPRAGE sequence, TR =​ 2300 ms, TE =​ 3.03 ms, TI =​ 900 ms, Flip Angle =​ 9°, 192 slices in the 
sagittal plane, matrix size =​ 256 ×​ 256, 1 mm3 isometric voxel.

Resting-sate time series were obtained using standard image processing protocols implemented in the 
Statistical Parametric Mapping software, version 8 (SPM864), running under MATLAB (The Mathworks, Natick, 
MA). After correction of slice-timing differences and head-motion, the fMRI images were co-registered to the 3D 
(T1) anatomical reference and to the mean functional image. Then, the images were spatially normalized to the 
standard stereotaxic space MNI65. Artifacts related to blood pulsation, head movement and instrumental spikes 
were removed from the BOLD time series in MNI space, using independent component analysis as implemented 
in GIFT66,67. The full cerebellum was properly scanned in the acquisition field of view. To improve test-retest reli-
ability, no global signal regression was conducted68; no spatial smoothing was applied, in order to avoid adding 
spurious correlations between adjacent voxels34. Mean BOLD time series were extracted from the 116 regions of 
interest (ROIs) in the standard Automatic Anatomical Labeling (AAL) atlas, which comprises 90 cerebral and 26 
cerebellar regions47. A description of all cerebellar ROIs included in the AAL atlas can be found in Supplementary 
Material. The atlas had previously been masked with the binarized subjective tissue probability maps to detach 
the mean value of the regions from the gray matter via a conventional protocol69,70. The following mask was used: 
[Atlas * (GM >​ WM) * (GM >​ CSF) * (GM >​ 0.1)], where GM stands for gray matter, WM is the white matter and 
CSF stands for cerebrospinal fluid. Next, the BOLD time series for each region were band-pass filtered within the 
resting-state fMRI narrowband going from 0.04 to 0.07 Hz28,71 (Fig. 2).

Concordant  
(12 subjects, 10 female)

Discordant  
(16 subjects, 10 female)

Healthy  
(20 subjects, 8 female)

Group 
comparison

Mean (SD) Range Mean (SD) Range Mean (SD) Range X-squareda; p

Age 42.5 (13) 22–54 37 (10.9) 20–50 30.3 (7.3) 19–39 5.9; 0.052

IQ 105.1 (12.5) 87–127 108.1 (11.8) 87–131 110.5 (5.5) 103–118 1.9; 0.393

Current psycho- pathology (total BSI) 27.9 (16.5) 6–57 20.9 (13.3) 4–45 10.6 (9.3) 1–33 8.7; 0.013*

Current depressive symptoms (BSI subscale) 6.9 (6.5) 1–20 3.5 (2.7) 0–9 1.7 (1.8) 0–6 6.4; 0.04*

Table 2.   Demographic, psychopathological and neurocognitive data for DSM-IV diagnostic concordant, 
discordant and healthy MZ twin pairs. Notes: SD, standard deviation; IQ, intellectual quotient; BSI, Brief Symptom 
Inventory. aKruskal-Wallis X-squared, as these variables were continuous. *Statistically significant p-value.
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Extraction of functional connectivity networks for each individual.  Three different approaches 
were used here to estimate functional connectivity from the band-passed time series described above. First, a 
conventional approach to examine correlations between fMRI BOLD time series was used24, with twenty-six 
x(t) series per individual (one for each cerebellar AAL ROI). A partial correlation matrix was obtained for the 
26 ROIs from the 210 slices scanned over time. Each partial correlation coefficient from this matrix represents 
the magnitude of the association between every pair of ROIs, controlling for the effect of the other variables (i.e., 
the remaining ROIs). This step produced a 26 ×​ 26 matrix representing the functional connectivity between each 
pair of brain ROIs, which was then normalized using Fischer’s z transform72,73. Subsequently, following a previous 

Figure 2.  Schematic representation of the construction of three functional networks for one cerebellum. 
(A) The 210 resting-state fMRI volumes (slices) are co-registered to the anatomical T1 3D reference volume, and 
each voxel is mapped to one of the 116 ROIs in the AAL atlas (including the cerebellum). (B) The anatomical 
atlas allows segmenting the brain into 90 cerebral and 26 cerebellar ROIs, and after artefact removal, a time 
series of the mean (BOLD) activation probability for each of the 116 ROIs is obtained. (C) For each ROI, a raw 
time series is retrieved using the 210 fMRI slices acquired through 9:56 minutes of scan. (D) A band-pass filter 
is applied to obtain the resting-state fMRI narrowband signal (0.04–0.07 Hz). (E) The amplitude envelope of 
each band-passed wave is estimated for later analysis. (F) Similarly, the Hilbert transform also allows calculating 
the instantaneous phase of the waves. (G–I) Three partial correlation matrices are obtained from the previous 
time-series (band-passed and Hilbert-transformed amplitude envelope and phase); they are z-transformed to 
normalize correlation values across individuals. Warm (cold) colours in these matrices represent large (small) 
correlation values between ROIs. The left tail of these correlation matrices (i.e., edges with negative z-scores) are 
set to 0 following a soft-thresholding procedure. (J–L) Graph-theoretical measures of edge weight are obtained 
for each pair of cerebellar regions, to be analyzed using NBS.
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technical report74, negative edges were removed using soft thresholding, since their particular network topology 
can drastically alter the properties of brain fMRI connectivity networks (Fig. 2).

Other two functional connectivity networks were retrieved for each participant. In order to get them, the 
analytic components of the resting-state BOLD signals from the 26 ROIs were computed following previously 
published protocols26,28. Briefly, the analytic representation of each real valued band-passed (0.04–0.07 Hz) 
BOLD time series was computed by further processing their band-passed time series, using the Hilbert trans-
form. Explicitly, let x(t) be the band-passed BOLD time series of a particular ROI. Its analytical representation is 
the complex function

= +x t x t iH x t( ) ( ) [ ( )], (1)a

where i stands for −12 , and H[·] is the Hilbert transform. The new signal xa(t) has the same Fourier transform as 
x(t), although it is defined only for positive frequencies. Similarly, let x(t) be expressed as an amplitude-modulated 
signal a(t) with carrier frequency φ(t), so that x(t) =​ a(t)cos[φ(t)]. Then, its Hilbert transform gives

= φx t a t e( ) ( ) , (2)a
i t( )

where |a(t)| represents the instantaneous envelope and φ(t) stands for the instantaneous phase. In the present 
study, both |a(t)| and φ(t) are later used to estimate two new 26 ×​ 26 partial correlation matrices as described 
above, which are later z-transformed and soft-thresholded (Fig. 2).

Inter-subject analysis of the functional connectivity networks.  A network-based statistic (NBS) 
approach75 was implemented to examine potentially altered connections (edges) between every pair of ROIs 
(nodes). Briefly, NBS performs a statistical examination of potentially altered network edges that may differ 
across groups or conditions. It controls the family-wise error rate when statistical tests are conducted at single 
edges comprising a whole graph, on the basis of conventional cluster-based thresholding of statistical paramet-
ric maps75. Since edge weights in the connectivity matrices studied here represent oscillatory coupling events 
between pairs of ROIs, the edge-based strategy of NBS allowed assessing potential coupling alterations across 
combinations of cerebellar regions. These oscillatory patterns were examined through independent analyses, 
implemented for each of the three partial correlation matrices: amplitude, amplitude envelope and instantaneous 
phase (corresponding to x(t), |a(t)| and φ(t)).

The design matrices used for NBS were based upon previous literature on regression models of clustered 
data76, which can be applied to separate familial and environmental components of phenotype associations in 
twin studies77. More explicitly, the regression model

β β µ β µ= + + −. .Y X( ), (3)ij B i W ij i0

was implemented. Subindex i∈​{1, …, n} stands for pair number (here, n =​ 24 MZ pairs) and j∈​{1, 2} refers to 
co-twin number (randomly assigned). The diagnostic status was coded as the numeric value 0 (healthy) or 1 
(depressed) for each individual. An individual’s diagnostic is thus represented as Xij∈​{0, 1} in the equation, and 
a pair’s familial liability for depression is expressed as μi. =​ (Xi1 +​ Xi2)/2. The binary codification of the diagnostic 
status thus allows the familial liability (genes plus shared environment) to take only three values μi.∈​{0, 0.5, 1},  
corresponding to no familial liability (healthy pairs, μi. =​ 0), moderate familial load (discordant pairs, μi. =​ 0.5) 
or high familial predisposition (concordant pairs, μi. =​ 1). This value is then used to estimate a regression coef-
ficient for the familial factors (βB). Furthermore, the value Xij −​ μi. is computed to represent the unique envi-
ronmental influences from non-shared events within a twin pair (βW). This arithmetic difference may only take 
the values 0.5, −​0.5 and 0, as follows: Xij −​ μi. =​ 1−​0.5 =​ 0.5 (high environmental risk: affected co-twins from 
discordant pairs), Xij −​ μi. =​ 0−​0.5 = −0.5 (low environmental risk: healthy co-twins from discordant pairs), 
Xij −​ μi. =​ 1−​1 =​ 0 (average environmental risk: concordant pairs), and Xij −​ μi. =​ 0−​0 =​ 0 (average environmen-
tal risk: healthy pairs). Namely, both concordant and healthy pairs are assumed to have no environment-specific 
differences in depression liability, whereas affected (healthy) discordant co-twins are considered to have high 
(low) environmentally-induced risk. This variable is intended to reflect the fact that, in discordant pairs, the 
affected co-twin was exposed to the environmental risk factor (high environmental risk), whereas his/her healthy 
co-twin was not (low environmental risk). Lastly, Yij represents the edge weight of each connection between the 
26 different nodes in the cerebellum. Thus, the equation is solved for all edges separately, although the method 
implemented by NBS already exploits the fact that the connections with an effect of interest may usually be inter-
connected75. Moreover, to control for potential confounding demographics (Table 2), all analyses were adjusted 
for gender and age.

Complementarily, a confirmatory analysis was conducted using R’s software packages rms and mztwinreg78–80. 
Namely, the cerebellar subgraph comprising the altered edges from the above procedure was retrieved, and total 
edge weight –a global measure of oscillatory synchronization of the potentially-altered connections– was com-
puted. This value (Yij) was used as outcome in the equation mentioned above. It was then solved via ordinary 
least squares, and the Huber-White method was implemented to adjust the variance-covariance matrix of these 
regression fits, in order to account for the non-independence of twin data (heteroskedasticity).

References
1.	 Azevedo, F. A. et al. Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate 

brain. J Comp Neurol 513, 532–541, doi: 10.1002/cne.21974 (2009).
2.	 O’Reilly, J. X., Beckmann, C. F., Tomassini, V., Ramnani, N. & Johansen-Berg, H. Distinct and overlapping functional zones in the 

cerebellum defined by resting state functional connectivity. Cereb Cortex 20, 953–965, doi: 10.1093/cercor/bhp157 (2010).



www.nature.com/scientificreports/

9Scientific Reports | 6:37384 | DOI: 10.1038/srep37384

3.	 Anticevic, A. et al. Global resting-state functional magnetic resonance imaging analysis identifies frontal cortex, striatal, and 
cerebellar dysconnectivity in obsessive-compulsive disorder. Biological psychiatry 75, 595–605, doi: 10.1016/j.biopsych.2013.10.021 
(2014).

4.	 Bernard, J. A. et al. Cerebellar networks in individuals at ultra high-risk of psychosis: impact on postural sway and symptom severity. 
Hum Brain Mapp 35, 4064–4078, doi: 10.1002/hbm.22458 (2014).

5.	 E, K. H., Chen, S. H., Ho, M. H.& Desmond, J. E. A meta-analysis of cerebellar contributions to higher cognition from PET and 
fMRI studies. Hum Brain Mapp 35, 593–615, doi: 10.1002/hbm.22194 (2014).

6.	 Kucyi, A., Hove, M. J., Biederman, J., Van Dijk, K. R. & Valera, E. M. Disrupted functional connectivity of cerebellar default network 
areas in attention-deficit/hyperactivity disorder. Hum Brain Mapp 36, 3373–3386, doi: 10.1002/hbm.22850 (2015).

7.	 Van Overwalle, F., D’Aes, T. & Marien, P. Social cognition and the cerebellum: A meta-analytic connectivity analysis. Hum Brain 
Mapp, doi: 10.1002/hbm.23002 (2015).

8.	 Guo, W. et al. Resting-state cerebellar-cerebral networks are differently affected in first-episode, drug-naive schizophrenia patients 
and unaffected siblings. Scientific reports 5, 17275, doi: 10.1038/srep17275 (2015).

9.	 Dutta, A., McKie, S. & Deakin, J. F. Resting state networks in major depressive disorder. Psychiatry Res 224, 139–151, doi: 10.1016/j.
pscychresns.2014.10.003 (2014).

10.	 Guo, W. et al. Abnormal resting-state cerebellar-cerebral functional connectivity in treatment-resistant depression and treatment 
sensitive depression. Prog Neuropsychopharmacol Biol Psychiatry 44, 51–57, doi: 10.1016/j.pnpbp.2013.01.010 (2013).

11.	 Kaiser, R. H., Andrews-Hanna, J. R., Wager, T. D. & Pizzagalli, D. A. Large-Scale Network Dysfunction in Major Depressive 
Disorder: A Meta-analysis of Resting-State Functional Connectivity. JAMA Psychiatry 72, 603–611, doi: 10.1001/
jamapsychiatry.2015.0071 (2015).

12.	 Gao, Q., Zou, K., He, Z., Sun, X.& Chen, H. Causal connectivity alterations of cortical-subcortical circuit anchored on reduced 
hemodynamic response brain regions in first-episode drug-naive major depressive disorder. Scientific reports 6, 21861, doi: 10.1038/
srep21861 (2016).

13.	 Fu, Y. et al. Genetic influences on resting-state functional networks: A twin study. Hum Brain Mapp, doi: 10.1002/hbm.22890 (2015).
14.	 Glahn, D. C. et al. Genetic control over the resting brain. Proceedings of the National Academy of Sciences of the United States of 

America 107, 1223–1228, doi: 10.1073/pnas.0909969107 (2010).
15.	 Sullivan, P. F., Neale, M. C. & Kendler, K. S. Genetic epidemiology of major depression: review and meta-analysis. Am J Psychiatry 

157, 1552–1562 (2000).
16.	 Caspi, A. & Moffitt, T. E. Gene-environment interactions in psychiatry: joining forces with neuroscience. Nat Rev Neurosci 7, 

583–590, doi: 10.1038/nrn1925 (2006).
17.	 Glahn, D. C. et al. Arguments for the sake of endophenotypes: examining common misconceptions about the use of endophenotypes 

in psychiatric genetics. Am J Med Genet B Neuropsychiatr Genet 165B, 122–130, doi: 10.1002/ajmg.b.32221 (2014).
18.	 Gottesman, II & Gould, T. D. The endophenotype concept in psychiatry: etymology and strategic intentions. Am J Psychiatry 160, 

636–645, doi: 10.1176/appi.ajp.160.4.636 (2003).
19.	 Kendler, K. S., Hettema, J. M., Butera, F., Gardner, C. O. & Prescott, C. A. Life event dimensions of loss, humiliation, entrapment, and 

danger in the prediction of onsets of major depression and generalized anxiety. Arch Gen Psychiatry 60, 789–796, doi: 10.1001/
archpsyc.60.8.789 (2003).

20.	 Moffitt, T. E. et al. Generalized anxiety disorder and depression: childhood risk factors in a birth cohort followed to age 32. Psychol 
Med 37, 441–452, doi: 10.1017/S0033291706009640 (2007).

21.	 Lee, M. H., Smyser, C. D. & Shimony, J. S. Resting-state fMRI: a review of methods and clinical applications. AJNR Am J Neuroradiol 
34, 1866–1872, doi: 10.3174/ajnr.A3263 (2013).

22.	 Richiardi, J., Eryilmaz, H., Schwartz, S., Vuilleumier, P. & Van De Ville, D. Decoding brain states from fMRI connectivity graphs. 
NeuroImage 56, 616–626, doi: 10.1016/j.neuroimage.2010.05.081 (2011).

23.	 van den Heuvel, M. P. & Hulshoff Pol, H. E. Exploring the brain network: a review on resting-state fMRI functional connectivity. Eur 
Neuropsychopharmacol 20, 519–534, doi: 10.1016/j.euroneuro.2010.03.008 (2010).

24.	 Smith, S. M. et al. Functional connectomics from resting-state fMRI. Trends Cogn Sci 17, 666–682, doi: 10.1016/j.tics.2013.09.016 
(2013).

25.	 De Vico Fallani, F., Richiardi, J., Chavez, M. & Achard, S. Graph analysis of functional brain networks: practical issues in 
translational neuroscience. Philos Trans R Soc Lond B Biol Sci 369, doi: 10.1098/rstb.2013.0521 (2014).

26.	 Guggisberg, A. G. et al. Two Intrinsic Coupling Types for Resting-State Integration in the Human Brain. Brain Topogr, doi: 10.1007/
s10548-014-0394-2 (2014).

27.	 Luo, Q. et al. Frequency dependant topological alterations of intrinsic functional connectome in major depressive disorder. Scientific 
reports 5, 9710, doi: 10.1038/srep09710 (2015).

28.	 Glerean, E., Salmi, J., Lahnakoski, J. M., Jaaskelainen, I. P. & Sams, M. Functional magnetic resonance imaging phase synchronization 
as a measure of dynamic functional connectivity. Brain Connect 2, 91–101, doi: 10.1089/brain.2011.0068 (2012).

29.	 Ponce-Alvarez, A. et al. Resting-state temporal synchronization networks emerge from connectivity topology and heterogeneity. 
PLoS Comput Biol 11, e1004100, doi: 10.1371/journal.pcbi.1004100 (2015).

30.	 Cordova-Palomera, A. et al. Altered amygdalar resting-state connectivity in depression is explained by both genes and environment. 
Hum Brain Mapp, doi: 10.1002/hbm.22876 (2015).

31.	 Fries, P. A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cogn Sci 9, 474–480, 
doi: 10.1016/j.tics.2005.08.011 (2005).

32.	 Fries, P. Neuronal gamma-band synchronization as a fundamental process in cortical computation. Annu Rev Neurosci 32, 209–224, 
doi: 10.1146/annurev.neuro.051508.135603 (2009).

33.	 Smith, S. M. et al. Correspondence of the brain’s functional architecture during activation and rest. Proceedings of the National 
Academy of Sciences of the United States of America 106, 13040–13045, doi: 10.1073/pnas.0905267106 (2009).

34.	 Stanley, M. L. et al. Defining nodes in complex brain networks. Frontiers in computational neuroscience 7, 169, doi: 10.3389/
fncom.2013.00169 (2013).

35.	 Andreou, C. et al. Increased Resting-State Gamma-Band Connectivity in First-Episode Schizophrenia. Schizophr Bull, doi: 10.1093/
schbul/sbu121 (2014).

36.	 Billeci, L. et al. On the application of quantitative EEG for characterizing autistic brain: a systematic review. Frontiers in human 
neuroscience 7, 442, doi: 10.3389/fnhum.2013.00442 (2013).

37.	 Sokunbi, M. O. et al. Resting state fMRI entropy probes complexity of brain activity in adults with ADHD. Psychiatry Res 214, 
341–348, doi: 10.1016/j.pscychresns.2013.10.001 (2013).

38.	 Stamoulis, C., Gruber, L. J. & Chang, B. S. Network dynamics of the epileptic brain at rest. Conf Proc IEEE Eng Med Biol Soc 2010, 
150–153, doi: 10.1109/IEMBS.2010.5627212 (2010).

39.	 Zhang, Z. et al. Epileptic discharges specifically affect intrinsic connectivity networks during absence seizures. J Neurol Sci 336, 
138–145, doi: 10.1016/j.jns.2013.10.024 (2014).

40.	 Shannon, C. E. The mathematical theory of communication. 1963. MD Comput 14, 306–317 (1997).
41.	 Foti, F. et al. Exposure to an enriched environment accelerates recovery from cerebellar lesion. Cerebellum 10, 104–119, doi: 10.1007/

s12311-010-0236-z (2011).



www.nature.com/scientificreports/

1 0Scientific Reports | 6:37384 | DOI: 10.1038/srep37384

42.	 Greenough, W. T., McDonald, J. W., Parnisari, R. M. & Camel, J. E. Environmental conditions modulate degeneration and new 
dendrite growth in cerebellum of senescent rats. Brain Res 380, 136–143 (1986).

43.	 Morel, M. P., Dusart, I. & Sotelo, C. Sprouting of adult Purkinje cell axons in lesioned mouse cerebellum: “non-permissive” versus 
“permissive” environment. J Neurocytol 31, 633–647 (2002).

44.	 Vazquez-Sanroman, D. et al. The effects of enriched environment on BDNF expression in the mouse cerebellum depending on the 
length of exposure. Behav Brain Res 243, 118–128, doi: 10.1016/j.bbr.2012.12.047 (2013).

45.	 Blanco, L. et al. Neurological changes in brain structure and functions among individuals with a history of childhood sexual abuse: 
A review. Neurosci Biobehav Rev 57, 63–69, doi: 10.1016/j.neubiorev.2015.07.013 (2015).

46.	 Desikan, R. S. et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions 
of interest. NeuroImage 31, 968–980, doi: 10.1016/j.neuroimage.2006.01.021 (2006).

47.	 Tzourio-Mazoyer, N. et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the 
MNI MRI single-subject brain. NeuroImage 15, 273–289, doi: 10.1006/nimg.2001.0978 (2002).

48.	 de Reus, M. A. & van den Heuvel, M. P. The parcellation-based connectome: limitations and extensions. NeuroImage 80, 397–404, 
doi: 10.1016/j.neuroimage.2013.03.053 (2013).

49.	 Guilherme, R., Drunat, S., Delezoide, A. L., Oury, J. F. & Luton, D. Zygosity and chorionicity in triplet pregnancies: new data. Hum 
Reprod 24, 100–105, doi: 10.1093/humrep/den364 (2009).

50.	 First, M. B. Structured clinical interview for DSM-IV axis I disorders: SCID - I: clinician version: administration booklet. (American 
Psychiatric Press, 1997).

51.	 Mosing, M. A. et al. Genetic and environmental influences on the co-morbidity between depression, panic disorder, agoraphobia, 
and social phobia: a twin study. Depression and anxiety 26, 1004–1011, doi: 10.1002/da.20611 (2009).

52.	 Ressler, K. J. & Mayberg, H. S. Targeting abnormal neural circuits in mood and anxiety disorders: from the laboratory to the clinic. 
Nat Neurosci 10, 1116–1124, doi: 10.1038/nn1944 (2007).

53.	 Wittchen, H. U. et al. Generalized anxiety and depression in primary care: prevalence, recognition, and management. J Clin 
Psychiatry 63 Suppl 8, 24–34 (2002).

54.	 Zbozinek, T. D. et al. Diagnostic overlap of generalized anxiety disorder and major depressive disorder in a primary care sample. 
Depression and anxiety 29, 1065–1071, doi: 10.1002/da.22026 (2012).

55.	 Oathes, D. J., Patenaude, B., Schatzberg, A. F. & Etkin, A. Neurobiological signatures of anxiety and depression in resting-state 
functional magnetic resonance imaging. Biological psychiatry 77, 385–393, doi: 10.1016/j.biopsych.2014.08.006 (2015).

56.	 Pannekoek, J. N. et al. Investigating distinct and common abnormalities of resting-state functional connectivity in depression, 
anxiety, and their comorbid states. Eur Neuropsychopharmacol, doi: 10.1016/j.euroneuro.2015.08.002 (2015).

57.	 Derogatis, L. R. & Melisaratos, N. The Brief Symptom Inventory: an introductory report. Psychol Med 13, 595–605 (1983).
58.	 Ruiperez, M., Ibáñez, M. I., Lorente, E., Moro, M. & Ortet, G. Psychometric properties of the Spanish version of the BSI: 

Contributions to the relationship between personality and psychopathology. Eur J Psychol Assess 17, 241 (2001).
59.	 Sattler, J. M. Assessment of children: cognitive applications. 4th ed. edn, (Sattler, J. M., 2001).
60.	 Wechsler, D. et al. WAIS escala de inteligencia de Wechsler para adultos. 12* ed edn, (TEA Ediciones, 1997).
61.	 Lynn, R. & Meisenberg, G. National IQs calculated and validated for 108 nations. Intelligence 38, 353–360 (2010).
62.	 Douw, L. et al. Cognition is related to resting-state small-world network topology: an magnetoencephalographic study. Neuroscience 

175, 169–177 (2011).
63.	 Wang, L., Song, M., Jiang, T., Zhang, Y. & Yu, C. Regional homogeneity of the resting-state brain activity correlates with individual 

intelligence. Neurosci Lett 488, 275–278, doi: 10.1016/j.neulet.2010.11.046 (2011).
64.	 Friston, K. J. et al. Analysis of fMRI time-series revisited. NeuroImage 2, 45–53, doi: 10.1006/nimg.1995.1007 (1995).
65.	 Evans, A. C. et al. In Nuclear Science Symposium and Medical Imaging Conference, 1993., 1993 IEEE Conference Record. 1813-

1817 (IEEE).
66.	 Calhoun, V. D., Liu, J. & Adali, T. A review of group ICA for fMRI data and ICA for joint inference of imaging, genetic, and ERP 

data. NeuroImage 45, S163–S172, doi: 10.1016/j.neuroimage.2008.10.057 (2009).
67.	 Sui, J., Adali, T., Pearlson, G. D. & Calhoun, V. D. An ICA-based method for the identification of optimal FMRI features and 

components using combined group-discriminative techniques. NeuroImage 46, 73–86, doi: 10.1016/j.neuroimage.2009.01.026 
(2009).

68.	 Andellini, M., Cannata, V., Gazzellini, S., Bernardi, B. & Napolitano, A. Test-retest reliability of graph metrics of resting state MRI 
functional brain networks: A review. Journal of neuroscience methods 253, 183–192, doi: 10.1016/j.jneumeth.2015.05.020 (2015).

69.	 Power, J. D. et al. Methods to detect, characterize, and remove motion artifact in resting state fMRI. NeuroImage 84, 320–341,  
doi: 10.1016/j.neuroimage.2013.08.048 (2014).

70.	 Villain, N. et al. Sequential relationships between grey matter and white matter atrophy and brain metabolic abnormalities in early 
Alzheimer’s disease. Brain 133, 3301–3314, doi: 10.1093/brain/awq203 (2010).

71.	 Achard, S., Salvador, R., Whitcher, B., Suckling, J. & Bullmore, E. A resilient, low-frequency, small-world human brain functional 
network with highly connected association cortical hubs. J Neurosci 26, 63–72, doi: 10.1523/JNEUROSCI.3874-05.2006 (2006).

72.	 Fox, M. D. et al. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proceedings of the 
National Academy of Sciences of the United States of America 102, 9673–9678, doi: 10.1073/pnas.0504136102 (2005).

73.	 Jenkins, G. M. & Watts, D. G. Spectral analysis and its applications. (Holden-Day, 1968).
74.	 Schwarz, A. J. & McGonigle, J. Negative edges and soft thresholding in complex network analysis of resting state functional 

connectivity data. NeuroImage 55, 1132–1146, doi: 10.1016/j.neuroimage.2010.12.047 (2011).
75.	 Zalesky, A., Fornito, A. & Bullmore, E. T. Network-based statistic: identifying differences in brain networks. NeuroImage 53, 

1197–1207, doi: 10.1016/j.neuroimage.2010.06.041 (2010).
76.	 Begg, M. D. & Parides, M. K. Separation of individual-level and cluster-level covariate effects in regression analysis of correlated 

data. Stat Med 22, 2591–2602, doi: 10.1002/sim.1524 (2003).
77.	 Carlin, J. B., Gurrin, L. C., Sterne, J. A., Morley, R. & Dwyer, T. Regression models for twin studies: a critical review. Int J Epidemiol 

34, 1089–1099, doi: 10.1093/ije/dyi153 (2005).
78.	 mztwinreg: Regression Models for Monozygotic Twin Data (2015).
79.	 rms: Regression Modeling Strategies (2013).
80.	 R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, Austria, 2011).

Acknowledgements
We are indebted to the Medical Image core facility of the Institut d’Investigacions Biomèdiques August Pi 
i Sunyer (IDIBAPS) for the technical help. L.F. was supported by the Spanish SAF2008-05674-C03-01, the 
European Twins Study Network on Schizophrenia Research Training Network (grant number EUTwinsS, 
MRTN-CT-2006-035987), the Catalan 2014SGR1636 and the Ministry of Science and Innovation 
(PIM2010ERN-00642) in frame of ERA-NET NEURON. L.F., N.B., P.B., B. C.-F. and A.C.-P. were supported 
by the Spanish Ministry of Science and Innovation (ES-EUEpiBrain, Grant SAF 2015-71526-REDT). G.D. 
was supported by the ERC Advanced Grant DYSTRUCTURE (n. 295129), by the FET Flagship Human Brain 



www.nature.com/scientificreports/

1 1Scientific Reports | 6:37384 | DOI: 10.1038/srep37384

Project (n. 604102), by the Spanish Research Project PSI2013-42091, by the FP7-ICT BrainScaleS (n. 269921) 
and CORONET (n. 269459) and by EraNet Neuron SEMAINE (PCIN-2013-026). P.B. was partially supported by 
The Bial Foundation (Grant 262/2012). We are also grateful to all the participants, to Ximena Goldberg and Silvia 
Alemany for their contribution to sample collection, and to the MRI technicians César Garrido and Santi Sotés 
for their technical assistance.

Author Contributions
A.C.-P., C.T., G.D. and L.F. conceived and designed the experiments; C.F., N.B., P.B., B.C.-F. and L.F. performed 
the experiments; C.T. and C.F. pre-processed the MRI data; A.C.-P. and C.T. analyzed the data. N.B., P.B., B.C.-F., 
G.D. and L.F. contributed materials/analysis tools; A.C.-P., C.T., C.F., N.B., P.B., B.C.-F., G.D. and L.F. wrote the 
paper and gave approval of this version. A.C.-P. and C.T. are joint first authors on this work. G.D. and L.F. are joint 
last authors on this work.

Additional Information
Supplementary information accompanies this paper at http://www.nature.com/srep
Competing financial interests: The authors declare no competing financial interests.
How to cite this article: Córdova-Palomera, A. et al. Environmental factors linked to depression vulnerability 
are associated with altered cerebellar resting-state synchronization. Sci. Rep. 6, 37384; doi: 10.1038/srep37384 
(2016).
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

This work is licensed under a Creative Commons Attribution 4.0 International License. The images 
or other third party material in this article are included in the article’s Creative Commons license, 

unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, 
users will need to obtain permission from the license holder to reproduce the material. To view a copy of this 
license, visit http://creativecommons.org/licenses/by/4.0/
 
© The Author(s) 2016

http://www.nature.com/srep
http://creativecommons.org/licenses/by/4.0/

	Environmental factors linked to depression vulnerability are associated with altered cerebellar resting-state synchronizati ...
	Results

	Discussion

	Methods

	Sample description. 
	Psychometric measures. 
	MRI acquisition and pre-processing. 
	Extraction of functional connectivity networks for each individual. 
	Inter-subject analysis of the functional connectivity networks. 

	Acknowledgements
	Author Contributions
	﻿Figure 1﻿﻿.﻿﻿ ﻿ Environmental factors associated with depression vulnerability are linked to cerebellar synchronization disruptions.
	﻿Figure 2﻿﻿.﻿﻿ ﻿ Schematic representation of the construction of three functional networks for one cerebellum.
	﻿Table 1﻿﻿. ﻿  Edge-based parameters describing the twenty-six-node cerebellar networks.
	﻿Table 2﻿﻿. ﻿  Demographic, psychopathological and neurocognitive data for DSM-IV diagnostic concordant, discordant and healthy MZ twin pairs.



 
    
       
          application/pdf
          
             
                Environmental factors linked to depression vulnerability are associated with altered cerebellar resting-state synchronization
            
         
          
             
                srep ,  (2016). doi:10.1038/srep37384
            
         
          
             
                Aldo Córdova-Palomera
                Cristian Tornador
                Carles Falcón
                Nuria Bargalló
                Paolo Brambilla
                Benedicto Crespo-Facorro
                Gustavo Deco
                Lourdes Fañanás
            
         
          doi:10.1038/srep37384
          
             
                Nature Publishing Group
            
         
          
             
                © 2016 Nature Publishing Group
            
         
      
       
          
      
       
          © 2016 The Author(s)
          10.1038/srep37384
          2045-2322
          
          Nature Publishing Group
          
             
                permissions@nature.com
            
         
          
             
                http://dx.doi.org/10.1038/srep37384
            
         
      
       
          
          
          
             
                doi:10.1038/srep37384
            
         
          
             
                srep ,  (2016). doi:10.1038/srep37384
            
         
          
          
      
       
       
          True
      
   




