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Positronium (Ps) is widely used as a probe for studying nanometric porosities in condensed matter.
Accessible experimental measurements concern annihilation rates by pickoff processes and contact
densities (the electron density at the positron position). Existing models for describing Ps properties in
small cavities do not justify the lowering of the contact density with respect to that of Ps in vacuum, as
found in most materials. We formulate a two-particle model in which only the electron is confined in the
cavity, while the positron is moving freely and feels the medium via a positive work function. Our
calculation fully explains experimental data for a large class of materials and suggests a way to gain
information on pore sizes and positron work functions.
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Positronium (Ps) is a hydrogenlike bound state of an
electron and its antiparticle, the positron. Ps can exist in two
different states: the singlet state p-Ps, rapidly decaying into
2γ rays with a lifetime of 0.125 ns, and the triplet state o-Ps
annihilating in 3γ rays with a lifetime of 142 ns in vacuum
[1]. Ps is usually formed by implanting positrons in con-
densed matter. Many insulators and molecular solids allow
Ps formation, sometimes with high efficiency; when gen-
erated near the surface (e.g., by using a slow positron beam)
Ps can rapidly spread toward the surface and eventually be
released into the vacuum [2]. In porous materials, o-Ps is
also emitted into cavities, and, mainly in subnanometric-
sized voids, its lifetime can be notably reduced by pickoff
annihilation: the o-Ps positron can annihilate via 2γ decay
with an electron of the surrounding cavity walls if a relative
singlet state is realized [3]. This property is at the heart of the
use of Ps as a probe for studying nanoscale structures in
condensed matter. In fact, while 2γ annihilation in vacuum
depends on the electron density at the positron position (the
contact density [4]), pickoff processes depend on the
electron density in the bulk around the cavity.
Experimental data obtained with the positron annihila-

tion lifetime spectroscopy technique, also in the presence of
a magnetic field (via magnetic quenching), primarily
concern pickoff annihilation with lifetimes as low as a
few ns [5,6]. The contact density can be determined from
fitting lifetime spectra [7]. In molecular solids, this quantity
is usually found to be well below the vacuum value. It is of
paramount importance to connect these measurable quan-
tities with the properties of Ps in small cavities as a means
to obtain information on pore dimensions and other
material characteristics.
To describe Ps inside small cavities, the most used

models are based on the Tao-Eldrup approach [8–11],

which relates pickoff annihilation rates to pore sizes by
considering Ps as a single quantum particle. Consequently,
these models cannot give information about contact density
and are suitable only when cavities are much larger than
twice the Ps Bohr radius α0 ¼ 0.106 nm. Another family of
models, more appropriate for subnanometer cavities, con-
sider both Ps constituent particles as independent but
confined into the cavity [12,13] or interacting with the
material through effective potentials [14]. A significant
increase in energy and contact density is found for cavities
with radius smaller than 0.5 nm, contrary to the exper-
imental evidence. A different approach is considered in
Ref. [15]: the electron-positron pair bounded by Coulombic
interaction forms a bubblelike state in a dielectric medium.
A contact density lowering is demonstrated, but the results
are not easily applicable to real materials due to special
assumptions about work functions.
Anyway, these models are not fully satisfactory and fail

to give a clear physical picture of the lowering of the
contact density for the following reason. Even if the
presence of a confining potential on the Ps atom, as a
whole, is well accepted and proven by successful predic-
tions of annihilation spectra, our concern is that this
potential is a net result of two independent and different
contributions acting on the electron and on the positron
separately. Because of the complex interactions with bulk
electrons, it seems unlikely that the positron remains
confined into a cavity. A positive value for the positron
work function in molecular solids and semiconductors is
derived by theoretical models describing positrons in
condensed matter [16–18] and is found, for example, in
silica [19]. This leads to an effective attraction of the
positron toward the medium. On the other hand, a confining
effect must act on the electron paired with the positron. This
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is the potential postulated in the Tao-Eldrup model [8,9],
and its origin may be traced in the strong repulsive Pauli
exchange forces with bulk electrons, which eventually
dominates the effect of the electron work function.
Starting from these observations, we reconsider the

problem of a Ps atom in nanopores by formulating a
two-particle model with appropriate potentials, different for
each particle. Assuming for definiteness a spherical cavity
of radius Rc centered on the axes origin, and using relative ~r
and center-of-mass ~R coordinates, the Hamiltonian of the
positron electron system reads

H ¼ −
ℏ2

4m
∇2

R −
ℏ2

m
∇2

r −
e2

j~rj þ Vconf þ Vbulk; ð1Þ

where m is the electron or positron mass. Vconf and Vbulk
describe the interaction with the surrounding medium. The
confining potential acts only on the electron and can be
taken as a well with infinite depth:

Vconfð~r; ~RÞ ¼
�
0 if j~r−j < Rc

∞ if j~r−j > Rc;
ð2Þ

where ~r− ¼ ~R − ~r=2 is the electron position. This defines

the geometrical domain Ωð~r; ~RÞ, out of which the two-

particle wave function is zero [i.e., Ψð~r; ~RÞ ¼ 0 if ~R,
~r∉Ωð~r; ~RÞ]. The bulk potential acts only on the positron.
In the first approximation, it can be taken as equal to the
opposite of the work function deep inside the bulk and zero
in the electron-confining cavity. We further consider the
presence of a transition surface layer of thickness Δs
representing the offset between the outermost position
accessible to the electron and the region where positron
bulk properties become predominant. This layer is similar
to that introduced in the Tao-Eldrup model to justify
pickoff processes between a confined Ps and the local
electron density. A simple explicit form of the potential
is then

Vbulkð~r; ~RÞ ¼
�
0 if j~rþj < Rc þ Δs
−ϕþ if j~rþj > Rc þ Δs; ð3Þ

where ~rþ ¼ ~Rþ ~r=2 is the positron position, and ϕþ is the
(positive) work function. This potential model is also a
generalization of what is found with density-functional
theory in metals [18]. Typical values of Δs are in the range
0.1–0.2 nm, of the order of the bond length between atoms.
As a matter of fact, different reasonable choices of Δs have
negligible effects on our results; hence, following Ref. [8],
we fix this parameter at Δs ¼ 0.17 nm (see Fig. 3).
The calculation of the contact density requires the

knowledge of the two-particle wave function in ~r ¼ 0,
irrespective of the center-of-mass position ~R. We look for a
factorized solution of the Schrödinger equation. Noting that

the center of mass is not confined and can be also located
outside the cavity (R > Rc), as long as both ~R, ~r ∈ Ωð~R; ~rÞ,
a convenient choice for its representation, not requiring the
introduction of additional geometrical parameters, is a
plane-wave-like factor. The confinement effects are taken
into account by means of the relative-motion part ~φ of the
two-particle wave function:

Ψð~r; ~RÞ≃ 1ffiffiffiffi
~V

p ei ~K·~R ~φð~r; RÞ (~R; ~r ∈ Ωð~r; ~RÞ); ð4Þ

where ~V is a suitable normalization volume. In the spheri-
cally symmetric cavity, the function ~φð~r; RÞ depends para-
metrically on R, the distance of the center of mass from the
origin, and retains the coupling between the relative and the
center-of-mass coordinates via the geometrical constraint
Ωð~r; ~RÞ. It can be constructed as a piecewise continuous
function on different R intervals, as described in the
following.
IfR lies deep inside the cavity,we expect that this function

resembles the (normalized) ground-state vacuum solution:
~φð~r; R → 0Þ≃ φ0ðr; θ;ϕÞ ¼ ð2= ffiffiffiffiffiffi

4π
p Þα−3=20 e−r=α0 . As R

approaches the cavity wall, it will slowly change toward
an outermost function ~φð~r; R ∼ RcÞ≃ φwallð~rÞ, strongly
deformed with respect to the simpler spherical one due to
the constraint on the electron position. To find an expression
for φwallð~rÞ, let us first consider the special case in which the
electron is located just near the wall (j~r−j≃ Rc). Denoting
with ~rp the positron position, an equation for the spherically
symmetric radial ground-state (l ¼ 0) wave function
describing the positron in the medium can be derived from
Eqs. (1) and (3) [20]:

−
ℏ2

m

�
u00ðrpÞ þ

2

r
u0ðrpÞ

�
−
�
e2

rp
þ ϕþΘðrp − ΔsÞ

�
uðrpÞ

¼ EuðrpÞ: ð5Þ

An example of a solution for the positron radial
probability distribution r2pu2ðrpÞ is plotted in Fig. 1 show-
ing the wave function polarization toward the bulk due to
the positive work function. Now, focusing on the cavity
wall around the fixed electron position, and considering a
reference system in the tangent plane having a z axis
pointing outside the cavity, the φwallð~rÞ can be built as a
superposition between the inner free Ps wave function and
the outer one φextðr; θ;ϕÞ≡ uðrp ¼ rÞ:

φwallð~rÞ≃
�
Aφextðr; θ;ϕÞ if 0 < θ < π=2
Bφ0ðr; θ;ϕÞ if π=2 < θ < π:

ð6Þ

Since both φext and φ0 are normalized over the entire space,
the normalization of φwall implies that the coefficients A
and B must satisfy the condition A2=2þ B2=2 ¼ 1.
Another constraint derives from the need of a unique value
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of the wave function in r¼0: φwallð0Þ ¼ limr→0AφextðrÞ ¼
limr→0Bφ0ðrÞ. Hence, these coefficients are determined as
functions of ϕþ andΔs. As expected, A > 1 and B < 1 due
to the stretching of the external part of the wave function
toward the medium, which, near the wall, determines a
lower value with respect to that in vacuum.
Finally, a simple piecewise representation for ~φð~r; RÞ can

be built, without lacking generality, if we admit that the
bulk polarization effects are important only within a shell of
thickness α0 (the Ps Bohr radius) below the cavity wall,
because it is unlikely that the wave function polarization
effect operates over a larger range. Hence,

~φð~r; RÞ≃
�
φ0ðr; θ;ϕÞ if 0 ≤ R < Rc − α0
φwallðr; θ;ϕÞ if R ≥ Rc − α0:

ð7Þ

We now have all the elements for the calculation of the
Ps contact density κ. With the wave function of Eq. (4),

κ ¼
Z
Ωð~r;~RÞ

���� 1ffiffiffiffi
~V

p ei ~K·~R ~φð~r; RÞ
����
2

δð~rÞd3 ~Rd3~r

¼ 4π
~V

Z
Rc

0

~κðRÞR2dR; ð8Þ

where ~κðRÞ ¼ j ~φð0; RÞj2. Using Eq. (7) one has

~κðRÞ ¼
�
κ0 if 0 < R ≤ Rc − α0
B2κ0 if Rc − α0 < R ≤ Rc;

ð9Þ

and finally κ ¼ κ0ð4π=3 ~VÞ½ð1 − B2ÞðRc − α0Þ3 þ B2R3
c�,

where κ0 ¼ 1=πα30 is the free Ps contact density.
Given that B < 1, it is clear that the function ~κðRÞ

constitutes a first contribution to the lowering of the contact
density below the free value. This is a consequence of the
modified Ps radial wave function when the electron is near
the cavity wall, while the positron can explore the external

region. A second contribution comes from the possibility of
the center of mass to stand outside the cavity, with a
reduced probability of finding the positron inside. This
information is contained in the normalization volume ~V of
the Ps wave function:

~V ¼ 4π

Z
∞

0

dRR2P½−�ðRÞ; ð10Þ

where P½−�ðRÞ corresponds to the conditional probability of
having the electron confined and the positron both inside or
outside the cavity, given the center of mass at distance R
from the origin. In Fig. 2, we plot this function comparing a
case in which the positron interacts with the external
medium, with the case of a free positron (i.e., with null
work function). At the cavity wall, a positive positron work
function increases P½−� over the unperturbed value 0.5.
Experimental data for Ps in small cavities are usually

expressed by means of the relative contact density
κr ¼ κ=κ0. In Fig. 3, we show κr as a function of the
cavity radius for some values of the positron work function.
If ϕþ ¼ 0 eV, we obtain κr ≃ 1, which is the same result
implicit in the Tao-Eldrup approach. The maximum value
ϕþ ¼ 6.8 eV corresponds to the free Ps ionization energy.
Note that for a cavity radius larger than a few nm, and for
reasonable low values for ϕþ, the lowering of the contact
density becomes negligible.
Another independent measurable quantity is the rate of

pickoff annihilation λPO, well studied by many authors
[3,6,8,12,15,21]. The annihilation rate of o-Ps in a small
cavity is largely dominated by pickoff and can be expressed
as

λo-Ps ≈ λPO ¼ πr20cρ−

Z
Vext

jΨþð~rþÞj2d3~rþ; ð11Þ

where ρ− is the bulk electron density (assumed uniform),
r0 ¼ 2.8 × 10−13 cm is the classical electron radius,
Ψþð~rþÞ is the positron wave function, and the integral is

FIG. 1. Positron radial probability distribution (arbitrary units)
in free space (a) and inside a medium with work function ϕþ ¼
3 eV (b). The electron is in rp ¼ 0 (at the cavity wall), and the
surface layer is placed at Δs ¼ 0.17 nm. Line c (red) represents
the total potential acting on the positron.

FIG. 2. The function P½−�ðRÞ for a cavity of radius Rc ¼ 0.7 nm
and positron work function ϕþ ¼ 3 eV (a, full line) or ϕþ ¼
0 eV (b, dashed line). The line c (red) is the probability
distribution p½−jþ�ðRÞ of Eq. (12).
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on the volume Vext, external to the cavity. In the framework
of our model, the positron wave function square modulus is
obtained by integrating over ~R the expression j ~φð~r; RÞj2,
with the electron-confining constraint j~r−j < Rc; in addi-
tion, Vext imposes the condition j~rþj > Rc [22]. The
annihilation rate then results in

λPO ¼ 4π2r20cρ−
~V

Z
∞

0

dRR2p½−jþ�ðRÞ; ð12Þ

where p½−jþ�ðRÞ is the conditional probability of having the
electron confined and the positron outside the cavity. A plot
of this function is shown in Fig. 2.
To complete the calculation of λPO, it is necessary to

evaluate the effective electron density ρ− interacting with
the positron. As a matter of fact, this quantity is extremely
hard to estimate because it has a very specific dependence
on the physical properties of the material surrounding the
cavity. Following the analysis carried out in Ref. [23], the

positron “samples” only electrons in the outer atomic
shells, essentially s and p electrons in molecular solids.
These electrons can be roughly thought of as uniformly
spread out over the molecular volume. A suitable approxi-
mate expression for molecular volumes can be obtained by
considering each constituent atom as a sphere defined by
the so-called van der Waals radius [24]. In Table I we
report data on van der Waals radii for relevant atomic
elements, together with chemical formulas and calculated
electron densities for some molecular solids of interest.
To compare in a clearer way experimental data on o-Ps

contact densities and pickoff lifetimes τPO ¼ 1=λPO with
the corresponding quantities calculated with our model, it is
convenient to normalize this lifetime with respect to the
electron density by defining the quantity τ0 ¼ τPOρ−=κ0. It
only depends on the cavity radius Rc and on the positron
work function ϕþ via the probability p½−jþ�ðRÞ. In Fig. 4,
we plot some curves joining the points corresponding to
calculated values of κr and τ0 for a fixed ϕþ and different Rc
(starting from the reasonable minimum value
Rc ¼ 0.1 nm). The known experimental data for some
materials taken from Table I are indicated by markers. It
must be noted that this kind of representation is the better
choice to compare theoretical and experimental data,
because it is very difficult to gain independent information
on the positron work function and on the pore sizes for
most materials.
The general trend shows a lowering of the contact

density and of the o-Ps lifetime for smaller cavities, as
expected. There is a good agreement between our theory
and experimental data for a large group of hydrocarbon
molecular solids. On the other hand, some compounds
stand below the line ϕþ ¼ 6.8 eV, probably because their
effective electron density is lower than our estimation so
that their position in the picture should be shifted to the left.
An interesting material is silica. In the crystalline form, Ps
has a very short lifetime and a very low κr. It is expected
that no free spaces exist; hence, Ps is delocalized and

FIG. 3. Ps relative contact density κr as a function of the cavity
radius for some values of ϕþ. Full lines are calculated with the
standard choice Δs ¼ 0.17 nm; the (red) dashed line is the same
as line c but with Δs ¼ 0.15 nm, showing that a precise value for
this parameter has a negligible effect on contact density.

TABLE I. Experimental data on relative contact density κr and pickoff lifetime τPO for some selected molecular solids. The column τ0
reports the lifetime normalized with respect to the effective electron density ρ− calculated using the atomic van der Waals radii (see text)
taken from Ref. [24]: H ¼ 0.11, C ¼ 0.17, N ¼ 0.155, O ¼ 0.152, Si ¼ 0.21 nm. In the last column, we list the markers used for
plotting the points in Fig. 4.

Name Formula κr τPO (ns) ρ− (nm−3) τ0 (ns) Marker

α silica SiO2 0.31� 0.02 0.27 234.6 0.24 □

Amorphous silica a-SiO2 0.95� 0.03 1.59 234.6 1.4 ▪
Naphtalene C10H8 0.82� 0.07 1.03 191.7 0.74 ⋄
Acenaphthene C12H10 0.59� 0.05 0.88 191.6 0.63 •
Polyethylene ðC2H4Þn 0.6 2.6 189.1 1.84 ▴

Atactic polypropylene ðC3H6Þn 0.66 2.66 189.1 1.88 ▾

Polyethylene terephthalate (PET) ðC10H8O4Þn 0.78 1.82 232.8 1.59 ⋆
Butyl-PBD C24H22N2O 0.88� 0.11 1.41 202.3 1.07 ▵

2,5-diphenyloxazole (PPO) C15H11NO 0.78� 0.04 1.06 204.8 0.81 ⧫
2,5-diphenyl-1,3,4-oxadiazole (PPD) C14H10N2O 1.05� 0.11 1.22 218.6 1.00 ▿
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cannot be described with our model. On the contrary, for
amorphous silica, we can predict a positron work function
of ϕþ ¼ 1� 0.5 eV and, from Fig. 3, a mean pore size of
1.2� 0.5 nm, consistent with existing data [19].
In conclusion, our theoretical model describes the proper-

ties of Ps confined in nanosized cavities and, in particular,
justifies the well-known fact that the contact density is
usually found to be well below the vacuum value. To our
knowledge, this phenomenon was still missing a convincing
explanation. The model considers different boundary con-
ditions for the two particles (only the electron is strictly
confined) and depends essentially on two parameters: the
bulk positron work function and the pore size. Because these
parameters are scarcely known in most materials, a com-
parison between theoretical findings and experimental data
on contact densities and Ps lifetimes can be extremely useful
for the determination of those quantities. Measurements of
Ps lifetime in solids have a long story as a probe for guessing
the size of internal cavities. We showed here that information
on this quantity and on the positron work function can be
extracted from independent measurements on Ps pickoff
annihilation and contact density.
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