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Abstract:  

 

Epigenetic mechanisms can mediate gene-environment interactions relevant for complex 

disorders. The BDNF gene is crucial for development and brain plasticity, is sensitive to 

environmental stressors such as hypoxia, and harbors the functional SNP rs6265 (Val66Met), 

which creates or abolishes a CpG dinucleotide for DNA methylation. We found that methylation 

at the BDNF rs6265 Val allele in peripheral blood of healthy subjects is associated with hypoxia-

related early life events (hOCs) and intermediate phenotypes for schizophrenia in a distinctive 

manner, depending on rs6265 genotype: in ValVal individuals increased methylation is 

associated with exposure to hOCs and impaired Working Memory (WM) accuracy, while the 

opposite is true for ValMet subjects. Also, rs6265 methylation and hOCs interact in modulating 

WM-related prefrontal activity, another intermediate phenotype for schizophrenia, with an 

analogous opposite direction in the two genotypes. Consistently, rs6265 methylation has a 

different association with schizophrenia risk in ValVals and ValMets. The relationships of 

methylation with BDNF levels and of genotype with BHLHB2 binding likely contribute to these 

opposite effects of methylation. We conclude that BDNF rs6265 methylation interacts with 

genotype to bridge early environmental exposures to adult phenotypes, relevant for 

schizophrenia. The study of epigenetic changes in regions containing genetic variation relevant 

for human diseases may have beneficial implications for the understanding of how genes are 

actually translated into phenotypes. 

 

Keywords: DNA methylation, rs6265, BDNF, obstetric complications, schizophrenia, prefrontal 

cortex, working memory, epigenetics, hypoxia. 
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Introduction 

 

Differentially methylated regions often contain single nucleotide polymorphisms (SNPs) 

critical for human diseases 1. CpG methylation state is recognized as a major determinant of 

natural genetic variation 2, and a strong genetic component underlies inter-individual variation in 

DNA-methylation profiles 3. While it has been argued that many SNPs contribute to gene-

expression changes and phenotypes relevant for diseases via epigenetic mechanisms 3, 4, the 

possibility that DNA methylation changes may compensate and/or modulate the effect of genetic 

variation has been less studied. The latter possibility may be important in reconciling variable 

penetrance of genetic variants associated with human diseases. Our research has previously 

approached this issue by analyzing variable methylation of CpGs associated with functional 

SNPs, which likely originate during evolution from spontaneous point mutation of 5-methyl-

cytosine into thymine.  Specifically, we previously reported that methylation of a CpG created by 

a widely studied functional SNP in the COMT gene was sensitive to environmental experience 

and associated with brain phenotypes only in individuals homozygous for the ancestral allele, but 

no association was found in heterozygotes 5.  

In the present work we focus our analysis on another popular gene in behavioral genetics, 

highly important in neurodevelopment and in system-level neural phenotypes and sensitive to 

environmental factors, the gene coding for the Brain Derived Neurotrophic Factor (BDNF).  

BDNF is a highly regulated protein, a crucial factor for the development of the feto-placental 

unit 6 and of the brain 7, as well as for neural plasticity, energy metabolism, learning, episodic 

and working memory (WM) 7-12 and cancer 13. The effects of BDNF on synaptic plasticity and 

neuron survival strongly suggest a role for this factor in schizophrenia, a neurodevelopmental 
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disorder whose risk is heritable and characterized by physiological prefrontal cortex (PFC) 

dysfunction during WM 14-16, as well as reduced prefrontal levels of BDNF 17. However, BDNF 

has not been associated with schizophrenia in recent large scale genome wide association 

studies18. BDNF expression is sensitive to early-life environment 19-21 and specifically hypoxic-

stressors 22, 23, which in turn are critical factors involved in the pathophysiology of schizophrenia 

24-27.  The failure to find association with BDNF and schizophrenia in large-scale case control 

studies may conceivably reflect a complex interaction of genotype and environmental experience 

that alters methylation status.   

 The SNP rs6265 (G> A, Val66Met), in the human Pro-BDNF sequence, is an example of 

a well-characterized functional SNP in this gene, which influences intracellular trafficking, 

activity-dependent secretion, as well as memory related behavior and brain activity in transgenic 

mice and in humans 8-11. However, while cell and animal models are consistent in showing a 

functional effect, studies in humans reveal discrepancies in associating the Met or the Val allele 

to phenotypes relevant for schizophrenia and different psychiatric disorders 8-10, 28-33. 

Interestingly, hypoxia-related events during pre-, peri- and early postnatal life (hOCs) have been 

reported to interact with BDNF in affecting risk for schizophrenia, independently from rs6265. 

Specifically, birth hypoxia has been associated with reduced BDNF levels in cord samples, taken 

at delivery, of individuals who developed schizophrenia later in life 34, and other genetic 

variation of the BDNF signaling interact with early life hypoxia in affecting risk for the disorder 

35. Surprisingly, these studies failed to show a role of rs6265 in interacting with obstetric 

complications in affecting risk for schizophrenia. A possible explanation for these results is that 

epigenetic mechanisms related to these environmental factors modulate the effect of the most 

likely relevant functional SNP of BDNF. Indeed, the G>A (Val>Met) substitution of the rs6265 
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SNP creates/abolishes a CpG site, so that the Val allele has a CpG at this position while the Met 

allele does not. Since this CpG is differentially methylated in humans 36, we hypothesize that the 

epigenetic changes able to modulate the effect of rs6265 may correspond to a different 

methylation status of the Val allele in ValVals and ValMets. In other words, while in 

experimental models the rs6265 genotype is clearly associated with certain outcomes, in living 

people – who experience actual life and its many stressors – DNA methylation specifically of 

one allele of this SNP may change in response to those factors such as hOCs and may modulate 

specific phenotypes, thus weakening the effect of the rs6265 genotype.  

We hypothesize that BDNF rs6265 methylation is sensitive to environmental (hOCs) 

exposure both in ValVal and ValMet subjects and is also associated with phenotypes relevant for 

schizophrenia. To this purpose, we analyze (Fig.1): 

1) the interaction between hOCs exposure, a known risk factor for schizophrenia, 

BDNF rs6265 genotype and methylation in blood; 

2) the interaction between hOCs exposure, BDNF rs6265 genotype and methylation on 

intermediate phenotypes of schizophrenia, i.e. working memory performance and 

related neural activity measured with fMRI; 

3) the heritability of rs6265 methylation and the interaction between BDNF rs6265 

genotype and methylation on genetic risk for schizophrenia; 

4) the interaction between BDNF rs6265 genotype and methylation on serum BDNF 

levels, which are known to be altered in patients with schizophrenia; 

5) the relationship between brain and blood methylation in a sample of transgenic 

mice; 
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6) the effect of the rs6265 genetic variation on DNA-protein binding, potentially 

relevant in explaining the relationship between methylation and BDNF levels. 

       

We found that hOCs exposure is associated with opposite methylation changes in ValVal 

and ValMet subjects. These methylation changes are associated with intermediate phenotypes of 

schizophrenia and – being partially inherited – predict genetic risk for the disorder, differently in 

ValVals and ValMets. Moreover, the rs6265 genotype affects binding of the transcription factor 

BHLHB2, potentially explaining the opposite relationship between methylation and serum 

BDNF levels that we detected in ValVals and ValMets. The correlation between brain and blood 

methylation in mice further supports the possibility of using peripheral methylation as a proxy of 

epigenetic changes relevant for the brain.  
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Results and Discussion 

 

1. Relationship between rs6265 genotype, methylation and hypoxia-related 

complications (hOCs). 

Given that brain methylation cannot be studied in vivo in humans, and that epigenetic 

changes relevant for developmental programming can be part of a general response of the entire 

organism20, 37, we used pyrosequencing to analyze rs6265 methylation in peripheral blood 

mononuclear cells (PBMCs) of 259 healthy humans. This site is differentially methylated in 

human PBMCs and, as predictable, methylation was affected by rs6265 genotype, given that 

only the Val allele has a CpG in this position (ANOVA: N= 259; F2,256= 1601.2; p< 0.001***; 

ValVal > ValMet > MetMet; Fig. S1). ValVal subjects have greater methylation compared with 

ValMets, while MetMet subjects have no methylation. All analyses were therefore performed 

only in ValVal and ValMet individuals, and methylation values were normalized in order to test 

for interactions between genotype and methylation.  

First, we analyzed in living healthy humans whether BDNF rs6265 methylation in 

PBMCs is associated with exposure to hypoxia-related events during prenatal, perinatal, and 

early postnatal life (hOCs), a known risk factor for schizophrenia. Using the McNeil-Sjöström 

Scale35, we assessed exposure to hOCs in 168 healthy humans demonstrating that the 

relationship between hOCs exposure and BDNF rs6265 methylation is affected by rs6265 

genotype. In fact, we found an interaction between rs6265 genotype and hOCs on methylation 

(Factorial ANCOVA, with age and sex as covariates: N= 169: 110 ValVal, 59 ValMet; F5,163= 

9.70; p= 0.002**; Fig.2), so that rs6265 methylation is greater in the presence of hOCs in ValVal 

homozygotes (p=0.03*), while it is attenuated in ValMet subjects exposed to hOCs (p<0.02*; see 
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Supplemental file 1 for detailed results). On the other hand, BDNF rs6265 methylation was not 

associated with age and sex, in the whole sample, and in the two genotype groups (p>0.28). 

These results suggest that exposure to hOCs is associated with opposite and long-lasting changes 

of rs6265 methylation in ValVal and in ValMet subjects. 

 

2. Relationship between rs6265 genotype, methylation, hOCs and intermediate 

phenotypes for schizophrenia. 

We then analyzed the relevance of these methylation changes for schizophrenia. Since we 

found that rs6265 methylation is related with hOCs which are a risk factor for schizophrenia25, 35, 

we assessed the relationship between hOCs exposure, BDNF rs6265 genotype and methylation in 

PBMCs, and WM performance and related prefrontal activity, two well established intermediate 

phenotypes for this neurodevelopmental disorder15. Consistent with the above results, we found 

that, in a sample of 212 healthy humans, BDNF rs6265 methylation is correlated with 2-Back 

WM performance both in ValVal and ValMet subjects with a qualitatively different direction. 

More in details, a multiple regression of BDNF rs6265 genotype, methylation and hOCs and 

their interactions, with 2-Back WM accuracy as the dependent variable (age and sex as 

covariates), revealed an interaction between rs6265 genotype and methylation on WM 

performance (N=211: 145 ValVal, 66 ValMet; t=2.63, p=0.009**; Fig.3), so that BDNF rs6265 

methylation is associated with 2-Back WM performance both in ValVal and ValMet subjects 

with a qualitatively different direction; consistent with previous studies8, 38, this analysis also 

confirmed lower WM performance in ValMet compared with ValVal (t=-2.51, p=0.01*). Post-

hoc analyses of the interaction indicated that greater methylation is associated with lower 

accuracy in ValVal homozygous (t= -2.46, p=0.01*), while the opposite is found in ValMet (t= 
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2.55, p=0.01*; Fig.3; see Supplemental file 1 for detailed results). Taken together, these results 

suggest that the relationship between methylation of the Val allele and WM performance is 

opposite between the two genotype groups. However, the opposite methylation changes 

associated in ValVals (increased methylation) and ValMets (blunted methylation) with hOCs 

exposure were similarly associated with decreased WM accuracy. 

We also analyzed the potential relationship between rs6265 genotype, methylation, 

hOCs, and prefrontal activity during WM measured with fMRI, another intermediate phenotype 

of schizophrenia, in a group of 141 healthy subjects who underwent fMRI during the N-back task 

(Fig.4a-e). Multiple regression of the imaging data in SPM8 demonstrated: a positive correlation 

between BDNF rs6265 genotype and left dorsolateral PFC activity during 2-Back, suggesting 

greater activity in ValMet subjects compared with ValVal (N=141: 93 ValVal, 48 ValMet; x= -

54, y= 24, z= 32, BA46, k= 31, Z= 3.42, p FWE-corrected=0.027*); a positive correlation between 

BDNF rs6265 methylation and left prefrontal activity (x= -54, y= 24, z= 32, BA46, k= 31, Z= 

3.29, p FWE-corrected=0.041*); an interaction between BDNF rs6265 genotype, methylation, and 

hypoxia exposure on left prefrontal activity (Fig.4a). More specifically, in one prefrontal locale, 

greater methylation is associated with attenuated prefrontal activity in subjects exposed to 

hypoxia compared with subjects not exposed in the context of ValVal genotype but not in 

ValMet subjects (x= -54, y= 24, z= 32, BA46, k= 26, Z= 3.24, p FWE-corrected=0.047*; Fig.4b and 

4c; difference test between ValVal subjects with and without hypoxia exposure: Z=2.38, 

p=0.008**). On the contrary, in the other prefrontal locale, lower methylation is associated with 

attenuated prefrontal activity in subjects with hOCs compared with subjects without hypoxia 

exposure in the context of ValMet genotype but not in ValVal subjects  (x= -54, y= 32, z= 6, 

BA46, k= 14, Z= 3.40, p FWE-corrected=0.044*; Fig.4d and e; Difference test between ValMet 
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subjects with and without hypoxia exposure: Z=-2.32, p=0.01*). These results suggest that 

prefrontal activity during WM is predicted by the interaction of hOCs exposure and methylation 

to describe opposite relationships in ValVal and ValMet subjects. Since attenuated prefrontal 

activity for equivalent gains in WM accuracy is considered indicative of increased efficiency of 

prefrontal cortex 14, 39, 40, the opposite methylation changes associated with hOCs exposure in the 

two genotypes (increased methylation in ValVal and blunted methylation in ValMets) were also 

associated with increased activity, i.e. impaired prefrontal efficiency, which represents a 

phenotype characteristic of patients with schizophrenia and their relatives 14, 39, 40.  

 

3. Relationship between BDNF rs6265 genotype, methylation and genetic risk for 

schizophrenia. 

We further investigated whether BDNF rs6265 methylation can be inherited and is 

associated with genetic risk for schizophrenia. We analyzed BDNF rs6265 methylation in a 

sample of families with schizophrenia and we calculated heritability from the regression slope of 

offspring methylation on the average methylation of parents. Interestingly, we estimated in a 

cohort of 115 families that BDNF rs6265 methylation is not only sensitive to environmental 

exposures but can also be partially inherited (h2= 0.2; Fig. S2).  Next, we analyzed whether 

rs6265 genotype and methylation interact on risk for schizophrenia, by comparing healthy 

subjects with patients with schizophrenia, with siblings and with parents of patients in three 

separate analyses. Consistent with the above results, we found an interaction between rs6265 

genotype and methylation on schizophrenia risk, when comparing healthy subjects whether with 

siblings (N=384, F5,378=10.39, p=0.001**), or with parents (N=461, F5,455=9.47, p=0.002**)  or 

with patients with schizophrenia (N=406, F5,400=4.01, p=0.04*; Fig.5a; Supplemental file 1). 
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Specifically, rs6265 methylation in ValVal subjects is lower in healthy subjects, compared with 

siblings (post hoc with Tukey HSD: p=0.01*), parents (p=0.02*) and patients (p<0.01**), so that 

in ValVal the methylation changes associated with hypoxia are also associated with 

schizophrenia risk. We also found a significant association between BDNF rs6265 methylation 

and schizophrenia risk in ValMet subjects. In this case, healthy subjects have greater methylation 

compared with siblings (p=0.03*) and parents of patients (p=0.02*), so that also in ValMets the 

methylation changes associated with hypoxia are associated with schizophrenia risk. However, 

ValMet patients are not significantly different from healthy subjects (p=0.79). Since we cannot 

exclude that these effects may have been confounded by treatment with antipsychotics which 

alter BDNF levels in patients21, we also evaluated in vitro the potential effect of treatment with 

haloperidol 1μM for 2 and 5 hours on rs6265 methylation, in PBMCs of ValVal and ValMet 

healthy subjects (Fig.5b). Notably, rs6265 genotype and haloperidol treatment interact on 

methylation, so that haloperidol significantly increases BDNF rs6265 methylation in ValMet 

subjects, but it does not in ValVal (N=17, 11 ValVal and 6 ValMet; Factorial ANOVA: F2, 44= 

5.65, p= 0.006**; post hoc with Tukey HSD: “ValVal basal” vs. “ValVal Haloperidol 2h”, p=  

0.8; “ValVal basal” vs.“ValVal Haloperidol 5h”, p= 1, “ValVal Haloperidol 2h” vs. “ValVal 

Haloperidol 5h”, p= 0.9; “ValMet basal” < “ValMet Haloperidol 2h”, p=  0.02*; “ValMet basal” 

< “ValMet Haloperidol 5h”, p= 0.002**, “ValMet Haloperidol 2h” vs. “ValMet Haloperidol 5h”, 

p= 0.92; Fig.5b). These results suggest that greater levels of methylation in ValMet patients may 

be related to antipsychotic treatment (Fig. 5b), although further experiments are necessary to 

address the effect of chronic exposure to this and other antipsychotics on DNA methylation. 

Moreover, since information on hOCs exposure were not available in our sample of families with 

schizophrenia, we cannot exclude that the levels of methylation in patients, parents and siblings 
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were also related to these or other risk factors. However, the comparison of rs6265 methylation 

levels of controls with methylation of parents and siblings of patients, in the context of ValVal 

and ValMet genotype, indicates that the relationship between methylation of the Val allele and 

genetic risk for schizophrenia is opposite between the two genotype groups. Therefore, our data 

show that methylation changes in the rs6265 region are associated with hOCs exposure, WM 

accuracy and related prefrontal activity, and genetic risk for schizophrenia, in a distinctive 

manner, depending on the rs6265 genotype. Specifically, in individuals with the ValVal 

genotype hOCs exposure is associated with increased methylation, and enhanced methylation – 

in these individuals – means impaired WM accuracy, increased prefrontal activity during fMRI 

(i.e. blunted prefrontal efficiency) and increased genetic risk for schizophrenia. On the other 

hand, in ValMet subjects the same insult is associated with decreased methylation, but blunted 

methylation turns out to be associated, in this genotype, with, again, impaired WM accuracy and 

increased genetic risk for schizophrenia. 

 

4. Relationship between rs6265 genotype, methylation and BDNF levels in serum. 

To be able to attribute any potential relevance to methylation changes it is essential to 

assess their relationship with gene expression. Thereby, we analyzed the relationship between 

rs6265 methylation and serum BDNF levels measured with ELISA in a subsample of healthy 

subjects 41. A multiple regression, with BDNF levels as dependent variable and BDNF rs6265 

genotype and methylation as predictors, revealed a significant interaction between rs6265 

genotype and methylation on total BDNF expression in serum (N=39: 23 ValVal, 16 ValMet; t= 

4.37, p<0.001***; Fig.6a). Specifically, greater methylation is associated with greater levels of 

BDNF in ValVal subjects (t= 3.04, p<0.01**), while this relationship is opposite in ValMet 
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subjects (t= -3; p= 0.01*). Univariate results also indicate an effect of rs6265 genotype on BDNF 

levels, which are greater in ValMet compared with ValVal subjects (t= 4.3; p<0.001***; see 

Supplemental file 1 for detailed results). 

On the other hand, we did not detect a significant relationship between BDNF 

rs6265 methylation and mRNA expression in PBMCs (p>0.2, not shown). This may raise 

the concern that BDNF rs6265 methylation represents something indirectly associated with 

schizophrenia, rather than a risk factor. However, since the expression of BDNF mRNA 

does not reflect the rate of protein synthesized42, the relationship of BDNF rs6265 

methylation with BDNF protein level may also be the result of the contribution of other 

elements, such as the expression of non-coding transcripts, affecting the level of BDNF 

protein by acting at a post-transcriptional level43, 44. Moreover, since human platelets 

represent a main source of serum BDNF protein but not of BDNF mRNA, serum BDNF has 

been postulated not to originate from megakaryocyte precursor cells, while potential sources 

include CNS41, 45, 46; indeed, it has been shown that BDNF can readily cross the brain-blood 

barrier 47. The relationship between rs6265 methylation in PBMCs and serum BDNF levels is 

therefore compatible with a potential link between rs6265 methylation in PBMCs and in brain. 

  

 

5. Relationship between brain and blood BDNF methylation in mice. 

We estimated the relationship between BDNF rs6265 methylation in PBMCs and in brain  

in transgenic mice carrying the human rs6265 SNP and the analysis revealed a negative 

correlation between PFC and PBMCs methylation – greater PFC methylation of the rs6265 Val 

allele is correlated with lower methylation in PBMCs of both ValVal mice (N= 7; Rho=  -0.78 ; 
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p= 0.04; Fig. S3a) and ValMet mice (N= 9; Rho= -0.8 ; p= 0.01; Fig. S3b). Similarly, the 

correlation between PFC and PBMCs methylation of a CpG close to rs6265 (hg19 position: 

Chr11: 27,679,922-3) is negative in the whole sample (N= 17; Rho = -0.55 ; p= 0.02; Fig. 6b). 

These results imply that methylation in PBMCs can also be used as a peripheral proxy of PFC 

methylation of rs6265, although the direction of the correlations demonstrated above may be 

reversed when considering rs6265 methylation in PFC. However, further studies are necessary to 

evaluate whether the relationship between rs6265 methylation in PBMCs and phenotypes 

relevant for schizophrenia is related to brain-blood correlation of methylation levels or is simply 

due to rs6265 methylation in PBMCs being an “epigenetic fossil” that keeps trace of early events 

relevant for brain development. 

 

 

6. Relationship between rs6265 genotype and DNA-protein binding. 

Since a differential effect of methylation can be mediated by direct interference with 

DNA-protein binding48, which can be affected by genotype-specific changes49, we next 

addressed the potential relationship between BDNF rs6265 genotype and protein/transcription 

factors (TFs) binding. The rs6265 region, identified as a DNAse I hypersensitive site in brain50, 

is potentially interesting for the binding of TFs, since the Val allele shows putative binding sites 

for HIF1α, BHLHB2 (also known as DEC1 or BHLHE40), and CREB. These sites are disrupted 

by the G(Val)/A(Met) substitution, which also creates a binding site for MITF on the Met allele. 

Previous studies have shown how the interaction between all these factors is complex and likely 

involves BDNF, the demethylating protein GADD45B, and hypoxia-related mechanisms. For 

example, binding of CREB 51 and GADD45B 52 in the BDNF region upstream of the rs6265 SNP 
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has been detected. Moreover, BHLHB2 and GADD45B are regulated by hypoxia, since they have 

a high-stringency HIF1 binding site 53, 54, and BHLHB2 represses expression of MITF 53, a TF 

stimulating HIF1α expression 55. Studies in mice have also proved how the basic helix-loop-

helix protein BHLHB2 is regulated by neurotrophins and modulate BDNF transcription 56. As a 

consequence, we performed an experiment of Chromatin Immunoprecipitation (ChIP), with the 

aim of verifying whether these proteins and TFs related to hypoxia could bind the Val allele in 

the rs6265 region, potentially interacting in a different way in ValVal and ValMet subjects. Our 

data confirmed that this region may bind GADD45B, HIF1α, BHLHB2, CREB, and MITF 

(Fig.6c, detailed results in Supplemental file1). In addition, ANOVA showed that BDNF rs6265 

genotype was associated with differential binding of BHLHB2, which was greater in the context 

of ValMet genotype, compared with the ValVal (N=20: 11 ValVal and 9 ValMet; F1,18= 5.71; p= 

0.02; Fig.6c). Other TFs showed a similar trend, without reaching statistical significance for the 

differential binding in ValVals and ValMets. In addition, the greater binding of MITF in 

ValMets compared with ValVals is likely less relevant, since the putative binding site for this TF 

is present only on the Met allele. 

All these findings indicate that rs6265 methylation of the BDNF Val allele has a 

differential relationship with BDNF levels and environmental exposures in ValVal and ValMet 

subjects, likely through a different interaction with transcription factor binding, which may be 

also particularly important in early development, when TFs are distributed in a concentration 

gradient57.  
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Limitations of the study. 

A limitation of our study is that the assessment of hOCs relied solely on maternal recall 

as the source of information about the exposure. Unfortunately, this is a limitation shared by 

most of the literature on obstetric complications26. However, we believe to have controlled 

potential bias in our protocol by using a standardize questionnaire developed by previous 

published reports58, by employing the McNeil–Sjöström scale27, and by excluding from the 

analysis all the subjects with uncertain information.  

Another limitation of our study is represented by the analysis of only a single region of 

the epigenome. Such approach was chosen to detect a potential interaction between genome, 

epigenome and environment, which would have gone undetected in a common whole-epigenome 

approach. By providing evidence of an ‘epistatic’ interaction between genetic and epigenetic 

variation, our data raise the possibility that analyses on whole genome and epigenome may give 

partial information, not taking into account that epigenetic changes can actually have opposite 

meaning depending on genotype, and viceversa. 

 

 

Conclusions 

 

Our data display a dynamic interplay between genome, epigenome, and environment on 

prefrontal function and risk for schizophrenia. Our main finding is the opposite relationship of 

BDNF rs6265 methylation with phenotypes and environmental factors relevant for schizophrenia 

in ValVal and ValMet subjects.  More specifically, DNA methylation of rs6265 is differentially 

associated in ValVal and ValMet subjects with hOCs exposure and with prefrontal behavior and 
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activity. Furthermore, the results in healthy subjects, siblings and parents of patients indicate that 

rs6265 methylation is associated with genetic risk for schizophrenia differentially in the two 

genotypes and that it can also be partially inherited. Although ambiguous at a first glance, these 

results are consistent in showing that the opposite methylation changes associated in the two 

genotypes with a risk factor for schizophrenia, i.e. hOCs exposure, are also associated with 

intermediate phenotypes for schizophrenia and genetic risk for the disorder in a consistent way: 

specifically, in ValVal subjects enhanced methylation is associated with hOCs exposure, 

impaired prefrontal cognition and inefficiency of prefrontal cortex, and methylation is also 

greater in siblings and parents of patients compared with controls, while in ValMet  subjects 

blunted methylation is associated with hOCs exposure, impaired prefrontal cognition and 

inefficiency of prefrontal cortex, and methylation is lower in siblings and parents of patients 

compared with controls.  

 These genotype-dependent in vivo findings suggest that other molecular factors play a 

role. Indeed, rs6265 genotype affects binding of transcription factors and the relationship 

between DNA methylation and serum BDNF levels, so that the methylation changes associated 

with hypoxia are also differentially linked in both genotypes to BDNF levels. In this way, 

environmentally-sensitive DNA methylation modulates the effect of genetic variation, leading to 

risk phenotypes for complex disorders. More in general, our results indicate that opposite 

epigenetic, genotype-dependent changes may allow developmental plasticity to “adapt” the 

organism to environmental conditions, contributing to modulate complex phenotypes above and 

beyond genetic variation.       

 

  



 19

Material and Methods:  
 

Subjects, methylation analysis and genotyping. 244 healthy subjects, 162 patients with 

schizophrenia, 140 siblings and 217 parents of patients entered the study, based on inclusion 

criteria and protocols specified elsewhere59. Briefly, all subjects were white Caucasians from the 

region of Puglia and provided written informed consent. The Structured Clinical Interview for 

DSM-IV was used to confirm diagnosis of schizophrenia for patients and to exclude any Axis I 

psychiatric disorder for siblings, parents of patients and healthy subjects. Exclusion criteria were 

presence of any neurological or medical condition, presence of head trauma with loss of 

consciousness and drug abuse within the past 6 months. All patients were on stable 

pharmacological treatment with antipsychotics. The Institutional Review Board of University of 

Bari “Aldo Moro”, Bari (Italy), approved protocols and procedures. DNA was extracted from 

PBMCs using QIAamp DNA Blood Midi Kit (Qiagen, Valencia, CA, US) and bisulfite treated as 

described previously60. Methylation analysis was performed with pyrosequencing, using primer 

sequences previously reported 36 and focused on CpG methylation sites in the region of the 

BDNF gene containing rs6265. A consensus LINE-1 sequence was also analyzed to estimate 

global DNA methylation60, in order to exclude any global effect (see Supplementary Results for 

LINE-1 methylation results). Methylation was expressed as percentage of methylated cytosines 

divided by the sum of methylated and unmethylated cytosines (%5mC)61. SNP rs6265 was 

genotyped using the pyrosequencing assay designed to interrogate percentage of methylation in 

this region. In addition, genotypes were double-checked with direct DNA sequencing, as 

previously described 62. Subjects with MetMet genotype were excluded from further analyses, 

after verified that, as expected, rs6265 methylation was around 0%. Lack of methylation of the 

Met allele is consistent with absence of a CpG site in this position, confirming the quality of 
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bisulfite treatment conversion of unmethylated Cytosine in Uracil/Thymine. Supplemental file 1 

contains information about the different samples analyzed. 

 

Hypoxia-related Obstetric Complications assessment. Obstetric Complications (OCs) refer to 

conditions occurring not only during labor-delivery but also during pregnancy and neonatal 

period. Specifically, OCs are here referred as “somatic complications and conditions occurring 

during pregnancy, labor-delivery and the neonatal period” experienced as an offspring with 

special focus on the CNS27. We assessed OCs exposure on the basis of interviews administered 

to mothers using a standard questionnaire developed from other published reports58. OCs data 

were rated using the McNeil–Sjöström scale for obstetric complications27, which assigns each 

OC a severity score on a scale of 1-6. We determined OCs exposure based on the presence of at 

least one serious OC. As in a previous report35, we adopted a strict definition of serious OC, i.e. 

McNeil-Sjostrom Scale score ≥5. This score allowed identification of individuals exposed to 

hypoxia-related (hOCs) potentially harmful obstetric complications. The hOCs reported 

included: bleeding during pregnancy, maternal diabetes, maternal infections, Rh incompatibility, 

adverse fetal position, cord around neck, delivery problems, extended labor duration, use of high 

forceps, emergency cesarean section, early gestational age at birth and preterm birth, very low 

birthweight, respiratory distress at birth and neonatal anomalies. Since a limitation of our study is 

that the assessment of hOCs relied solely on maternal recall as the source of information about 

the exposure, we excluded from the analysis all the subjects with uncertain information. 

 

Working Memory (WM) task. During fMRI, all subjects completed a blocked paradigm of the 

N-back task5. Briefly, ‘N-back’ refers to how far back in the sequence of stimuli the subject had 
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to recall. The stimuli consisted of numbers (1–4) shown in random sequence and displayed at the 

points of a diamond-shaped box. There was a visually paced motor task, which also served as a 

non-memory guided control condition (0-back) that simply required subjects to identify the 

stimulus currently seen. In the WM conditions, the task required recollection of a stimulus seen 

two stimuli (2-back) previously while continuing to encode additionally incoming stimuli. All 

subjects were trained on the task before the fMRI session. The stimuli of the task were organized 

in a simple block design in which each block consisted of eight alternating 0-back and 2-Back 

WM condition lasting 4m and 8s. Stimuli were presented via a back-projection system and 

behavioral responses were recorded through a fiber optic response box, which allowed 

measurement of accuracy and reaction time for each trial. 

 

fMRI Data Acquisition. Blood oxygen level-dependent (BOLD) fMRI was performed on a GE 

Signa 3T scanner (General Electric, Milwaukee, WI), equipped with a standard quadrature head 

coil. A gradient-echo planar imaging sequence, (repetition time, 2000 ms; echo time, 28 ms; 20 

interleaved axial slices; thickness, 4 mm; gap, 1 mm; voxel size, 3.75 x 3.75 x 5; flip angle, 90°; 

field of view, 24 cm; matrix, 64 x 64) was used to acquire 120 volumes while subjects performed 

the WM task. The first four scans were discarded to allow for T1 equilibration effect. 

 

fMRI Data Analysis. Analysis of the fMRI data was completed using Statistical Parametric 

Mapping (SPM8; http://www.fil.ion.ucl.ac.uk/spm). Images, for each subject, were realigned to 

the first volume in the time series and movement parameters were extracted to exclude subjects 

with excessive head motion (> 2 mm of translation, > 2° rotation). Images were then re-sampled 

to a 2 mm isotropic voxel size, spatially normalized into a standard stereotactic space (Montreal 
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Institute on Neurology, MNI, template) and smoothed using a 10 mm full-width half-maximum 

isotropic Gaussian kernel to minimize noise and to account for residual inter-subject differences. 

A box car model convolved with the hemodynamic response function (HRF) at each voxel was 

modeled. In the first-level analysis, linear contrasts were computed producing t statistical maps 

at each voxel for the 2-back condition, assuming the 0-back condition as a baseline. All 

individual contrast images were entered in a second level random effects analysis. A multiple 

regression was performed entering BDNF rs6265 genotype, BDNF rs6265 methylation and 

hypoxia exposure scores as predictors. Because of our strong a priori hypothesis about the 

dorsolateral prefrontal cortex (DLPFC), we used a statistical threshold of p<0.05, family wise 

error small volume corrected using as volume of interest the WFU_PickAtlas Brodmann’s areas 

in which significant clusters were located (BA46)63. Because we did not have a priori hypotheses 

regarding brain activity outside of DLPFC, we used a statistical threshold of p<0.05, FWE - 

corrected	for whole-brain comparisons. 

 

PBMCs stimulation with Haloperidol. To evaluate the potential role of antipsychotic treatment 

on BDNF rs6265 methylation, we assessed DNA methylation in PBMCs of healthy subjects (11 

ValVal, 6 ValMet) following in vitro challenge with haloperidol. Briefly, blood (20 ml) was 

collected and PBMCs were isolated by Ficoll density gradient (ICN, Biomedical, Inc.), as 

previously described5. After counting, 3.5 · 106 cells ⁄ tube were resuspended in fresh RPMI 1640 

medium (Gibco) (pH 7.5) with 15% FCS and HEPES (Sigma) 10 mM, and incubated at 37 °C 

with haloperidol 1 µM (Janssen Pharmaceutical) for 0 (baseline), 2, and 5 h. Subsequently, DNA 

was extracted and BDNF rs6265 methylation was analyzed with pyrosequencing. 
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BDNF protein expression measurement. In order to assess a potential relationship between 

methylation and expression, we measured BDNF protein levels in serum, which are likely 

derived by CNS sources and are altered in patients with schizophrenia41. Blood (10 ml) was 

collected between 8 and 9:30 AM in anticoagulant-free tubes and maintained at RT for 1 h, 

followed by 1 h at 4° C. After centrifugation at 2000 g for 10 min at 4° C, serum samples were 

stored up to 1 month at -20° C and then analyzed in triplicate at the same time. Sera were diluted 

1:50 in sample buffer and total BDNF was quantified using an ELISA kit (BDNF Emax 

immunoassay system, Promega) in a microplate reader (Anthos Labtec Instrument) set at 450 

nm. We also analyzed the relationship between BDNF rs6265 methylation and mRNA 

expression, in the same sample. BDNF mRNA levels were assessed using the comparative 

CT method with β-actin as reference (control) gene, using TaqMan® Gene Expression 

Assays (Applied Biosystems, Cat. # 4331182) specific for the following transcripts: 

NM_170733.3 (Assay ID:  Hs00380947_m1); NM_170731.4 (hs00538277-m1); 

NM_170732.4 (hs00538278-m1); NM_001709.4 (hs00156058-m1). 

 

Correlation of BDNF methylation in brain and PBMCs. We analyzed the correlation between 

BDNF rs6265 methylation in PBMCs and in PFC in 7 homozygous (ValVal) and 9 heterozygous 

(ValMet) mice described by Chen64, which reproduce the phenotypic hallmarks described in 

humans with the variant allele. Mice were maintained on an inbred C57BL/6 background. The 

animals were housed under standard conditions (12-h light/dark cycle with food and water 

available ad libitum) and all studies were performed in adult mice. All animal handling and 

experimental procedures were performed in accordance with the EC (EEC Council Directive 

86/609 1987), the Italian legislation on animal experimentation (Decreto Legislativo 116/92), 
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and the National Institutes of Health Guide for the Care and Use of Laboratory Animals. All 

efforts were made to minimize animal suffering and to reduce the number of animals used. 

Samples of trunk blood from each mouse were collected in tubes containing sodium citrate and 

then rapidly processed for DNA analysis (see below), whereas frontal lobes were dissected, 

frozen on dry ice and stored for further analyses at -80°C. Genomic DNA from whole plasma 

was extracted using ReliaPrep™ Blood gDNA Miniprep System kit (Promega, Italy), while 

DNA from brain tissue was isolated using phenol/chloroform extraction method. Analysis of 

mice BDNF rs6265 methylation was performed with pyrosequencing, as described in humans. 

 

Quantitative Chromatin Immunoprecipitation Assay (ChIP). Given the differential 

genotype-dependent relationship between rs6265 methylation and BDNF expression, we 

performed a ChIP experiment in order to investigate whether the BDNF region containing rs6265 

can bind transcription factors and proteins in a genotype-dependent manner. We selected DNA-

binding proteins based on bioinformatic predictions and previous research, as described in the 

main text. Bioinformatics tools (www.genomatix.de) suggest how rs6265 genetic variation can 

affect binding of transcription factors so that the G(Val)/A(Met) substitution abolishes a potential 

binding site for HIF1α, BHLHB2 (also known as DEC1 or BHLHE40), and CREB while it 

creates a binding site for MITF. PBMCs were isolated from 20 healthy individuals (11 ValVal, 9 

ValMet), as previously described5. Protein bound to DNA was cross-linked by PBMCs with 1% 

formaldehyde at room temperature, stopping the reaction 10 min later with the addition of 2.5 M 

glycine to a final concentration of 125mM, followed by 5 min incubation at room temperature. 

ChIP assays were performed using the EpiQuikTM chromatin immunoprecipitation kit from 

Epigentek Group Inc. (Brooklyn, NY) starting from ~ 0,5 X 106 PBMC cells. Antibodies used for 
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Protein-DNA immunoprecipitation were: anti-HIF1α (antibody provided from Dr C. W. Pugh, 

Centre for Cellular & Molecular Physiology, University of Oxford, Oxford, United Kingdom65), 

anti-MITF and anti-GADD45B (Aviva System Biology, San Diego, CA), anti-BHLHB2/DEC1 

(Bethyl Laboratories, INC, Montgomery, TX USA), anti-CREB (Merck Millipore Headquarters , 

Billerica, MA), and normal mouse IgG as a negative control antibody. DNA from these samples 

was subjected to quantitative PCR analyses, using Power SYBR® Green PCR Master Mix (Life 

Technologies Corporation, Carlsbad, California) in a Chromo4 Real Time thermocycler 

(BIORAD). Amplification of the BDNF promoters fragment was performed using the primers: 

pBDNFf (forward) 5’-CCAAGGCAGGTTCAAGAGG-3’ and pBDNFr (reverse) 5′- 

CGAACTTTCTGGTCCTCATCC-3’ amplifying a 90 bp fragment including rs6265 SNP. The 

quantitative PCR conditions were: 95°C for 10 min followed by 40 cycles of 95°C for 15 s, 62°C 

for 1 min. All PCR signals from immunoprecipitated DNA were normalized to PCR signals from 

non-immunoprecipitated input DNA. The signals obtained by precipitation with the control IgG 

were subtracted from the signals obtained with the specific antibodies. Results are expressed as 

percentage of the input66. Calculations were performed using the average values of at least three 

independent experiments.  

 

Statistical analysis. All statistical analyses – except for fMRI - were performed in the R 

environment. We used ANOVAs in order to analyze the effect of rs6265 genotype on 

methylation and on DNA-binding of proteins and transcription factors; we used ANCOVAs 

(with age and sex as covariates) to analyze the interaction between rs6265 genotype and hOCs 

on methylation, and the relationship between rs6265 genotype, methylation and schizophrenia 

risk and diagnosis. To assess in vitro effects of the challenge with Haloperidol on rs6265 
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methylation, we performed an ANOVA with rs6265 genotype and incubation time with 

Haloperidol as independent categorical variables (0h/basal, 2h, 5h) and rs6265 methylation 

changes as dependent variable. Heritability of rs6265 methylation was estimated from the 

regression slope of offspring methylation on the average methylation of the parents67. We used 

multiple regressions in order to analyze: the interaction between rs6265 genotype, methylation 

and hOCs on WM accuracy; the interaction between rs6265 genotype and methylation on BDNF 

levels. Finally, we used Spearman correlation in order to analyze the relationship between rs6265 

methylation in PBMCs and in PFC in mice. Statistical models for the analyses are also reported 

in Supplemental file 1.  
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 Figure legends.  
 
 

Figure 1. Research design. 

 

Figure 2. Relationship between methylation of BDNF rs6265 in PBMCs and hOCs 

exposure in healthy humans. Boxplot of rs6265 methylation (T scores) as a function of hOCs 

exposure: Val/Val homozygotes (N=110) exposed to hOCs have greater methylation compared 

with ValVal not exposed, while Val/Met subjects (N=59) exposed have reduced methylation 

compared with ValMet not exposed. See text and Supplemental file 1 for statistics. 

 

Figure 3. Relationship between methylation of BDNF rs6265 in PBMCs and Working 

Memory (WM) accuracy in healthy subjects. Scatterplot of the correlations between 

methylation of rs6265 (T scores) and WM accuracy: in Val/Val subjects (N=145) increased 

methylation is associated with impaired accuracy, while in Val/Met heterozygotes (N=66) 

blunted methylation is associated with impaired accuracy (See text and Supplemental file 1 for 

statistics). 

 

Figure 4. Interaction between BDNF rs6265 genotype, methylation in PBMCs, early life 

exposure to hypoxia (hOCs), and prefrontal activity during Working Memory (WM) in 

healthy subjects. a: 3D rendering of the interaction between rs6265 genotype, methylation and 

hOCs on BOLD fMRI response in prefrontal cortex of ValVal (N=93) and ValMet (N=48) 

subjects. Color bar represents F-values. b-c: Scatterplots of the interaction in BA 46 (x= -54, y= 

24, z= 32) showing that increased methylation is associated with attenuated prefrontal activity in 
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ValVal subjects exposed to hypoxia (b), while no significant relationship emerged in ValMet 

subjects (c). d-e: Scatterplots of the interaction in BA 46 (x= -54, y= 32, z= 6) showing that 

methylation is positively associated with prefrontal activity in ValMet subjects exposed to 

hypoxia (e), while no significant relationship emerged in ValVal subjects (d). See text for 

statistics. 

 

Figure 5. BDNF rs6265 methylation in PBMCs and schizophrenia risk. a: Bargraph (mean ± 

s.e.m.) of rs6265 methylation (T scores) in healthy subjects (168 ValVal, 77 ValMet), patients 

with schizophrenia (122 ValVal, 40 ValMet), siblings  (97 ValVal, 43 ValMet), parents of 

patients (148 ValVal, 69 ValMet): in ValVal subjects, rs6265 methylation is lower in healthy 

subjects, compared with siblings, parents and patients with schizophrenia. In ValMet subjects, 

rs6265 methylation is greater in healthy subjects, compared with siblings and parents of patients, 

while it is not significantly different compared with patients. b: Bargraph (mean + s.e.m.) of the 

effect of treatment with haloperidol 1μM for 2 and 5 hours on rs6265 methylation changes in 

PBMCs of ValVal (N=11) and ValMets (N=6). See text and Supplemental file 1 for statistics. 

 

Figure 6. BDNF rs6265 methylation and gene regulation. a: Scatterplots of the correlations 

between rs6265 methylation (T scores) and Total BDNF in serum measured with ELISA (N=39: 

23 ValVal and 16 ValMet): increased methylation in PBMCs is correlated with increased 

expression in ValVal subjects and with attenuated expression in ValMet heterozygotes. b: 

Scatterplot of the correlation between methylation of rs6265 region in PBMCs and in prefrontal 

cortex in a group of transgenic mice carrying the human mutation (N=17). c: Bargraph (mean + 
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s.e.m.) of the effects of rs6265 genotype on binding of hypoxia-related proteins to the rs6265 

region (N=20: 11 ValVal and 9 ValMet). See text and Supplemental file 1 for statistics. 
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