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Abstract

A wealth of data and information on the cultivation of perennial biomass crops has been collected, but direct

comparisons between herbaceous and woody crops are rare. The main objective of this research was to compare

the biomass yield, the energy balance and the biomass quality of six perennial bioenergy crops: Populus spp.,
Robinia pseudoacacia, Salix spp., Arundo donax, Miscanthus 9 giganteus, and Panicum virgatum, grown in

two marginal environments. For giant reed and switchgrass, two levels of nitrogen fertilization were applied

annually (0–100 kg ha�1). Nitrogen fertilization did not affect biomass or energy production of giant reed; thus,

it significantly reduced the energy return on investment (EROI) (from 73 to 27). In switchgrass, nitrogen fertiliza-

tion significantly increased biomass production and the capacity of this crop to respond to water availability,

making it a favorable option when only biomass production is a target. Net energy gain (NEG) was higher for

herbaceous crops than for woody crops. In Casale, EROI calculated for poplar and willow (7, on average) was

significantly lower than that of the other crops (14, on average). In Gariga, the highest EROI was calculated for
miscanthus (98), followed by nonfertilized giant reed and switchgrass (82 and 73, respectively). Growing degree

days10 during the cropping season had no effect on biomass production in any of the studied species, although

water availability from May to August was a major factor affecting biomass yield in herbaceous crops. Overall,

herbaceous crops had the highest ranking for bioenergy production due to their high biomass yield, high net

energy gain (NEG), and biomass quality that renders them suitable to both biochemical and thermochemical

conversion. Miscanthus in particular had the highest EROI in both locations (16 and 98, in Casale and Gariga),

while giant reed had the highest NEG on the silty-loam soil of Gariga.
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Introduction

Cultivation of perennial bioenergy crops is an important

option in meeting future global energy demand (Creut-

zig et al., 2015). Over the last decade, the possibility of

cultivating bioenergy crops on marginal land, unsuit-

able for food production, has been proposed (Dauber

et al., 2012) as a possible solution to the so-called ‘food,

energy, and environment trilemma’ (Tilman et al., 2009).

A wealth of data and information on the cultivation of

perennial biomass crops has been collected in recent

years, but direct comparisons between herbaceous and

woody crops are rare on marginal soils. Field experiments

designed to directly compare the cultivation of herba-

ceous and woody bioenergy crops enable the ranking of

the same crops according to a list of potential agronomic,

economic, and environmental aspects (Table 1).

In the last years, it was shown that the cultivation of

perennial bioenergy crops combines the supply of bio-

mass for renewable energy production with a general

increase in the provision of multiple key ecosystem ser-

vices (Milner et al., 2015). Positive impacts on the provi-

sion of ecosystem services were strictly dependent on

the type of land use replaced (Holland et al., 2015) and

on the spatial allocation of the crops relative to the adja-

cent land uses (Werling et al., 2013; Bourke et al., 2014).

The integration of perennial crops into agricultural

landscapes could also promote the mitigation of ecosys-

tem disservices from annual food cropping systems, as

revealed in several studies (Powers et al., 2011; Parish

et al., 2012; Meehan et al., 2013).

Herbaceous and woody crops are considered promis-

ing carbon-neutral options because of their long-term
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soil C storage potential (Agostini et al., 2015; Chimento

et al., 2016). Perennial herbaceous (Werling et al., 2013)

and woody crops (Rowe et al., 2013) can also sustain a

variety of ecosystem functions (such as pest suppression

and pollination), promoting the creation of multifunc-

tional agricultural landscapes. Moreover, reduced N

losses (Smith et al., 2013), reduced soil erosion (Kort

et al., 1998), nutrients removal from runoff (Lee et al.,

2003), and N removal from groundwater (Ssegane et al.,

2015) have been reported for herbaceous crops, such as

Miscanthus 9 giganteus L. and Panicum virgatum L. In

general, sustainability of biomass production can be

achieved by cultivating high-yielding low-input crops

(Ercoli et al., 1999) on marginal soils (Powlson et al.,

2011).

Availability of genetic material, tested in different

pedoclimatic conditions, is relatively large for woody

crops (Cunniff et al., 2015) and ongoing breeding activi-

ties will further extend farmer options (Hallingb€ack

et al., 2015). Several Populus spp (Dillen et al., 2013;

Verlinden et al., 2013) and Salix spp clones (Rosso et al.,

2013; Amichev et al., 2014) are available to be grown

on marginal soils in short-rotation coppice. In the case

of perennial herbaceous crops, breeding of Panicum

virgatum and Miscanthus spp is ongoing (Liu et al., 2015;

Tamura et al., 2015), but the actual selection of geno-

types is limited to a number of American switchgrass

varieties and to a single genotype of Miscanthus 9

giganteus L. (Zegada-Lizarazu et al., 2010). No breeding

has been performed on giant reed and available field

data are relative to local clones that have shown very

limited genetic (Ahmad et al., 2008) or phenotypic

diversity (Amaducci & Perego, 2015).

Crop management is well established for woody

crops and switchgrass, while some adjustments are

need for miscanthus and especially for A. donax.

Reduction of establishment costs in Miscanthus 9 gigan-

teus is pursued via the selection of fertile genotypes

that can be sown (Anderson et al., 2015; Xue et al.,

2015), while this does not seem an option for A. donax

(Pilu et al., 2013). Mechanization and storage of giant

reed is still an open issue (Bentini & Martelli, 2013;

Pari et al., 2015).

Biomass yield is one of the most relevant parameters

to assess biomass crops performance, but it is strongly

depended on environmental conditions and direct com-

parisons are needed to identify the most suitable crops

for a specific condition. In general, it is reported that

Table 1 Crop ranking based on the main agronomic, environmental, and economic advantages of the cultivation of the herbaceous

and woody crops. Only review papers that dealt with at least one herbaceous and one woody crop were considered

Herbaceous crops Woody crops

Giant reed Switchgrass Miscanthus Poplar Willow Black locust

Genotype availability + ++ + +++ +++ +++

Crop management* ++† ++† ++† +++† +++† ?

High yielding +++‡ ++‡ +++‡ ++‡ ++‡ ?

Multipurpose ++ ++ ++ + + +

Nutrient use efficiency +++† +++† +++† +++† +++† +++†

Drought resistance +§ ++/+++§ ++§ !!§ !!§ +++§

Flood tolerance ++§ ++§ ++§ !!§ !!§ +§

Heat tolerance +++§ ++§ ++§ !!§ !!§ ++§

Energy balance +++¶ +++¶ +++¶ ++¶ ++¶ ++¶

Soil C sequestration +++** +++** +++** ++** ++** ++**

Biodiversity ++†† ++†† ++†† ++†† ++†† ++††

Water quality +++‡‡ +++‡‡ +++‡‡ +++‡‡ +++‡‡ +++‡‡

Invasiveness +++† +† +† +† +† ?

Economic life span +† +++† +++† ++† ++† ++†

The symbols ‘+’, ‘++’, and ‘+++’ indicate low, moderate, and high advantage, respectively; ‘?’ stands for not available information,

while ‘!!’ varies on the basis of the different crops and genotype.

*The ranking is based on the status of the current farming, harvesting, and processing technologies (Zegada-Lizarazu et al., 2010).

†Zegada-Lizarazu et al. (2010).

‡Laurent et al. (2015).

§Quinn et al. (2015).

¶Rettenmaier et al. (2010).

**Agostini et al. (2015).

††Dauber et al. (2010) (reported only the impact at field scale).

‡‡Ssegane et al. (2015).
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perennial herbaceous crops have a greater biomass pro-

duction compared to woody crops (Nassi o Di Nasso

et al., 2010; Rettenmaier et al., 2010; Laurent et al., 2015).

As biomass yield has a significant impact on bioenergy

yield and on greenhouse gas (GHG) savings, herba-

ceous crops seem to have a better environmental impact

than woody crops (Rettenmaier et al., 2010; Creutzig

et al., 2015).

The environmental and productive performance of a

crop is well depicted by its efficiency in using nitrogen

and water. It is reported nitrogen fertilization is neces-

sary to support high biomass production in woody

crops (Heilman & Norby, 1998; Kauter et al., 2003),

while the effect of nitrogen is limited or not significant

(Heaton et al., 2004a) in herbaceous crops. The deeper

root system of perennial herbaceous crops compared to

woody crops (Chimento & Amaducci, 2015) can explain

the higher productivity of herbaceous crops in water-

limited conditions (Monti & Zatta, 2009a).

Relatively to biomass quality, low lignin content and

high digestibility render herbaceous biomass crops suit-

able for second-generation biofuel production (Monti

et al., 2015), while energy application of woody crops is

generally limited to thermochemical conversion (Demir-

bas, 2004).

Previous work on biomass production on marginal

lands has been based primarily on the landscape’s suit-

ability (Gopalakrishnan et al., 2011; Harvolk et al., 2014),

while research to directly compare the performance of

herbaceous and woody crops is very limited. Direct

comparisons are useful to reliably characterize different

biomass crops for their yield potential (Laurent et al.,

2015). More comparative multispecies field trials and

monitoring are needed within a range of climatic and

soil conditions to fully understand the energy efficiency

of various bioenergy cropping systems. Resolving the

crop ranking from direct comparison of herbaceous and

woody crops is critical to identify and promote the

cropping systems able to provide the greatest energy

efficiency for a given marginal environment.

In this study, the main objective was to compare the

biomass yield, the energy balance, and the biomass

quality of six perennial bioenergy crops: three woody

crops Populus spp. (poplar), Robinia pseudoacacia (black

locust), and Salix spp. (willow) – and three herbaceous

crops – Arundo donax (giant reed), Miscanthus 9 gigan-

teus (miscanthus), and Panicum virgatum (switchgrass),

grown in two marginal environments within the agri-

cultural landscape of the Po Valley (northern Italy),

where two multispecies field trials (‘Casale’ and ‘Gar-

iga’) were set up. The Gariga trial has been already

investigated for establishing the crop ranking in soil C

storage (Chimento et al., 2016) and belowground bio-

mass (Chimento & Amaducci, 2015).

Materials and methods

Study site and experimental design

Two field trials were established in April 2007 in the Po Valley,

the first at Gariga di Podenzano, Italy (44°58048″N, 9°41009″E),
on a silt loam soil classified as chromic luvisols (FAO) with

low carbonate content and neutral pH and the second at Casale

Monferrato, Italy (45°080570’N, 8°300560’E), on a sandy soil, clas-

sified as fluvisol. Prior to planting, the experimental site had

hosted a maize monoculture for 30 years in Gariga, and in

Casale, the site hosted poplar stands for about 30 years and set

aside for the last five years prior to the experiment. Both loca-

tions are to be regarded as marginal land for their soil quality

and position within the agricultural landscape. The soil in

Casale has an extremely high content of sand (>90%) and it is

on the flood plain of the Po River; in Gariga, the soil is com-

pacted, silty with a low content of organic carbon (8 g kg�1

soil), and the experimental site is located along a main road

where sprinkle irrigation is not possible. Soil characteristics are

presented in Table S1.

At both sites, the experimental layout is a randomized com-

plete block design with three blocks and a single plot size of

450 m2 (15 9 30 m), to compare six biomass crops; three herba-

ceous, giant reed (A. donax L.), switchgrass (P. virgatum), and

miscanthus (Miscanthus 9 giganteus), and three woody bioen-

ergy crops, poplar (Populus spp), willow (Salix spp), and black

locust (R. pseudoacacia). The plots of the woody crops were split

in four subplots, each hosting a different clone, so that for each

woody crop, the same four clones were compared at each loca-

tion. Data relative to the comparison among clones will not be

presented in this study, and the biomass yield data of the most

productive clones for each crop in each location will be used

for the comparison among crops. The most productive clones

were Baldo (Populus deltoides) and Orion (Populus x canadensis),

S76-008 and Levante (hybrids of Salix babylonica L.), in Casale

and Gariga, respectively, while Calabria (ecotype from southern

Italy) was the most productive black locust provenance at both

sites.

At both locations, planting was carried out after typical soil

preparation (30 cm deep ploughing followed by 2 passages of

rotary tiller), using identical planting densities and propagating

material. Giant reed was planted using portion of rhizomes (on

average 300 g each) from a local ecotype (the same close at

each location), at 1 rhizome per m�2. Miscanthus was planted

with rhizomes (on average 50 g each) imported from UK

(ADAS Ltd, Ely, Cambridgeshire) at 1.5 rhizomes per m�2.

Switchgrass, var Alamo, was sown with an experimental

mechanical seed drill (Vignoli) using 0.25 g of pure live seeds

(pls) per m�2. Inter-row distance was 1.4 m in giant reed and

miscanthus and 0.4 m in switchgrass.

Clones of poplar and willow and provenances of black locust

were provided by CREA-PLF (Casale Monferrato – Italy). Stem

cuttings (for poplar and willow) and 1-year seedlings (for back

locust) were transplanted manually in rows with an interplant

distance of 0.6 m and an inter-row distance of 2.5 m

(0.67 plants m�2).

For all crops, biomass yield was estimated by weighing all

the plants harvested on an area of approximately 10 m2 in each

© 2016 The Authors. Global Change Biology Bioenergy Published by John Wiley & Sons Ltd., doi: 10.1111/gcbb.12341
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plot. Dry matter content was estimated gravimetrically on a

biomass subsample (approximately 1 kg) weighted at harvest

and after 24 h at 105 °C.

To assess the effect of environmental factors on biomass pro-

duction of the herbaceous crops, growing degree days10 and

water input were estimated from June to September of each

year in both locations in agreement with Triana et al. (2015),

who recently found in a 2-year lysimeter experiment in central

Italy that giant reed and miscanthus had the highest water

requirements from June to September. Growing degree days10
were calculated for each year by summing the daily difference

between mean air temperature and the base temperature,

which is 10 °C for miscanthus and switchgrass (Arundale et al.,

2015); the same value of base temperature was assumed for

giant reed that is regarded as a macrothermal crop (Cappelli

et al., 2015). When daily mean temperature was lower than

10 °C, then growing degree day10 was null. A linear regression

was performed to test the response of herbaceous biomass pro-

duction to the water input (irrigation + rainfall) calculated from

June to September. As the regression was found to be not sig-

nificant (r2 = 0.01) for all the crops in both locations, the regres-

sion was then executed on biomass production and the water

input calculated from May to August because May rainfall

variability between years was higher than that of September

(coefficient of variation = 75% and 49%, respectively). The lin-

ear regression was executed between herbaceous biomass pro-

duction and growing degree days10 from May to August.

In addition to the abovementioned common features of the

experimental design, there were some management factors that

differed between the two sites. These are listed as follows.

In Casale, from 2007 to 2012, two irrigations were applied

annually to both herbaceous and woody crops from late May

to early August according to the weather conditions. The

annual amount of irrigation water was 70 mm (35 mm of water

per irrigation event).

In Gariga, no irrigation was applied.

In Gariga, nitrogen fertilization was carried out on a selec-

tion of plots at a rate of 100 kg ha�1 of nitrogen using ammo-

nium nitrate. Nitrogen was applied (i) to the whole plot of

woody crops at the beginning of growth in the spring after the

harvest (in 2009, 2011, 2014), and (ii) to one half of each plot of

giant reed and switchgrass at the beginning of growth in the

spring after the harvest (every year excluding 2007, the year of

establishment) in order to study the response of biomass pro-

duction to nitrogen fertilization. In Gariga, the effect of nitro-

gen fertilization was assessed only on giant reed and

switchgrass because the plant stand for these crops was uni-

form and it was possible to split the plot into two subplots to

apply the nitrogen and no-nitrogen treatment; miscanthus

plant establishment was not uniform enough for the same

treatment to be applied.

In Casale, nitrogen fertilization was never provided to any

crop in order to simulate a condition of low-input cropping.

Harvesting was carried out every year at the end of winter

for the herbaceous crops, with the exception of Gariga where

miscanthus was not harvested at the end of the first year due

to the very limited biomass production (estimated

<1 Mg ha�1).

In Casale, woody crops were harvested at the end of year 2,

4, and 6.

In Gariga, woody crops were harvested at the end of year 2,

4, and 7. It was decided to postpone the third harvesting to

year 7 for the limited plant growth achieved as a consequence

of the extreme drought of 2012.

In Gariga, to compare qualitative characteristics of herba-

ceous and woody crops, cellulose, hemicellulose, lignin, and

ash content were determined on biomass samples collected at

harvesting in 2013. The analysis was carried out using the

AnkomII Fiber Analyzer (Ankom Technology Corporation,

Fairport, NY, USA) and was corrected for the residual ash con-

tent, following the procedure described in Gallo et al. (2013).

Energy balance: inputs and outputs determination

The energy balance for biomass production was calculated

using the data collected during the field trials in Casale. For

each crop, the energy potentially delivered by combustion of

lignocellulosic material (gross energy yield) was estimated con-

sidering the dry aboveground biomass production and its

lower heating value, LHV (McKendry, 2002). The LHV for each

crop was measured by IKA C200 calorimeter at CREA-PLF of

Casale Monferrato (Alessandria, northern Italy). The energy

required for crop establishment (soil preparation and planting),

cultivation (control of weeds, fertilization and irrigation), and

harvest of lignocellulosic material was calculated considering

number of operations, time required per operation (h ha�1),

type of machines, relative power (kW), and diesel oil consump-

tion (l h�1).

The analysis accounted for direct and indirect energy costs

(H€ulsbergen et al., 2001): ‘Direct costs’ included diesel oil con-

sumed for each operation, while the consumption of lubricants

was neglected. It was assumed that 1 l of diesel oil contains

35.9 MJ (Dalgaard et al., 2001). The ‘indirect costs’ were related

to the manufacture of fertilizers, pesticides and herbicides,

machines and equipment, and propagation material for plant-

ing. Production of fertilizers requires a very high energetic cost,

especially nitrogen fertilizers: We assumed an energetic cost of

73.3, 13.4, and 9.2 MJ kg�1 for the production of nitrogen,

phosphorus, and potassium fertilizers, respectively (Manzone

& Calvo, 2016). The production of other chemical compounds

like pesticides and herbicides requires, respectively, 53 and

91 MJ kg�1 (Green & McCulloch, 1976; Green et al., 1987). The

energetic costs for the construction of machines were derived

from Fiala & Bacenetti (2012): 92 MJ kg�1 in case of tractor and

forager and 69 MJ kg�1 in case of other equipment (e.g., header

for harvest). These values were then divided by the life span

(i.e., 800 h per year) and the effective annual operation time

per hectare. In this analysis, life span of the machines was

assumed to be 10 years.

It was considered that, for sprinkle irrigation delivering

about 350 m3 ha�1 of water, an engine of 100 kW works for

6 h to pump water from a five meters deep well and consumes

74 l of diesel fuel, corresponding to 2657 MJ (Lal, 2004). The

energetic cost relative to propagating material was

0.3 MJ tree�1 (Dillen et al., 2013) for the woody crops (i.e., cut-

ting of poplar and willow or one-year-old seedlings of black

© 2016 The Authors. Global Change Biology Bioenergy Published by John Wiley & Sons Ltd., doi: 10.1111/gcbb.12341
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locust). Energy costs for propagating material in herbaceous

crops are usually considered as negligible (Lettens et al., 2003;

Angelini et al., 2005); in this work, we assumed an energy cost

of 44 MJ kg�1 for producing switchgrass seeds (Schmer et al.,

2008) and an energy cost of 0.2 and 0.15 MJ per rhizome for

giant reed and miscanthus, respectively (Ecoinvent, 2014).

The total costs of woody crops harvesting varied according

to annual biomass production: An unit energy cost of

0.23 GJ t�1 of dry matter was assumed for woody crops col-

lected by self-propelled combine forager harvester (Claas

Jaguar 880) equipped with the header GBE2 (Fiala & Bacenetti,

2012). The same cost was assumed for the harvesting of mis-

canthus and giant reed that can be carried out with a forage

harvester. Switchgrass was harvested by shredding and baling

with a direct cost of 5 l of diesel oil per hour as measured in

Casale. Time requested for harvest varied on the basis of bio-

mass production.

Table S2 reports energy costs of planting, management, and

harvesting (direct and indirect costs) for each crop in both

locations.

The estimation of energy costs (input) and gross energy

yield (output) enable the net energy gain (input–output, NEG)

and the energy return on investment (EROI) index to be calcu-

lated for both herbaceous and woody crops. NEG is an energy

metric and is defined as the gained difference in energy

between the energy content of the biomass at the farm gate and

the total energy invested to produce it (Hill et al., 2006).

EROI is dimensionless and quantifies the efficiency of differ-

ent energy technologies and it is the ratio between the amount

of energy produced (expected return) and the nonrenewable

primary energy needed to produce it (investment) (Hall et al.,

2009).

Statistical analysis

Crops, year, and location effects on biomass production

were tested using a repeated-measures mixed model in a

randomized complete block design using IBM – SPSS 21

(IBM Corporation, Armonk, New York, US). Crop, year, and

location were included in the design as fixed factors; year

was also specified as the repeated-measures term. Year was

taken as a fixed factor as it represented the stand age of the

perennial crops. First, the mixed model was applied solely

to data of herbaceous crops collected from annual harvests

from 2007 to 2014. Then, the model was run on the biomass

data collected for the woody crops at three harvesting times:

in 2008, 2010, and 2012 in Casale and in 2008, 2010, and

2013 in Gariga.

The mixed model was used to examine differences in bio-

mass production between woody and herbaceous crops. With

this regard, annual biomass production was estimated for each

woody crop dividing by two the production of a single harvest,

with the exception of the third harvest in Gariga that was

divided by three to estimate the average annual production

from 2011 to 2013. As the effect of location overwhelmed

the crop effect on both herbaceous and woody crops

production, the mixed model was performed for the two

locations independently.

A repeated-measures mixed model was applied to the data

of giant reed and switchgrass collected under two levels of

nitrogen fertilization from 2008 to 2014 in Gariga. As crop over-

whelmed the effect of nitrogen fertilization, the mixed model

was performed on giant reed and switchgrass independently.

A two-way ANOVA model was applied to data of NEG and

EROI index estimated over the whole experimental period in

order to find differences between crops and locations.

A one-way ANOVA was run to assess changes in cellulose,

hemicellulose, lignin, and ash content between crops using

data collected in 2013 in Gariga.

Comparison of means was performed by post hoc Tukey’s

HSD test (Tukey, 1953) when main effects or interaction of fac-

tors were found significant according to the mixed model or to

the univariate ANOVA.

A linear regression analysis was carried out to study the

relationship between biomass production and environmental

factors, namely growing degree days10 and water input.

Results

In the present study, that reports on the first eight years

(2007–2014) after establishment of six perennial bioen-

ergy crops, a wide range of rainfall variability was expe-

rienced in the two field trials (Table S3). The monthly

distribution of rainfall in spring and summer varied

between years. In particular, a wide range of rainfall

was encountered both in Casale and in Gariga in May

(13–173 and 3–158 mm, respectively), in June (7–153
and 11–150 mm, respectively), in July (3–106 and 0–
76 mm, respectively), and in August (8–139 mm and 0–
68 mm, respectively). The mean coefficient of variation

of monthly rainfall from May to August across years

was 73% and 86% in Casale and in Gariga, respectively.

Annual rainfall ranged from 534 mm (2007) to 1053 mm

(2014) in Casale, and 548 mm (2012) from to 1070 mm

(2010) in Gariga; the mean annual rainfall was 818 and

757 mm in Casale and in Gariga, respectively.

Biomass production

When using the mixed model to examine the effects of

herbaceous crops, location, and year, biomass produc-

tion was significantly higher in giant reed and miscant-

hus (14.8 and 13.3 Mg ha�1 yr�1, respectively) than in

switchgrass (10.1 Mg ha�1 yr�1) across years and loca-

tions (Table 2A). As the two-way interaction between

years and locations was significant, each location was

analyzed independently. In Casale, biomass production

varied significantly between crops and years (Table 2B).

On average, biomass yield measured at the year of

establishment was lower than that achieved in subse-

quent years, considering that after the second year no

biomass difference was found between years, it can be

assumed that all herbaceous crops reached their maxi-

© 2016 The Authors. Global Change Biology Bioenergy Published by John Wiley & Sons Ltd., doi: 10.1111/gcbb.12341
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mum yield from the second year (Fig. 1). On average of

the first eight-year period, a significant difference in bio-

mass production was found between switchgrass and

the two highest yielding crops, miscanthus and giant

reed (Fig. 1). The two-way interaction between crops

and year was significant in Gariga (Table 2B). While

switchgrass and miscanthus reached its maximum bio-

mass yield already in the second year after establish-

ment, giant reed increased its biomass yield until the

third year (Fig. 2). After having reached their maximum

yield, miscanthus and switchgrass biomass did not vary

significantly across years, while biomass fluctuation was

observed in giant reed (Fig. 2).

The analysis of the effect of nitrogen on biomass pro-

duction showed a different response between giant reed

and switchgrass (Table 3). In particular, nitrogen fertil-

ization affected significantly switchgrass biomass pro-

duction that increased by 16% in the fertilized plots,

from 12 to 13.9 Mg ha�1 yr�1 (P < 0.001), whereas giant

reed biomass production was not significantly affected

by nitrogen fertilization.

No significant relationship was found between bio-

mass production and growing degree days10 calculated

from May to August (r2 = 0.01, P = 0.68) and from June

to September (r2 = 0.01, P = 0.78) in both location. The

linear regression performed to test the response of

herbaceous biomass production to the water input (irri-

gation + rainfall) calculated from June to September was

found not significant (r2 = 0.02, P = 0.62). The relation-

ship between biomass production and summer water

input (i.e., the sum of rainfall from June to September

and irrigation, when performed) was significant only

for miscanthus in Casale (r2 = 0.6, P < 0.10). A signifi-

cant relationship was found between the water input

calculated from May to August (adding irrigation, when

performed) and biomass production of miscanthus in

both locations, and in giant reed in Gariga with and

without nitrogen fertilization. The response to the water

input calculated from May to August was significant in

switchgrass only in the fertilized plots (Table 4).

The annual biomass production was estimated for

each woody crop dividing by two the production of a

single harvest, which was collected in 2008, 2010, and

2012 in Casale, and in 2008 and 2010, in Gariga, for last

harvest in Gariga (2013) biomass yield was divided by

Table 2 (A) Mixed-model analysis of variance of the fixed

effects of crop, year, and location on data of herbaceous dry

biomass production collected in Casale and in Gariga from

2007 to 2014. (B) Mixed-model analysis of variance of the fixed

effect of crops and year on dry biomass production after split-

ting the data set by location

Source Numerator df F-value P-value

A

Crop 2 13.17 0.000

Year 7 80.98 0.000

Location 1 21.81 0.000

Block 2 3.72 0.084

Year 9 Crop 14 1.43 0.218

Year 9 Location 7 9.29 0.000

Year 9 Crop 9 Location 15 1.83 0.172

B

Casale

Crop 2 5.70 0.000

Year 7 9.16 0.001

Block 2 10.86 0.000

Year 9 Crop 14 0.77 0.682

Gariga

Crop 2 28.44 0.000

Year 7 118.04 0.000

Block 2 4.02 0.118

Year 9 Crop 13 6.08 0.002
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Fig. 1 Biomass production of herbaceous crops observed in Casale from 2007 to 2014 (left) and mean biomass production of giant

reed, miscanthus, and switchgrass across years (right). Letters indicate Tukey’s least mean significant difference between years (left)

and crops (right). *indicates the year of full crops establishment.
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three. The annual biomass production of the woody

crops was significantly lower in Casale

(7.1 Mg ha�1 yr�1) than in Gariga (10 Mg ha�1 yr�1,

P < 0.001). When each location is examined indepen-

dently, the annual production estimated from the first

harvest was lower (4.3 Mg ha�1 yr�1) than that from

the second and the third harvests (7.7 and

9.2 Mg ha�1 yr�1, P < 0.05) in Casale; similarly, in Gar-

iga, annual production estimated from the three har-

vests was 3.3, 12.9, and 12.2 Mg ha�1 yr�1, respectively.

No significant difference of biomass production among

crops was found in Casale, although black locust dou-

bled the annual production of willow in the third har-

vest (Fig. 3). Apparently, the high variability between

blocks in Casale overwhelmed the variability between

crops (coefficient of variation = 78%, 55%, 1.38%, in

poplar, black locust, and willow, respectively). The vari-

ability between blocks was likely due to a different con-

tent of coarse sand (12%, 59%, and 12% in block 1, 2,

and 3, respectively) in the upper 40 cm of soil. In

Gariga, the significant interaction between crops and

harvest is explained by the lowest biomass production

of black locust that was observed in 2010 (second har-
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Table 3 Mixed-model analysis of variance of the fixed effect

of nitrogen and year on dry biomass production of giant reed

and switchgrass in Gariga from 2008 to 2014

Source Numerator df F-value P-value

Giant reed

Year 7 83.42 0.000

Nitrogen 1 0.21 0.655

Block 2 1.61 0.289

Year 9 Nitrogen 6 1.61 0.265

Switchgrass

Year 7 149.96 0.000

Nitrogen 1 11.68 0.003

Block 2 1.77 0.351

Year 9 Nitrogen 6 0.86 0.549

Table 4 Linear regression between annual herbaceous pro-

duction and water input observed in Casale (rainfall + irriga-

tion) and in Gariga (irrigation) from June to August,

considering the period after full crop establishment (i.e., 2010–

2014)

Crops

Casale Gariga

Rainfall (May–

August) +

Irrigation

Rainfall (May–

August)

r2 b r2 B

Giant Reed 0.30 ns 0.63* 52.7

Miscanthus 0.6* 25.4 0.70* 31.3

Switchgrass 0.07 ns 0.40 ns

Giant Reed 100N 0.80** 74.1

Switchgrass 100N 0.94*** 20.8

b is the biomass increasing rate for the unit water input

(kg mm�1). ‘ns’, not significant.

*Significant the 0.10 level.

**Significant the 0.05 level.

***Significant the 0.01 level.
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vest). Thus, only the biomass production of black locust

increased significantly from the second to the third har-

vest despite the drought experienced in the summer of

2012 (Table S3).

Comparing the mean annual production of herba-

ceous and woody crops, no significant difference was

found in Casale. In Gariga, giant reed production

doubled that of black locust and it was 1.5 times higher

than the production of switchgrass, willow, and poplar;

miscanthus yielded significantly less than giant reed

with a decrease of 26% (Fig. 4).

Biomass quality

The qualitative analysis carried out on dry samples col-

lected in 2013 showed that (i) the cellulose and ash con-

tent of miscanthus was comparable to that of the woody

crops, (ii) the hemicellulose content of switchgrass was

higher than that of the other crops, (iii) the lignin con-

tent was lowest in giant reed, and (iv) the ash content

was highest in giant reed (Table 5).

The low heating value (LHV) was different between

crops (P < 0.05). Giant reed LHV was significantly

lower than that of the other crops (16.7 MJ kg�1) that

was 17.8 MJ kg�1 for miscanthus and switchgrass, and

on average 18.8 MJ kg�1 for the woody crops. The dif-

ferences in LHV between herbaceous and woody crops

were likely due to the different biomass composition,

namely lignin content.

Energy balance

A simplified energy balance was calculated to compare

NEG and EROI at the farm gate for the six bioenergy

crops in both locations. Energy input and output, and in

turn NEG and EROI, were different between crops and

locations and varied according to biomass production,

low heating value (LHV), and energy costs due to plant-

ing, and management (Table S2).

In both locations, the energy required for woody

crops planting was 1.4 times higher than that of

herbaceous crops because of the higher fossil fuel

consumption, which was on average 5.8 and

4.7 GJ ha�1 yr�1 for woody and herbaceous crops,

respectively. Among woody crops, black locust

required the lowest management energy input

because nitrogen fertilization was not carried out. In

Casale, the highest cost of woody crops production

was required for management operations (mainly irri-

gation, 79%), while harvest and planting required

13% and 8% of the total energy costs, respectively.

Poplar and willow required the highest energy input

among the six studied crops in Casale (Table S2).

Considering the energy costs associated with herba-

ceous crops cultivation, the energy required for man-

agement was the highest (49.7 GJ ha�1). Giant reed

had higher harvest costs than miscanthus and switch-

grass due to the higher biomass production.

In Gariga, the highest proportion of energy costs was

allocated to harvesting in the unfertilized herbaceous

crops (77%) and to management (68%) in the fertilized

crops due to the application of nitrogen fertilizer.

Among the studied crops in Gariga, the highest energy

costs were calculated for fertilized giant reed and

switchgrass cultivation.

Direct and indirect energy costs of harvesting were

higher in herbaceous than in woody crops (Table S2), as

a consequence of the highest harvesting frequency (ev-

ery year) and biomass production of the herbaceous

crops.
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Variation in NEG and EROI was mainly driven by

the large differences in biomass production between

crops and locations (Fig. 5).

With regard to energy output, miscanthus and black

locust had the highest value in Casale (Fig. 5). NEG

calculated in Casale and Gariga was higher for herba-

ceous crops (average value 903 and 1627 GJ ha�1,

respectively) than for woody crops (727 and

1244 GJ ha�1).

Although differences in NEG between crops were not

significant in Casale, the NEG of miscanthus, giant reed,

and black locust was 2.3 times higher than that of wil-

low. Average NEG of crops in Casale was 2 times lower

than that observed in Gariga where giant reed NEG

was 1.5 times higher than that calculated for the other

crops. In Gariga, fertilized and unfertilized giant reed

had similar energy output (1985 and 1971 GJ ha�1,

respectively) and NEG (1943 and 1903 GJ ha�1, respec-

tively) despite the different energy input costs (82 and

28 GJ ha�1, respectively). In switchgrass, nitrogen fertil-

ization induced a significant increase in energy output

(from 1333 to 1506 GJ ha�1, respectively) and a not

significant increase in NEG (from 1318 to 1430 GJ ha�1,

respectively).

Table 5 Composition (%) of the studied crops biomass harvested in 2013 after senescence in Gariga

F-value Black locust Poplar Willow Giant Reed Miscanthus Switchgrass

Cellulose 23.5*** 52.2 a 53.6 a 54.6 a 42.6 b 50.0 a 42.4 b

Hemicellulose 112.3*** 18.1 c 18.6 c 19.1 c 28.7 b 30.2 b 36.0 a

Lignin 33.9*** 16.9 a 15.9 ab 13.3 abc 7.2 d 11.5 bcd 9.6 cd

Ash 100.8*** 1.7 c 2.1 c 2.1 c 7.5 a 1.7 c 2.9 b

*** is significant of 0.01 level.
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As expected, the variation of energy input due to

nitrogen fertilization produced a larger variation of

EROI than of NEG. In giant reed, when the input

increased by 3 times (from 28 to 82 GJ ha�1) due to fer-

tilization, NEG decreased by 2% (P = 0.99), whereas

EROI by 2.7 times (P < 0.001). In switchgrass, when

input increased by 5 times (from 15 to 76 GJ ha�1) due

to fertilization, NEG increased by 8% (P = 0.11),

whereas EROI decreased by 3.6 times (P < 0.001).

The mean EROI index estimated for Casale was 4 times

lower than that of Gariga because of the lower biomass

production and the higher energy costs due to irrigation

(Table S2). Miscanthus EROI index was the highest both

in Casale and in Gariga. Herbaceous crops had higher

EROI than woody crops in Gariga, while black locust had

a similar EROI index to miscanthus in Casale.

Discussion

In this study, a comparison of biomass production of six

perennial bioenergy crops over 8 years in two different

locations is presented, and for the first time, a direct

comparison between 3 herbaceous and 3 woody bio-

mass crops cultivated in the same experimental condi-

tions is discussed.

On average, herbaceous crops had higher biomass

yield than woody crops in both locations. This is in

agreement with the ranking of energy crops on the basis

of a meta-analysis carried out by Laurent et al. (2015) on

the yield data from 28 published papers.

The most and the least productive crops were mis-

canthus and willow in Casale and giant reed and black

locust in Gariga (Fig. 4). To compare our results with

the data reported in literature, medians of pooled bio-

mass data were plotted over the boxplot chart of the

dry biomass yield shown in Laurent et al. (2015). The

yield levels reported in our study are consistent with

those presented in the meta-analysis, with the best

agreement being found for miscanthus and switchgrass

(Fig. 6), for which a wide set of data from different

environments was available. Giant reed, while showing

a relatively high yield in both locations, falls within the

1st quartile of literature data (Laurent et al., 2015). This

can be explained by the marginal nature of both loca-

tions in this study, and by the fact that most of the very

high annual yields reported for giant reed

(>30 Mg ha�1 yr�1) were obtained in the optimal, often

irrigated, conditions of the center and south of Italy,

where plant growth is extended thanks to the relatively

high temperature registered in autumn and winter

(Scordia et al., 2014). It is interesting to note (Fig. 6) the

very different performances of willow in Gariga, where

it ranked across the 2nd and 3rd percentiles, and in

Casale, where it equaled the lowest yield reported in lit-

erature (Laurent et al., 2015). Willow is well adapted to

environments with high water availability and soil with

high water holding capacity (Dimitriou et al., 2011); it

therefore found suitable conditions in the silty soil of

Gariga, where after a slow establishment (1st harvest

Fig. 3), it had a relatively high productivity (Abraham-

son et al., 2002; DEFRA, 2002). On the contrary, in the

sandy soil of Casale, willow had very low yields in the

phase of establishment (1st harvest, Fig. 3) and at full

production (2nd and 3rd harvests). The marked
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Fig. 6 Comparison between median biomass production of the six crops observed in this study across year (2007-2014) and the box-

plot of the dry biomass production reported by Laurent et al. (2015) for giant reed, miscanthus, willow, switchgrass, and poplar.
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decrease in production at the 3rd harvest was proba-

bly a consequence of plant mortality (plant density

was 7500 plants ha�1 at establishment and reduced to

4500 plants ha�1 at the 3rd harvest). Despite the

sandy soil and low water availability in Casale, the

median value of poplar biomass was very similar to

that found in literature (Laurent et al., 2015), which

confirms the tolerance of poplar genotypes belonging

to the P. deltoides crops to environments with coarse

soils and periods of drought (Bergante et al., 2010). In

the silty-loam soil of Gariga, poplar found ideal con-

ditions, reaching the highest yields found in literature

(Fig. 6).

Limited information on the productivity of black

locust as a bioenergy crop is present in literature and

no direct comparison with other bioenergy crops is

reported; for this reason, black locust was not included

in the meta-analysis performed by Laurent et al. (2015).

Straker et al. (2015), in a recent review on black locust

as a bioenergy crop, reported an average biomass pro-

duction of 10 Mg h�1 yr�1 in Italy, which is in line

with the data presented in this study

(10.6 Mg h�1 yr�1). Interestingly, black locust had a

very similar performance in Gariga and Casale, which

denotes yield stability. Black locust is considered as

being particularly adapted to marginal coarse (light)-

textured soil, while it is sensitive to poorly drained or

compact plastic soils (Straker et al., 2015). The lower

yield of black locust in the first period of growth, in

comparison with the other woody crops, was probably

the consequence of its difficult establishment in the

compact silty-loam soil of Gariga. In the 3rd period,

when mean summer rainfall (91 mm cumulative rain-

fall from June to August) was lower than in the previ-

ous periods (146 mm 1st period and 120 mm 2nd

period), black locust reached the same level of produc-

tion of poplar and willow (Fig. 3).

It is apparent that water availability (as a function of

rainfall/irrigation and soil water holding capacity) was

one of the major factors affecting biomass yield in this

study and in several others (e.g., Heaton et al., 2004a;

Arundale et al., 2014). However, in this study, it was

difficult to find a clear relationship between yield of

woody crops and water availability, because plants

were harvested every two years (three in the 3rd har-

vest in Gariga) and any environmental effect was there-

fore spread over the whole growing period. Moreover,

considering that in the 1st period biomass yield was

limited due to crop establishment, only data from two

harvests could be used to study the relationship

between environmental parameters and woody crop

yield. For this reason, the relationship between agro-

nomic variables and crop yield is only discussed for the

herbaceous crops and more in detail for the trial carried

out in Gariga where nitrogen was applied (on giant

reed and switchgrass).

Biomass production for none of the herbaceous crops

(in Casale or Gariga) was affected by growing degree

days10, as already shown by Heaton et al. (2004a) for mis-

canthus and switchgrass. On the contrary, a significant

relationship was found between water input calculated

from May to August and miscanthus biomass produc-

tion in both locations, and in giant reed and fertilized

switchgrass in Gariga (Table 4). Considering the period

June–September, when giant reed and miscanthus evap-

otranspiration is highest (Triana et al., 2015), the relation-

ship between biomass production and water input was

significant only for miscanthus in Casale. In the fine-tex-

tured soil of Gariga, all herbaceous crops were therefore

affected by water input more in late spring than in

September, at the end of the growing season.

Miscanthus confirmed to have a stronger response to

water than switchgrass as previously reported by Hea-

ton et al. (2004a). Biomass production of giant reed was

affected by water availability only in Gariga; in this site

and on the same experiment, the root system of the six

studied crops was characterized by Chimento & Ama-

ducci (2015) and giant reed root biomass was 2 times

lower than that of switchgrass. It can therefore be

assumed that having a lower root biomass was a factor

in the higher sensitivity of giant reed to water availabil-

ity than switchgrass. Switchgrass biomass production

was highly positively related to water availability only

when nitrogen fertilization occurred; the lack of

response to water availability in the nonfertilized plots

indicates that nitrogen was the limiting production fac-

tor and confirms the sensitivity of switchgrass to nitro-

gen availability (Table 3) (Heaton et al., 2004a). The lack

of significant response of giant reed to nitrogen fertiliza-

tion can be related to the translocation of nutrients from

the leaves and the stems to the rhizomes, which takes

place in giant reed and miscanthus at the end of the

growing season (Heaton et al., 2004a; Cosentino et al.,

2014).

The trend of biomass production in the first 8 years

after planting, excluding the initial increase during

establishment, did not show any significant decline in

either Casale or Gariga for any of the herbaceous crops

(Figs 1 and 2). Gauder et al. (2012) also reported mis-

canthus yield variability between years but did not

found any decline in a 14-year experiment in Germany.

Our result is also in agreement with Lesur et al. (2013)

who reported maximum yields of miscanthus reached

after 6–13 years in long-term experiments in 16 loca-

tions in Europe. As reported by Lesur et al. (2013), also

Clifton-Brown et al. (2007) and Christian et al. (2008)

found a miscanthus yield decline after year 10 and 11,

respectively. Conversely, the result obtained in the pre-

© 2016 The Authors. Global Change Biology Bioenergy Published by John Wiley & Sons Ltd., doi: 10.1111/gcbb.12341
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sent study in contrast to the data reported by Arundale

et al. (2014) for miscanthus production in the United

States, while it is in agreement with most of the experi-

ments carried out in Europe (Heaton et al., 2004b). As

highlighted by Arundale et al. (2014), the yield decline

of miscanthus after the 5th - 6th year of stand age might

be a consequence of the nutrient depletion relative to

the very high biomass yield obtained in their trial, in

contrast to the lower biomass yields reported in this

study.

To support the choice of the most suitable biomass

crops for a specific environment and end use destina-

tion, besides biomass yield, biomass quality should also

be considered. Data on cellulose, hemicellulose, lignin,

and ash content presented in this study (Table 5) are

relative to one year (2013) and one location (Gariga).

The fact that the composition was analyzed in one

growing season and in one location does not affect the

reliability of the results as reported by Arundale et al.

(2015), who found that there was minimal variation in

the composition of miscanthus samples across location,

sampling times, and fertilization treatments. The com-

position values measured in this study are in agreement

with those reported in literature for the herbaceous

(Arundale et al., 2015; Mohammed et al., 2015) and for

the woody crops (Sannigrahi et al., 2010). This study

confirms that the herbaceous crops have a lower quan-

tity of lignin than the woody crops and a higher ash

content, in particular for giant reed and switchgrass

(Table 5). These characteristics enable herbaceous crops

to be suitable also for biochemical transformations and

not only for thermochemical conversion, as the woody

crops (Monti et al., 2015). Among the herbaceous crops,

miscanthus is the most suitable for anaerobic digestion

and second-generation biofuel production due to its

high cellulose and hemicellulose content (Table 5)

(Monti et al., 2015).

Energy balance

The low heating value (LHV) of the six crops consid-

ered in this study varied between crops and it was sig-

nificantly higher in woody than in herbaceous crops.

This was due to the biomass composition: Woody crops

had a high lignin content that has a higher LHV than

cellulose and hemicellulose (Furlan et al., 2013) and a

lower ash content (Ciolkosz, 2010). The measured LHV

was in line with data reported in literature for both

herbaceous (Angelini et al., 2005, 2009; Mantineo et al.,

2009) and woody crops (McKendry, 2002; Nassi o Di

Nasso et al., 2010; Dillen et al., 2013). In addition, LHV

of giant reed and switchgrass was not affected by nitro-

gen fertilization; Ercoli et al. (1999) found the same

trend in miscanthus.

The application of nitrogen fertilizer represented 70%

of total energy costs in Gariga, in accordance with

results from Angelini et al. (2005) relative to giant reed

cultivation in a 6-year experiment in central Italy. Simi-

larly, irrigation represented a high percentage of total

energy costs (70%) in Casale, which is in agreement

with Mantineo et al. (2009) who reported that irrigation

costs were the highest in cultivation of giant reed, mis-

canthus, and Cynara cardunculus in a 5-year experiment

in southern Italy.

The NEG of giant reed and miscanthus in this study

was lower than those reported by Angelini et al. (2009)

in central Italy, and the NEG of poplar was lower than

that reported by Nassi o Di Nasso et al. (2010) in a 12-

year short-rotation coppice poplar in central Italy. These

differences are mainly due the lower biomass yields

obtained in our trial. For switchgrass, however, NEG

values were similar to those found by Monti et al.

(2009b) who reported a mean annual NEG of

200 GJ ha�1 yr�1 for switchgrass fertilized with

200 kg ha�1 yr�1 of nitrogen.

In this study, the EROI of black locust was higher

than that of the other woody crops (Fig. 5); in Gariga

for the lack of nitrogen fertilization and the consequent

lowest energy cost, in Casale, for the highest biomass

yield. NEG of black locust was higher than that

reported by Stolarski et al. (2015) for a SRC plantation

of 4 years in Poland. Manzone et al. (2015) reported a

NEG of 190 GJ ha�1 yr�1 in a black locust 7-year experi-

ment in Casale, which is higher than that reported in

this study in the same environment (144 GJ ha�1 yr�1),

and in Gariga (167 GJ ha�1 yr�1). This is a consequence

of the higher biomass production (10 Mg ha�1 yr�1)

and higher LHV (19 MJ kg�1) reported by Manzone

et al. (2015) (average biomass production

9 Mg ha�1 yr�1 and LHV 18 MJ kg�1 in this study).

EROI values calculated for Gariga were in line with

those found by other authors for unfertilized giant reed

(Angelini et al., 2005), fertilized giant reed and switch-

grass (Monti et al., 2009b), and woody crops (Djomo

et al., 2011; Dillen et al., 2013). EROI of miscanthus (98)

and unfertilized switchgrass (82) grown in Gariga was

higher than those reported by Angelini et al. (2009) and

Monti et al. (2009b), mainly as a consequence of differ-

ent nitrogen inputs. In Casale, woody and herbaceous

crops had EROI values lower than those reported in lit-

erature (Angelini et al., 2009; Monti et al., 2009b; Djomo

et al., 2011; Dillen et al., 2013), because of lower biomass

production and higher energy input due to the irriga-

tion. Across locations, black locust had a mean EROI of

20 that is in agreement with that reported by Manzone

et al. (2015). Several authors also found that black locust

has a high energy efficiency (Gonz�alez-Garc�ıa et al.,

2011; Gonz�alez-Garc�ıa et al., 2012; Manzone et al., 2015).

© 2016 The Authors. Global Change Biology Bioenergy Published by John Wiley & Sons Ltd., doi: 10.1111/gcbb.12341
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In conclusion, herbaceous crops in this study had the

highest ranking for bioenergy production due to their

high biomass yield, high NEG, and biomass quality that

renders them suitable to both biochemical and thermo-

chemical conversion. Among the woody crops, black

locust biomass production was comparable to that of the

best herbaceous crops in the water-limited environment

of Casale, while it proved less suitable for the fine-tex-

tured and fine-compacted soil of Gariga. Nitrogen fertil-

ization of giant reed is not recommended as it did not

affect biomass or energy production, and as a conse-

quence, it significantly reduced energy efficiency (EROI).

In switchgrass, however, nitrogen fertilization signifi-

cantly increased biomass production and the response of

this crop to water availability, making it a favorable

option when only biomass production is a target.
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