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Abstract	

 

Acute myeloid leukaemia (AML) is the most frequent leukaemia in adults, and still 

represents a disease with an unmet medical need, with 50-60% of patients relapsing within 

3 years after diagnosis. AMLs are characterised by a high degree of intra-tumour 

heterogeneity, both at the biological and the genetic level, which is critical for tumour 

maintenance and response to treatments. Biologically, AMLs are organised hierarchically, 

with rare stem-like cells (leukaemia stem cells, LSCs) endowed with the unique properties 

of self-renewal and differentiation. Genetically, AMLs harbour patient-specific 

combinations of different driver mutations, which are organised within individual cases in 

sub-clones with distinct growth properties. We hypothesized that tumour maintenance and 

relapse in AMLs are driven by the selective expansion of quiescent sub-clones within the 

LSC population, which serve as the genomic and functional reservoir of the tumour. The 

experimental strategy we employed to test this hypothesis is based on the 

xenotransplantation of human leukaemias, the implementation of an in vivo clonal tracking 

approach, the functional isolation of leukaemic subpopulations with diverse proliferation 

histories and whole-exome sequencing (WES) of bulk and isolated leukaemic 

subpopulations. Our aims were to assess the proliferative hierarchy of LSCs and to 

examine their intrinsic genetic heterogeneity. We identified two functional LSC classes, 

quiescent and cycling, that are in equilibrium in the tumour and largely share the same 

clonal architecture. We further observed that genetic leukaemic clones appear to consist of 

a high number of individual LSCs, the majority of which exhaust upon serial 

transplantation. Finally, by genetic analyses of isolated leukaemic subsets, we were able to 

detect a specific enrichment for rare mutations in the quiescent compartment of two patient 

xenografts. Our data indicate that tumour evolution is sustained by the quiescent LSC pool 

and suggest that their highly proliferating counterpart has a finite lifespan. We expect that 
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the results of our studies will provide new insights into the mechanisms of disease 

progression and treatment response in AML, and potentially reveal novel therapeutic 

approaches. 
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1 Introduction	

 

1.1 Acute	myeloid	leukaemia	(AML)	

Acute myeloid leukaemia (AML) is a clonal disorder of the blood that is characterised by 

the aberrant proliferation of abnormal and, often, poorly differentiated myeloid progenitors 

(blasts), which primarily accumulate in the bone marrow (BM), invade the peripheral 

blood (PB) and occasionally infiltrate other extramedullary tissues. These cells interfere 

with normal haematopoiesis, resulting in signs and symptoms of anaemia, and 

thrombocytopenia and leukopenia. In the absence of treatment, patients succumb to the 

disease, usually within one year after diagnosis, due to fatal complications associated with 

the BM failure (haemorrhage and infection) (Estey and Dohner 2006).  

AML is one of the most common haematological malignancies in adults, with an estimated 

incidence of 8.8 cases per 100,000 men and women in Europe for the year 2012 (Ferlay, 

Steliarova-Foucher et al. 2013). It is a highly heterogeneous disease, both biologically and 

clinically, with variable prognosis among patients and a high mortality rate. The French-

American-British (FAB) classification system was established in 1976 as a first attempt to 

categorise AML sub-types according to morphological, immunophenotypic and 

cytochemical criteria (Bennett, Catovsky et al. 1976). The current World Health 

Organisation (WHO) classification, last updated in 2016, incorporated cytogenetics and 

molecular genetics to define four principal categories of AML with clinical significance: 

AML with recurrent genetic abnormalities, AML with myelodysplasia-related changes, 

therapy-related myeloid neoplasms and AML not otherwise specified (Table 1.1) 

(Vardiman, Thiele et al. 2009, Arber, Orazi et al. 2016). Based on aetiology alone, three 

classes of AML can be recognised: secondary AML (following a myelodysplastic 

syndrome, MDS, or a myeloproliferative disease, MPD), therapy-related AML (usually 
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from cytotoxic chemotherapy for a solid tumour), and de novo AML (Lindsley, Mar et al. 

2015). 

Table 1.1 World Health Organisation (WHO) classification of acute myeloid 
leukaemia (AML) and related neoplasms. 

Adapted from Arber, Orazi et al., Blood, 2016. 

Type Cytogenetic, morphological and other characteristics 
AML with recurrent genetic 
abnormalities 

t(8;21)(q22;q22.1); RUNX1-RUNX1T1 
inv(16)(p13.1q22) or t(16;16)(p13.1;q22); CBFB-MYH11 
PML-RARA (acute promyelocytic leukaemia, APL) 
t(9;11)(p21.3;q23.3); MLLT3-KMT2A 
t(6;9)(p23;q34.1); DEK-NUP214 
inv(3)(q21.3q26.2) or t(3;3)(q21.3;q26.2); GATA2, MECOM 
t(1;22)(p13.3;q13.3);RBM15-MKL1 (megakaryoblastic AML) 
BCR-ABL1 (provisional entity) 
mutated NPM1 
biallelic mutations of CEBPA 
mutated RUNX1 (provisional entity) 

AML with myelodysplasia-
related changes 

Complex karyotype (3 or more abnormalities) 
Unbalanced abnormalities 

 -7/del(7q) 
del(5q)/t(5q) 
i(17q)/t(17p) 
-13/del(13q) 
del(11q) 
del(12p)/t(12p) 
idic(X)(q13) 

Balanced abnormalities 
t(11;16)(q23.3;p13.3) 
t(3;21)(q26.2;q22.1) 
t(1;3)(p36.3;q21.2) 
t(2;11)(p21;q23.3) 
t(5;12)(q32;p13.2) 
t(5;7)(q32;q11.2) 
t(5;17)(q32;p13.2) 
t(5;10)(q32;q21.2) 
t(3;5)(q25.3;q35.1) 

Therapy-related myeloid 
neoplasms 

Therapy-related myelodysplastic syndrome (t-MDS) 
Therapy-related AML (t-AML) 

AML, not otherwise 
specified 

AML with minimal differentiation 
AML without maturation 
AML with maturation 
Acute myelomonocytic leukaemia 
Acute monoblastic/monocytic leukaemia 
Pure erythroid leukaemia 
Acute megakaryoblastic leukaemia  
Acute basophilic leukaemia 
Acute panmyelosis with myelofibrosis 

Myeloid sarcoma  
Myeloid proliferations 
related to Down syndrome 

Transient abnormal myelopoiesis (TAM) 
Myeloid leukaemia associated with Down syndrome 
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Despite the advances in the field, the backbone of therapeutic intervention for non-

promyelocytic AML has remained essentially unaltered for the last 40 years. The standard-

care treatment is provided in two phases, induction and consolidation.  Typically, patients 

who are considered fit for intensive chemotherapy receive a “3+7” induction regimen, 

which consists in the intravenous administration of an anthracycline (daunorubicin, 

idarubicin or mitoxantrone) for the first 3 days of treatment and the continuous infusion of 

cytarabine from day 1 through to day 7. About 60-85% of patients below the age of 60 

respond to the induction therapy and initially achieve complete remission (CR), which is 

defined by a blast count <5% in the BM and an increase in the neutrophil (>100) and 

platelet (>100,000) counts (Estey and Dohner 2006, Dohner, Weisdorf et al. 2015). 

Consolidation therapy is usually provided to prolong CR with 2-4 cycles of intermediate 

doses of cytarabine. Allogeneic haematopoietic stem cell (HSC) transplantation is 

considered as an alternative to consolidation chemotherapy, given the availability of a 

compatible donor and the patient’s overall health status and risk assessment (Dohner, 

Weisdorf et al. 2015).  

Nevertheless, 50-60% of patients will relapse within 3 years after diagnosis. Salvage 

therapy, in the form of aggressive chemotherapy or allogeneic HSC transplantation, may 

still be an option at this stage but the prognosis after the first recurrence becomes dismal, 

especially when relapse occurs after a brief CR period (< 6 months). New targeted 

therapies for AML treatment (including epigenetic modifiers, tyrosine kinase inhibitors, 

cell-cycle and signalling inhibitors and antibody-based therapies) have been recently 

developed and tested in clinical trials, but none of them has shown therapeutic promise as a 

single-agent so far (Dohner, Weisdorf et al. 2015). The molecular basis of chemoresistance 

in AMLs remains unknown and there are currently no available markers to safely predict 

treatment outcome. It is thought, however, that disease recurrence is caused by the 

persistence of residual chemoresistant leukaemic cells at CR, as a consequence of the intra-

tumour biological and genetic heterogeneity in AMLs. 
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1.2 The	genomic	landscapes	of	AML	

AML diagnosis, classification and patient risk stratification are routinely performed by 

analyses of BM aspirates and PB smears and consist of the examination of the morphology 

and relative representation of leukocytes or other nucleated cells, lineage determination 

using immunophenotyping by flow cytometry or cytochemistry, karyotype characterisation 

and mutation testing (Dohner, Estey et al. 2010).  

Cytogenetic findings alone permit patients’ risk to be categorised as favourable [t(15;17), 

t(8;21) and inv(16)/t(16;16)], intermediate [normal karyotype or t(9;11)] or adverse [del(7), 

del(5), inv(3)/t(3;3), t(6;9), t(v;11) or complex karyotype] – with very different cure rates 

(Grimwade, Walker et al. 1998, Dohner, Estey et al. 2010). Well-characterised recurrent 

chromosomal abnormalities are identified in ~52% of all adult patients diagnosed with 

primary AML. However, about 40-50% of all cases belong to the group of cytogenetically 

normal AML (CN-AML) which is generally associated with intermediate risk, but still 

remains very heterogeneous and the characterisation of the patient mutational profile is 

required to better define prognosis (Saultz and Garzon 2016).  

Studies on animal models and hereditary leukaemias suggested that the co-operation of two 

types of genetic alterations is required for the development of AML. The “two-hit” model 

of leukaemogenesis, thus, foresees two complementary classes of mutations (Gilliland and 

Griffin 2002, Gilliland, Jordan et al. 2004). Class I mutations (e.g. FLT3-ITD, FLT3-TKD, 

NRAS, KRAS, TP53, c-KIT) confer a survival or proliferative advantage to haematopoietic 

progenitors, but are not sufficient by themselves to induce frank AML appearance. Class II 

mutations (e.g. NPM1 and CEBPA) block myeloid differentiation, and like class I 

mutations they cannot cause leukaemia in the absence of additional co-operating genetic 

lesions (Gilliland, Jordan et al. 2004, De Kouchkovsky and Abdul-Hay 2016). A third class 

of mutations can be added, encompassing alterations in epigenetic regulators (e.g. 

DNMT3A, TET2, IDH1 and IDH2), which affect both self-renewal and differentiation and 
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have gradually gained increasing attention in recent years (De Kouchkovsky and Abdul-

Hay 2016). 

Key genetic alterations that are currently known to affect prognosis and are predictive of 

the response to treatment had been already uncovered before the next generation 

sequencing (NGS) era. Constitutive activation of the fms-like tyrosine kinase 3 (FLT3) 

receptor, due to in-frame tandem duplications (FLT3-ITD) or point mutations in the 

tyrosine kinase domain (FLT3-TKD), is found in ~1/3 of AML cases. Point mutations 

(FLT3-TKD) have been associated with a favourable outcome, while the presence of FLT3-

ITD is indicative of higher relapse risk and lower overall survival (Mead, Linch et al. 2007, 

Grimwade, Ivey et al. 2016). Mutations in the RAS family genes (KRAS, NRAS) are also 

commonly found in AML, but their presence alone is of low prognostic value. The co-

occurrence with cKIT mutations or core-binding factor (CBF) chromosomal re-

arrangements, however, is predictive of a poor outcome (Grimwade, Ivey et al. 2016). 

Mutations in the nucleophosmin gene (NPM1) leading to the cytoplasmic mislocalization 

of the NPM1 chaperone protein are highly recurrent in AML, accounting for > 50% of the 

CN-AML cases. According to the current WHO classification (Table 1.1) (Arber, Orazi et 

al. 2016), NPM1 mutated AML (or NPM1c) is a distinct disease entity, generally 

characterised by favourable prognosis. However, both studies in animal models and 

clinical data have shown that the co-occurrence with FLT3-ITD negatively impacts on the 

disease outcome (Vassiliou, Cooper et al. 2011, Kuhnl and Grimwade 2012, Mallardo, 

Caronno et al. 2013). Similarly, mutations in the gene encoding CCAAT/enhancer binding 

protein α (CEBPA) consist another class of genetic lesions recurrently found in CN-AML 

(~10% of cases) and associated with relevant clinical features. In the majority of the cases, 

both CEBPA alleles are affected, often due to inheritance of a germline mutation and 

subsequent acquisition of an additional somatic mutation. AMLs carrying biallelic CEBPA 

mutations are generally characterised by a favourable outcome and usually do not associate 
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with FLT3-ITD (Grimwade, Ivey et al. 2016).  A provisional entity for RUNX1 mutated 

AMLs has been also included in the last updated version of WHO classification (Table 1.1) 

(Arber, Orazi et al. 2016). The presence of RUNX1 mutations is usually mutually exclusive 

with NPM1 and CEBPA lesions, and is associated with secondary AML and generally 

predicts a poor outcome (Grimwade, Ivey et al. 2016). 

Recent studies using massive parallel sequencing have highlighted the importance of 

epigenetic modifier mutations in cancer progression (Mardis, Ding et al. 2009, Ley, Ding 

et al. 2010, Yamashita, Yuan et al. 2010). Among those, DNA methyltransferase 3A 

(DNMT3A) has been found to be mutated in ~30% of CN-AML patients. DNMT3A 

mutations often co-occur with NPM1c and FLT3-ITD, suggesting a potential synergistic 

effect that promotes leukaemogenesis and disease progression leading altogether to an 

adverse outcome. Mutations affecting DNA methylation have also gained attention, with 

ten eleven translocation 2 (TET2) and isocitrate dehydrogenase enzymes (IDH1 and IDH2) 

identified as additional crucial players (Grimwade, Ivey et al. 2016).  

Genome-wide studies have shed light on our knowledge of the genomic landscape, 

transcriptional and methylation profiles of different tumour types. For AML, there are an 

estimated 13 mutations per case, 8 of which are considered to be passenger mutations 

(Cancer Genome Atlas Research 2013). Mutations have been classically designated as 

“drivers” when they confer a selective advantage to a tumour clone and as “passengers” 

when they are neutral (Stratton, Campbell et al. 2009). However, this classification is 

mainly based on the observed frequency of mutations in the patient and could be 

misleading, as different microenvironments or external pressures, such as chemotherapy, 

may lead to the selective expansion of minor tumour sub-clones carrying mutations 

initially considered as passengers (Ding, Ley et al. 2012). Furthermore, neutral mutations 

can persist during tumour evolution and contribute to the intrinsic genetic heterogeneity, 

given that they have no detrimental effects on tumour growth and, therefore, do not alter 
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clonal competition (Figure 1.1) (Williams, Werner et al. 2016). Under these conditions, 

there is the possibility of the appearance of additional mutations in the same clone, which 

may eventually synergistically confer a competitive advantage (Welch, Ley et al. 2012).  

Although AMLs have a relatively low mutation rate, as compared to solid tumours, they 

are nonetheless characterised by high patient-to-patient heterogeneity and despite the 

increasing number of cases available for meta-analyses, the discrimination of true cancer-

associated genes and driver mutations from the non-relevant background remains 

cumbersome. (Lawrence, Stojanov et al. 2013).  

 

Figure 1.1 Neutral evolution contributes to intra-tumour genetic heterogeneity. 

After the key oncogenic event that triggers tumorigeneis, a large number of mutations, 
M(f), is accumulated linearly which inversely correlates with their respective allelic 
frequencies, f, leading altogether to increased intrinsic genomic heterogeneity. Bulk 
sequencing approaches cannot faithfully depict the full spectrum of this heterogeneity due 
to the large number of cells sampled which typically leads to the identification of 
mutations belonging to the “trunk” of the phylogenetic tree. Reprinted by permission from 
Macmillan Publishers Ltd: Nature Genetics http://www.nature.com/ng/index.html 
(Williams, Werner et al. 2016) , copyright © 2016. 

 

A very recent study by Papaemmanuil and colleagues included data from 1,500 patients 

and proposed a more comprehensive classification scheme for AML, solely on the basis of 

genomic features. In more detail, 5,234 driver mutations were identified across 76 genes 

Figure 5. Neutral evolution and tumor phylogeny.
After the accumulation of key genomic alterations, in neutral malignancies the cancer 
expansion is likely triggered by a single critical genomic event (the accumulation of a “full 
house” of genomic changes) followed by neutral evolution that generates a large number of 
new mutations in ever-smaller subclones. While the tumor heterogeneity rapidly increases, 
the allele frequency of heterogeneous mutations decreases. In this context, the accumulation 
of mutations M(f) follows a characteristic 1/f distribution. Moreover, the tumor phylogeny 
displays a characteristic fractal topology that is self-similar. Sampling in different regions of 
the phylogenetic tree exposes distinct mutations that however show the same 1/f distribution. 
Clonal mutations in a sample (not considered in the model) arose in to the most recent 
common ancestor of the sampled cells. Due to the large population of cells sampled using 
bulk sequencing, the majority of detected clonal mutations belongs to the trunk of the tree 
and therefore is found in the first cancer cell. Deviations from the 1/f law indicate different 
dynamics from neutral growth.
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and genomic regions. Distinct patterns of mutation co-occurrence or mutual exclusivity led 

to the definition of 11 AML classes with relevant clinical features. In addition to the ones 

already recognised by the WHO classification (Table 1.1) (Arber, Orazi et al. 2016), three 

novel disease entities were introduced, encompassing mutations in genes encoding 

chromatin/RNA-splicing regulators or both (18% of cases), TP53 mutations/chromosomal 

aneuploidies or both  (13% of cases) and, provisionally, IDH2R172 mutations (1% of cases). 

Using this classification scheme at least one driver mutation was scored in 96% of the 

patients analysed and two or more drivers were found in the 86% of the cohort 

(Papaemmanuil, Gerstung et al. 2016). 

 

1.3 Patterns	of	clonal	evolution	in	AML	

De novo AML is a disease with an estimated long latency, also termed “pre-leukaemia”. 

The genetic composition and clonal architecture at leukaemia presentation may allow the 

inference of the tumour evolution model from the pre-leukaemic state, but very few 

clinical or experimental data are available to confirm these hypotheses. It is thought that 

during the pre-leukaemic phase normal haematopoietic stem and progenitor cells (HSPCs) 

accumulate mutations that will gradually lead to clonal haematopoiesis, albeit still 

maintaining differentiation potential at this stage (Jan, Snyder et al. 2012, Corces-

Zimmerman, Hong et al. 2014, Shlush, Zandi et al. 2014). On the other hand, studies in 

elderly healthy individuals with clonal haematopoiesis showed that the presence of 

leukaemia-associated mutations correlated with a higher risk of leukaemia development 

(Genovese, Kahler et al. 2014, Jaiswal, Fontanillas et al. 2014, Xie, Lu et al. 2014). 

Finally, the existence of multiple genetic sub-clones at diagnosis (Shlush, Chapal-Ilani et 

al. 2012, Klco, Spencer et al. 2014, Paguirigan, Smith et al. 2015) supports a more intricate 

branching evolution pattern, as compared to the linear model of successive mutation 

acquisition in a single clone. 
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In the case of AML, it has been recently demonstrated that relapse–specific DNA 

mutations can be either acquired or selected for during chemotherapy. More precisely, the 

genomes of primary and relapsed tumours from 8 AML patients were sequenced pair-wise 

and in 3 out of 8 instances the dominant clone at diagnosis persisted after the treatment and 

eventually acquired additional mutations, while in the rest of the cases a minor sub-clone 

expanded (Figure 1.2) (Ding, Ley et al. 2012). It should be noted however, that (due to 

technical limitations) this study may have underestimated the clonal heterogeneity of 

AMLs at diagnosis, given that only a minor subpopulation of quiescent or slow-cycling 

cells is expected to be able to escape treatment. This means that some DNA mutations 

found in relapsed AML tumours could be represented by very low frequencies and might, 

therefore, not be detectable in the primary tumours. Similarly, in a study regarding NPM1c 

AMLs, relapse was shown to derive from the dominant clone in the primary tumour only in 

half of the cases, while a minor sub-clone was selected to expand by the changing 

environment in the rest (Kronke, Bullinger et al. 2013). 

 

Figure 1.2 Models of tumour evolution in AML upon chemotherapy. 

Whole genome sequencing of 8 pairs of primary and relapse AML patient samples 
revealed two patterns of tumour evolution upon chemotherapy. According to Model 1 
(upper panel), the dominant clone of the primary leukaemia persists during the treatment 
and gives rise to the relapse clone, which subsequently acquires additional mutations. 
Model 2 (lower panel), depicts an alternative scenario in which multiple clones co-exist in 
the primary leukaemia and a minor sub-clone is selected to expand and evolve into the 

be present in virtually all the tumour cells at presentation and at relapse,
as the variant frequency of these mutations is ,40–50%. Clone 2 (with
cluster 2 mutations) and clone 3 (with cluster 3 mutations) must be
derived from clone 1, because virtually all the cells in the sample contain
the cluster 1 mutations (Fig. 2a). It is likely that a single cell from clone 3
gained a set of mutations (cluster 4) to form clone 4: these survived
chemotherapy and evolved to become the dominant clone at relapse.
We do not know whether any of the cluster 4 mutations conferred
chemotherapy resistance; although none had translational consequences,
we cannot rule out a relevant regulatory mutation in this cluster.

Assuming that all the mutations detected are heterozygous in the
primary tumour sample (with a malignant cellular content at 93.72%
for the primary bone marrow sample, see Supplementary Informa-
tion), we were able to calculate the fraction of total malignant cells in
each clone. Clone 1 is the founding clone; 12.74% of the tumour cells
contain only this set of mutations. Clones 2, 3 and 4 evolved from clone
1. The additional mutations in clones 2 and 3 may have provided a
growth or survival advantage, as 53.12% and 29.04% of the tumour
cells belonged to these clones, respectively. Only 5.10% of the tumour
cells were from clone 4, indicating that it may have arisen last (Fig. 2a).
However, the relapse clone evolved from clone 4. A single clone

containing all of the cluster 5 mutations was detected in the relapse
sample; clone 5 evolved from clone 4, but gained 78 new somatic
alterations after sampling at day 170. As all mutations in clone 5 appear
to be present in all relapse tumour cells, we suspect that one or more of
the mutations in this clone provided a strong selective advantage that
contributed to relapse. The ETV6 mutation, the MYO18B mutation,
and/or the WNK1-WAC fusion are the most likely candidates, as
ETV6, MYO18B and WAC are recurrently mutated in AML.

We evaluated the mutation clusters in the seven additional primary
tumour–relapse pairs by assessing peaks of allele frequency using
kernel density estimation (Supplementary Fig. 11 and Supplemen-
tary Information). We thus inferred the numbers and malignant frac-
tions of clones in each primary tumour and relapse sample. Similar to
UPN 933124, multiple mutation clusters (2–4) were present in each of
the primary tumours from four patients (UPN 869586, UPN 426980,
UPN 452198 and UPN 758168). However, only one major cluster was
detected in each of the primary tumours from the three other patients
(UPN 804168, UPN 573988 and UPN 400220) (Fig. 1c and Sup-
plementary Table 10). Importantly, all eight patients gained relapse-
specific mutations, although the number of clusters in the relapse
samples varied (Fig. 1).
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Figure 2 | Graphical representation of clonal evolution from the primary
tumour to relapse in UPN 933124, and patterns of tumour evolution
observed in eight primary tumour and relapse pairs. a, The founding clone in
the primary tumour in UPN 933124 contained somatic mutations in
DNMT3A, NPM1, PTPRT, SMC3 and FLT3 that are all recurrent in AML and
probably relevant for pathogenesis; one subclone within the founding clone
evolved to become the dominant clone at relapse by acquiring additional
mutations, including recurrent mutations in ETV6 and MYO18B, and a
WNK1-WAC fusion gene. HSC, haematopoietic stem cell. b, Examples of the

two major patterns of tumour evolution in AML. Model 1 shows the dominant
clone in the primary tumour evolving into the relapse clone by gaining relapse-
specific mutations; this pattern was identified in three primary tumour and
relapse pairs (UPN 804168, UPN 573988 and UPN 400220). Model 2 shows a
minor clone carrying the vast majority of the primary tumour mutations
survived and expanded at relapse. This pattern was observed in five primary
tumour and relapse pairs (UPN 933124, UPN 452198, UPN 758168, UPN
426980 and UPN 869586).
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relapse tumour under the environmental pressure of chemotherapy (Ding, Ley et al. 2012). 
Copyright © 2012 Macmillan Publishers Limited. All rights reserved. 

 

It is becoming increasingly evident that the intra-tumour heterogeneity is under-estimated. 

Technological advances with the development of NGS, including single-cell sequencing, 

as well as sophisticated mathematical modelling have allowed us to obtain a better 

understanding of the intrinsic complexity of cancer genomes. As far as solid tumours are 

concerned, multiple sampling from different tumour sites has enabled researchers to 

decipher information regarding the extent of intra-tumour heterogeneity (Gerlinger, Rowan 

et al. 2012). This is obviously not a possibility in the case of haematological malignancies, 

like AML. Sequencing of morphologically or immunophenotypically distinct 

subpopulations has provided an alternative for the evaluation of intra-tumour genetic 

heterogeneity at a higher resolution. In fact, this approach allowed the detection of relapse-

specific mutations in specific subsets of the primary leukaemia (Ding, Ley et al. 2012, 

Klco, Spencer et al. 2014). Additional technical refinements, such as increasing the depth 

of sequencing and the use of multiple mutation calling algorithms, have been also shown to 

provide substantial improvement in elucidating the clonal architecture of the AML genome 

(Griffith, Miller et al. 2015). 

However, both multi-region or immunophenotype-specific sequencing and sequencing 

approaches with increased coverage/depth can only measure the average signal of a bulk 

population, missing rare variants that could be present in only very minor tumour sub-

clones. Furthermore, inferring tumour clonal architecture becomes more challenging when 

it comes to low frequency mutations. Single-cell sequencing provides a useful tool to 

elaborate on intra-tumour genetic and clonal heterogeneity, however technical limitations 

impede with the clear designation of biologically relevant diversity beyond technical 

errors. Multiple techniques can be used for the isolation of single-cells that are abundant in 

tumours (e.g. serial dilution, microfluidics, fluorescence activated cell sorting – FACS), 
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but none of them is as efficient for rare cancer cells (< 1% of the tumour) (Navin 2014). 

Therefore, to overcome this hurdle, the isolation of relevant tumour subpopulations should 

be envisioned prior to the application of single-cell sequencing approaches for the 

identification of relapse-specific mutations in primary tumours. It should be noted, 

however, that whole-genome amplification may have allowed the application of whole 

genome and whole exome sequencing approaches starting with a single-cell input, but it 

also came with the price of low and non-uniform coverage that is associated with a high 

rate of false positive and false negative errors (Navin 2014).  

Nevertheless, informative studies at single cell level allowed delineation of the sequence of 

mutation acquisition in MDS to the development of a secondary AML (Hughes, Magrini et 

al. 2014) and most importantly revealed the persistence of HSCs with relevant mutations 

after chemotherapy (Jan, Snyder et al. 2012). Similar studies have also suggested 

polyclonality at the relapse emergence (Shlush, Chapal-Ilani et al. 2012), hinting to the 

potential co-existence of multiple mechanisms of chemoresistance. The scenario of a 

symbiotic relationship of tumour sub-clones, that could either compete for resources in the 

niche or synergise to promote tumour growth should be taken into account in the 

development of novel therapeutic strategies (McGranahan and Swanton 2015). 
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1.4 The	Cancer	Stem	Cell	(CSC)	model	

Tumours can be envisioned as aberrant organs endowed with a complex and hierarchical 

cellular organisation, similar to their normal tissue counterparts, with cancer stem cells 

(CSCs) placed at the apex of this hierarchy. In vitro clonogenic and in vivo transplantation 

assays paved the way for the identification of tumoral cell populations with variable 

tumorigenic potential and the designation of CSCs as the only cells able to sustain tumour 

initiation and progression in vivo (Figure 1.3). Pioneering studies in John Dick’s lab 

demonstrated the existence of such a population in AML by the prospective isolation and 

xenotransplantation into immunocompromised murine hosts of leukaemic populations with 

different combinations of CD34 and CD38 antigen expression. These studies documented 

that only the CD34+CD38- compartment retains tumorigenic ability in vivo (Lapidot, Sirard 

et al. 1994, Bonnet and Dick 1997). There is great heterogeneity in the expression profile 

of the CD34/CD38 surface markers among different patient samples and leukaemia stem 

cells (LSCs) have been detected with varying frequencies in more than one fraction in 

many AML samples (Taussig, Miraki-Moud et al. 2008, Taussig, Vargaftig et al. 2010). 

For instance, LSC activity is commonly found in the CD34- compartment in NPM-mutated 

AMLs, which are generally characterised by low CD34 expression (Taussig, Vargaftig et 

al. 2010). Nevertheless, in CD34+ leukaemias, the CD34+CD38- subset has been 

associated with higher tumorigenic capacity through limiting dilution xenotransplantation 

assays (Eppert, Takenaka et al. 2011, Sarry, Murphy et al. 2011). Furthermore, the 

existence of CSCs, or otherwise stated, tumour initiating cell (TIC) populations has been 

since demonstrated also in numerous solid tumours, including breast cancer (Al-Hajj, 

Wicha et al. 2003), glioblastoma (Singh, Hawkins et al. 2004) and colorectal cancer 

(O'Brien, Pollett et al. 2007).  
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Figure 1.3  Stochastic versus cancer stem cell (CSC) model of tumour growth. 

The stochastic model of tumour growth (a) foresees that all tumour cells have equal self-
renewal potential and can randomly produce differentiated progeny, which contributes to 
the intra-tumoral heterogeneity. In the CSC model (b), instead, only a small fraction of the 
tumour cells retains the ability of long-term self-renewal and propagation of the disease. In 
both cases, the acquisition of new mutations leads to a higher level of intrinsic 
heterogeneity in the tumour. Reprinted by permission from Macmillan Publishers Ltd: 
Nature Reviews Cancer http://www.nature.com/nrc/index.html (Beck and Blanpain 2013), 
copyright © 2013. 

 

According to the Cancer Stem Cell model, CSCs are the only cells within a tumour that 

retain the ability of tumour initiation, maintenance, and propagation and should therefore 

be considered the only ones responsible for disease relapse after initial CR. Indeed, in 

glioblastomas, cells positive for the CSC marker Prominin-1 (CD133+) were found 

enriched after ionizing radiation both in vitro, after short-term cultures, and in vivo, in the 

brains of immunocompromised mice, as well as in tumour samples obtained from patients. 

Importantly, the higher frequency of CD133+ cells after radiation resulted in the 

development of more aggressive tumours upon transplantation in secondary recipient mice, 



 28 

suggesting that glioblastoma CSCs might survive radiotherapy and lead to the relapse of 

the disease (Bao, Wu et al. 2006). Similarly, breast CSCs identified by aldehyde 

dehydrogenase 1 expression (ALDH1) in patient samples that did not achieve pathological 

CR after treatment, have been associated with resistance to chemotherapy (Tanei, 

Morimoto et al. 2009). The clinical relevance of such a hierarchical organisation is further 

highlighted by the increased frequency of CSCs in the most aggressive tumours (van 

Rhenen, Feller et al. 2005, Pece, Tosoni et al. 2010), as well as the dominance of a CSC 

transcriptional signature (Ginestier, Hur et al. 2007, Eppert, Takenaka et al. 2011). 

Therefore, there is a need for efficient therapeutic interventions that target specifically this 

population for complete tumour eradication (Figure 1.4) (Reya, Morrison et al. 2001).  

 

Figure 1.4 CSCs may evade standard therapeutic approaches. 

CSCs could be intrinsically resistant to current chemotherapeutic approaches and therefore 
persist during treatment and lead to the emergence of the relapse. CSC-specific treatments, 
instead, should result in complete tumour eradication. Reprinted by permission from 
Macmillan Publishers Ltd: Nature http://www.nature.com/ (Reya, Morrison et al. 2001), 
copyright © 2001. 

 

However, there are also tumours that do not seem to follow strictly the CSC model or at 

least suggest a higher plasticity within this intrinsic hierarchy. In melanoma, nearly all 

cells are considered to have virtually equal tumorigenic potential, as single cell 
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transplantations in immunocompromised murine hosts have proven their high in vivo 

tumour reconstitution capacity (Quintana, Shackleton et al. 2008). Also in this case, 

however, there is some intra-tumoral phenotypic diversity (Quintana, Shackleton et al. 

2010) and functional heterogeneity (Roesch, Fukunaga-Kalabis et al. 2010). 

It is not clear whether the persistence of chemoresistant cells is stochastic or whether pre-

defined functional leukaemic sub-sets are specifically endowed with the capacity to evade 

cytotoxic treatments (Shlush and Mitchell 2015).  Remission has been occasionally found 

to be clonal in AML (Fialkow, Janssen et al. 1991) and recent studies have demonstrated, 

more specifically, the persistence of pre-leukaemic HSPCs at remission (Corces-

Zimmerman, Hong et al. 2014, Shlush, Zandi et al. 2014). Despite the controversies 

regarding the immunophenotypic characterisation of LSCs, relapse-specific mutations in a 

sub-group of FLT3-ITD AMLs could be traced back solely in the CD34+CD38- leukaemic 

population of the primary tumour (in 70% of the cases, the mutations could not be detected 

in the rest of the primary tumours), providing a link between the genetics of LSC 

immunophenotype and relapse as opposed to the dominant clone at diagnosis (Shlush and 

Mitchell 2015). 
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1.5 Intra-tumour	functional	heterogeneity:	beyond	genetics	

LSCs share many characteristics with their normal counterparts, including the ability to 

self-renew and to generate phenotypically diverse progeny, which are fundamental for the 

formation of a new tumour or organ, respectively (Reya, Morrison et al. 2001). HSPC 

populations with distinct self-renewal and lineage reconstitution capacities have been 

characterised in the murine BM and can be prospectively isolated on the basis of their 

immunophenotype, with long term repopulating HSCs (LT-HSCs) governing a well-

established hierarchy. Even though human HSCs have not been as thoroughly studied due 

to experimental constrains, the differentiation hierarchy appears to be faithfully 

recapitulated in the mouse models (Rieger and Schroeder 2012).  

In addition to the defined set of surface markers, different levels of functional 

heterogeneity have been described for normal HSCs, as they can be further classified as 

active, quiescent and/or dormant depending on their cell-cycle state (Weissman 2000, 

Wilson, Laurenti et al. 2008, Foudi, Hochedlinger et al. 2009, Takizawa, Regoes et al. 

2011). LT-HSCs have been reported as predominantly quiescent and HSC dormancy 

appears to be essential for the maintenance of a long-term repopulating ability (Wilson, 

Laurenti et al. 2008, Qiu, Papatsenko et al. 2014, Bernitz, Kim et al. 2016). Furthermore, it 

has been shown that the clonal composition of the LT-HSC pool after transplantation is 

greatly skewed and not equally distributed among different skeletal locations (Verovskaya, 

Broekhuis et al. 2014). On the other hand, recent studies on native haematopoiesis have 

demonstrated that progenitors with extended lifespan can sustain a wide and highly 

dynamic clonal complexity with relatively minor contribution from the HSC compartment 

(Sun, Ramos et al. 2014, Busch, Klapproth et al. 2015, Sawen, Lang et al. 2016).  

Drawing parallels in the cancer setting, CSC content may vary between different genetic 

subsets within the same tumour, as mutations conferring stem properties or significant 

proliferation advantage can lead to the dominance of a particular genetic clone (Kreso and 
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Dick, 2014). Moreover, diverse proliferation kinetics within tumour sub-clones and 

individual LSCs could provide an explanation for the main patterns of tumour evolution 

observed upon chemotherapy (Figure 1.2 and Figure 1.5). (Klco, Spencer et al. 2014) 

 

 

Figure 1.5 The impact of intra-tumour functional diversity on treatment response. 

Each genetic clone is composed by a heterogeneous population of cells with diverse 
functional properties, such as proliferation. Non-proliferating or dormant cells within each 
clone may persist during chemotherapy and give rise to the relapse clones. Reprinted from 
Cell Stem Cell (Kreso and Dick 2014), copyright © 2014 , with permission from Elsevier. 

 

Indeed, indirect evidence points to LSC quiescence as the source of resistance and eventual 

relapse. Quiescence has been linked to therapy resistance (Ishikawa, Yoshida et al. 2007, 

Saito, Uchida et al. 2010), while cell-cycle restricted LSCs are crucial for the development 

of leukaemia (Viale, De Franco et al. 2009). Longitudinal single cell analyses in two AML 

patients, from diagnosis to relapse, allowed lineage reconstruction depicting the genomic 

distance based on microsatellite mutations. In contrast to studies on driver mutations, this 

can ‘‘dedifferentiate’’ to T-ICs (Schwitalla et al., 2013). Likewise,
perivascular nitric oxide that is released by endothelial cells can
activate Notch signaling and induce a stem-like state in PDGF-
induced gliomas (Charles et al., 2010). These studies highlight
the dynamic nature of cancer cells and show the importance of
the stem cell state in tumor generation.

Given the importance of these concepts, it will be important to
show whether other cancers possess such properties. As well, it
will be critical to determine to what extent plasticity exists in pri-
mary tumor tissue, as opposed to cell lines, and whether it is

induced in vivo. Although provocative, some studies reporting
plasticity were not done clonally and this is essential to under-
stand the homogeneity of cells in each state and the frequency
of cells that are able to change states. Is every non-T-IC able
to generate a new T-IC, or are only some non-T-ICs responsible
for the generation of new T-IC? If only some, does this reflect
heterogeneity of the non-T-IC population? Clearly tumors with
a high probability of interconversion between T-IC and non-
T-IC states render hierarchical cellular organization less mean-
ingful than if such interconversions are rare. Normal tissue
stem cells can also ‘‘dedifferentiate’’ into a more primitive state
when normal tissue homeostasis is perturbed, for example dur-
ing transplantation procedures or following stem cell ablation
(Rinkevich et al., 2011; Tata et al., 2013; Van Keymeulen et al.,
2011). Thus, it will be important to determine the probability of
being in one state versus another and the factors that influence
such interconversions (Gupta et al., 2009). However, even in
tumors where the interconversion rate is high, the available
data indicates that when a cancer cell possesses stemness
properties it is more likely to progress, metastasize, resist ther-
apy, and self-renew, compared towhen it is in the opposite state.
Thus, even for tumors that do not strictly follow the CSC model,
the concept that stemness is an important aspect of the biology
of that cell remains strong. As such, novel approaches will be
needed to eradicate cells that display determinants of stemness.

Epigenetics and Stemness
The primary, nonmutational mechanism that governs develop-
mental hierarchies is epigenetic regulation of the genome. Epige-
netic modifications of DNA, histones, and nucleosomes as well
as noncoding RNAs, including miRNA, allow for modification of
gene expression (Baylin and Jones, 2011; Iorio and Croce,
2012). Alterations in the epigenome dictate cell fate specification
and have been used as means of reprogramming noncancerous
cells. Although epigenetic modifications are not as stable as
mutational changes and can be reversed, some types of modifi-
cation are a stable, heritable means by which distinct cellular
states and functions can be generated. The importance of epige-
netic regulation in generating diversity apart from genetic muta-
tion has been shown in several systems. For example, a small
proportion of slowly cycling melanoma cells that are essential
for tumor growth can be purified based on the expression of
JARID1B, amember of the jumonji/ARID1 histone 3 K4 demethy-
lases (Roesch et al., 2010). Other epigenetic factors including
members of the Polycomb group of transcriptional repressors
(BMI-1 and EZH2) that are linked to normal stem cell self-renewal
have been shown to exhibit variation in expression levels within
tumors and play a role in tumor progression (Sparmann and van
Lohuizen, 2006). Further support for the role of stemness in can-
cer biology is emerging from cancer genome-sequencing efforts
showing that genetic disruption of epigenetic regulators of
normal stem cell function is critical for cancer pathogenesis.
Mutation in DNMT3A, which is highly recurrent in AML, causes
major dysregulation of gene expression leading to upregulation
of stemness genes and increased repopulation and self-renewal
of normal HSC (Ley et al., 2010; Shah and Licht, 2011).
Other highly recurrent mutations in genes such as IDH1/IDH2
and TET2 affect epigenetic programs that underlie stemness
for many cancers, including AML (Abdel-Wahab and Levine,

Figure 3. Functional Diversity between Cells within Subclones
Impacts Response to Therapy
Each clone (depicted by the different colors) contains a mixture of cells that
vary with respect to their stemness and/or proliferative ability, including rela-
tively dormant cells. Together these factors represent the functional diversity
present within single genetic subclones. Chemotherapy can reduce tumor
burden by eliminating the highly proliferative cells within subclones, while
sparing the relatively dormant cells; following therapy, these cells can seed a
new cancer. Thereby, subclonal diversity can be altered with chemotherapy
and can allow for the selection of cells with additional genetic mutations that
confer a survival advantage. Not depicted in the diagram is the concept that
chemotherapy-resistant cells can exist before treatment and can be selected
following chemotherapy. Thus, chemotherapy can introduce newmutations to
confer treatment resistance, but it can also select preexisting cells that
accumulated mutations, which confer chemotherapy resistance during the
long evolution of the tumor before it was diagnosed.

282 Cell Stem Cell 14, March 6, 2014 ª2014 Elsevier Inc.
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approach enables the approximation of cell depth at relapse or, in other words, the number 

of cell replication events prior to the emergence of the relapse clone.  Although lacking 

direct evidence, this study indicated that mutations carried in minor slowly expanding sub-

clones were maintained after treatment, suggesting that cells with shorter replicative 

histories may be more apt to survive chemotherapy (Shlush, Chapal-Ilani et al. 2012).  
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2 Hypotheses	and	Aims	of	the	project	

 

Tumours, including leukaemias, are characterised by a high degree of intra-tumour 

heterogeneity, which is considered critical for tumour maintenance and growth, as well as 

for response to treatments. Two levels of heterogeneity are well recognised: biological and 

genetic. The first level refers to phenotypic cellular diversity. It has been previously shown 

that individual human AMLs are biologically heterogeneous and that only distinguishable 

cell subpopulations have reproducibly high clonogenic capacity (Bonnet and Dick 1997).  

Furthermore, a subpopulation of cell-cycle restricted LSCs appears to play a pivotal role in 

tumour initiation and maintenance (Viale, De Franco et al. 2009). This quiescent LSC 

subset could also evade current chemotherapeutic approaches that mainly target highly 

proliferative cells. The second level, referring to genetic heterogeneity, is also well 

documented in leukaemias. In a recent study from our group, a total of 200 AML samples 

were analysed and 1,400 genes were found mutated at an allelic frequency greater than 

25%. Out of these, only roughly 10% were mutated in more than one patient per 

cytogenetic group and 3% were mutated at a statistically significant frequency (Riva, 

Ronchini et al. 2013).  

Whole genome and whole exome sequencing studies have paved the way to a better 

understanding of clonal dynamics and dominance in several cancer types, indicating the 

presence of multiple genomes within a single tumour. It has been reported that leukaemias 

generally carry a lower number of mutations per case compared to adult solid tumours 

(Lawrence, Stojanov et al. 2013). However, studies of our group and others proposed that 

the genomic landscape of AMLs is potentially much more complex than previously 

thought due to the presence of a high number of low frequency mutations, which cannot be 

easily identified by the current sequencing and analysis strategies (Bodini, Ronchini et al. 

2015, Griffith, Miller et al. 2015).  These observations, together with the preliminary 
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evidence indicating that LSCs are distinguished by different cycling and self-renewal 

potential (Viale, De Franco et al. 2009), suggest that different LSC-derived clones might 

harbour different genomes. 

These levels of genetic complexity might be responsible for the capacity of individual 

tumours to adapt and evolve under diverse environmental pressures such as chemotherapy. 

In this view, it is reasonable to think that cellular and genetic hierarchy within distinct 

tumour subpopulations converge to define the adaptability of a tumour as a whole. Since 

CSCs are thought to be the only cells responsible for tumour growth and maintenance in 

vivo, we postulated the following hypothesis: tumour growth, maintenance and relapse in 

AMLs are driven by the selective expansion of tumour sub-clones, presumably originating 

within the quiescent LSC population, which function as the genomic and functional 

reservoir of the leukaemia. Our experimental strategy to test this hypothesis consists in a) 

the generation of patient derived xenografts (PDX) of human leukaemias in 

immunocompromised mice, b) the analysis of the clonal evolution of the leukaemias in 

vivo, under steady-state conditions or during chemotherapy treatment, c) the 

implementation of a label-retaining assay for in vivo cell division tracking and purification 

of leukaemic cell populations with different proliferation potential, d) the identification of 

single nucleotide variants (SNVs) by NGS technologies.  

The first aim of this study is to assess the functional heterogeneity and proliferative 

hierarchy of LSCs by in vivo clonal tracking, using a lentiviral barcode library. This 

approach should allow us to track the progeny of each cell initially labelled with a unique 

molecular identifier (barcode), which has been stably integrated in the host genome by 

means of lentiviral transduction. Since the assay is based on a transplantation procedure, it 

allows selective analysis of LSCs. The second aim is to separate LSCs with different 

proliferative histories (based on their label retention capacity) and assess their genetic 

complexity by whole-exome sequencing (WES). Our results provide new insights on 
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clonal evolution during disease progression in AML and set the grounds for the 

identification of novel therapeutic strategies.  
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3 Materials	and	Methods	

 

3.1 Generation	of	AML	patient	derived	xenografts	

3.1.1 Patient	Samples	

Human leukaemic blasts were collected from the peripheral blood (PB) or other relevant 

tissues (e.g. BM) from patients through routine sample acquisition during healthcare 

delivery at the IEO hospital and other collaborating centres (e.g. “Policlinico” of Milan). 

Informed consent was obtained from all enrolled patients in compliance with the principles 

of the World Medical Association Declaration of Helsinki.  

3.1.2 Xenotransplantation	of	human	AMLs	

It has been already documented that patient derived tumour xenografts at low passage 

(generally lower than 10) largely retain the phenotypic, histological and cytogenetic 

characteristics of the parental disease (Tentler, Tan et al. 2012). Furthermore, this setting 

foresees the expansion of the number of cancer cells initially obtained from the patient, 

enabling thus further manipulations and the implementation of more elaborate 

experimental procedures. For this purpose, we generated a bank of human AML xenografts 

by intravenous (IV) or intraperitoneal (IP) injections of ~107 CD3-depleted mononuclear 

BM or PB cells, freshly collected from AML patients, in 6-8 week old NOD SCID IL2RG 

null (NSG) immunocompromised mice. NSG mice were chosen as a host, based on their 

demonstrated ability to support greater engraftment of human haematopoietic stem cells 

(HSCs, CD34+), as compared to all other strains of immunocompromised mice (Agliano, 

Martin-Padura et al. 2008). Overall success of engraftment was around 70%, while the 

latency of the disease in the recipient mice was variable among different patient samples 

(from 4 weeks to 8 months).  
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3.2 Animal	experimentation	

All experiments including animals were conducted in accordance with the Italian Law 

(Legislative Decrees no. 116/92 and no. 26/2014), which enforces the EU Directives 

(86/609/EEC of 24 November 1986 and 2010/63/EU of 22 September 2010) on the 

approximation of laws, regulations and administrative provisions of the Member States 

regarding the protection of animals used for experimental and other scientific purposes. 

Mice were housed and taken care of accordingly to the guidelines set out in Commission 

Recommendation 2007/526/EC - June 18, 2007. At the end of the experiments, all mice 

were euthanized by inhalation of high concentrations of CO2. 

3.2.1 Limiting	dilution	and	serial	transplantation	assays	

In order to establish the LSC frequency and the tumorigenic properties of bulk leukaemias 

and isolated quiescent or cycling leukaemic populations for each PDX, we performed 

limiting dilution and serial transplantation assays. For this purpose, groups of 8-12 week 

old NSG mice were injected with leukaemic blasts at scalar cell doses (from 1,000,000 to 

100 cells) IV or intra-BM directly in the femur (intrafemoral, IF) or in the tibia (intratibial, 

IT) of the hind legs. Direct delivery of the cells in the BM has been shown to improve the 

efficiency of engraftment (McKenzie, Gan et al. 2005). In the case of IF or IT injections, 

mice were anaesthetised with 2.5% avertin (delivered IP; 100% avertin: 10 g of 2,2,2-

tribromoethanol 97%, Sigma-Aldrich, in 10 ml of 2-methyl-2-butanol ≥ 99%, Sigma-

Aldrich) or by isoflurane inhalation. Successfully engrafted mice developed leukaemia 

with variable latencies, depending on the PDX and the number of cells injected (from 4 

weeks to 8 months). All injected mice were monitored for a maximum period of one-year 

post-transplantation and euthanized by CO2 inhalation when blast infiltration reached 

~80% in the PB. At the end of the experiments BM and spleen (SPL) cells were collected 

and either re-transplanted immediately into secondary recipient mice, or stored in freezing 

medium (10% DMSO, Merck, in South-American foetal bovine serum [FBS, SA], 
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Microgem) in liquid nitrogen. Mice found dead without prior confirmation of leukaemia 

engraftment were excluded from all subsequent analyses. Finally, the LSC frequency was 

calculated using available computational tools (extreme limiting dilution analysis, ELDA; 

http://bioinf.wehi.edu.au/software/elda/) (Hu and Smyth 2009). 

3.2.2 Engraftment	analysis	

PB (30-50 µl) was collected from the lateral tail-veins of injected and control (non-

injected) mice at regular intervals, after the transplantation of the leukaemic blasts, for 

engraftment analysis. EDTA (0.5 M, pH 8.0) was used as anticoagulant and the red blood 

cells were lysed in a hypotonic salt solution (8.125 mg/ml NH4Cl, 1 mg/ml KHCO3, 0.13 

mM EDTA in dH2O). The level of engraftment of the human blasts in the transplanted 

animals was estimated by flow cytometry analyses of PB cells stained with an antibody 

specific for the human CD45 haematopoietic surface antigen (hCD45; see section 3.4.1). 

3.2.3 Administration	of	5-fluorouracil	(5FU)	

5-fluorouracil (5-FU) is an antimetabolite widely used as a chemotherapeutical agent in the 

treatment of breast, head and neck and, most commonly, colorectal cancer. Its mechanism 

of action primarily involves the inhibition of the enzyme thymidylate synthase, 

consequently blocking the thymidine formation required for DNA synthesis (Longley, 

Harkin et al. 2003).  It has been previously shown that 5-FU selectively eliminates rapidly 

dividing haematopoietic progenitor and stem cells in the normal mouse BM, thus allowing 

subsequent cell-cycle entry of the highly quiescent LT-HSCs (Randall and Weissman 

1997, Wilson, Laurenti et al. 2008). Therefore, 5-FU is a useful tool that can be employed 

to enforce an environmental pressure for the selective expansion of quiescent LSCs. For 

this purpose, a single dose of 150 µg 5-FU per g of body weight was administered IP to 

NSG mice soon after transplantation (3-10 days, in order to allow homing of the human 

blasts). As previously described, the level of engraftment was routinely checked in the PB 
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of the treated recipients and the BM and SPL cells were collected upon overt leukaemia 

manifestation.  

3.2.4 In	vivo	label-retaining	assay	

Human leukaemic cells were transduced in vitro with an inducible Tet-Off lentiviral vector 

encoding the H2B-GFP fusion protein (Figure 3.1) (Falkowska-Hansen, Kollar et al. 

2010), prior to their xenotransplantation into NSG mice and chasing with doxycycline in 

vivo. Doxycycline was administered to the experimental animals engrafted with H2B-GFP 

expressing blasts through specially modified feed (containing 625 mg doxycycline per kg 

of pellets). The conditional shut down of transgene expression by doxycycline led to 

gradual reduction of the GFP signal, allowing for the segregation of subpopulations within 

the tumour based on their respective proliferation rate.  

 

 

Figure 3.1 Schematic representation of the Tet-Off H2B-GFP lentiviral vector. 

In the absence of doxycycline, EF-1α drives the expression of tTA2 enabling thus the 
production of the H2B-GFP fusion protein. PEF-1α, elongation factor 1α promoter; tTA2 and 
Ptight, Tet trans-activator and promoter, respectively; LTR/SIN, self inactivating retroviral 
long terminal repeat sequences; RRE, HIV-1 Rev response element; cPPT, central 
polypurine tract; WPRE, Woodchuck hepatitis virus post-transcriptional regulation 
element. Adapted from Falkowska-Hansen, Kollar et al., Exp Cell Res, 2010. 

 

3.2.5 In	vivo	bromodeoxyuridine	(BrdU)	incorporation	

Exposure to bromodeoxyuridine (BrdU; a thymidine analogue) in vitro or in vivo can be 

used to label newly synthesized DNA. Immunostaining of the incorporated BrdU allows 

identification of the fraction of actively dividing cells (Gratzner and Leif 1981). To study 

LTR RRE PEF-1α cPPT tTA2 Ptight h2b-gfp LTR/SINWPRE

-Doxycycline
H2B-GFP
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in vivo cell-cycle kinetics of our H2B-GFP expressing PDX models, after a 10-day chasing 

period with doxycycline, we provided a short pulse of BrdU to both doxycycline-treated 

and control (untreated) leukaemic mice. The mice were injected twice IP, at a 6-hour 

interval, with 1 mg of BrdU (stock solution: 10 mg/ml in sterile PBS, BD) and sacrificed 6 

hours after the second injection (12-hour pulse). BM and SPL mononuclear cells were 

collected from the animals and stained with antibodies specific for BrdU, as well as for 

other surface and intracellular antigens, for subsequent flow cytometry analysis (see 

section 3.4) 

 

3.3 Mammalian	cell	culture	

All mammalian cell cultures were maintained at 37°C, 5% CO2 and 20% O2 and handled 

according to the principles of aseptic technique.  

3.3.1 Lentivirus	production	

3.3.1.1 Packaging	cell	line	and	plasmids	

HEK293T cells, or simply 293Ts, are very commonly used for the production of 

lentiviruses due to their high transfection efficiency (Pear, Nolan et al. 1993). They carry a 

temperature sensitive mutant of SV-40 large T-antigen (tsA1609neo) and were derived 

from the human primary embryonic kidney 293 cell line, which was originally established 

by stable transfection with Ad5 sheared DNA (Graham, Smiley et al. 1977, DuBridge, 

Tang et al. 1987). The 293T cells were cultured in DMEM (Lonza) supplemented with 

10% FBS, SA (Microgem), 2 mM L-Glutamine (Lonza), 100 U/ml penicillin and 100 U/ml 

streptomycin (Pen/Strep stock, Lonza). 

For the production of 3rd generation lentiviral particles (Dull, Zufferey et al. 1998) we co-

transfected 4 plasmids into 293T cells: 
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• pMD2.G: envelope plasmid (Addgene #12259) encoding the G protein of vesicular 

stomatitis virus (VSV-G), which allows targeting of a wide variety of mammalian 

cells. 

• pMDLg/pRRE: 3rd generation packaging plasmid (Addgene #12251) containing the 

gag and pol coding sequences and the HIV-1 Rev responsive element (RRE).  

• pRSV-Rev: 3rd generation packaging plasmid (Addgene #12253) encoding the HIV-1 

Rev shuttle protein, which promotes the nuclear export of viral pre-mRNA by binding 

to the RRE. 

• pH2BGFP: the transfer vector harbouring the Tet-Off H2B-GFP expression cassette, 

flanked by long terminal repeats (LTRs) that facilitate host genome integration (Figure 

3.1). To improve safety, a deletion in the 3' LTR renders the virus “self-inactivating” 

(SIN) after integration (Zufferey, Dull et al. 1998). 

3.3.1.2 Plasmid	DNA	isolation	(maxiprep)	

Plasmid DNA was purified from large-scale bacterial cultures with the use of the 

NucleoBond® Xtra Maxi kit (MACHEREY-NAGEL), according to the manufacturer’s 

instructions. Cells were resuspended, lysed in alkaline conditions and subsequently 

neutralised with the addition of appropriate buffers (Birnboim and Doly 1979). Lysates 

were centrifuged at ≥ 5,000 x g for 10 minutes in order to precipitate cell debris, protein-

SDS complexes, chromosomal DNA and high molecular weight RNA. Supernatants, 

containing the plasmid DNA, were then transferred to a NucleoBond® Xtra Column, 

included in the kit, and cleared by the specially designed column filter. Next, plasmid 

DNA was bound to the NucleoBond® Xtra Silica Resin and, after a washing step, eluted in 

a high-salt concentration buffer. Finally, the eluted DNA was precipitated with the addition 

of isopropanol and the resulting pellet re-dissolved in a low volume of dH2O. The purified 

plasmids were quantified on the NanoDrop 1000 spectrophotometer (Thermo Scientific) 
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and appropriate diagnostic restriction enzyme digestions were performed, before any use in 

further applications. 

3.3.1.3 Transient	transfection	of	293T	cells		

The H2B-GFP lentivirus was produced by transient transfection of 293T cells, using the 

calcium phosphate precipitation method (Barde, Salmon et al. 2010), adapted for 3rd 

generation vectors. In detail, low passage 293T cells were seeded in 10 cm plates to obtain 

sub-confluent (~70%) cultures. Then, for each 10 cm plate the following mix was 

prepared: 

• pMD2.G:    3 µg 

• pMDLg/pRRE:   5 µg 

• pRSV-Rev :   2.5 µg 

• pH2BGFP:     10 µg 

• CaCl2 (2M)    61 µl 

• sterile dH2O   to 500 µl 

 

The mix was added drop-wise to 500 µl of 2X HBS (HEPES buffered saline: 250 mM 

HEPES pH 7.0, 250 mM NaCl and 150 mM Na2HPO4), constantly bubbling with the 

pipette aid. After 15 minutes of incubation at room temperature, the precipitate was added 

drop-wise to the 10 cm plates and immediately mixed with the culture medium by gentle 

swirling. The cells were incubated at 37°C for 8-12 hours, after which the transfection 

medium was replaced with fresh 293T medium. The viral supernatant was collected twice, 

24 and 48 hours later. Both harvests, pooled together, were filtered through a 0.22 µm filter 

unit and concentrated 1,000x by ultracentrifugation at 50,000 x g for 2 hours at 16⁰C. The 

resulting viral stock was immediately stored at -80⁰C.  
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3.3.1.4 Virus	titration	

The functional titre was determined for each batch of viral stock independently, by 

infection of 293T cells with serial dilutions of the frozen stock corresponding to 0.0001-1 

µl of virus (Barde, Salmon et al. 2010).  More precisely, 250,000 cells per well were plated 

in a 12-well plate in 0.5 ml of medium and transduced in duplicate with 1, 0.1, 0.01, 0.001 

or 0.0001 µl of concentrated virus. The cells were collected 72 hours post-infection, 

washed and fixed in a 4% formaldehyde solution (diluted in PBS from 37% stock, VWR). 

The percentage of the GFP+ infected cells was estimated by flow cytometry analysis and 

the titre was, then, calculated with the aid of the equation below, considering only the 

dilutions of viral stock which yielded 1-20% GFP+ cells: 

 

𝑇𝑖𝑡𝑟𝑒	(
𝑇𝑈
ml) =

Number	of	target	cells	(count	at	day	1)𝑥[%	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒	𝑐𝑒𝑙𝑙𝑠100 ]
𝑣𝑜𝑙𝑢𝑚𝑒	𝑜𝑓	𝑣𝑒𝑐𝑡𝑜𝑟	(𝑚𝑙)  

 

The titre was finally reported as transducing units per ml (TU/ml) and typically ranged 

between 108-1010 TU/ml. 

3.3.2 Isolation	of	human	AML	blasts	from	patient	derived	xenografts	

Human AML blasts were recovered from the BM and SPL of the engrafted mice and the 

resulting cell suspensions were filtered through a 100 µm cell strainer in order to remove 

aggregates. When required, mononuclear cell isolation was performed using Ficoll-Paque 

PLUS (GE Healthcare Life Sciences) separation media, which allows for segregation of 

different blood cell types in distinct layers due to differential cell migration during 

centrifugation (Boyum 1968).  In brief, single cell suspensions of BM and SPL cells in 

PBS were layered carefully over an equal volume of Ficoll-Paque and centrifuged at 400 x 

g for 30 minutes at 16°C, without brake. Highly purified, viable mononuclear cells were 
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then harvested from the interphase between the Ficoll-Paque layer and the PBS. After two 

washing steps with PBS, followed by centrifugation at 400-500 x g for 10 minutes, in order 

to remove residual Ficoll-Paque and platelets, the cells were finally resuspended in the 

appropriate medium for subsequent culture, long-term storage or other applications. 

3.3.3 Cell	culture	of	human	AML	blasts	

Human leukaemic blasts coming from different PDX models presented diverse culture 

requirements. They were generally cultured in RPMI medium supplemented with 20% 

North-American FBS (FBS, NA), variable concentrations of 5637 (bladder carcinoma cell 

line)-conditioned medium (5637 CM; 1-20%) (Myers, Katz et al. 1984, Quentmeier, 

Zaborski et al. 1997) and/or 1% insulin-transferrin-sodium selenite (ITS) liquid media 

supplement (Table 3.1).  

Table 3.1 Composition of the cell culture media used for different AML xenografts. 

Component Manufacturer AMLIEO20 AML1 AML5 AML9 

RPMI / 1640 Lonza yes yes yes yes 

FBS, NA HyCloneTM 20% 20% 20% 20% 

5637 CM Produced 
in-house 1% 1% 10% 20% 

ITS (100x) Sigma-Aldrich - - 1% 1% 

Gentamycin 
(50mg/ml) Lonza - 0.2% - - 

 

3.3.4 Lentiviral	transduction	of	human	AML	blasts	

Lentiviral transduction of the human AML blasts with the H2B-GFP vector was performed 

by a single round of spin-infection at 750 x g, for 45 minutes at room temperature. For the 

clonal tracking experiments, the human blasts were infected with a lentiviral library 

consisting of 30x106 different barcodes, cloned in the pRSI vector (provided by Cellecta). 

Pilot experiments with the empty pRSI vector led to the optimization of the spin-infection 

protocol for the barcoded library at 1,200 x g for 90 minutes at 37°C. Cells were typically 
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plated at a density of 0.5-1x106 cells per well in 24-well non-tissue culture treated plates 

(optionally pre-coated with RetroNectin®, Takara) in the presence of 8 µg/ml of Polybrene 

(Sigma-Aldrich). Transduction efficiency was measured by flow cytometry analysis of 

GFP positive cells for the H2B-GFP vector or TagRFP positive cells for the barcoded 

library. 

	

3.4 Flow	cytometry	analysis	and	fluorescence	activated	cell	sorting		

Fluorescence activated cell sorting (FACS) was performed using FACSAriaTM (BD) and 

MoFlo® AstriosTM (Beckman Coulter), in order to isolate either H2B-GFP+ cells after the 

transduction in vitro with the Tet-Off lentiviral vector or label-retaining cells (LRCs) after 

chasing in vivo with doxycycline. BD FACSCaliburTM or FACSCantoTM II were used 

instead for multi-parametric and cell-cycle flow cytometry data acquisition. Finally, 

MoFlo® AstriosTM was also used for the detection of TagRFP+ cells, infected with the 

barcoded library or empty pRSI vector. All flow cytometry data were analysed with the aid 

of the FlowJoTM 8.8.7 platform or later versions. 

3.4.1 Engraftment	and	surface	marker	expression	analysis	

Human leukaemic cells derived from the PB, SPL and BM of mice transplanted with H2B-

GFP expressing blasts were assessed for the expression of the fusion protein, TagRFP and 

haematopoietic cell surface markers. Cells were incubated at 4°C for at least 30 minutes in 

blocking buffer (10% BSA in PBS) and then stained with antibodies specific for human 

CD45 (hCD45; APC conjugated, clone 2D1, BD), human CD34 (hCD34; PE conjugated, 

clone 8G12, BD) and human CD38 (hCD38; PerCP-Cy5.5 conjugated, clone LS198-4-3, 

Beckman Coulter).  For the staining, the cells were incubated at 4°C for one hour at a 

concentration of 106 cells per 50 µl of staining buffer (1% BSA in PBS) containing the 
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specific antibodies at a 1:100 dilution. After a washing step with PBS, the cells were fixed 

in 4% formaldehyde and analysed by flow cytometry.  

3.4.2 Cell-cycle	analysis	

Cell-cycle analysis was performed by staining with a dye that binds to total DNA (Hoechst 

33342, Sigma-Aldrich) coupled with immunofluorescent staining for the intracellular Ki-

67 antigen and/or incorporated BrdU after in vivo labelling (see section 3.2.5). 

3.4.2.1 DNA	content	analysis	

Hoechst 33342 binds to AT-rich double-stranded DNA in both live and fixed cells (Arndt-

Jovin and Jovin 1977). In our experimental setting, we labelled fixed cells overnight at 4°C 

in a 2 µg/ml solution in PBS.  After data acquisition on FACSCantoTMII, we performed 

cell-cycle analyses using the Watson Pragmatic (Watson, Chambers et al. 1987) univariate 

model on FlowJo. In brief, the G0/G1 and G2/M peaks were approximated by Gaussian 

distributions, setting the ratio of their respective means to 1:2. The S-phase was then fitted 

with a polynomial function to map exactly the shape of the experimental data. Once 

models had been fitted for all the samples, we created gates comprising the G0/G1, S-

phase and G2/M cell populations accordingly in order to assess other parameters (e.g. GFP 

expression). 

3.4.2.2 Ki-67	analysis	

Ki-67 expression is strictly associated with cell proliferation. The antigen is found in the 

nucleus of cycling cells (G1, S, G2, M cell-cycle phases), but is not be detected during G0 

(Gerdes, Lemke et al. 1984). To identify the G0 population in our samples, we stained 

cells, after fixation and permeabilization (with BD Cytofix-CytopermTM buffer), using a 

Ki-67 antibody (PE-Cy7 conjugated, clone B56, BD) diluted 1:100 in 1X Perm/Wash 

buffer (BD Perm/WashTM buffer 10X diluted in dH2O) and incubating 1 hour on ice. 

Finally, after a washing step with 1X Perm/Wash buffer, the cells were stained for total 



 47 

DNA levels with Hoechst 33342, as previously described (see section 3.4.2.1), and kept at 

4°C until FACS analysis. 

3.4.2.3 BrdU	incorporation	analysis	

Evaluation of the DNA synthetic activity, by BrdU incorporation analysis coupled with 

total DNA content staining, enhances the resolution of S-phase from G0/G1 and G2/M 

events. For this purpose, ~107 BrdU pulsed leukaemic blasts (see section 3.2.5) were 

optionally stained for cell surface antigens (see section 3.4.1) an then fixed and 

permeabilized with BD Cytofix/CytopermTM and CytopermTM Permeabilization Plus 

buffers. After an additional fixation step with BD Cytofix/CytopermTM, cells were treated 

with DNase (diluted to 150 µg/ml in PBS) for 1 hour at 37°C to expose the incorporated 

BrdU. We stained the cells with an anti-BrdU antibody (APC BrdU Flow kit, BD; diluted 

1:200 in 1X Perm/Wash buffer) and for other intracellular antigens (i.e. Ki-67, see section 

3.4.2.2), incubating 1 hour on ice. Finally, the cells were stained for total DNA levels with 

Hoechst 33342, as previously described (see section 3.4.2.1), and kept at 4°C until FACS 

analysis. 

3.4.3 Proliferation	analysis	

The conditional repression of H2B-GFP expression, upon doxycycline treatment in vitro or 

in vivo, resulted in a gradual loss of the intensity of the fluorescent signal in proliferating 

cells. In fact, in the presence of doxycycline, at each cell division, the H2B-GFP protein is 

expected to be equally distributed to the two daughter cells, allowing thus monitoring of 

the number of cell divisions that any given cell has undergone. Therefore, PB, BM and 

SPL samples from both doxycycline-treated and control mice were collected at regular 

time intervals during the chasing period and analysed by flow cytometry. The histogram of 

the fluorescence intensity of the GFP+ cells was then generated using FlowJo. 

FlowJo’s proliferation platform was used for the modelling of cell divisions, starting from 

the original population (defined by untreated controls) and searching for peaks with 
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diminishing fluorescence with an approximate ratio of 0.5 per generation and peak 

coefficient of variation (peak CV) around 4-7%. Each cell generation could be then 

analysed separately by creating the corresponding gates through the proliferation platform.  

The overall goodness of fit of the model was finally assessed visually and by the mean root 

mean square (mRMS) value, which is a measure of the distance of the composite model 

line from the histogram of the data. The fitted data were further described by the following 

statistics: 

• Division Index: the average number of cell divisions that a cell in the original 

population has undergone (including the undivided cells). 

• Proliferation Index: the average number of divisions that a dividing cell in the 

original population has undergone.  

• % Divided: the percentage of original cells that have divided. 

 

3.5 In	vivo	clonal	tracking	

A lentiviral barcode library (CellTrackerTM, Cellecta) was used to track the clonal 

composition of growing leukaemias in vivo. Our experimental strategy was based on the 

stable integration (via lentiviral transduction) of a unique molecular marker (barcode) in 

the genome of single LSCs. Sequencing of barcodes in the DNA of leukaemias developed 

after transplantation of library-labelled samples allowed us to track the progeny of 

individual cells and estimate the relevant contribution of each clone to tumour formation. 

The pRSI vector, in which the libraries are cloned, contains a TagRFP transduction 

reporter and the PuroR selection marker (Figure 3.2). Furthermore, each library construct 

is unequivocally identified by a specific barcode, which consists of two consecutive 18-

nucleotide degenerated sequences (Figure 3.2). Due to the presence of 13,000 x 13,000 

different combinations of the two 18-nucleotide sequences, the complexity of the clonal 

tracking libraries reaches approximately the number of 30x106 unique barcodes.  
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Figure 3.2 Schematic representation of the pRSI lentiviral vector (Cellecta). 

PU6, human U6 promoter; BC, barcode; PUbiC, Ubiquitin C promoter drives expression of 
TagRFP and PuroR; TagRFP, monomeric red fluorescent protein (Evrogen) as 
transduction reporter; PuroR, puromycin-resistance marker for the selection of transduced 
cells; T2A, Thosea asigna virus 2A translational cleavage site containing 18 amino acid 
residues; LTR/SIN, self inactivating retroviral long terminal repeat sequences; RRE, HIV-
1 Rev response element; cPPT, central polypurine tract; WPRE, Woodchuck hepatitis virus 
post-transcriptional regulation element. 

 

3.5.1 Genomic	DNA	extraction	for	barcode	amplification	

Both uninfected and H2B-GFP infected human AML blasts were targeted in vitro with the 

lentiviral barcode library (see section 3.3.4) at a low multiplicity of infection (MOI) and 

transplanted into NSG mice after a 24-hour incubation at 37°C. Upon leukaemia 

presentation, BM and SPL cells were collected from the engrafted mice and the genomic 

DNA was extracted, either from the bulk tumours or from sorted quiescent and cycling 

populations. For this purpose a phenol/chloroform extraction protocol was used (Sambrook 

and Russell 2006) followed by isopropanol precipitation according to Cellecta’s 

specifications.  

In detail, tumour cells were resuspended in TES buffer (10 mM Tris-Cl pH 8.0, 5 mM 

EDTA pH 8.0, 0.5% SDS) containing RNase A (100 µg/ml) and incubated for 5 min at 

room temperature. One volume of phenol:chloroform:isoamyl alcohol 25:24:1 

(Sigma-Aldrich) was added to the samples, mixed thoroughly by vortex until the formation 

of an emulsion and centrifuged at maximum speed for 60 minutes at room temperature. 

After centrifugation, the upper aqueous phase was collected and the process repeated with 

LTR RRE PU6 cPPTBC PUbiC TagRFP LTR/SINWPREPuroRT2A
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the addition of 1 volume of chloroform (VWR) to remove phenol residues. DNA 

was then precipitated from the upper phase, by adding 1 volume of isopropanol and 0.125 

volumes of 3 M sodium acetate, washed with 70% ethanol and air-dried. Pellets were 

finally resuspended in sterile dH2O and the DNA concentration was measured on 

NanoDrop or Qubit® 2.0 (Invitrogen). 

3.5.2 Barcode	amplification	

Barcode amplification was performed by two rounds of PCR, using nested primers 

designed to include sequences complementary to the immobilized primers necessary for 

generating amplification clusters in Illumina HiSeq 2000 (Table 3.2, Figure 3.3). 

Table 3.2 Primers used for barcode amplification and sequencing. 

Application Round Name Sequence 

Barcode 
amplification 

1st FwdHTS3  TCGGATTCAAGCAAAAGACGGCATA 
R2  AGTAGCGTGAAGAGCAGAGAA 

2nd 
Gex1-Bpi TCAAGCAGAAGACGGCATACGAAGACA 

NR2  AATGATACGGCGACCACCGAGACGAGCAC
CGACAACAACGCAGA 

Sequencing   GexSeqS  AGAGGTTCAGAGTTCTACAGTCCGAA 
 

 

Figure 3.3 Nested PCR strategy for barcode amplification 

In the first PCR round, the FwdHRS3 and R2 primers are employed to produce a 275bp 
amplicon, which is used as a template in the second PCR round to amplify a ready-to-
sequence 267 bp fragment with the the Gex-Bpi and Gex2-NR2 primers. 

 

For the first PCR round, we used as input the entire amount of genomic DNA obtained, to 

ensure full representation of the library of barcodes in our samples. For this purpose, 
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Titanium Taq DNA polymerase (Takara), which is very efficient in the amplification of 

high amounts of DNA, was used for the bulk tumour samples and Phusion® High-Fidelity 

DNA polymerase (New England Biolabs) was used for the sorted populations. For each 

sample, a master mix was prepared according to Table 3.3 and the PCR performed 

following the programme outlined in Table 3.4.  

Table 3.3 Master-mix preparation for PCR round 1. 

High DNA input (25µg/reaction) Low DNA input (250ng/reaction) 

Component Final 
concentration Component Final 

concentration 
Titanium Taq 
buffer (10X) 1X 5X Phusion HF 

buffer 1X 

dNTP mix  
(10 mM each) 200 µM each dNTP mix  

(10 mM each) 200 µM each 

FwdHTS3 primer 
(10 µM) 0.3 µM FwdHTS3 primer 

(10 µM) 0.5 µM 

R2 primer  
(10 µM) 0.3 µM R2 primer  

(10 µM) 0.5 µM 

dH2O (to 100 µl) dH2O (to 50 µl) 
Titanium Taq 
polymerase (50X) 5U/ 100 µl Phusion DNA 

polymerase 1U/ 50 µl 

 

Table 3.4 Thermocycling conditions for PCR round 1 

Extension temperature was set to 72°C or 68°C for Titanium Taq and Phusion DNA 
polymerase amplifications accordingly. 

 

Process Temperature Time Cycles 
Initial 
denaturation 94°C 3 min 1 

Denaturation 94°C 30 sec 

16 Annealing 60°C 10 sec 

Extension 72°C/68°C 20 sec 
Final 
extension  72°C/68°C 2 min 1 

 

After the first round of PCR, all the reactions per sample were combined together and 

extensively mixed. A small sample of this mix (typically 1-10 µl) was used to perform the 
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second round nested-PCR, in order to separate the amplified barcodes from non-specific 

PCR products and the excess of genomic DNA. The primers used for this second 

amplification contain the P5 and P7 adapter sequences for the Illumina flow cell (Table 

3.2, Figure 3.3). For each sample, a master mix was prepared according to Table 3.5 and 

the PCR performed following the programme outlined in Table 3.6.  

Table 3.5 Master-mix preparation for PCR round 2. 

High DNA input (25µg/reaction) Low DNA input (250ng/reaction) 

Component Final 
concentration Component Final 

concentration 
Titanium Taq 
buffer (10X) 1X 5X Phusion HF 

buffer 1X 

dNTP mix  
(10 mM each) 200 µM each dNTP mix  

(10 mM each) 200 µM each 

Gex1-Bpi primer 
(10 µM) 0.5 µM Gex1-Bpi primer 

(10 µM) 0.5 µM 

NR2 primer  
(10 µM) 0.5 µM NR2 primer (10 

µM) 0.5 µM 

dH2O (to 100 µl) dH2O (to 50 µl) 
Titanium Taq 
polymerase (50X) 5U/ 100 µl Phusion DNA 

polymerase 1U/ 50 µl 

 

Table 3.6 Thermocycling conditions for PCR round 2. 

Extension temperature was set to 72°C or 68°C for Titanium Taq and Phusion DNA 
polymerase amplifications accordingly. 

 

Process Temperature Time Cycles 

Initial 
denaturation 

94°C 3 min 1 

Denaturation 94°C 30 sec 

16 Annealing 66°C 10 sec 

Extension 72°C/68°C 10 sec 

Final 
extension 

72°C/68°C 2 min 1 

 

The PCR products (10µl per reaction) were analysed by gel-electrophoresis on a 3.5% 

agarose gel in 1X TAE (1X Tris-acetate-EDTA buffer) to confirm the correct size (267 bp) 
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and equal densities of the amplicon bands for all samples. When necessary, we repeated 

the second PCR, adjusting the amount of input DNA from the first round to obtain the 

same yields among all amplified samples. The products of two 2nd round reactions were 

then combined and purified using the QIAquick PCR purification kit (QIAGEN), 

according to the manufacturer’s indications. When non-specific PCR products had been 

detected during the electrophoresis, we used the QIAquick Gel Extraction kit (QIAGEN) 

to isolate the 267 bp target DNA fragments after the PCR purification step. As described in 

the manufacturer’s protocol, the purified PCR products were separated by electrophoresis 

on a 3.5% agarose gel in 1X TAE and the desired bands were excised using a disposable 

sterile scalpel. The gel slices were dissolved in the designated buffer included in the kit and 

after the addition of isopropanol, the DNA was bound to the silica membrane of the 

provided spin columns and washed with an ethanol containing buffer. Finally, the DNA 

was eluted in a small volume (30-50 µl) of dH2O and quantified using Qubit. 

3.5.3 Barcode	sequencing	and	enumeration	

Since the lentiviral barcode library and the PCR primers are complementary to the 

immobilized P5 and P7 primers (blue and red respectively in Figure 3.3) necessary for 

generating amplification clusters in Illumina’s HiSeq 2000, the amplicons can be directly 

sequenced through the GexSeqS primer (Table 3.2). The barcodes were identified by 

aligning each sequencing read to the reference sequences of the library barcodes (provided 

by Cellecta) without mismatches using Bowtie (Langmead, Trapnell et al. 2009), enabling 

thus the conversion of raw NGS data into number of reads for each barcode. 
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3.6 Mutational	analysis	

3.6.1 Whole	exome	sequencing	(WES)	

High quality genomic DNA was obtained from bulk leukaemias and sorted cycling or 

quiescent populations with the use of the DNeasy® Blood and Tissue kit (QIAGEN).  In 

detail, the cells were resuspended in the lysis buffer containing RNase A (100 µg/ml) and 

Proteinase K (75 µg/ml) and incubated at 56°C for 20 minutes. After the addition of 

ethanol (96-100%), the lysates were loaded on the microspin columns and the DNA was 

selectively bound to the silica-based membrane. Contaminants and enzyme inhibitors were 

removed by two washing steps and the DNA was finally eluted in the appropriate volume 

of dH2O (50-100 µl).  

Starting from 200 ng fractionated DNA per sample, the whole-exome of isolated 

populations and bulk tumour cells was captured with the use of the SureSelectXT Human 

All Exon kit (Agilent Technologies). Paired-end sequencing at high coverage (threshold 

>1-2%) with 101 nt read length was performed using the Illumina HiSeq 2000 platform. 

Data were analysed using an appropriately developed bioinformatics pipeline (see section 

3.6.2) based on MuTect (Cibulskis, Lawrence et al. 2013) for the identification of single 

nucleotide variations (SNVs). 

3.6.2 Mutation	calling	

Although exome capture sequencing is highly species-specific, the presence of 

contaminating murine stromal cells in our samples could impinge on the sensitivity and 

specificity of NGS analysis (Rossello, Tothill et al. 2013). For this reason, we used 

Xenome (Conway, Wazny et al. 2012) to separate reads of the human graft (hg19) from the 

ones of the murine host (mm9). Graft-specific reads were then aligned to the hg19 

reference genome using BWA (Li and Durbin 2009). Next, we performed the following 

NGS data pre-processing steps according to GATK best practices (McKenna, Hanna et al. 
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2010): local realignment, duplicate marking and base quality recalibration. SNV 

identification was performed by MuTect (Cibulskis, Lawrence et al. 2013), comparing 

each tumour sequence to the corresponding normal. All “REJECT” mutations were 

discarded and we considered only mutations in the target region. Finally, we used the D-

ToxoG tool (Costello, Pugh et al. 2013) to remove artefacts introduced during library 

preparation. All positions with a minimum coverage of 10 reads (for both the tumour and 

normal samples of each confrontation pair) were annotated with ANNOVAR (Wang, Li et 

al. 2010). Finally, the frequency of each mutation was calculated dividing the number of 

reads supporting the variant to the total coverage at the variant site. 

3.6.3 Clonal	analysis	

For each patient, a unique file was built containing all the positions identified as mutated in 

at least one of the sequenced samples. For each mutated position a Python script was used 

to re-count the reads (carrying or not the variant) directly from the BAM files. We 

excluded variants in non-coding regions, variants present in highly repetitive regions, 

variants annotated as single nucleotide polymorphisms (SNPs) [i.e. annotated in ExAC 

(Lek, Karczewski et al. 2016), ESP (http://evs.gs.washington.edu/EVS) or 1KG 

(http://www.internationalgenome.org/home) with Minor Allele Frequency (MAF) higher 

than 0.01 (MAF>0.01)] and transgene-specific variants (introduced by the H2B-GFP 

vector). SciClone (Miller, White et al. 2014) was employed to cluster exonic mutations by 

variant allele frequency (VAF) similarity, using Bayesian mixture modelling of beta 

distributions (minimum depth = 10, maximum number of clusters = 10). ClonEvol (Dang, 

White et al. under review) was then used to infer clonal evolution models (p-value ≤ 0.05) 

from the clusters of variants (sub-clones) previously identified by SciClone. Finally, the 

inferred models were visualized with the fishplot R package function (Miller, McMichael 

et al. 2016). 
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4 Results	

 

4.1 LSCs	have	variable	growth	potential	in	vivo	

AMLs are functionally heterogeneous and hierarchically organized, containing only a 

minor fraction of cells with leukaemogenic capacity (Bonnet and Dick 1997). These cells, 

commonly termed as leukaemia stem cells (LSCs) or leukaemia initiating cells (LICs), are 

thought to be responsible for tumour maintenance and progression. We first investigated 

whether the pool of LSCs is inherently heterogeneous in terms of growth potential in vivo. 

To address this question, we used a clonal tracking approach, envisioning the identification 

of each LSC by a unique molecular marker (barcode), which is stably integrated in the 

genome of the target cells by lentiviral transduction of a library of molecularly distinct 

barcodes (see section 3.5).  

 

Figure 4.1 Experimental strategy for the in vivo clonal tracking. 

Freshly isolated leukaemic cells, derived from xenotransplanted human samples, were 
infected at a low MOI with a lentiviral library containing 30x106 unique molecular 
barcodes. The infected blasts were then serially transplanted into NSG mice. After 
leukaemia development, the recipients were sacrificed and the spleen and bone marrow 
cells of each passage (X1 to X3) were collected for barcode amplification and sequencing.  

 

P2	Human	
AML	cells NSG	mice

TagRFP
expression

Barcode	amplification	and	sequencing

in	vitro

Lentiviral library
30x106	barcodes

X1 X2 X3
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Limiting dilution and serial transplantation assays have been considered as the gold 

standard for the identification and enumeration of both normal and cancer stem cells 

(CSCs). However, the clonal tracking approach involves transplantation of a mixed 

population of CSCs, thus permitting monitoring of individual CSCs in a more 

physiological context. Sequencing of the barcodes in the tumours originating from 

transduced cells (X1) and cells from serially transplanted (secondary X2 and tertiary X3) 

recipient mice, should enable us to track the progeny of each individual CSC and estimate 

the relevant contribution of each leukaemic clone to tumour formation and evolution 

(Figure 4.1).  

4.1.1 Infection	of	human	AML	blasts	with	the	30x106	barcode	library	

Our group has established a collection of patient derived xenografts (PDX) from 33 

primary human AMLs (passage 1, P1), of which 16 were successfully passaged in 

secondary recipients (passage 2, P2). For the purposes of this study, P2 freshly isolated 

cells were used for the in vitro transduction with the 30x106 barcode lentiviral library, 

which was followed by xenotransplantation to monitor the contribution of individual LSCs 

in tumour growth in vivo. 

To avoid multiple viral integrations per cell, we first defined the appropriate experimental 

conditions to ensure high infection efficiency of the human AML blasts at a low MOI. A 

single spin infection at 1,200 x g for 90 minutes at 37ºC was chosen as the most efficient 

transduction protocol. Importantly, the infected cells presented no apparent deficits in 

homing and engraftment upon transplantation into NSG mice and the presence of the 

TagRFP+ blasts could be easily monitored in the PB of the transplanted animals (data not 

shown). 

4.1.2 In	vivo	clonal	tracking	upon	serial	passaging	

We used a high complexity 30x106 barcode library in order to minimize the possibility of 

marking multiple cells with the same barcode. After the infection step, 5x105 cells were 
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transplanted in NSG recipients, while the remaining were kept for the evaluation of 

infection efficiency, by flow cytometry analysis.  

The use of a library with such a high complexity rendered the discrimination of 

background sequencing noise extremely challenging. Based on binomial statistics, at least 

5 observations (i.e. 5 reads per barcode) are required to claim a significant difference from 

0 (p-value < 0.05).  However, in order to set a biologically meaningful threshold, a spike-in 

experiment was performed (Cammarata A., unpublished), which showed a linear 

correlation between the numbers of cells marked by a specific barcode present in a sample, 

and the number of reads obtained for the same barcode. Linearity, however, was lost when 

a barcode was represented by as few as 10 cells, while the detection of the barcode 

altogether was not uniformly reliable for less than 10,000 cells. Setting as threshold the 

number of reads corresponding to the 10,000 cell input, we retrieved an average of ~6.5% 

of the barcodes in the various experiments, which accounted however for the ~99% of the 

reads per tumour in all cases. In other terms, the background threshold that we used 

allowed analyses of 99% of the cells of each tumour, with a sensitivity of clonal 

identification of 10,000 cells per clone. 

The relative contribution of each LSC to the whole tumour population (X1) in vivo was 

highly variable, ranging from ~0.03% to ~19%, thus suggesting that the LSC compartment 

is highly heterogeneous in terms of growth potential in vivo. However, by comparing the 

clonal evolution of the same X1 in the different mice of passages X2 and X3 of the serial 

transplantation (Figure 4.1), we found a strikingly similar clonal composition per passage 

both in terms of clone numbers and clone identity. Moreover, the common clones among 

the recipients of the same donor always grew to occupy the same proportion of the tumour 

population, suggesting that growth potential, under a given environmental condition, is an 

inherent and “stable” property of each clone.  
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Notably, a strong clonal selection was observed upon serial transplantation under steady 

state conditions. Only a few clones survived and expanded in X2 and X3 (Figure 4.2). In 

fact, only a minor proportion of clones (~8%) was able to constantly expand throughout 

the passages, suggesting that the majority of LSCs are endowed with a limited proliferative 

potential and that the observed changes in clonal composition in the X2 and X3 tumours 

reflect the functional exhaustion of individual clones. 

The strong clonal selection observed upon serial transplantation could be perturbed by 

external selective pressures such as 5-FU (in collaboration with Cammarata A., 

unpublished; Figure 4.2 and Figure 4.3), suggesting that different clones may adapt 

differently to the changing environment. Importantly, the clones selected by 5-FU 

maintained their growth potential when challenged by transplantation (in the absence of 5-

FU treatment), suggesting that regardless of their adaptability to the changing environment, 

different clones have similar capacity to fit the selecting environment. 

In conclusion, leukaemias, at steady state, are composed by multiple clones, each arising 

from a single LSC. Different LSCs have different self-renewal and growth potential, 

equally fit to the external selective pressure of the environment, and different capacities to 

adapt to a changing environment. 
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Figure 4.2 Clonal selection upon serial passaging and 5-FU treatment. 

The upper scheme depicts the experimental outline and the graph below it shows a 
representative example of the relative contribution of each barcoded clone to tumour 
formation, for each passage (X1, X2 and X3) and condition (No 5-FU, + 5-FU). The 
inferred expansion or shrinkage of clones upon serial passaging is shown below the light 
blue arrows. All unique barcodes are depicted by a different colour and can be therefore 
univocally identified in all samples, allowing for the visual observation of their evolution 
under different environmental stresses (i.e. serial transplantation and 5-FU treatment). The 
clones are presented in an ascending order, based on their relative contribution to X1 (n=5, 
one representative example is shown). The clonal selection upon serial passaging (No 5-
FU) is illustrated on the left (n=4 per passage, one representative example is shown for 
each passage) and the effect of 5-FU administration at X2 (+ 5-FU), which led to a diverse 
clonal selection, is shown on the right (n=4 per passage, one representative example is 
shown for each passage) (Cammarata A., unpublished). 
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Figure 4.3 Minor clones are selected for expansion upon 5-FU treatment 

As in Figure 4.2, the upper scheme depicts the experimental outline and the graph below it 
shows a representative example of the relative contribution of each barcoded clone to 
tumour formation, for each passage (X1, X2 and X3) and condition (No 5-FU, + 5-FU). 
The inferred expansion or shrinkage of clones upon serial passaging is shown below the 
light blue arrows. The graph shows the effect of 5-FU administration on the clonal 
selection process both at X2 (+5-FU X2 on the right; the same X1 and X2 cases that were 
previously shown in Figure 4.2) and X3 (+5-FU X3, one case representative of 4 per 
condition) passages of transplantation of the leukaemia. However, after the first 
administration of 5-FU, further treatments appeared to be ineffective in the clonal selection 
process (+5-FU X3 on the right) (Cammarata A., unpublished). 
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4.2 Functional	 isolation	 of	 leukaemic	 populations	 with	 different	

proliferation	histories	

 

Our in vivo clonal tracking data suggest the existence of a pool of functionally 

heterogeneous LSCs in AMLs, in terms of proliferation capacity (different clone-sizes at 

X1), self-renewal potential (clonal expansion or extinction upon serial transplantation) and 

capacity to adapt to a changing environment (different clonal expansion after 5-FU 

treatment). We next investigated proliferation and self-renewal kinetics of AML cells in 

vivo, using an in vivo label-retaining assay based on the inducible expression of the H2B-

GFP labelling fusion protein (see section 3.2.4 and Figure 4.4).  

 

Figure 4.4 Experimental strategy for the in vivo H2B-GFP label-retaining assay 

Human AML cells, derived from a passage 2 (P2) PDX, were transduced in vitro with the 
Tet-Off H2B-GFP lentiviral vector, in the absence of doxycycline (Dox) in order to allow 
for the expression of the H2B-GFP transgene. The H2B-GFP+ infected cells were isolated 
by FACS and transplanted into NSG mice. Upon leukaemia manifestation, the mice were 
treated with Dox in vivo to shut off the H2B-GFP expression (chasing period). At the end 
of the chasing period, the bone marrow (BM) and spleen (SPL) cells were collected from 
the mice and FACS-sorted in three subpopulations, based on their GFP fluorescence 
intensity, for further characterisation.  
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The experimental strategy outlined in Figure 4.4 is based on the xenotransplantation of 

human AMLs infected with the H2B-GFP lentivirus and stably expressing the fusion 

protein in the absence of doxycycline (Falkowska-Hansen, Kollar et al. 2010). The 

prolonged suppression of H2B-GFP expression by in vivo administration of doxycycline 

(chasing period), enables identification and isolation of leukaemic cell populations 

endowed with different label-retaining capacity which, in turn, correlates with their cycling 

properties.  

4.2.1 Generation	of	H2B-GFP	expressing	human	AML	xenografts		

The first step towards the set-up of the in vivo label-retaining assay was to generate PDX 

models of AML that stably express the H2B-GFP transgene in the absence of doxycycline. 

For this purpose, P2 leukaemic blasts were targeted in vitro by the Tet-Off H2B-GFP 

lentiviral vector in doxycline-free media, to allow production of the fusion protein. As 

expected, the GFP signal was restricted to the nucleus of the infected cells (Figure 4.5). 

 

Figure 4.5 Fluorescence microscopy of H2B-GFP expression in human AML blasts. 

Left panel: control (non-infected, NI) cells. Middle and right panel: cells infected (INF) 
with the H2B-GFP lentivirus. Magnification 10x or 20x as indicated. Scale bar represents 
50 µm. 

 

Human leukaemic blasts coming from different patient samples typically presented 

variable culture requirements in vitro (see section 3.3.3) and infection efficiencies with the 

H2B-GFP vector (Figure 4.6). Our aim was to obtain a relatively homogeneous population 

of leukaemic H2B-GFP expressing cells. We used a relatively low MOI (10 or 20), to 

avoid extensive cell death, and the percentage of GFP+ cells obtained under these 

conditions was generally low (< 25%; Figure 4.6). 

NI 10x INF 10x INF 20x



 64 

 

Figure 4.6 Transduction efficiency of human AML blasts with the H2B-GFP vector. 

The transduction efficiency at MOI 10 and 20 for different PDXes is represented by the 
percentage of H2B-GFP+ cells detected by FACS 2-3 days post infection. Mean and 
standard deviation of biological replicas are shown. 

 

However, we were able to isolate a highly pure H2B-GFP+ population by FACS from all 

AML samples tested, after a single spin infection, and to transplant from 30,000 to 50,000 

sorted cells per NSG mouse. Finally, GFP+ leukaemias were obtained from two PDX 

models, AML IEO20 and AML 9 (Figure 4.7). In the other two samples tested (i.e. AML 1 

and AML 5) the combination of low infection efficiency with low LSC content was 

restrictive. Importantly, in the absence of doxycycline, expression of the H2B-GFP 

transgene in AML IEO20 and AML 9 was stable in vivo across all haematopoietic tissues 

and upon serial transplantation (Figure 4.8).  
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Figure 4.7 Flow cytometry histograms of H2B-GFP expression in vivo.  

The distribution of the H2B-GFP fluorescence, in the absence of doxycycline, is shown for 
the human (hCD45+) population in the BM of mice engrafted with H2B-GFP+ expressing 
AML IEO20 (left panel) and AML9 (right panel) blasts.  

 

 

Figure 4.8 H2B-GFP expression in vivo in the absence of doxycycline. 

Percentage of H2B-GFP+ cells within the human (hCD45+) population in the PB, BM and 
SPL of mice transplanted with H2B-GFP+ AML IEO20 and AML 9 blasts, as defined by 
flow cytometry analysis. Mean and standard deviation are shown for the first (X1), second 
(X2) and third (X3) passages of transplantation of the infected blasts. 
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4.2.2 H2B-GFP	expression	is	tightly	controlled	by	doxycycline		

The design of the H2B-GFP vector offers the possibility to control extrinsically the 

regulation of transgene expression in the infected cells, by administration of doxycycline in 

vitro or in vivo. This feature is of key importance in view of the downstream experimental 

applications, as loss of the H2B-GFP signal will correlate with cell proliferation rate. As 

already discussed in the previous paragraph, the levels of H2B-GFP in vivo were stable in 

the absence of doxycycline (Figure 4.8), indicating that vector leakiness and/or transgene 

silencing did not interfere with our experimental conditions. Preliminary in vitro 

experiments further showed that treatment with doxycycline at a concentration of 10 ng/ml 

was sufficient to shut off the expression of H2B-GFP, resulting in rapid and time-

dependent decrease of the Mean Fluorescence Intensity (MFI) of the GFP+ population 

(Figure 4.9).  

 

 

Figure 4.9 Regulation of H2B-GFP expression in vitro. 

The mean fluorescence intensity (MFI) of H2B-GFP+ leukaemic blasts (AML IEO20) in 
the presence of 10 ng/ml of doxycycline was monitored by flow cytometry one, four and 
six days after plating. Control: cells cultured in doxycycline-free media. Doxycycline: cells 
cultured in the presence of 10 ng/ml doxycycline. All values were normalised to the MFI 
of the controls per day. Mean and standard deviation are shown. 
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In order to regulate H2B-GFP expression in vivo, doxycycline was administered to the 

experimental mice through the feed, while control animals were kept on a normal diet. The 

gradual loss of the fluorescent signal of the H2B-GFP tagged human population could be 

easily monitored in the PB of the treated mice (Figure 4.10).  

 

Figure 4.10 Regulation of H2B-GFP expression in vivo. 

Relative decrease in the MFI (left panel) and in the percentage (right panel) of the H2B-
GFP+ cells, as monitored by flow cytometry of the human (hCD45+) cells in the PB of 
mice (n=5) transplanted with the H2B-GFP+ AML IEO20 and AML 9. All values were 
normalised to the equivalent MFI and percentages of hCD45+ cells within the GFP+ gate 
of the control group (per PDX and time point). Mean and standard deviation are shown. 

 

Notably, the rate by which the mean fluorescence intensity (MFI) of the H2B-GFP+ 

population decreased was indistinguishable in the two PDX models used (Figure 4.10, left 

panel), despite their difference in disease latency (one month for AML IEO20 and two 

months for AML 9). However, due to their respective initial H2B-GFP fluorescence 

distributions (Figure 4.7), the decrease in the percentage of cells that retained a detectable 

H2B-GFP+ signal was faster in AML IEO20 than AML 9 (Figure 4.10, right panel). 

Finally, GFP- populations, upon removal of doxycycline at the end of the chasing period, 

re-acquired their initial GFP+ signal both in vitro and in vivo (data not shown). Taken 

together, these data demonstrate the tight control of H2B-GFP expression by the Tet-Off 

trans-activator, while the kinetics of the dilution of the H2B-GFP signal in vivo suggest 

that this assay allows identification and selection of quiescent or slowly cycling cells.  
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4.2.3 The	H2B-GFP	label-retaining	cells	are	quiescent		

The accurate control of the system by doxycycline was essential for the implementation of 

the in vivo H2B-GFP label-retaining assay, yet its reliability needed to be further evaluated 

on the basis of the cell-cycle properties of the label-retaining cells (LRCs) obtained 

(LRC+). To this end, we performed an in vivo BrdU incorporation assay in combination 

with Ki-67 characterisation of the GFPhigh, GFPlow and GFPneg populations in the SPL 

and BM of mice subjected to a short chasing period (Figure 4.11).  

 

Figure 4.11 Experimental outline and gating strategy for BrdU and Ki-67 analyses. 

A 12-hour pulse of BrdU was administered IP to mice engrafted with H2B-GFP+ blasts 
after a 10-day treatment with doxycycline (+ Dox) for 10 days. BM and SPL cells were 
then collected for evaluation of BrdU incorporation and Ki-67 status. The flow cytometry 
dot plots depict representative H2B-GFP expression profiles of AML IEO20 control (No 
Dox, no doxycycline treatment; left panel) and doxycycline-treated cells (+ Dox; right 
panel) after a chasing period of 10 days. For both AMLs the gates for the GFPhigh, 
GFPlow and GFPneg (GFP-) subpopulations were set on the dot plot of the control cells 
and applied accordingly to all doxycycline-treated samples for the flow cytometry analysis. 
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In particular, animals already engrafted with H2B-GFP+ blasts and treated with 

doxycycline for 10 days were given a 12-hour BrdU pulse by two IP injections (one 

injection every 6 hours). As expected, the percentages of GFPhigh, GFPlow and GFPneg 

cells varied greatly between the two AML models. Due to the different profiles of H2B-

GFP distribution in the starting populations (Figure 4.7), more than 80% of the H2B-GFP+ 

blasts coming from AML IEO20 lost any detectable GFP signal upon the 10-day chasing 

period (Figure 4.12). Conversely, in the same timeframe, AML 9 H2B-GFP+ cells largely 

retained a positive GFP signal (Figure 4.12). 

 

Figure 4.12 Percentages of H2B-GFP subsets in the BM and SPL after 10 days of 
chasing. 

Mice (n=3) transplanted with H2B-GFP+ AML IEO20 or AML 9 cells were treated with 
doxycycline for 10 days. The percentages of GFPhigh, GFPlow and GFPneg in the BM 
and SPL are reported, following the gating strategy depicted in Figure 4.11. Mean and 
standard deviation are shown. 

 

About 12-53% of the cells were found to be actively cycling in the BM and SPL of the two 

PDX models at 10 days after chasing. The fraction of BrdU incorporating cells was higher 
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immunostaining, >70% of GFPhigh cells in the BM and >80% in the SPL were negative 

for Ki-67 at the end of the 10-day doxycycline treatment (Figure 4.14). 

 

Figure 4.13 BrdU incorporation analysis in the H2B-GFP subsets. 

The relative fraction of actively cycling cells (BrdU+) is shown for the bulk (entire 
leukaemic population) and the GFPhigh, GFPlow and GFPneg subsets (as defined in 
Figure 4.11) in the BM and SPL of mice (n=3) engrafted with H2B-GFP+ AML IEO20 or 
AML 9, after a 10-day chasing period with doxycycline. All values were normalised to the 
corresponding of the bulk population per tissue and PDX model. Mean and standard 
deviation are shown. Student’s t-test was performed for GFPhigh vs. GFPneg. * p-value < 
0.05; ** p-value < 0.01. 

 

 

Figure 4.14 Ki-67 analysis in the H2B-GFP subsets. 
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The percentage of Ki-67- cells is shown for the bulk (entire population) and the GFPhigh, 
GFPlow and GFPneg subsets (as defined in Figure 4.11) in the BM and SPL of mice (n=3) 
engrafted with H2B-GFP+ AML IEO20 or AML 9, after a 10-day chasing period with 
doxycycline. Mean and standard deviation are shown. Student’s t-test was performed for 
GFPhigh vs. GFPneg. * p-value < 0.05; ** p-value < 0.01; *** p-value < 0.001. 

 

Thus, both analyses indicated that the loss of the H2B-GFP signal upon doxycycline 

treatment was linked to an active cell-cycle state. This was exemplified in the case of AML 

IEO20, where virtually all actively cycling cells were GFPneg (Figure 4.15).  

 

 

Figure 4.15 Flow cytometry dot plots of BrdU and Ki-67 vs. H2B-GFP expression. 

Representative flow cytometry dot plots of AML IEO20 SPL blasts, obtained after a 10-
day treatment with doxycycline in vivo. BrdU incorporation vs. H2B-GFP expression on 
the left panel; Ki-67 vs. H2B-GFP expression on the right panel. The percentage of each 
population is indicated in the corresponding quadrants. 

 

To further characterise the cell-cycle status of the GFPhigh, GFPlow and GFPneg subsets, 

we combined BrdU incorporation and Ki-67 analyses with total DNA staining by Hoechst 

33342 (see section 3.4.2).  First, we created gates for the G0/G1, S and G2/M phases, by 

cell-cycle analyses of DNA content, using the Watson (pragmatic) model on FLowJo. 

Then, within the G0/G1 gate, the G0 phase was defined with higher stringency by BrdU 

and Ki-67 double negativity. Consistently with the above reported results, we found a 
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significant enrichment of cells in the G0 phase of the cell-cycle within the GFPhigh 

subpopulation (Figure 4.16). 

 

 

Figure 4.16 Percentage of cells in G0 within the H2B-GFP subsets. 

The percentage of G0 (BrdU-Ki-67-) cells is shown for the bulk (entire population) and the 
GFPhigh, GFPlow and GFPneg subsets (as defined in Figure 4.11) in the BM and SPL of 
mice (n=3) engrafted with H2B-GFP+ AML IEO20 or AML 9, after a 10-day chasing 
period with doxycycline. Mean and standard deviation are shown. Student’s t-test was 
performed for GFPhigh vs. GFPneg. * p-value < 0.05; ** p-value < 0.01. 

 

In conclusion, these results demonstrate that the cells retaining a high GFP signal are 

predominantly quiescent, and, more in general, that the H2B-GFP label-retaining assay 

allows for the identification and isolation of leukaemic subsets based on their proliferation 

properties. 
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expressing starting population (before any doxycycline administration) that divides in a 

synchronous manner would allow the visual identification of each generation of cells as a 

distinct peak in the H2B-GFP fluorescence histogram. As expected, patterns of H2B-GFP 

expression were less homogeneous in our two AML models, thus challenging the inference 

of the number of divisions. To circumvent this limit, we used FlowJo’s proliferation 

platform to analyse the H2B-GFP dilution data obtained after 10 days of chasing with 

doxycycline.  

As shown above, more than 80% of the AML IEO20 cells were already GFPneg by the 10-

day time point (Figure 4.12), due to the initial distribution of the H2B-GFP fluorescence 

(Figure 4.17, left panel).  Performing the proliferation analysis with the bulk doxycycline-

treated AML IEO20 cells, allowed us to monitor only up to four divisions in vivo. All cells 

that divided more than 4 times appeared to have completely lost any detectable H2B-GFP 

signal (Figure 4.17, right panel). 

 

Figure 4.17 In vivo division tracking in AML IEO20 based on the H2B-GFP dilution. 

A representative H2B-GFP fluorescence histogram is shown (black lines) for AML IEO20 
SPL cells, after 10 days of chasing. Left panel: Overlay with the starting population (blue 
line). Right panel: division modelling using FLowJo’s proliferation platform. Each 
modelled generation is depicted by a blue peak and the composite model by the red line. 
The number of generations is indicated on the top of the histogram.  
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The sharp peak of a bright H2B-GFP signal in the starting population of AML 9, instead, 

enabled us to track up to 8 rounds of cell division (Figure 4.18). Since no information 

regarding cell division can be any longer obtained from cells when they become GFPneg, 

we decided to pre-select the H2B-GFP+ population for the modelling of the SPL cells of 

AML 9, in order to exclude any contaminating mouse stromal cells. In the case of AML 

IEO20, this issue was not of great importance as we were confident that any such 

contamination would have had negligible effects on the analysis readout, given the high 

abundance of GFPneg human cells at the end of the 10-day chasing period. 

 

Figure 4.18 In vivo division tracking in AML 9 based on the H2B-GFP dilution. 

Representative H2B-GFP fluorescence histograms are shown (black lines) for AML 9 BM 
(left panels) and SPL (right panels) cells, after 10 days of chasing. Upper panels: Overlay 
with the corresponding starting population (blue line). Lower panels: division modelling 
using FLowJo’s proliferation platform. Each modelled generation is depicted by a blue 
peak and the composite model by the red line. The number of generations is indicated on 
the top of the histogram.  
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The models fitted to the H2B-GFP dilution data of AML 9 allowed us to infer more 

detailed information on the proliferation kinetics of the labelled cells (Table 4.1). 

According to the proliferation statistics calculated by FlowJo, all cycling cells underwent 

an average of 2.87-3.41 cell divisions in the samples analysed for the 10-day chasing 

period. Importantly, ~7.4% of the BM and ~23% of the SPL original population (at the 

start of the chasing) remained undivided within the same timeframe. 

 

Table 4.1 Proliferation statistics for AML9. 

Peak CV, peak coefficient of variation; Div. Index, division index; Prol. Index, 
proliferation index; % Divided, percentage of cells in the original population that have 
divided; mRMS, mean root mean square value (see section 3.4.3). 

 # peaks Peak ratio Peak CV Div. Index Prol. Index % Divided mRMS 

BM 1 8 0.472 6.12 2.58 2.88 89.5 149 

BM 2 8 0.488 5.32 3.18 3.41 93.3 179 

BM 3 8 0.49 5.55 3.2 3.38 94.9 296 

SPL 1 9 0.471 5.8 2.19 2.87 76.3 790 

SPL 2 9 0.468 6.15 2.3 3.08 74.6 382 

SPL 3 9 0.464 6.21 2.7 3.35 80.4 1317 

 

In accordance with the cell-cycle analysis outlined in the previous section (see 4.2.3), we 

observed that implementation of the GFPhigh gate (defined by the fluorescence 

distribution of control non-doxycycline treated mice, as in Figure 4.11) allows selection of 

cells that have undergone no cell division, or maximum one, during the chasing period 

(Figure 4.17 and Figure 4.18).  

To summarise, the H2B-GFP dilution profile obtained after a 10-day chasing period 

allowed us to retrieve information on the in vivo proliferation kinetics from both PDX 

models, albeit with a lower resolution for AML IEO20 due to the initially heterogeneous 
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expression of the fusion protein prior to doxycycline administration. The lower MFI of the 

H2B-GFP signal in the starting population  (Figure 4.17) of the AML IEO20 accounted for 

a faster extinction of the GFP signal altogether, although the kinetics of MFI loss were 

close to identical between the two leukaemias (Figure 4.10). 

In conclusion, our data demonstrate that AMLs are composed of populations of cells with 

highly heterogeneous proliferative potential. In the analysed timeframe (10 days), ~85% of 

the cells had undergone 3.16 (+/- 0.25) divisions, with ~15% of the initial population 

remaining GFPhigh, compatible with a proliferative history of zero or maximum one cell 

division. We consider this latter population of GFPhigh cells as quiescent. 
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4.3 Biological	 characterization	 of	 isolated	 quiescent	 and	 cycling	

leukaemic	cells	

 

The in vivo H2B-GFP label-retaining assay established an experimental setting for the 

isolation of quiescent and cycling leukaemic populations from PDX models. To test the 

frequency of LSCs and their tumorigenic properties in both compartments, we transplanted 

FACS-sorted GFPhigh and GFPneg cells from X1 AMLs under limiting dilution (from 

5,000 to 100 cells). Even though doxycycline treatment could be extended to a maximum 

of 4 weeks in AML IEO20 and 6 weeks in AML 9, based on their respective disease 

latencies, we opted for a 3-week chasing period to avoid unnecessary animal suffering and 

to ensure a good retrieval of cells by sorting. In general, at the end of the 3-week chasing, 

the GFPhigh cells represented <1% of the bulk leukaemia for both PDX models, while the 

GFPneg accounted for ~80% of the tumour (Figure 4.19). Engraftment of H2B-GFP+ 

blasts was scored for both GFPhigh and GFPneg populations (Table 4.2), indicating that 

two functional types of LSCs with diverse cell-cycle properties (quiescent vs. proliferating) 

exist and can be prospectively isolated through the H2B-GFP label-retaining assay. 

 

Figure 4.19 Percentages of H2B-GFP subsets in the SPL after 3 weeks of chasing. 

Mice transplanted with H2B-GFP expressing AML IEO20 or AML 9 blasts were treated 
with doxycycline for 3 weeks. The percentages of GFPhigh, GFPlow and GFPneg cells in 
the SPL are reported, following the gating strategy depicted in Figure 4.11. Mean and 
standard deviation of independent experiments are shown.  
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Table 4.2 Limiting dilution transplantation of quiescent (GFPhigh) and cycling 
(GFPneg) leukaemic cells. 

NSG mice were injected with GFPhigh or GFPneg leukaemic blasts at scalar cell doses 
(from 5,000 – 100 cells) and leukaemia engraftment was checked at regular intervals in the 
PB of the transplanted animals. All injected mice were monitored for a maximum period of 
one-year post-transplantation and were euthanized by CO2 inhalation when blast 
infiltration reached ~80% in the PB. LSC frequency calculation was performed using 
ELDA (Hu and Smyth 2009). 

 AML IEO20 AML 9 

Cell dose Quiescent Cycling Quiescent Cycling 

5,000 - - 2/3 2/3 

1,000 3/5 2/6 1/3 0/3 

500 0/6 1/8 0/3 0/3 

250 0/3 1/6 - - 

100 0/3 - - - 

LSC frequency 1:2483 
(1:7517-1:820) 

1:2512 
(1:6734-1:937) 

1:4348 
(1:14093-1:1341) 

1:6953 
(1:27035-1:1788) 

 

The LSC frequency was calculated for all transplanted populations using the Extreme 

Limiting Dilution Analysis, ELDA (Hu and Smyth 2009), web tool (Table 4.2). Taking 

into account the representation of each population in the tumour at the end of the 3-week 

chasing period (Figure 4.19), we estimated that the relative proportion of quiescent vs. 

proliferating LSCs should be roughly close to 1:174 for AML IEO20 and 1:47 for AML 9. 

Notably, for both leukaemias, no significant difference was observed in the LSC 

frequencies of the corresponding GFPhigh (quiescent) and GFPneg (cycling) subsets. 

However, the quiescent AML 9 LSCs propagated more aggressive secondary leukaemias 

(X2), with a significantly lower median survival (Figure 4.20). To test whether the 

quiescent and cycling LSCs (X1) have similar long-term self-renewal potential, we 

performed a serial transplantation assay. To this end, equal numbers of blasts (bulk 

population) from secondary leukaemias (X2), that originated from isolated quiescent and 
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cycling X1 cells, were re-transplanted in parallel in tertiary recipient mice (X3). Contrary 

to X2 of AML 9, no significant difference was scored in the median survival of the 

transplanted mice at X3. In addition, all the engrafted animals reached high levels of blast 

infiltration in a very synchronous manner leading to a sharp downslope of the Kaplan-

Meier curve (Figure 4.21). Taken together these data show that quiescent and proliferating 

LSCs have comparable self-renewal and tumorigenic potential. 

 

Figure 4.20 Kaplan-Meier curve of mice transplanted with isolated quiescent and 
cycling cells (X2, AML 9). 

Quiescent and cycling leukaemic cells were isolated by FACS as GFPhigh and GFPneg 
cells, respectively, using the in vivo H2B-GFP label-retaining assay and a chasing period 
of 3 weeks. The sorted populations were transplanted into NSG mice (10,000 cells per 
mouse) and blast engraftment was monitored in the PB of the recipients for a total period 
of 7 months. Log-rank test was performed to test the differences in survival. 

 

 

Figure 4.21 Kaplan-Meier curve of tertiary recipient mice transplanted with X2 
leukaemias generated from isolated quiescent and cycling cells (AML 9). 
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Bulk leukaemic cells obtained from the X2 passage of isolated quiescent and cycling cells 
(X1) were transplanted into tertiary recipients (10,000 cells per mouse) and blast 
engraftment was monitored in the PB of the X3 mice for a total period of 6 months. 

 

In conclusion, as normal HSCs, LSCs exist in two pools, quiescent and proliferating. In 

contrast to HSCs, the two pools have comparable self-renewal properties and proliferating 

LSCs are more prevalent.  
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4.4 Quiescence	is	a	dynamic	functional	LSC	state	

 

4.4.1 Contribution	to	clonal	variability	

We next investigated whether the quiescent and proliferating LSCs give rise to the same 

tumour sub-clones, and whether their progeny has similar self-renewal potential. To this 

end, we analysed the relative clonal composition of proliferating and quiescent 

subpopulations, and how this architecture evolves upon serial transplantation. 

Experimentally, we utilised the 30x106 barcode library in combination with the in vivo 

H2B-GFP label-retaining assay described earlier (Figure 4.22).  

 

Figure 4.22 Experimental outline of clonal tracking in quiescent and cycling cells. 

H2B-GFP+ leukaemic blasts were infected in vitro, at a low MOI, with the 30x106 
lentiviral barcode library and transplanted into immunocompromised recipient mice (X1). 
Upon leukaemia manifestation, the mice were treated with doxycycline in order to allow 
the segregation of quiescent and cycling barcoded leukaemic cells, on the basis of their 
H2B-GFP fluorescence signal. At the end of a 10-day chasing period, bulk and sorted 
GFPhigh and GFPlow cells were retrieved for serial transplantation and barcode 
sequencing (X1).  The X2 leukaemias that developed either from the bulk X1 or the 
isolated X1 quiescent and cycling blasts were also collected for barcode amplification and 
sequencing. 
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AML 9 human leukaemic blasts stably transduced with the H2B-GFP vector were, thus, 

subjected to a second round of infection with the TagRFP+ library of 30x106 barcodes 

(Figure 4.23, left panel) and successfully transplanted into NSG mice. The percentage of 

TagRFP+GFP+ cells was generally maintained in vivo and could be easily monitored in the 

PB of the engrafted mice (Figure 4.23, right panel).  

 

 

Figure 4.23 In vivo propagation of H2B-GFP+ AML 9 cells infected with the pRSI 
30x106 barcode library.  

Left panel: representative flow cytometry dot plot of H2B-GFP+ AML 9 blasts transduced 
with the 30x106 barcode library (at MOI 2) 5 days post infection. Right panel: the 
percentages of TagRFP+GFP+ AML 9 blasts measured by flow cytometry 5 days post-
infection in vitro (Infection) and in the PB of the corresponding recipient mice (PB X1) are 
shown for 6 replicas (ID 1, ID 2, ID 3, ID 4, ID 5 and ID 6). 

 

Animals transplanted with leukaemic cells infected with both vectors (X1) were put on a 

doxycycline diet for the isolation of a population highly enriched in quiescent LSCs.  In 

this experimental setting, we chose a 10-day chasing period to allow higher cell retrieval 

from the GFPhigh population, in order to cover, as much as possible, the complexity of the 

barcode library in the sample. At the end of the chasing, SPL cells of treated mice were 

sorted based on levels of H2B-GFP expression. One part of the TagRFP+ bulk, quiescent 

(GFPhigh) and cycling (GFPlow) cells were re-transplanted in equal cell doses into 

secondary recipients (X2), while the rest was kept for barcode amplification and 

sequencing (Figure 4.22). 
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Barcode enumeration in the bulk, cycling and quiescent populations at X1 revealed a very 

similar clonal composition among the three samples, in terms of numbers of barcodes 

identified, molecular identity of the barcodes and clone size (percentage of total reads 

corresponding to each barcode; Figure 4.24). Furthermore, the clonal composition of the 

secondary leukaemias (X2) was also quite similar especially between the recipients of 

GFPhigh and GFPlow X1 cells, while there seemed to be a slightly stronger clonal 

selection in the X2 of the bulk (Figure 4.24).  

 

Figure 4.24 Clonal tracking in the bulk (Bulk), cycling (GFPlow) and quiescent 
(GFPhigh) cells of AML 9. 

Distribution of barcode frequencies within each sample. Each barcode is represented by the 
same colour in all samples. The numbers of barcodes that cumulatively make up for 99% 
of the reads for each sample are indicated accordingly. 

 

These data indicate that cycling and quiescent LSCs give rise to the same clonal 

distribution, suggesting that each tumour sub-clone is supported by cycling and quiescent 

LSCs. Strikingly, the clonal selection process at X2 was not affected by the functional state 

(cycling or quiescent) of the LSC compartment, suggesting that the two LSC 

compartments have similar growth potential.  
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4.4.2 The	 functional	 heterogeneity	 is	 maintained	 upon	 serial	 passaging	 of	

isolated	quiescent	and	cycling	LSCs	

We next asked if there is a hierarchical link between quiescent and proliferating LSCs, 

analysing the capacity of each subpopulation to re-form the same pool of quiescent and 

proliferating cells. To this end, we sorted the GFPhigh and GFPneg leukaemic subsets 

from AML 9, transplanted in parallel equal numbers of cells from the isolated populations 

and, upon leukaemia engraftment, treated the secondary recipients (X2) with doxycycline 

for 3 weeks in order to isolate X2 quiescent and cycling leukaemic cells (Figure 4.25).  

 

Figure 4.25 Experimental strategy for the characterisation of X3 leukaemias 
originating from isolated quiescent (GFPhigh) and cycling (GFPneg) cells after two 
rounds of chasing with doxycycline at X1 and X2. 

Quiescent and cycling leukaemic cells were isolated by FACS as GFPhigh and GFPneg 
cells, respectively, using the in vivo H2B-GFP label-retaining assay and a chasing period 
of 3 weeks. The sorted populations were transplanted into NSG mice that were kept on a 
normal diet to allow for the re-expression of the H2B-GFP protein. When blast 
engraftment reached ~30% in the PB of the X2 recipients, we proceeded to another 3-week 
round of doxycycline administration. At the end of the second chasing period, flow 
cytometry analysis was performed and secondary (X2) quiescent and cycling cells were 
isolated by FACS and serially passaged to tertiary recipients (X3). 

 

The profiles of the dilution of the H2B-GFP signal were comparable between the X2 

leukaemias originating from X1 quiescent (GFPhigh) and cycling (GFPneg) cells (Figure 

4.26), as well as to the profiles obtained for 3 weeks of chasing at X1 (Figure 4.19).  
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Figure 4.26 Percentages of H2B-GFP subsets in the SPL after 2 rounds of chasing. 

Mice transplanted with X1 GFPhigh and GFPneg AML 9 blasts were treated with 
doxycycline for 3 weeks and GFPhigh, GFPlow and GFPneg cells were sorted from the X2 
SPL, following the gating strategy depicted in Figure 4.11. Mean and standard deviation of 
two independent experiments are shown. 

 

Importantly, as we already reported for the bulk X2 of AML 9  (Figure 4.21), also the 

isolated X2 quiescent and cycling cells successfully engrafted into tertiary recipients in a 

quite synchronous manner (Figure 4.27 and Figure 4.28). 

 

 

Figure 4.27 Kaplan-Meier curve of tertiary recipient mice transplanted with X2 
leukaemic populations generated from isolated X1 quiescent cells (AML 9). 
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GFPhigh, GFPneg and Bulk leukaemic cells obtained from the X2 passage of isolated 
quiescent (GFPhigh X1donor) cells were transplanted into tertiary recipients (10,000 cells 
per mouse) and blast engraftment was monitored in the PB of the X3 mice for a total 
period of 6 months. 

 

	

Figure 4.28 Kaplan-Meier curve of tertiary recipient mice transplanted with X2 
leukaemic populations generated from isolated X1 cycling cells (AML 9). 

GFPhigh, GFPneg and Bulk leukaemic cells obtained from the X2 passage of isolated 
cycling (GFPneg X1 donor) cells were transplanted into tertiary recipients (10,000 cells 
per mouse) and blast engraftment was monitored in the PB of the X3 mice for a total 
period of 6 months. 

 

Taken together, these data show that the functional heterogeneity of LSCs is maintained 

after transplantation of isolated quiescent or cycling LSCs in secondary recipient mice, 

demonstrating that the two functional LSC states of proliferation and quiescence are not 

deterministic and that the two populations are maintained in equilibrium in the growing 

leukaemias. Quiescent LSCs can enter the cell-cycle when challenged by transplantation 

and cycling LSCs are endowed with the ability to generate a de novo pool of tumorigenic 

quiescent LSCs. Altogether, these observations highlight the importance of efficient 

targeting of both populations in the clinical setting in order to achieve complete tumour 

eradication. 
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4.5 Quiescence	fuels	tumour	evolution		

 

4.5.1 Sub-clone	variance	upon	diverse	environmental	pressures	

To summarise our data so far, we have set up an assay that allows segregation of LSCs, 

based on their cell-cycle properties, and identified a quiescent tumorigenic compartment 

which largely shares the same clonal composition with the bulk of the leukaemia.  Upon 

serial passaging, we observed that individually barcoded LSCs exhaust and, strikingly, the 

pattern of clonal selection is almost identical in different recipient mice. We next examined 

how this LSC selection is reflected on the genetics of the tumour by performing WES of 

the bulk AML 9 leukaemias at X1 and X2. Whole exomes of both passages were captured 

by SureSelect targeted enrichment and sequenced by Illumina HiSeq. The sequences were 

then analysed with an appropriately developed bioinformatics pipeline (see section 3.6.2). 

More precisely, MuTect was used to call somatic mutations, single nucleotide variants 

(SNVs), in each sequenced tumour population against the corresponding normal DNA 

obtained from T-cells of the original AML patient. Finally, SciClone (Miller, White et al. 

2014) was used to cluster the mutations based on variant allele frequency (VAF) similarity 

and clonal evolution models (p-value ≤ 0.05) were inferred by ClonEvol (Dang, White et 

al. under review). 

In contrast to what we observed by in vivo clonal tracking, only a small number of genetic 

clones were identified by SciClone which was, however, maintained from X1 to X2 

(Figure 4.29, left panel). Furthermore, the inferred clonal evolution model (Figure 4.29, 

right panel) predicted the selective expansion of one of the two major sub-clones from X1 

to X2. Bringing together the results obtained through barcoding of individual LSCs and the 

mutational analysis in the bulk of the tumour, we can postulate that each genomic clone 

contains many LSCs, which have variable self-renewal potential and equal fitness in the 

selective environment. 
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Figure 4.29 Clonal evolution upon serial transplantation (AML 9). 

Mutations identified in the bulk of AML 9 X1 and X2 were clustered by SciClone 
according to VAF similarity into 4 genetic clones (left panel). ClonEvol was used to infer 
the clonal evolution model (right panel). 

 

We next investigated the mutational landscape of quiescent vs. proliferating AML 

subpopulations in X1 and X2. To this end, we performed WES of FACS-sorted GFPhigh, 

GFPlow and GFPneg subpopulations from AML 9, as generated by the H2B-GFP label-

retaining assay after a 3-week chasing period. As expected by their relative representation 

in the corresponding bulk tumour (Figure 4.19), the highly proliferating populations 

(GFPneg) were very similar to the bulk leukaemia of the corresponding passage of AML 9 

(Figure 4.30, right panels). On the contrary, the GFPhigh populations were clearly distinct 

on the genetic level (Figure 4.30, left panels), while the GFPlow represented an 

intermediate situation (Figure 4.30, middle panels). More precisely, low frequency 

mutations (VAF < 0.2) identified in the bulk of both passages were found at higher 

frequencies in the GFPhigh and GFPlow compartments (Figure 4.30), indicating the 

selective accumulation of unique mutations in the quiescent or slowly cycling leukaemic 

populations of X1 and X2. On the other hand, a fraction of the high frequency mutations 

(VAF > 0.2) in the bulk X2 were underrepresented in the corresponding GFPlow and 

GFPhigh (Figure 4.30, lower panels), suggesting that different genetic clones may have 

variable proportions of quiescent and proliferating subpopulations. 
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Figure 4.30 Correlations of the variant allele frequency (VAF) for the mutations 
identified in the bulk  leukaemic populations of the X1 and X2 passages of AML 9. 

Each point of each graph corresponds to a single SNV with VAF ≥ 0.05 in the bulk 
leukaemic population of X1 (upper panels) or X2 (lower panels). The VAF in the bulk was 
always plotted on the X-axis and the VAF in the corresponding GFPhigh (left panels), 
GFPlow (middle panels) or GFPneg (right panels) subpopulation was plotted on the Y-
axis. The values of the Pearson correlation coefficient, r, are shown in red.  

 

We then investigated the effect of the selective pressure of 5-FU on the genetic evolution 

of the tumour. For this purpose, we administered IP a single dose of 5-FU (150 µg per g of 

body weight) to NSG mice soon after transplantation at X1 and, upon leukaemia 

presentation, we treated the “relapsed” (+5-FU X1) mice with doxycycline for 3 weeks 

(Figure 4.31). Notably, heterogeneously cycling leukaemias were generated after the 5-FU 

treatment, which allowed the isolation of quiescent (GFPhigh) and cycling (GFPlow and 

GFPneg) cells. As previously demonstrated by the in vivo clonal tracking approach (see 

section 4.1.2), the impact of 5-FU on the clonal evolution of the bulk was also revealed by 

the SciClone analysis as one of the major tumour sub-clones was counter-selected by the 

changing environment (Figure 4.32).  
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Figure 4.31 Experimental outline for the generation of a “relapsed” leukaemia in the 
H2B-GFP+ AML 9 PDX model  by 5-FU administration at X1. 

We transplanted 500,000 H2B-GFP expressing AML 9 blasts into NSG recipient mice and, 
10 days later, administered IP a single dose of 5-FU (150 µg per g of mouse body weight). 
Upon leukaemia engraftment (~30% hCD45+ cells in the PB), the mice were put on 
doxycycline diet for a chasing period of 3 weeks to allow the isolation of +5-FU quiescent 
and cycling population for WES and subsequent mutational analyses. 

 

Figure 4.32 Clonal evolution upon 5-FU treatment (AML 9). 

Mutations identified in the bulk of AML 9 X1 in the absence (No 5-FU) or presence (+5-
FU) of 5-FU were clustered by SciClone according to VAF similarity into 4 genetic clones 
(left panel). ClonEvol was used to infer the clonal evolution model (right panel). 

 

Furthermore, contrary to our observations in the absence of 5-FU at X1 and X2 (Figure 

4.30), the correlation between the GFPhigh or the GFPlow and the bulk was very high and 

similar to the one observed for the GFPneg (GFPhigh vs. bulk, r = 0.9358; GFPlow vs. 

bulk, r = 0.9365; GFPneg vs. bulk, r = 0.9465) (Figure 4.33). The high genetic 

homogeneity between all samples suggests synchronous re-growth of a specific 
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subpopulation after 5-FU treatment, which is consistent with the cell-cycle specific 

cytotoxicity of 5-FU. 

 

Figure 4.33 Correlations of the variant allele frequency (VAF) for the mutations 
identified in the bulk leukaemic population of the X1 of AML 9 after 5-FU 
administration (AML 9 + 5-FU X1). 

Each point of each graph corresponds to a single SNV with VAF ≥ 0.05 in the bulk 
leukaemic population of AML 9 + 5-FU X1. The VAF in the bulk was always plotted on 
the X-axis and the VAF in the corresponding GFPhigh (left panel), GFPlow (middle panel) 
or GFPneg (right panel) subpopulation was plotted on the Y-axis. The values of the 
Pearson correlation coefficient, r, are shown in red. 

 

Next, to examine which functional LSC subpopulation is responsible for the genetic 

selection by 5-FU, we transplanted isolated +5-FU X1 quiescent (Q, GFPhigh) and cycling 

(C, GFPneg) cells into secondary recipient mice to obtain +5-FU Q-X2 and C-X2 

leukaemias, which were subjected to WES (Figure 4.34). 

 

Figure 4.34 Experimental outline for the serial transplantation of isolated quiescent 
and cycling leukaemic populations after 5-FU treatment to obtain X2 leukaemias for 
WES (AML 9). 
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Quiescent (Q) and cycling (C) blasts were isolated from +5-FU X1 leukaemias by FACS as 
GFPhigh and GFPneg cells, respectively, after a chasing period of 3 weeks. The sorted 
populations were transplanted into NSG mice to obtain secondary (+5-FU Q-X2 and C-X2) 
leukaemias for WES and subsequent mutational analyses. 

 

The clonal analysis performed with SciClone on the +5-FU Q-X2 and +5-FU C-X2 

leukaemias revealed distinct patterns of tumour evolution. A minor sub-clone was 

selectively expanded upon transplantation of the quiescent LSCs obtained after 5-FU 

treatment, whereas transplantation of their proliferating counterpart led to the maintenance 

of the previously adapted clonal composition to the + 5-FU environment (Figure 4.35, right 

panels). In detail, the mutational analysis in +5-FU Q-X2 leukaemia indicated the selection 

of specific SNVs, which were present at low frequency (VAF < 0.1) in the X1 donor cells 

(Figure 4.35, left pannels). Notably, among the selected mutations we found SNVs in the 

exonic regions of PIK3CB (Phosphatidylinositol-4,5-Bisphosphate 3-Kinase Catalytic 

Subunit Beta), MTMR11 (Myotubularin Related Protein 11) and OGT (O-Linked N-

Acetylglucosamine (GlcNAc) Transferase). 

 

Figure 4.35 Clonal evolution upon transplantation of isolated quiescent (GFPhigh) 
and proliferating (GFPneg) leukaemic populations after 5-FU treatment (AML 9). 
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Mutations identified in the confronted samples were clustered by SciClone according to 
VAF similarity into 4 genetic clones (left panels). ClonEvol was used to infer the clonal 
evolution model (right panels). 

 

Bringing together our data from the two clonal analyses performed (i.e. barcoding and 

SciClone), we can conclude that each genomic clone contains both quiescent and 

proliferating LSCs. However, the genomic pattern of quiescent cells is unique under steady 

state conditions and directs diverse clonal selection upon environmental pressure, 

suggesting that quiescent LSCs are heterogeneous with respect to their mutational 

landscape and cell-cycle re-entry probability. 

4.5.2 Intra-tumour	genetic	heterogeneity:	the	hidden	genome	of	the	quiescent	

leukaemic	subpopulation	

To better understand the diverse clonal selection patterns driven by the expansion of 

quiescent and proliferating LSCs (Figure 4.35), we decided to study in greater depth the 

intra-tumour genetic heterogeneity under steady state conditions. For this purpose, we 

considered all mutations called by MuTect in the isolated quiescent (GFPhigh) and cycling 

(GFPlow and/ or GFPneg) leukaemic populations, including very low frequency mutations 

(VAF < 0.05) and compared them with the ones found in the corresponding bulk of both 

AML 9 and AML IEO20 at X1.  

As already shown in Figure 4.7 (left panel), H2B-GFP expression in AML IEO20 is 

heterogeneous and, upon transplantation in recipient mice, we consistently detected, prior 

to any doxycycline administration, a minor population (~10% of the tumour) of non-

labelled H2B-GFP- leukaemic cells (Figure 4.8). Therefore, we first checked whether this 

stable, initial H2B-GFP- population was genetically distinct from the ~90% H2B-GFP+ 

labelled population of the bulk leukaemia for this PDX. To this end, we isolated by FACS 

these two populations (H2B-GFP+ and H2B-GFP-) from the SPL cells of a control mouse 

engrafted with AML IEO20, continuously kept on a normal (doxycycline-free) diet, and 
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compared their genomes by WES. Indeed, as shown in Figure 4.36, the H2B-GFP- cells 

contained many high frequency mutations (VAF > 0.2) that were not found in the labelled 

H2B-GFP+ population. We reasoned that these SNVs would result in “contaminating” 

mutations in the GFPneg cycling population of AML IEO20 isolated after the 3-week 

chasing with doxycycline. By introducing false positives, these mutations would inevitably 

interfere with the interpretation of our results and we, therefore, decided to exclude this 

cycling population from the mutational analysis of AML IEO20, concentrating only on the 

GFPhigh and GFPlow subsets. 

 

Figure 4.36 Correlation of the variant allele frequency (VAF) for the mutations 
identified in the H2B-GFP- and H2B-GFP+ subsets of the non-treated AML-IEO20 
(prior to doxycycline administration). 

Each point of the graph corresponds to a single SNV that was called by MuTect in at least 
one of the two samples sequenced (H2B-GFP- and H2B-GFP+ subsets prior to chasing). 
For each SNV, the VAF in the H2B-GFP+ leukaemic population was plotted on the X-axis 
and the VAF in the H2B-GFP- on the Y-axis. The value of the Pearson correlation 
coefficient, r, is shown in red. 

 

As expected by their relative representation in the corresponding bulk tumour (Figure 

4.19), the cycling populations (GFPlow for AML IEO20; GFPlow and GFPneg for AML 

9) were very similar to their respective bulk leukaemias both in terms of number (Figure 

4.37) and identity of the SNVs called (Figure 4.38). On the contrary, the GFPhigh was 

found to comprise a high number of very low frequency mutations that were not present in 

the bulk or the cycling subsets (GFPneg and/or GFPlow) of the tumour (Figure 4.37). In 
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more detail, mutations present at high frequency (VAF > 0.2) were generally shared among 

bulk and quiescent populations, while the vast majority of the SNVs identified specifically 

in the GFPhigh compartment were characterised by a VAF < 0.1 (Figure 4.37 and Figure 

4.38).  

 

Figure 4.37 Quiescent cells carry a large number of low frequency mutations. 

The graphs report the numbers of SNVs identified in the bulk (Bulk), cycling (GFPneg or 
GFPlow) and quiescent (GFPhigh) subpopulations in AML IEO20 (left panel) and AML 9 
(right panel), using different VAF thresholds. 

 

 

Figure 4.38 Correlations of the variant allele frequency (VAF) for the mutations 
identified in the GFP subsets and the bulk of each AML. 
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Each point of each graph corresponds to a single SNV that was called by MuTect in at 
least one of the two confronted sequences at a time (GFPhigh, GFPlow or GFPneg vs. 
bulk). The VAF in the bulk leukaemic population was always plotted on the X-axis and the 
VAF in the corresponding GFPhigh (left panels), GFPlow (middle panels) or GFPneg 
(right panel) subpopulation was plotted on the Y-axis. The values of the Pearson 
correlation coefficient, r, are shown in red. The plots for AML IEO20 are presented in the 
two upper panels and the plots for AML 9 in the three lower panels. 

 

Due to the relatively low percentage (~1%) of the GFPhigh cells at the end of the chasing 

period (Figure 4.19), we often obtained as few as 300,000 cells by FACS. We wondered 

whether the observed enrichment of the GFPhigh population in very low frequency 

mutations could be linked to the disproportional number of cells retrieved after sorting 

compared to the bulk and cycling populations, which were always in abundance (usually in 

the range of millions of cells). To test this possibility, we randomly sampled aliquots of 

300,000 and 3x106 cells from the bulk of AML 9, proceeded to DNA isolation and library 

preparation for each sample independently, following the exact same protocol employed 

and already described for the GFP subsets, and compared their whole exome sequences. 

Notably, both the low cell input (300K) and the high cell input (3M) samples carried a low 

number of mutations (51 and 53, respectively), which was comparable to the one detected 

in the bulk and cycling populations of AML 9 (Figure 4.37, right panel). Moreover, a good 

correlation (r=0.8715) was found between the VAFs scored in the two sequences for all the 

SNVs identified in at least one of them (Figure 4.39). Therefore, we concluded that the 

number of cells from which we isolated the DNA for genomic analysis was not a variable 

that impacted on our experimental procedures nor affected our mutational analysis, 

indicating, importantly, that our reported observations for the GFPhigh populations were 

not biased by this parameter. 
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Figure 4.39 The starting number of cells used for DNA extraction does not impact on 
the number and VAF of the mutations scored by WES. 

Each point of the graph corresponds to a single SNV that was called by MuTect in at least 
one of the two samples sequenced (300K cell input and 3M cell input, both sampled 
randomly from the bulk of AML 9). The VAF in the high-cell (3M) input sample was 
plotted on the X-axis and the VAF in the low-cell (300K) input on the Y-axis. The value of 
the Pearson correlation coefficient, r, is shown in red. 

 

Our data show that the quiescent GFPhigh cells are characterised by the presence of a very 

high number of low frequency mutations that are unique among the leukaemic populations 

analysed. This observation strongly indicates that the quiescent leukaemic compartment 

could play a pivotal role in the progression of the disease as it appears to carry a hidden 

genome that could not be previously revealed by bulk sequencing approaches.  

However, no clonal segregation was scored in the 99% of the tumour by our barcoding 

approach (Figure 4.24). This led us to hypothesize that the excess of mutations in the 

GFPhigh subset is a property of the quiescent state of the cells. To further investigate on 

this phenomenon, we repeated the same analysis in the presence of 5-FU. As previously 

described, we challenged the quiescent LSCs to enter the cell-cycle by a 5-FU insult soon 

after transplantation at X1 and, upon leukaemia presentation, we treated the “relapsed” 

(+5-FU X1) mice with doxycycline (Figure 4.31).  

In contrast to steady state conditions, all GFP subsets presented an equal and low number 

of mutations overall (42 for +5-FU X1 GFPhigh and 45 for the GFPlow and GFPneg). 
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Notably, the GFPhigh subset was depleted of the mutational overload observed in X1 

GFPhigh cells in the absence of 5-FU (Figure 4.40 and Figure 4.41), suggesting that the 

rare quiescent cells with excess mutations are counter-selected during clonal expansion. 

 

Figure 4.40 Quiescent cells isolated after 5-FU treatment carry equal numbers of 
mutations with the corresponding bulk (+5-FU X1 AML 9). 

The graph reports the numbers of SNVs identified in the bulk (Bulk) and the quiescent 
(GFPhigh) subpopulation in the +5-FU X1 of AML 9, using different VAF thresholds. 

 

 

Figure 4.41 Correlations of the variant allele frequency (VAF) for the mutations 
identified in the GFP subsets and the bulk of the leukaemia generated after 5-FU 
administration (+5-FU X1). 

Each point of each graph corresponds to a single SNV that was called by MuTect in at 
least one of the two confronted sequences at a time (GFPhigh, GFPlow or GFPneg vs. 
bulk). The VAF in the bulk leukaemic population was always plotted on the X-axis and the 
VAF in the corresponding GFPhigh (left panel), GFPlow (middle panel) or GFPneg (right 
panel) subpopulation was plotted on the Y-axis. The values of the Pearson correlation 
coefficient, r, are shown in red.  
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In summary, our data suggest that each genomic clone in a growing leukaemia has its own 

reservoir of quiescent LSCs, with similar fitness within the niche microenvironment. Once 

these quiescent LSCs enter the cell-cycle, they are destined to exhaust and, simultaneously, 

to replenish the quiescent pool. Importantly, during quiescence, LSCs accumulate new 

mutations, forming a reservoir of genomes that can be selected by diverse environmental 

pressures (e.g. 5-FU in our experimental setting). Upon mobilization of quiescent LSC 

populations the excess of mutations was indeed lost, suggesting that highly-mutated LSCs 

are counter-selected. 
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5 Discussion	

 

The interplay between functional and genetic heterogeneity in cancer is constantly gaining 

attention in the field, as more studies reveal the complexity of the hierarchical CSC 

organization and clonal evolution patterns in tumours (Kreso and Dick 2014). Here we 

have reported the existence of two functional classes of LSCs in AML, which maintain a 

high tumorigenic capacity, but differ in terms of cell-cycle entry rate. Although quiescence 

has been previously associated with chemoresistance in AML (Ishikawa, Yoshida et al. 

2007, Saito, Uchida et al. 2010), our H2B-GFP PDX leukaemia models offer the advantage 

of monitoring cell proliferation kinetics over time, granting access to a better perception of 

the dynamic regulation of quiescence in vivo. Both LSC types can switch functional 

classes, meaning quiescent LSCs may enter the cell-cycle and cycling LSCs can revert to a 

quiescent state in order to maintain an equilibrium between the two populations (Figure 

5.1). Therefore, efficient treatment approaches should be designed to target both 

compartments in parallel in order to achieve complete tumour eradication. 

We have further shown that human AMLs are composed of a few genetic clones and each 

of them is sustained by many individual LSCs, both quiescent and cycling, with variable 

long-term self-renewal potential. The vast majority of individual LSCs eventually exhaust 

upon serial passaging in vivo, but the genetic heterogeneity of the bulk tumour is 

maintained under steady state conditions. Importantly, we were able to assess the intrinsic 

LSC genetic heterogeneity and found that, even though under steady state conditions they 

largely share a common clonal architecture, a very high number of de novo low frequency 

mutations is concealed in the small pool of quiescent leukaemic cells (~1% of the 

leukaemia). Upon diverse environmental pressures, relevant phenotypes can be selected, 

but the excess of mutations is lost (Figure 5.1). The mechanisms by which these mutations 
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are instilled during quiescence and then selected to fuel tumour adaptation and evolution 

remains an open issue with important clinical implications.  

 

Figure 5.1 Quiescent LSCs fuel tumour heterogeneity. 

LSCs include quiescent (Q-LSC) and cycling (C-LSC) cells. Q-LSCs accumulate high 
numbers of mutations, the majority of which are counter-selected upon cell-cycle re-entry. 
A few relevant mutations, which may confer a competitive advantage for tumour growth in 
a given microenvironment, are, however, selected from the functional and genetic reservoir 
of the Q-LSCs eventually leading to the adaptive evolution of the tumour.  

 

We were able to measure proliferation properties, clonal distribution and mutational load 

of LSCs in two human AML xenografts, using the in vivo H2B-GFP label-retaining assay 

in combination with a clonal tracking approach and serial xenotransplantation in 

immunocompromised mice. In more detail, we defined the two leukaemic cell populations 

on the basis of their label-retention capacities: one rapidly dividing during the course of a 

3-week chasing period, resulting in the complete loss of any detectable H2B-GFP signal, 

and a second that remained essentially undivided and retained a high intensity of H2B-GFP 

fluorescence. The tumorigenic properties of these two populations were tested by limiting 

dilution and serial transplantation assays, and by in vivo clonal tracking. Both 

compartments contained LSCs with long-term leukaemogenic potential and exhibited 
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similar behaviours of clonal selection. Although adult SCs are thought to be predominantly 

quiescent in normal tissues, accumulating data support a model of co-existing but spatially 

separated zones of active (proliferating) and resting (quiescent) SCs in the niche 

microenvironment (Li and Clevers 2010). Distinct functions can be ascribed to active and 

resting SCs and, most likely, different SC assays (e.g. serial transplantation and lineage 

tracing) provide biased measures for a specific SC-type at a time (Li and Clevers 2010). 

These results are in line with previous work of the group on the ErbB2 murine model of 

breast tumorigeneis, where non-LRC ErbB2-tumour cells (obtained from mammosphere 

cultures after ex vivo labelling with the PKH26 lipophilic dye) were shown to retain 

tumorigenic properties upon orthotopic transplantation in congenic recipients (Cicalese, 

Bonizzi et al. 2009). Notably, preliminary data on two H2B-GFP expressing melanoma 

xenografts further confirm our observations on the leukaemia PDX models, suggesting that 

the documented CSC-behaviour is not leukaemia-specific and may, instead, have relevant 

implications for the wider cancer research field (Bossi D., Vlachou T. and Lanfrancone L., 

unpublished). 

To discern more information regarding the internal organisation of the functionally 

heterogeneous LSC compartment we performed proliferation analyses using FlowJo, 

which allowed the inference of the number of divisions we can monitor in our models, the 

percentage of divided and quiescent cells in the original leukaemic population and the 

division rate (average number of divisions in a given time). As a parallel approach and in 

order to accommodate the high complexity of an asynchronously dividing cell population 

monitored in vivo, we applied mathematical modelling on the flow cytometry data obtained 

from the BM at three time points during the chasing period (days 0, 10 and 21) to depict 

the following scenarios (in collaboration with the University of Bicocca; Nobile M.S., 

Cazzaniga P. and Besozzi D., unpublished):  

• Model 1: one population of cells (dividing cells only); 
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• Model 2: two populations of cells (non-dividing cells and dividing cells); 

• Model 3: three populations of cells (non-dividing cells, slowly dividing cells and fast 

dividing cells). 

Particle Swarm Optimisation was used to estimate the relative contribution of each sub- 

population in the original pool of leukaemic cells, at the start of the chasing, as well as the 

average time between two successive divisions in each case. The difference between the 

expected and the simulated data was determined by both the Kullback-Leibler divergence 

and the Hellinger distance and the lowest values were provided by Model 3.  The best fit 

corresponded to an average division interval of 53.41 hours for the fast cycling cells and 

207.57 hours for the slowly diving cells, assuming an estimated initial ratio of 4 non-

dividing : 47 slowly cycling : 49 fast cycling cells at the start of the chasing period. Testing 

of a fourth model envisioning two dividing populations (a fast and a slow one, the latter 

encompassing the quiescent cells) is underway.  

Similar studies have been performed to decipher cell-cycle and proliferation kinetics in the 

normal HSC compartment, using H2B-GFP, CFSE or BrdU label-dilution flow cytometry 

data after long term in vivo chasing periods (Wilson, Laurenti et al. 2008, Foudi, 

Hochedlinger et al. 2009, Takizawa, Regoes et al. 2011, Bernitz, Kim et al. 2016). 

Quiescent HSCs were consistently found to retain long-term reconstitution ability, while 

some discrepancies noted between the various proposed models are very likely mirroring 

differences in the experimental setup (e.g. in situ labelling/chasing vs. transplantation of 

pre-labelled cells). Depending on the study, the active HSCs appear to divide once in about 

every 10-36 days, while the dormant ones are estimated to enter cell-cycle every 100-150 

days (Wilson, Laurenti et al. 2008, Takizawa, Regoes et al. 2011). Nevertheless, in all 

cases, dividing LSCs seem to exhibit faster kinetics in our PDX models (~8.6 days for the 

slowly dividing and ~2.2 days for the fast dividing cells). It should be noted, however, that 

we could not reproducibly extend the chasing period beyond the 3-week timeframe due to 
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animal welfare reasons and therefore we cannot predict the behaviour of the LRC 

leukaemic population beyond that time point. Assuming a model of two dividing 

populations, with different cell-cycle entry rate, and using the label-dilution data we have 

up to the 3-week time point, we may be able to make a more direct comparison with the 

proposed models for normal HSCs.  

We showed by serial transplantation and chasing experiments that quiescent and 

proliferating LSCs are linked as they can reciprocally produce one another. Consistently, 

no clonal segregation was observed between the two populations by in vivo barcoding. 

However, we also showed that repeated cell-cycle entry upon serial transplantation of 

barcoded leukaemias progressively leads to functional exhaustion of the majority of 

proliferating LSCs, similarly to normal HSCs (Qiu, Papatsenko et al. 2014, Walter, Lier et 

al. 2015, Bernitz, Kim et al. 2016). Taken together, these data suggest that the long-term 

survival and propagation of the LSC clone depends on its ability to continuously replenish 

a pool of quiescent “immortal” LSCs, presumably through asymmetric proliferative 

divisions (Figure 5.1).  

Intriguingly, the quiescent compartment presented a high level of intrinsic genetic diversity 

compared to the bulk leukaemia. AML genomes are, in general, relatively “simple” and 

present mutations rates comparable to corresponding normal samples (Welch, Ley et al. 

2012, Lawrence, Stojanov et al. 2013, Roberts and Gordenin 2014). Even though the 

excessive number of quiescence-specific mutations was an unexpected result, still awaiting 

formal validation, we reckon that the high rate of mutation occurrence might be a property 

of the functional state of quiescence.  

Two main questions remain unanswered: (i) what is the molecular mechanism that leads to 

the generation of this immense mutational spectrum in a resting leukaemic population and 

(ii) why do these mutations get depleted upon cell-cycle re-entry. 
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The notion of mutation acquisition in highly proliferating tumour cells is generally 

accepted, but the understanding of high mutations rates at quiescence seems to be counter-

intuitive at first. However, if one thinks that replication-related mutagenesis coincides with 

selection while mutations occurring in quiescent cells are not under imminent selective 

pressure, the higher mutation score in quiescent leukaemic populations or the fact that this 

excess of mutations is lost when the cells are forced to enter the cell-cycle should not come 

as a surprise.  In the normal BM, it has already been shown that HSCs accumulate DNA 

damage due to aging-related processes or upon oncogene activation. Reportedly, when 

HSCs carrying persistent DNA damage are forced to enter the cell-cycle, they face rapid 

functional exhaustion (Rossi, Seita et al. 2007, Walter, Lier et al. 2015). Therefore, the 

quiescent state of normal HSCs appears to be prophylactic towards apoptosis and 

senescence in the presence of unrepaired genetic lesions.  On the other hand, studies in the 

normal haematopoietic system have also shown that quiescent stem cells ensure their long-

term survival potential by displaying enhanced abilities to respond to persistent DNA 

damage (Viale, De Franco et al. 2009, Mohrin, Bourke et al. 2010). Moreover, these cells 

reportedly employ the error-prone non-homologous end-joining repair (NHEJ)-mediated 

DNA damage repair mechanism, instead of the high-fidelity homologous recombination, 

which in turn leads to the accumulation of genetic abnormalities that may persist in vivo 

and potentially contribute to the development of haematopoietic malignancies (Mohrin, 

Bourke et al. 2010). Similarly, in the context of LSCs, we can envision that persistent 

DNA damage coupled with increased DNA-repair activity might impart a mutator 

phenotype that ultimately contributes to disease progression. Our data, indeed, suggest that 

minor tumour sub-clones within the LSC quiescent compartment can be selected under the 

environmental pressure of chemotherapy and expand in the relapse tumour. 

Studies on the TCGA and other public datasets have revealed that mutations tend to be 

repaired at higher rates in genes that are actively transcribed and in early replicating 

regions, creating thus a mutational strand asymmetry in the cancer genome (Roberts and 
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Gordenin 2014, Haradhvala, Polak et al. 2016). Stretches of single-stranded DNA remain 

exposed during replication, transcription or double-strand break repair and are vulnerable 

to genotoxic attacks. In bulk sequencing approaches, a heterogeneous population 

consisting of asynchronously dividing cells is typically analysed, and, hence, only 

mutations that are fixed on both strands can be identified. Since the sorted GFPhigh cells 

have been isolated precisely on the premise of their quiescent state, we can envision the 

existence of de novo “single-strand” mutations, mainly residing on the non-transcribed 

DNA strand. Single strand lesions were indeed identified in our dataset, predominantly 

G>T transversions. The high incidence of this type of base substitutions is an indicator of 

high oxidative stress, which is a known mutagenic mechanism, albeit not typically 

associated with quiescence (Juntilla, Patil et al. 2010, Lagadinou, Sach et al. 2013). 

True G>T “single-strand” mutations cannot be discriminated by artefacts introduced at the 

step of acoustic DNA fragmentation during library preparation (Costello, Pugh et al. 2013). 

In bulk sequencing any such lesion scored only on one of the parental DNA strands would 

be reasonably considered to be an artefact, since all cells are expected to have undergone 

multiple rounds of division between the moment of the oxidative stress insult in the living 

cells and the DNA isolation, ensuring the presence of a C>A transversion on the 

complementary strand.  We believe that our approach should allow us to “catch” a 

snapshot of this type of mutations in their genesis and therefore at single-strand level: if the 

mutations really appear at quiescence they should be identified as single-strand lesions in 

our isolated quiescent populations. In fact, a massive rate of single-strand G>T 

transversions was scored in the GFPhigh samples under steady state conditions, reaching 

the overwhelming number of 30,000 SNVs for AML 9, which were excluded from all the 

analyses presented in the Results section. We are now testing an alternative method of 

enzymatic DNA fragmentation prior to library preparation for target enrichment in parallel 

in pairs of bulk and quiescent leukaemic samples.  This approach should reveal the actual 

number of single-strand lesions captured in the quiescent state in vivo and enable us to 
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better appreciate the role of these mutations in tumour progression. If the hypothesis of de 

novo single-strand mutations is sustained by additional data, we can postulate that in great 

part these mutations get repaired upon cell-cycle re-entry. 

Regardless of whether the quiescence-specific mutations are found only on one or on both 

strands of the DNA, the absence of selective pressure, precisely due to the quiescent state 

of the cells, is most likely the factor that renders these cells more permissive to sustain a 

high mutation load. However, when they are prompted to enter the cell-cycle, the selective 

processes of tumour evolution will take action by eliminating cells carrying 

disadvantageous mutations. The clinically relevant question is whether the few mutations 

that are not repaired or counter-selected upon cell-cycle entry can promote an adaptive 

response of the tumour.  Our data show, indeed, that, upon selective expansion of quiescent 

LSCs, minor genetic sub-clones carrying mutations associated with tumour aggressiveness 

and chemotherapy-resistance can emerge, suggesting a mechanism for the development of 

refractory relapse tumours. 
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Appendix	

 

During the course of my PhD studies I closely collaborated with a fellow student on a 

project aimed at studying the effects of de-regulated Myc on the self renewal properties of 

normal and cancer mammary stem cells. A manuscript reporting the results of this study 

has been recently submitted and we are waiting for the editorial decision. The title, list of 

authors and the abstract are provided in the following pages. 
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Abstract 

Loss of p53 function is invariably associated with cancer. Its role in tumor growth was 

recently linked to its effects on cancer stem cells (CSCs), though underlying molecular 

mechanisms remain unknown. Here we show that c-myc is a transcriptional target of p53 in 

mammary stem cells (MaSCs), and its activation in breast tumors is a consequence of p53-

loss. Constitutive Myc expression leads to increased frequency of MaSC symmetric 

divisions and mammary progenitors reprogramming. In tumors, Myc activation is 

necessary and sufficient to maintain the CSCs phenotype and tumor growth. Our data 

indicate Myc as the effector of p53-loss in mammary CSCs, and suggest that continuous 

reprogramming of mammary progenitors contributes to the maintenance of the expanding 

pool of CSCs.   
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Ιθάκη	 

	

Σα	βγεις	στον	πηγαιμό	για	την	Ιθάκη,	
να	εύχεσαι	νάναι	μακρύς	ο	δρόμος,	
γεμάτος	περιπέτειες,	γεμάτος	γνώσεις.	
Τους	Λαιστρυγόνας	και	τους	Κύκλωπας,	
τον	θυμωμένο	Ποσειδώνα	μη	φοβάσαι,	
τέτοια	στον	δρόμο	σου	ποτέ	σου	δεν	θα	βρεις,	
αν	μέν’	η	σκέψις	σου	υψηλή,	αν	εκλεκτή	
συγκίνησις	το	πνεύμα	και	το	σώμα	σου	αγγίζει.	
Τους	Λαιστρυγόνας	και	τους	Κύκλωπας,	
τον	άγριο	Ποσειδώνα	δεν	θα	συναντήσεις,	
αν	δεν	τους	κουβανείς	μες	στην	ψυχή	σου,	
αν	η	ψυχή	σου	δεν	τους	στήνει	εμπρός	σου.	
	
Να	εύχεσαι	νάναι	μακρύς	ο	δρόμος.	
Πολλά	τα	καλοκαιρινά	πρωιά	να	είναι	
που	με	τι	ευχαρίστησι,	με	τι	χαρά	
θα	μπαίνεις	σε	λιμένας	πρωτοειδωμένους·	
να	σταματήσεις	σ’	εμπορεία	Φοινικικά,	
και	τες	καλές	πραγμάτειες	ν’	αποκτήσεις,	
σεντέφια	και	κοράλλια,	κεχριμπάρια	κ’	έβενους,	
και	ηδονικά	μυρωδικά	κάθε	λογής,	
όσο	μπορείς	πιο	άφθονα	ηδονικά	μυρωδικά·	
σε	πόλεις	Aιγυπτιακές	πολλές	να	πας,	
να	μάθεις	και	να	μάθεις	απ’	τους	σπουδασμένους.	
	
Πάντα	στον	νου	σου	νάχεις	την	Ιθάκη.	
Το	φθάσιμον	εκεί	είν’	ο	προορισμός	σου.	
Aλλά	μη	βιάζεις	το	ταξείδι	διόλου.	
Καλλίτερα	χρόνια	πολλά	να	διαρκέσει·	
και	γέρος	πια	ν’	αράξεις	στο	νησί,	
πλούσιος	με	όσα	κέρδισες	στον	δρόμο,	
μη	προσδοκώντας	πλούτη	να	σε	δώσει	η	Ιθάκη.	
	
Η	Ιθάκη	σ’	έδωσε	τ’	ωραίο	ταξείδι.	
Χωρίς	αυτήν	δεν	θάβγαινες	στον	δρόμο.	
Άλλα	δεν	έχει	να	σε	δώσει	πια.	
	
Κι	αν	πτωχική	την	βρεις,	η	Ιθάκη	δεν	σε	γέλασε.	
Έτσι	σοφός	που	έγινες,	με	τόση	πείρα,	
ήδη	θα	το	κατάλαβες	η	Ιθάκες	τι	σημαίνουν.		

	

Κ.	Π.	Καβάφης 


